Proposições simples e compostas
Proposições simples
Observe as seguintes sentenças:
Os gatos não voam.
Como é o seu nome?
...
12
Proposições simples e compostas
	 É uma proposição cujo valor lógico é V.
Todos os animais são mamíferos.
	 É uma propo...
Proposições simples e compostas
13
Paradoxos
Existem proposições, entretanto, chamadas de paradoxos, que não admi-
tem um ...
14
Proposições simples e compostas
Se a frase for verdadeira, então é verdadeiro de que João é mentiroso, pois
isso foi o ...
Proposições simples e compostas
15
	 Proposição ~p cujo valor lógico é F.
Não é verdade que a Alemanha é um país europeu.
...
16
Proposições simples e compostas
Na Língua Portuguesa é comum usarmos uma dupla negação no sentido
de reforçar ou enfati...
Proposições simples e compostas
17
A AC
U
Exemplo 1:
Considere a propriedade:
p: gostar de gatos
Conjunto U formado por to...
18
Proposições simples e compostas
As proposições que compõem uma proposição composta são chamadas
de proposições simples....
Proposições simples e compostas
19
A última declaração significa que tanto José completou 20 anos quanto
José não sabe dir...
20
Proposições simples e compostas
p q p q
V V V
V F F
F V F
F F F
Observe que a proposição composta p q é verdadeira apen...
Proposições simples e compostas
21
Conjunto A das pessoas que têm a propriedade p:
	 A = {x/ x é uma pessoa leitora de rev...
22
Proposições simples e compostas
Em Lógica, entretanto, o conectivo“ou”, ocorrendo uma única vez na pro-
posição compost...
Proposições simples e compostas
23
5  2 ou o mês de abril tem 31 dias.
A proposição composta é verdadeira, pois a primeira...
24
Proposições simples e compostas
A tabela-verdade de uma proposição composta contendo o conectivo
“ou”exclusivo apresent...
Proposições simples e compostas
25
Conjunto B das pessoas que têm a propriedade q:
	 B = {x/ x é uma pessoa que pratica tr...
26
Proposições simples e compostas
A B
A∆B
Observe na ilustração que os elementos que constituem a diferença si-
métrica s...
Proposições simples e compostas
27
q: passear
Conjunto A das pessoas que têm a propriedade p:
	 A = {x/ x é uma pessoa que...
28
Proposições simples e compostas
Construir a tabela-verdade da proposição composta p ~q:
p q ~q p ~q
V V
V F
F V
F F
Nas...
Proposições simples e compostas
29
p q ~p ~q ~p ∧~ q
V V F F
V F F V
F V V F
F F V V
A terceira coluna apresenta valores l...
30
Proposições simples e compostas
p q r ~r p q (p q) ~r
V V V F V V
V V F V V V
V F V F F F
V F F V F V
F V V F F F
F V F...
Proposições simples e compostas
31
Essa tabela-verdade tem apenas duas linhas, pois existe apenas uma
única proposição sim...
32
Proposições simples e compostas
Contingência
Observe o seguinte conceito:
Uma proposição composta que apresenta valores...
Proposições simples e compostas
33
Equivalências lógicas
Anteriormente, observamos algumas proposições que são logicamente...
34
Proposições simples e compostas
Observação:
Em geral, para negarmos proposições compostas por conectivos (e/ou)
basta n...
Proposições simples e compostas
35
Nome Equivalência
Distribuição
p (q r) (p q) (p r)
p (q r) (p q) (p r)
De Morgan
~(p q)...
36
Proposições simples e compostas
– Ora, é claro, menina! Já que dois mais dois não são cinco, naturalmente a
pessoa louc...
Proposições simples e compostas
37
Atividades de aplicação
1.	 Indique quais sentenças são proposições, atribuindo-lhes o ...
38
Proposições simples e compostas
c)	 (	 )	 p q
d)	 (	 )	 r p
e)	 (	 )	 q ~r
4.	 Três senhoras, Dona Branca, Dona Rosa e ...
Proposições simples e compostas
39
8.	 No ponto de ônibus escutei uma conversa curiosa entre dois amigos.
Um deles dizia q...
40
Proposições simples e compostas
Referências
ABELARDO, Pedro. Lógica para Principiantes. Petrópolis: Vozes, 1994.
ALENCA...
Proposições simples e compostas
41
NAHRA, Cínara; WEBER, Ivan Hingo. Através da Lógica. 5. ed. Petrópolis: Vozes,
1997. 17...
42
Proposições simples e compostas
Gabarito
1.	
a)	 V
b)	 X
c)	 F
d)	 X
e)	 V
f)	 X
g)	 X
h)	 V
i)	 V
2.	 Terça-feira ou s...
Proposições simples e compostas
43
7.	 Deise.
8.	 Duas verdades.
9.	 Carlos.
10.	Tabela-verdade:
p q ~p ~q p q ~(p q) ~p ~...
Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A,
mais informações www.videoaulasonline.com.br
Próximos SlideShares
Carregando em…5
×

Proposições simples e compostas

2.371 visualizações

Publicada em

Publicada em: Educação
0 comentários
4 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
2.371
No SlideShare
0
A partir de incorporações
0
Número de incorporações
269
Ações
Compartilhamentos
0
Downloads
161
Comentários
0
Gostaram
4
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Proposições simples e compostas

  1. 1. Proposições simples e compostas Proposições simples Observe as seguintes sentenças: Os gatos não voam. Como é o seu nome? Saia já daqui! Não se esqueça de estudar. Que dia lindo! Embora todas as sentenças anteriores façam parte da nossa linguagem usual, aqui estamos interessados apenas naquelas que possam ser classifica- das em verdadeiras ou falsas. As sentenças que admitem tal classificação são chamadas de sentenças declarativas. Entre as sentenças citadas, somente a primeira delas (“Os gatos não voam”) pode ser classificada em verdadeira ou falsa. Para as demais, não faz muito sentido classificá-las dessa forma. Quando uma sentença é verdadeira, dizemos que seu valor lógico é ver- dadeiro (V), e quando é falsa, que seu valor lógico é falso (F). A definição de proposição considera apenas um desses dois possíveis valores: Uma proposição é uma sentença declarativa que admite um e somente um dos dois valores lógicos – V ou F. Observe alguns exemplos de proposições: Curitiba é a capital do Paraná. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  2. 2. 12 Proposições simples e compostas É uma proposição cujo valor lógico é V. Todos os animais são mamíferos. É uma proposição cujo valor lógico é F. Quero mais café! Traduz um desejo. Logo, não é uma proposição e, portanto, não pode- mos atribuir um valor lógico. 3 + 4 = 7 É uma proposição cujo valor lógico é verdadeiro. 1 2 É uma proposição cujo valor lógico é falso. 7 – 2 Não é uma proposição. Não se pode atribuir valor lógico à sentença. x 3 Não é uma proposição, pois não é possível verificar a veracidade, uma vez que não se conhece o valor da variável x.Trata-se de uma sentença aberta. Ele é médico. Não é uma proposição, pois a palavra “ele” não esclarece de quem se fala e, portanto, não se pode atribuir valor lógico à declaração. Ana é fisioterapeuta. É uma proposição, pois declara especificamente a profissão de Ana e, portanto, pode ser classificada ou em verdadeira ou em falsa. Você gosta de quiabo? Trata-se de uma sentença interrogativa. Logo, não é uma proposição, pois não pode ser classificada em verdadeira ou falsa. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  3. 3. Proposições simples e compostas 13 Paradoxos Existem proposições, entretanto, chamadas de paradoxos, que não admi- tem um único valor lógico, apesar de serem declarativas. Segundo o dicio- nário Aurélio, paradoxo é um conceito que é ou que parece contraditório ao comum; contra-senso, absurdo ou disparate. Ele reflete a impossibilidade da existência simultânea de duas situações. Exemplo 1: Observe a sentença: Essa sentença é falsa. A frase anterior é verdadeira ou é falsa? Vamos tentar classificá-la em apenas um dos valores possíveis. Se a frase anterior for verdadeira, a conclusão é de que ela é falsa, pois isso é o que afirma a própria sentença. Se a frase for falsa, a conclusão é de que ela é ver- dadeira, pois isso contraria a própria sentença. As conclusões são: A frase é falsa se, e somente se, ela é verdadeira. A frase é verdadeira se, e somente se, ela é falsa. Estamos diante de um paradoxo, pois a sentença não pode ser verdadei- ra e falsa simultaneamente. Tais paradoxos não se limitam apenas à Lógica, estando presentes na Química, Física, Matemática, Filosofia e outras áreas do conhecimento. Exemplo 2: Se João afirma: – Sou mentiroso! Essa declaração seria verdadeira ou falsa? Em outras palavras, João é ou não mentiroso? Analisando a frase, consideramos duas hipóteses: ou a frase é verdadeira ou é falsa. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  4. 4. 14 Proposições simples e compostas Se a frase for verdadeira, então é verdadeiro de que João é mentiroso, pois isso foi o que ele disse. Entretanto, se João fosse realmente mentiroso, jamais diria que é mentiroso, pois, nesse caso, a declaração seria verdadeira e seria contraditória com a frase que foi proferida. Se a frase for falsa, então é falso de que João é mentiroso, ou seja, é verda- deiro que João não é mentiroso. Por outro lado, se João não fosse mentiroso, então não deveria mentir. Deveria dizer a verdade. E a verdade seria a de que ele não é mentiroso. Assim, ao dizer a frase“Sou mentiroso”, João estaria novamente se contrariando. Em qualquer uma das hipóteses levantadas, chega-se a uma contradição. Essa é outra situação que nos remete a um paradoxo. Negação Estudamos anteriormente que uma proposição pode ser classificada em apenas um dos dois valores lógicos – V ou F. A negação de uma proposição é utilizada para alterar seu valor lógico, dando ideia contrária. Assim, se p é uma proposição verdadeira, a negação de p, indicada por ~p, é uma proposição falsa. Da mesma forma, se p é uma proposição falsa, ~p é uma proposição verdadeira. A próxima tabela é conhecida como tabela-verdade. Ela relaciona uma proposição com a respectiva negação: p ~p V F F V Exemplos: A Alemanha é um país europeu. Proposição p cujo valor lógico é V. A Alemanha não é um país europeu. Proposição ~p cujo valor lógico é F. É falso que a Alemanha é um país europeu. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  5. 