SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
Física2
SUMÁRIO DO VOLUME
FÍSICA
1. Movimento Harmônico Simples 5
1.1 Movimento Oscilatório Periódico 5
1.2 Movimento Harmônico Simples 6
1.3 Energia do MHS 7
1.4 Equações do MHS 10
1.5 Gráficos do MHS 15
1.6 Frequência e Período do MHS 16
2. Ondas 22
2.1 Classificação das Ondas 23
2.2 Ondas Periódicas 27
2.3 Velocidade das Ondas Mecânicas 30
2.4 Potência e Intensidade de uma Onda 32
2.5 Equação de uma Onda Unidimensional 33
2.6 Defasagem entre Dois Pontos de uma Onda 35
2.7 Reflexão e Refração de Ondas em Cordas 36
2.8 Reflexão e Refração de Ondas Bi e Tridimensionais 38
2.9 Difração de Ondas 42
2.10 Interferência (Superposição de Ondas) 43
2.11 Ondas Estacionárias 47
2.12 Experiência de Young 49
2.13 Ressonância 53
2.14 Polarização 53
2.15 Batimento 55
2.16 Espectro Eletromagnético 56
3. Acústica 70
3.1 Considerações Iniciais 70
3.2 Frequência e Velocidade das Ondas Sonoras 71
3.3 Intensidade Sonora e Nível de Intensidade 74
3.4 Qualidades Fisiológicas do Som 76
3.5 Reflexão de Ondas Sonoras 77
3.6 Cordas Vibrantes 78
3.7 Tubos Sonoros 81
3.8 Efeito Doppler 83
Física 3
SUMÁRIO COMPLETO
VOLUME 1
UNIDADE: ONDULATÓRIA
1. Movimento Harmônico Simples
2. Ondas
3. Acústica
VOLUME 2
UNIDADE: ÓPTICA
4. Introdução
5. Espelho plano
6. Espelho esférico
7. Refração
8. Lentes esféricas
9. Instrumentos ópticos
10. Óptica da visão
VOLUME 3
UNIDADE: TERMOLOGIA
11. Termometria
12. Dilatação térmica dos sólidos
13. Dilatação térmica dos líquidos
14. Propagação de calor
15. Calorimetria
16. Mudanças de estado físico
17. Estudo dos gases
18. Termodinâmica
Física4
Física
Movimento Harmônico Simples
5
ONDULATÓRIA
1. Movimento HARMÔNICO SIMPLES
1.1 Movimento Oscilatório Periódico
Oque um relógio de pêndulo, um diapasão, um balanço, as
cordas de um piano ou de um violão, os átomos nos corpos
sólidos têm em comum?
Todos eles têm funcionamento baseado em
acontecimentos que se repetem, de tempo em tempo. Uma
observação rápida do nosso cotidiano é capaz de nos mostrar
vários fenômenos naturais com essa característica. Todo
movimento que se repete em intervalos de tempo sucessivos
e iguais, recebe o nome de fenômenos periódicos.
Outros exemplos de movimentos
periódicos são: fases da lua, translação
da Terra em torno do Sol, movimento
circular uniforme, as estações do ano,
etc.
Chama-se Período (t) o tempo gasto para a realização
de uma oscilação completa. Isso quer dizer que o período é
o tempo gasto para que o objeto realize seu ciclo completo
de movimento. No Sistema Internacional de unidades, o
período é medido em segundos. Caso, num intervalo de
tempo ∆t, ocorreu n repetições (oscilações), o período é
dado por:
T = ∆t
n
Outra grandeza física muito importante, e que está
relacionada com o período, é a frequência, que é o número
de vezes que o movimento se repete por unidade de tempo,
ou seja, se ocorreu n oscilações em um intervalo de tempo
∆t, a frequência é dada por:
f = n
∆t
Se o intervalo de tempo for medido em segundos, a
unidade de frequência será o Hertz (Hz). Como o período
e a frequência estão relacionados às medidas de tempo,
há uma forte ligação entre eles. Matematicamente, uma
grandeza é o inverso da outra, ou seja:
f = 1
T
ou T =
1
f
Disponívelem:<http://wikiteca.iesb.br>.Acessoem:01ago.2013.Disponívelem:<www.estudiolivre.org>.
Acessoem:01ago.2013.
Disponívelem:<http://mundodascordas.
webnode.com.br>.Acessoem:
01ago.2013.
Disponívelem:<www.rabrinquedos.com.br>.
Acessoem:01ago.2013.
Relógio.
Diapasão.
Balanço.
Corda de um violão.
Física
Movimento Harmônico Simples
6
Imaginemos que um balanço esteja realizando um movimento com 10 repetições (oscilações) a cada
20 s. Seu período e sua frequência podem ser determinados da seguinte maneira:
T =
∆t
n
→ T = 20
10
→ T = 2,0 s
f = n
∆t
→ f = 10
20
→ f = 0,5 Hz ou f = 1
T
= 1
2,0
= 0,5 Hz
Todo movimento cujo sentido é regularmente invertido (alternância de sentidos), dá-se o nome
de movimento oscilatório ou vibratório. São exemplos de movimentos oscilatórios: movimento do
pêndulo simples, movimento de um diapasão, movimento de um sistema formado por uma massa e uma
mola, movimento da corda de um violão, etc.
A B
C
O
m
x+ A– A
Em todos esses exemplos, existem forças que atuam sobre os corpos oscilantes a fim de trazê-los para
sua posição de equilíbrio. Essas forças são chamadas de forças restauradoras. No nosso curso, não iremos
considerar as forças dissipativas, como, por exemplo, as forças de resistência do ar ou de atrito, que atuam
nos corpos até que eles parem em sua posição de equilíbrio.
1.2 Movimento Harmônico Simples
Nesta figura, temos um sistema constituído por um corpo de massa m preso a uma mola de constante
elástica k (sistema massa-mola) que passa a oscilar entre os pontos – A e + A, simétricos ao ponto de
equilíbrio O (em que a força resultante na partícula é nula). A mola é ideal, e os atritos são desprezíveis.
k
m
x
O + A– A
x
Em relação ao eixo x, a posição do corpo, num determinado tempo t, é chamada elongação da mola.
Lógico, se o corpo se encontra na posição de equilíbrio, a elongação é zero. Nos pontos de inversão do
movimento – A e + A ocorre a elongação máxima da mola, denominada de amplitude do movimento.
DizemosqueumcorporealizaumMovimentoHarmônicoSimplesLinearquandoaforçarestauradora,
que age nele, tem valor algébrico diretamente proporcional à elongação da mola, ou seja:
F = –k · x
onde k é a constante elástica da força e o sinal negativo indica que a força F tem sentido negativo ao do
eixo x.
A esfera do pêndulo oscila entre A e B.
C é a posição de equilíbrio.
O corpo de massa m preso em uma mola oscila
entre + A e – A. O é a posição de equilíbrio.
Física
Movimento Harmônico Simples
7
No exemplo citado anteriormente do sistema massa-mola, a força
restauradora aplicada pela mola é do tipo elástica, que pela Lei de
Hooke, é proporcional à elongação x.
Observamos que a força F tem