5. Proposições simples e compostas 15 Proposição ~p cujo valor lógico é F. Não é verdade que a Alemanha é um país europeu. Proposição ~p cujo valor lógico é F. Observação 1: A negação de uma proposição indica sempre uma ideia contrária, de modo que se uma é verdadeira, a outra é falsa, e vice-versa. Entretanto, é importante entender que a negação não vai simplesmente indicar algo diferente. Por exemplo, na proposição: p: Artur viaja nos finais de semana. Não é correto dizer que a negação dessa proposição seja ~p: Artur viaja emdiasdesemana, pois nada se pode concluir sobre se Artur viaja ou não em dias de semana. A negação correta de p é: ~p : Artur não viaja nos finais de semana. Observação 2: Considere a proposição p: Está chovendo. A negação de p é ~p: Não está chovendo. Qual seria a proposição correspondente à negação da negação de p, ou seja, ~(~p)? A negação da negação de p afirma o mesmo que p, observe: p: Está chovendo. ~p: Não está chovendo. ~(~p): Não é verdade que não está chovendo, o que equivale a está chovendo. Em outras palavras, a proposição ~(~p) é logicamente equivalente a p. Simbolicamente, escreve-se ~(~p) p. Equivalentes p ~p ~(~p) V F V F V F Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  6. 6. 16 Proposições simples e compostas Na Língua Portuguesa é comum usarmos uma dupla negação no sentido de reforçar ou enfatizar uma ideia. Por exemplo, quando uma pessoa diz“não vou fazer nada”, normalmente ela está querendo dizer que nada será feito. Por outro lado, quando estudamos essa sentença por meio da Lógica, cons- tatamos que, na verdade, essa pessoa está dizendo“vou fazer algo”. O quadro seguinte justifica o raciocínio: Proposição p:“Vou fazer algo.” Proposição ~p:“Vou fazer nada.” Proposição ~(~p) :“Não vou fazer nada.” A conclusão é a de que como p é equivalente a ~(~p), “vou fazer algo” é equivalente a“não vou fazer nada”. Para evitar problemas no uso das proposições de dupla negação, pode- mos substituí-las por outras que talvez não darão a ênfase que se pretende, mas que serão logicamente corretas. Assim, em vez de dizermos “não vou fazer nada”, podemos dizer“não vou fazer coisa alguma”. Da mesma forma, em vez de dizer “não tenho nada a declarar”, o que na Lógica corresponde a “tenho algo a declarar”, diga “nada tenho a declarar” que você estará transmitindo a ideia de que nada será declarado. Em Lógica, quando uma pessoa diz “não quero nada”, significa que ela quer alguma coisa. Para expressar melhor a ideia que ela desejava transmitir – a de que nada quer – seria melhor dizer“não quero coisa alguma”. Observação 3: O símbolo que indica a negação de uma determinada proposição pode também ser representado por “ ”. Assim, a negação de uma proposição p pode ser representada por“~p”ou“¬ p”. Negação e conjunto complementar A negação de uma proposição está relacionada ao complementar de um dado conjunto. Dado um conjunto U (universo) e sendo A um subconjunto de U, o complementar de A em relação a U é representado e definido por: Ac = U – A = {x/ x U e x A} Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  7. 7. Proposições simples e compostas 17 A AC U Exemplo 1: Considere a propriedade: p: gostar de gatos Conjunto U formado por todas as pessoas: U = {x/ x é uma pessoa} Conjunto A das pessoas que têm a propriedade p: A = {x/ x é uma pessoa que gosta de gatos} Conjunto A c das pessoas que têm a propriedade ~p: Ac = {x/ x é uma pessoa que não gosta de gatos} ou Ac = {x/ x U e x A} Exemplo 2: Considerando a propriedade p: ser alegre Conjunto A das pessoas que possuem a propriedade p: A = {x/ x é uma pessoa alegre} Conjunto A c das pessoas que possuem a propriedade ~p: Ac = {x/ x não é uma pessoa alegre} Proposições compostas Em nossa comunicação diária, frequentemente utilizamos mais de uma declaração objetivando criar uma ideia mais complexa. Da mesma forma, em Lógica, duas ou mais proposições podem ser associadas (ou interligadas) for- mando uma proposição composta. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  8. 8. 18 Proposições simples e compostas As proposições que compõem uma proposição composta são chamadas de proposições simples. Essas proposições simples são interligadas por meio de conectivos (e/ou) para formar as proposições compostas. Observe alguns exemplos de proposições compostas: Amanhã é sábado e Anselmo é professor. Proposição simples: Amanhã é sábado. Conectivo: e Proposição simples: Anselmo é professor. Artur é bondoso ou irresponsável. Proposição simples: Artur é bondoso. Conectivo: ou Proposição simples: Artur é irresponsável. Cada proposição composta tem também um valor lógico que pode ser verdadeiro ou falso. Esse valor lógico será determinado pelo valor lógico de cada uma das proposições simples componentes e pelo conectivo utiliza- do para interligar essas proposições simples. Conectivo“e” O conectivo “e” será utilizado sempre para dar uma ideia de simultanei­ dade. Considere as seguintes proposições simples: p: José completou 20 anos. q: José não sabe dirigir. Interligando as proposições através do conectivo “e” podemos obter a proposição composta p q: p q: José completou 20 anos e não sabe dirigir. A proposição composta p q pode ser lida“p e q”. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  9. 9. Proposições simples e compostas 19 A última declaração significa que tanto José completou 20 anos quanto José não sabe dirigir. O conectivo “e” indica que ambas as situações estão ocorrendo simultaneamente. Quando duas proposições simples são interligadas por meio do conecti- vo“e”, a proposição composta será denominada conjunção. A conjunção das proposições simples p e q será representada por p q. Uma conjunção p q é verdadeira apenas quando p e q são verdadeiras. Caso uma das proposições simples seja falsa ou as duas sejam falsas, a propo- sição composta p q será falsa. Observe alguns exemplos de conjunções: O Brasil é banhado pelo Oceano Atlântico e não faz divisa com a Argen- tina. Essa conjunção tem o valor lógico F, pois a primeira proposição é ver- dadeira e a segunda é falsa. A leitura estimula o pensamento e 10 é múltiplo de 5. Essa conjunção tem valor lógico V, pois ambas as proposições compo- nentes são verdadeiras. São Paulo fica no nordeste brasileiro e o fumo pode causar câncer. A proposição composta é falsa, pois a primeira proposição simples é falsa. 5 – 2 3 e todo número inteiro é positivo. A proposição composta é falsa, pois ambas as proposições componen- tes são falsas. A tabela a seguir, conhecida como tabela-verdade da proposição com- posta, apresenta todos os possíveis valores lógicos e permite determinar o valor lógico da proposição composta a partir dos valores lógicos das propo- sições simples componentes. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  10. 10. 20 Proposições simples e compostas p q p q V V V V F F F V F F F F Observe que a proposição composta p q é verdadeira apenas no caso de p e q serem verdadeiras. Nos demais casos, p q é falsa. Conjunção e intersecção de conjuntos Tendo em vista que o conectivo“e”é usado na ocorrência de acontecimen- tos simultâneos, o símbolo (conjunção) pode ser usado para definir a inter- secção de dois conjuntos. Isso ocorre porque a intersecção dos conjuntos A e B é o conjunto formado pelos elementos que pertencem simultaneamente a A e B. Como cada um dos conjuntos pode ser definido a partir de uma proprieda- de característica (ou proposição) que seus elementos possuem, ter ambas as propriedades significa pertencer aos dois conjuntos simultaneamente. A B A B={x / xЄA ^ xЄB} A B Exemplo 1: Observe a relação existente entre uma conjunção e a intersecção de dois conjuntos. Considere as propriedades p e q: p: ler revistas q: morar em Brasília Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  11. 11. Proposições simples e compostas 21 Conjunto A das pessoas que têm a propriedade p: A = {x/ x é uma pessoa leitora de revistas} Conjunto B das pessoas que têm a propriedade q: B = {x/ x é uma pessoa moradora de Brasília} Conjunto A B das pessoas que têm a propriedade p ^ q: A B = {x/ x é uma pessoa leitora de revistas e moradora de Brasília} ou A B = {x / x A x B} Exemplo 2: Sendo A= {1;2;5} e B= {2; 5; 7; 8}, obtenha A B: A B= {1;2;5} {2; 5; 7; 8} A B= {2; 5} Elementos de A e de B A B A B 1 2 7 85 2 5 Conectivo“ou” A palavra“ou”, em Lógica, pode ser utilizada em dois sentidos distintos: no sentido inclusivo ou no sentido exclusivo. Sentido inclusivo do“ou” Na linguagem usual, quando utilizamos a palavra“ou”normalmente que- remos nos referir a acontecimentos exclusivos, ou seja, acontecimentos em que quando um ocorre, o outro não ocorre. A exclusividade reside no fato de apenas um deles ocorrer. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  12. 12. 22 Proposições simples e compostas Em Lógica, entretanto, o conectivo“ou”, ocorrendo uma única vez na pro- posição composta, será utilizado no sentido de inclusão. A inclusão abrange as possibilidades em que pelo menos uma das proposições simples ocorre – podendo ocorrer as duas. Para exemplificar, observe as seguintes proposições simples: p: Pedro é alto. q: Pedro joga basquete. Interligando-as por meio do conectivo “ou”podemos obter a proposição composta p q: p q: Pedro é alto ou joga basquete. A proposição composta p q é lida p ou q. O que se pretende dizer é que Pedro é alto, ou Pedro joga basquete, ou Pedro é alto e joga basquete. Nada impede que Pedro, ao mesmo tempo, seja alto e jogue basquete. Portanto, o conectivo“ou”está sendo utilizado no sentido inclusivo (pelo menos um ocorre), e não no exclusivo (só um deles ocorre). Quando duas proposições simples são interligadas por meio do conecti- vo “ou”, a proposição composta será denominada disjunção. A disjunção de p e q será representada por p q. Quando uma disjunção será falsa? Uma disjunção p q será falsa apenas no caso de p e q serem ambas falsas. Caso uma das proposições simples seja verdadeira ou as duas sejam verdadei- ras, a proposição composta p q será verdadeira. Observe alguns exemplos de disjunções: Uma semana tem 8 dias ou o esporte mais praticado na Venezuela é o beisebol. Essa disjunção tem o valor lógico V, pois a segunda proposição é verdadeira. Roma é a capital italiana ou 7 . 6 = 42. Essa disjunção tem valor lógico V, pois ambas as proposições componen- tes são verdadeiras. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  13. 13. Proposições simples e compostas 23 5 2 ou o mês de abril tem 31 dias. A proposição composta é verdadeira, pois a primeira proposição é verdadeira. O elefante é o maior mamífero ou um hexágono é um polígono com nove lados. A proposição composta é falsa, pois ambas as proposições componentes são falsas. A seguir temos a tabela-verdade da proposição composta, apresentando todos os possíveis valores lógicos da proposição composta a partir dos valo- res lógicos das proposições simples componentes. p q p q V V V V F V F V V F F F Observe que a proposição composta p q é falsa apenas no caso de p e q serem falsas. Nos demais casos, p q é verdadeira. Sentido exclusivo do“ou” O conectivo “ou” pode ser utilizado também no sentido exclusivo. Nesse caso, é necessário que seja utilizado mais de uma vez. Para exemplificar, con- sidere as seguintes proposições compostas: p: caso q: compro uma bicicleta A proposição composta contendo um “ou” exclusivo será representada por p q e terá a seguinte forma: p q: ou caso ou compro uma bicicleta O que se pretende dizer é “ou caso”, “ou compro uma bicicleta”, mas não ambos. Portanto, é no sentido exclusivo (só um deles ocorre), e não no inclu- sivo (pelo menos um deles ocorre), que o conectivo “ou” foi utilizado nesse caso. Assim, quando o “ou” é utilizado na forma “ou p ou q”, significa que apenas uma das proposições deve ser verdadeira, e não as duas. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  14. 14. 24 Proposições simples e compostas A tabela-verdade de uma proposição composta contendo o conectivo “ou”exclusivo apresenta os seguintes valores lógicos: p q p q V V F V F V F V V F F F Observe que a proposição composta p q é verdadeira apenas quando uma proposição simples é verdadeira e a outra é falsa. Quando as duas pro- posições simples forem verdadeiras ou as duas forem falsas, a proposição composta será falsa. Disjunção inclusiva e união de conjuntos Podemos associar o conceito de disjunção inclusiva de proposições à definição de união de conjuntos. A associação é possível porque o conjunto A B é formado pelos elementos que pertencem a A ou B (ou ambos). Como cada um dos conjuntos pode ser também definido através de uma proprie- dade característica de seus elementos (ou proposição), o símbolo (disjun- ção) pode ser usado para definir a união de dois conjuntos. A B = {x / xЄA xЄB} A B A B Exemplo 1: Considere as propriedades p e q: p: beber refrigerante q: praticar triátlon Conjunto A das pessoas que têm a propriedade p: A = {x/ x é uma pessoa que bebe refrigerante} Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  15. 15. Proposições simples e compostas 25 Conjunto B das pessoas que têm a propriedade q: B = {x/ x é uma pessoa que pratica triátlon} Conjunto A B das pessoas que têm a propriedade p q: A B = {x/ x é uma pessoa que bebe refrigerante ou pratica triátlon} ou A B = { x / x A x B} Exemplo 2: Sendo A = {1; 2; 5} e B = {7; 8; 9}, obtenha A B: A B = {1; 2; 5} {7; 8; 9} A B = {1; 2; 5; 7; 8; 9} Elementos de A ou de B Observe que todos os elementos de A e todos os elementos de B estão em A B: A B A B2 5 1 1 7 8 9 2 5 7 9 8 Disjunção exclusiva e diferença simétrica A diferença simétrica entre dois conjuntos A e B é definida e representada por: A B = (A B) – (A B) ou A B = (A – B) (B – A) Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  16. 16. 26 Proposições simples e compostas A B A∆B Observe na ilustração que os elementos que constituem a diferença si- métrica são formados pelos elementos que são ou exclusivos de A ou exclu- sivos de B. Como o conjunto resultante da diferença simétrica entre os conjuntos A e B é formado apenas pelos elementos exclusivos, sejam pertencentes apenas a A, sejam pertencentes apenas a B, o conectivo “ou” exclusivo está relacio- nado a essa operação. Exemplo 1: Considere as propriedades p e q: p: ler livros q: ir a teatros Conjunto A das pessoas que têm a propriedade p: A = {x/ x é uma pessoa que lê livros} Conjunto B das pessoas que têm a propriedade q: B = {x/ x é uma pessoa que vai a teatros} Conjunto A B das pessoas que têm a propriedade p q (ou p ou q): A B = {x/ (x lê livros e não vai a teatros) ou (x não lê livros e vai a tea- tros)} ou A B = {x / (x A x B) (x A x B)} Exemplo 2: Considere as propriedades p e q: p: estudar Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  17. 17. Proposições simples e compostas 27 q: passear Conjunto A das pessoas que têm a propriedade p: A = {x/ x é uma pessoa que estuda} Conjunto B das pessoas que têm a propriedade q: B = {x/ x é uma pessoa que passeia} Conjunto A B das pessoas que têm a propriedade p q (ou p ou q): A B = {x/ x estuda ou x passeia, mas não ambos} ou A B = {x / (x (A B)) (x (A B))} Tabelas-verdade As tabelas-verdade apresentam todos os valores lógicos possíveis das proposições compostas a partir dos valores lógicos das proposições simples componentes e dos conectivos utilizados. Para proposições compostas não extensas e com poucos conectivos, podemos encontrar o valor lógico resultante de forma quase imediata. En- tretanto, à medida que aumenta a complexidade da proposição composta, com mais proposições simples e mais conectivos, cada vez mais as tabelas- -verdade tornam-se úteis na determinação de valores lógicos. As tabelas-verdade constituem-se, portanto, numa forma sistemática e organizada de obter o valor lógico de uma proposição composta para cada uma das combinações possíveis dos valores lógicos das proposições simples componentes. Construção da tabela-verdade Para a construção de tabelas-verdade é imprescindível o conhecimen- to dos valores lógicos de proposições compostas. Nos próximos exemplos construiremos algumas tabelas-verdade: Exemplo 1: Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  18. 18. 28 Proposições simples e compostas Construir a tabela-verdade da proposição composta p ~q: p q ~q p ~q V V V F F V F F Nas duas primeiras colunas, foram dispostas todas as possíveis combina- ções de valores lógicos de p e q. p q ~q p ~q V V F V F V F V F F F V A terceira coluna apresenta valores lógicos contrários aos da segunda coluna, pois ~q tem valor lógico contrário a q. p q ~q p ~q V V F V V F V V F V F F F F V V Para determinar os valores lógicos da última coluna, foram utilizados os valores lógicos da primeira e da terceira colunas por meio do conectivo . Na primeira linha, p ~q tem valor lógico V, pois p tem valor V e ~q tem valor F. Os resultados das demais linhas podem ser obtidos da mesma manei- ra. Fica claro que, para construir a tabela-verdade, é imprescindível dominar as regras lógicas dos conectivos“e”e“ou”, e da negação de uma proposição. Exemplo 2: Construir a tabela-verdade da proposição composta ~p ~q: p q ~p ~q ~p ∧~q V V V F F V F F Nas duas primeiras colunas, foram dispostas todas as possíveis combina- ções de valores lógicos de p e q. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  19. 19. Proposições simples e compostas 29 p q ~p ~q ~p ∧~ q V V F F V F F V F V V F F F V V A terceira coluna apresenta valores lógicos contrários aos da primeira coluna, pois ~p tem valor lógico contrário a p. A quarta coluna foi construída analogamente com os valores lógicos contrários aos da segunda coluna: p q ~p ~q ~p∧~q V V F F F V F F V F F V V F F F F V V V Para determinar os valores lógicos da quinta coluna, foram utilizados os valores lógicos da terceira e da quarta colunas por meio do conectivo . Na primeira linha, ~p ~q tem valor lógico F, pois ~p tem valor F e ~q tem valor F. Na segunda coluna, ~p ~q tem valor lógico F, pois ~p tem valor F e ~q tem valor lógico V. Os resultados das duas últimas linhas podem ser obti- dos da mesma maneira. Número total de linhas de uma tabela-verdade A tabela-verdade construída anteriormente tem quatro linhas, pois a pro- posição p ~q é formada por duas proposições (p e q), cada uma apresen- tando dois valores lógicos possíveis (V ou F). Logo, basta fazer 2 . 2 = 4 para encontrar o número total de linhas dessa tabela-verdade. Caso existissem três proposições (p, q e r), a tabela-verdade seria formada por oito linhas, pois 2 . 2 . 2 = 8 possibilidades. Em geral, para uma proposição composta com n proposições simples, a tabela-verdade será formada por 2n linhas. Exemplo: Quantas linhas tem a tabela-verdade da proposição (p q) ~r? Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  20. 20. 30 Proposições simples e compostas p q r ~r p q (p q) ~r V V V F V V V V F V V V V F V F F F V F F V F V F V V F F F F V F V F V F F V F F F F F F V F V A proposição composta possui 3 proposições simples. Logo, a tabela-ver- dade possuirá 23 = 8 linhas. Proposições especiais Existem proposições que merecem atenção especial pelas características que apresentam. São elas: a proposição tautológica, a proposição contradi- tória e a proposição contingencial. Tautologia Analise a seguinte proposição: Paulo é dentista ou não é dentista. Qual o valor lógico dessa proposição? As sentenças “Paulo é dentista”e “Paulo não é dentista”são contraditórias. Isso significa que, se uma for verdadeira, a outra será falsa. Não é possível que ambas sejam verdadeiras, nem que ambas sejam falsas. Por isso, independen- temente de quem seja Paulo e de qual seja a real profissão dele, a proposição “Paulo é dentista ou não é dentista”deve ser necessariamente verdadeira. Uma proposição composta que apresenta sempre o valor lógico V, inde- pendente dos valores lógicos das suas proposições simples componentes, é denominada tautologia ou proposição tautológica. Considerando p: Paulo é dentista e ~p: Paulo não é dentista, observe como podemos construir a tabela-verdade da proposição composta p ~p: p ~p p ∨~p V F V F V V Tautologia Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  21. 21. Proposições simples e compostas 31 Essa tabela-verdade tem apenas duas linhas, pois existe apenas uma única proposição simples que é p. A primeira coluna da tabela apresenta os dois valores possíveis para p. A segunda coluna mostra os valores lógicos contrários, pois ~p é a negação de p. E a última coluna é a disjunção entre as proposições p e ~p. Portanto, a proposição p ~p é um exemplo de tautologia ou proposição tautológica. As afirmações “amanhã vai chover ou não vai” e “x A ou x A” são exemplos de tautologias, pois ambas têm sempre o valor lógico V. Contradição Sendo p uma proposição lógica, vamos construir a tabela-verdade da pro- posição composta p ~p: Contradição p ~p p ~p V F F F V F Essa tabela tem apenas duas linhas e as duas primeiras colunas contêm os dois valores possíveis para a proposição lógica p. A última coluna tem como resultado a conjunção entre os valores lógicos das duas primeiras colunas. Observe que a última coluna é formada apenas pelo valor F. Uma proposição composta que apresenta sempre o valor lógico F, inde- pendente dos valores lógicos das suas proposições simples componentes, é denominada contradição ou proposição contraditória. Qual o valor lógico da proposição Paulo é dentista e não é dentista? Sendo p: Paulo é dentista, a proposição em destaque tem a forma p ~p. Observe que essa proposição composta não pode ter um valor lógico V, pois isso somente ocorreria no caso em que p e ~p tivessem ambas o valor lógico V, o que é impossível. A proposição p ~p é um exemplo de contradição ou proposição contradi- tória. As declarações“hoje é domingo e hoje não é domingo”e“A B e A B” são exemplos de contradições, pois ambas têm sempre o valor lógico F. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  22. 22. 32 Proposições simples e compostas Contingência Observe o seguinte conceito: Uma proposição composta que apresenta valores V e F em linhas diferen- tes para algumas combinações dos valores lógicos das suas proposições sim- ples componentes é denominada contingência ou proposição contingencial. Como exemplo, vamos analisar o valor lógico da proposição composta p ~q por meio da construção da correspondente tabela-verdade: Contingência p q ~q p ~q V V F V V F V V F V F F F F V V A tabela tem quatro linhas, pois existem duas proposições simples: p e q. As duas primeiras colunas apresentam as quatro combinações possíveis de valores entre p e q. A terceira coluna é a negação da segunda coluna, logo, apresenta valores contrários aos da segunda coluna. A quarta coluna é resul- tado da disjunção entre a primeira e a terceira colunas. A coluna correspondente à proposição composta p ~q (4.ª coluna) apresenta valores V e F, cada um deles situado em uma determinada linha. Isso caracteriza uma contingência. Qual o valor lógico da proposição “Paulo é dentista ou Carlos não é engenheiro”? O valor dependerá da veracidade particular de “Paulo ser ou não dentista” e também de “Carlos ser ou não engenheiro”. Organizando os conceitos estudados, podemos escrever: A proposição p ~p é uma tautologia. A proposição p ~p é uma contradição. A proposição p ~q é uma contingência. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  23. 23. Proposições simples e compostas 33 Equivalências lógicas Anteriormente, observamos algumas proposições que são logicamente equivalentes, tais como uma proposição qualquer p e a sua respectiva dupla negação: p ~p ~(~p) V F V F V F Equivalentes Para representar que a proposição p é equivalente a ~(~p), em símbolos, escrevemos: p ~(~p) ou p ~(~p) O que significa dizer que duas proposições são equivalentes? Duas proposições compostas são equivalentes quando ambas apresen- tam sempre os mesmos valores lógicos, independentemente dos valores ló- gicos de cada proposição simples componente. A tabela-verdade é um instrumento que permite verificar a veracidade de equivalências lógicas. No próximo exemplo, mostraremos que as proposi- ções ~(p q) e ~p ~q são logicamente equivalentes. Equivalentes p q ~p ~q p q ~(p q) ~p ~q V V F F V F F V F F V V F F F V V F V F F F F V V F V V A tabela foi construída a partir das duas primeiras colunas que contêm as quatro possibilidades de valores lógicos para as proposições p e q. Pela tabela, observa-se que as colunas correspondentes às proposições ~(p q) e ~p ~q são idênticas. Assim como os valores lógicos de ambas as propo- sições compostas são iguais para cada possível valor lógico de p e q. A con- clusão é a de que ~(p q) e ~p ~q são logicamente equivalentes, ou seja, ~(p q) ~p ~q. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  24. 24. 34 Proposições simples e compostas Observação: Em geral, para negarmos proposições compostas por conectivos (e/ou) basta negarmos cada uma das proposições simples componentes e substi- tuirmos os conectivos por , e por . Assim, por exemplo, a negação da proposição p q, representada por ~(p q), é dada por: ~(p q) ~p ~q A negação da proposição p q, representada por ~(p q), é dada por: ~(p q) ~p ~q A negação da proposição ~p q, representada por ~(~p q), é dada por: ~(~p q) ~(~p) ~q p ~q Exemplo: Por meio da tabela-verdade, vamos provar que as proposições ~(p q) e ~p ~q são equivalentes: p q ~p ~q p q ~(p q) ~p ~q V V F F V F F V F F V F V V F V V F F V V F F V V F V V As proposições ~(p q) e ~p ~q são logicamente equivalentes: ~(p q) ~p ~q ou ~(p q) ~p ~q O quadro apresenta algumas equivalências lógicas: Nome Equivalência Tautologia p (p p) Dupla negação ~(~p) p Comutação p q q p p q q p Associação p (q r) (p q) r p (q r) (p q) r Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  25. 25. Proposições simples e compostas 35 Nome Equivalência Distribuição p (q r) (p q) (p r) p (q r) (p q) (p r) De Morgan ~(p q) ~p ~q ~(p q) ~p ~q Todas essas equivalências podem ser verificadas por meio da tabela- -verdade. Ampliando seus conhecimentos Texto extraído do livro intitulado Alice no País dos Enigmas. (SMULLYAN, 2000) Logo depois do julgamento, Alice encontrou a Duquesa, e as duas tiveram a seguinte conversa extraordinária. – O Gato de Cheshire disse que todos aqui são loucos – disse Alice. Isso é mesmo verdade? – É claro que não – retrucou a Duquesa. Se fosse mesmo verdade, o Gato também seria louco, donde você não poderia confiar no que ele diz. Isso pareceu perfeitamente lógico a Alice. – Mas, vou contar-lhe um grande segredo, minha cara – continuou a Du- quesa. Metade das criaturas daqui são loucas, totalmente loucas! – Isso não me surpreende – disse Alice –, muitas me parecem bastante loucas! – Quando eu digo totalmente loucas – prosseguiu a Duquesa, ignorando por completo a observação de Alice –, quero dizer o que digo: Elas são com- pletamente delirantes! Todas as suas crenças são erradas – não apenas algu- mas, mas todas. Tudo o que é verdadeiro elas acreditam que é falso, e tudo o que é falso, acreditam que é verdadeiro. Alice refletiu um pouco sobre essa estranhíssima situação. – A pessoa ou criatura louca acredita que dois mais dois são cinco? – perguntou. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  26. 26. 36 Proposições simples e compostas – Ora, é claro, menina! Já que dois mais dois não são cinco, naturalmente a pessoa louca acredita que são. – E a pessoa louca também acredita que dois mais dois são seis? – É claro – respondeu a Duquesa –; já que não são, o louco acredita que são. – Mas, não é possível que sejam iguais a cinco e seis! – exclamou Alice. – É claro que não – concordou a Duquesa –, você sabe disso e eu sei disso, mas o louco não sabe. E a moral da história é... – E as pessoas sãs daqui? – interrompeu Alice (que já tinha ouvido moral mais do que suficiente para um dia). Imagino que a maioria de suas crenças esteja certa, mas que algumas estejam erradas, não é? – Oh, não, não, não! – disse a Duquesa, em tom enfático. Isso pode ser ver- dade lá de onde você vem, mas por aqui, as pessoas sadias são cem por cento exatas em suas crenças! Tudo o que é verdade elas sabem que é verdade, e tudo o que é falso elas sabem que é falso. Alice refletiu sobre isso. – Quem são os sadios e quem são os loucos aqui? – perguntou. Eu gostaria de saber. A lagarta e o lagarto – Bem – respondeu a Duquesa –, considere, por exemplo, a Lagarta e Bill, o Lagarto. A Lagarta acredita que ambos são loucos. – Qual deles é realmente louco? – perguntou Alice. – Eu não deveria precisar lhe dizer isso! – retrucou a Duquesa. Dei-lhe infor- mações suficientes para que você deduza a resposta. Qual é a solução? A Lagarta é louca ou sã? E o Lagarto? Solução: A lagarta acredita que ela e o lagarto são loucos. se a lagarta fosse sã, seria falso ela e o lagarto serem loucos, donde (sendo sã) a lagarta não poderia acreditar nesse fato mentiroso. Portanto, a lagarta deve ser louca. Já que ela é louca, sua crença é errada, donde não é verdade que ambos sejam loucos. Assim o outro (o lagarto) deve ser sadio. Portanto, a lagarta é, louca e o lagarto é são. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  27. 27. Proposições simples e compostas 37 Atividades de aplicação 1. Indique quais sentenças são proposições, atribuindo-lhes o valor lógi- co correspondente. Caso a sentença não seja uma proposição, marque um X. a) ( ) Zero é um número par. b) ( ) 7 + 3 c) ( ) Todos os brasileiros são cariocas. d) ( ) Amanhã choverá? e) ( ) Charlie é dentista ou não é dentista. f) ( ) Felicidades! g) ( ) x 2 h) ( ) Todos os meses do ano têm 28 dias. i) ( ) x = 3 é raiz de x2 – 3x = 0 2. Um avião caiu em uma área não coberta pelo radar. Apenas o piloto se salvou, conseguindo alcançar a praia de uma ilha. Nessa ilha morava um aborígene que mentia às terças, quartas e quintas-feiras, e falava a verdade nos outros dias da semana. Um dia o piloto encontrou o aborígene, que lhe disse:“Ontem foi um dos meus dias de mentir”. A partir da dedução correta da informação do aborígene, que dias da semana poderiam ser? 3. Considere as seguintes proposições: p: O Brasil situa-se na América do Norte. q: Quatro é múltiplo de oito. r: A adição e a subtração são operações inversas. Com base nos valores lógicos das proposições p, q e r, atribua um valor lógico às seguintes proposições: a) ( ) ~p b) ( ) q r Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  28. 28. 38 Proposições simples e compostas c) ( ) p q d) ( ) r p e) ( ) q ~r 4. Três senhoras, Dona Branca, Dona Rosa e Dona Violeta, passeavam pelo parque, quando Dona Rosa disse: – Não é curioso que estejamos usando vestidos de cores branca, rosa e violeta, embora nenhuma de nós esteja usando um vestido de cor igual ao seu próprio nome? – Uma simples coincidência, respondeu a senhora com vestido violeta. Qual a cor do vestido de cada senhora? 5. Se alguém diz: “Não nego que jamais deixarei de fumar”, continuará a fumar ou não? 6. Na sua frente você tem três caixas e apenas uma delas tem um pre- sente dentro. A única pista para descobrir onde está o presente são as instruções na frente das caixas. Porém, não se esqueça, apenas uma das inscrições é verdadeira. Onde está o presente? Caixa 1: O presente está aqui. Caixa 2: O presente não está aqui. Caixa 3: O presente não está na Caixa 1. 7. Quatro amigos vão ao teatro e um deles resolveu entrar sem comprar o ingresso. Aparece um guarda que quer saber qual deles entrou sem pagar. – Eu não fui, diz Ana. – Foi o Bruno, diz Carlos. – Foi a Deise, diz Bruno. – O Carlos não tem razão, diz Deise. Se só um deles mentiu, quem entrou sem pagar? Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  29. 29. Proposições simples e compostas 39 8. No ponto de ônibus escutei uma conversa curiosa entre dois amigos. Um deles dizia que dificilmente seria enganado, pois era muito esper- to. O outro resolveu, então, testar a esperteza do“modesto”e fez a ele as seguintes afirmações: 1) Vou lhe dizer cinco verdades. 2) A frase anterior é mentira. 3) A frase anterior é mentira. 4) A frase anterior é mentira. 5) A frase anterior é mentira. E no final perguntou: quantas verdades eu disse? 9. Ernesto comprará quatro passagens aéreas para dar uma de presente para cada um de seus quatro sobrinhos. Para definir a época em que irão viajar, Ernesto pediu para cada um dizer uma frase. Se a frase fosse verdadeira, o sobrinho viajaria imediatamente; se fosse falsa, o sobri- nho só viajaria no próximo mês. O quadro apresenta as frases que cada sobrinho falou: Sobrinho Frase Ana Viajarei para os Estados Unidos. Bruno Meu voo será diurno. Carlos Viajarei no próximo mês. Diego O Atlético-PR é o melhor time do mundo. A partir das frases ditas, Ernesto não pôde definir a época da viagem de qual sobrinho? 10. Mostre que as proposições ~(p q) e (~p ~q) são logicamente equi- valentes. 11. Numa cidade, um barbeiro corta o cabelo somente de todas as pes- soas que não cortam o próprio cabelo. Esse barbeiro corta o próprio cabelo? Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  30. 30. 40 Proposições simples e compostas Referências ABELARDO, Pedro. Lógica para Principiantes. Petrópolis: Vozes, 1994. ALENCAR FILHO, Edgard de. Iniciação à Lógica Matemática. São Paulo: Nobel, 2003. 203 p. ARISTÓTELES. Tópicos. São Paulo: Abril Cultural, 1973. (Coleção Os Pensadores). _____. Organon. São Paulo: Nova Cultural, 1999. (Coleção Os Pensadores). BOLL, Marcel; REINHART, Jacques. A História da Lógica. Lisboa: Edições 70, 1982. 127 p. CASTRUCCI, Benedito. Introdução à Lógica Matemática. 6. ed. São Paulo: Nobel, 1986. 158 p. DESCARTES, René. Discurso do Método. 4. ed. São Paulo: Martins Fontes, 2003. 102 p. KELLER, Vicente; BASTOS, Cleverson L. Aprendendo Lógica. 12. ed. Petrópolis: Vozes, 2000. 179 p. KOPNIN, P. V. A Dialética como Lógica e Teoria do Conhecimento. Rio de Janei- ro, 1978. 353 p. LAUSCHNER, Roque. Lógica Formal. 4. ed. rev. Porto Alegre: Sulina/ Unisinos, 1984. 207 p. LIARD, L. Lógica. 6. ed. São Paulo: Cia. Editora Nacional, 1965. 211 p. LIPSCHULTZ, Seymour. Teoria dos Conjuntos. São Paulo: McGraw-Hill, 1972. 337 p. MACHADO, Nilson José. Matemática 1 por Assunto – lógica, conjuntos e fun- ções. São Paulo: Scipione, 1988. 240 p. _____. Lógica? É Lógico! São Paulo: Scipione, 2000. 49 p. (Coleção Vivendo a Matemática). MARITAIN, Jacques. Elementos de Filosofia II: a ordem dos conceitos, lógica menor. Rio de Janeiro: Agir, 1980. 318 p. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  31. 31. Proposições simples e compostas 41 NAHRA, Cínara; WEBER, Ivan Hingo. Através da Lógica. 5. ed. Petrópolis: Vozes, 1997. 174 p. OLIVEIRA, Augusto J. Franco de. Lógica Aritmética. Brasília: UnB, 2004. 241 p. SALMON, Wesley C. Lógica. 4. ed. Rio de Janeiro: Zahar, 1978. 142 p. SÉRATES, Jonofon. Raciocínio Lógico. 8. ed. Brasília: Jonofon, 1998. 432 p. v. 1. _____. Raciocínio Lógico. 8. ed. Brasília: Jonofon, 1998. 467 p. v. 2. SMULLYAN, Raymond. Alice no País dos Enigmas. Rio de Janeiro: Jorge Zahar, 2000. 191 p. SOARES, Edvaldo. FundamentosdaLógica– elementos da Lógica Formal e Teoria da Argumentação. São Paulo: Atlas, 2003. 187 p. TELLES JR., Goffredo. Curso de Lógica Formal. 3. ed. São Paulo: Edusp, 1973. 367 p. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  32. 32. 42 Proposições simples e compostas Gabarito 1. a) V b) X c) F d) X e) V f) X g) X h) V i) V 2. Terça-feira ou sexta-feira. 3. a) V b) F c) F d) F e) F 4. Dona Rosa vestido branco Dona Violeta vestido rosa Dona Branca vestido violeta 5. Continuará a fumar. 6. O presente está na caixa 2. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  33. 33. Proposições simples e compostas 43 7. Deise. 8. Duas verdades. 9. Carlos. 10. Tabela-verdade: p q ~p ~q p q ~(p q) ~p ~q V V F F V F F V F F V F V V F V V F F V V F F V V F V V As colunas associadas às proposições ~(p q) e (~p ~q) são idênticas. Isso comprova a validade da equivalência lógica. 11. O barbeiro corta o cabelo de todas as pessoas que não cortam seu próprio cabelo e somente delas. Assim, se ele corta seu próprio cabelo, então ele é uma pessoa que não corta seu próprio cabelo. Por outro lado, se ele não corta seu próprio cabelo, então ele corta seu próprio cabelo. Estamos diante de um paradoxo. Não existe um barbeiro nes- sas condições. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br
  34. 34. Esse material é parte integrante do Videoaulas on-line do IESDE BRASIL S/A, mais informações www.videoaulasonline.com.br

×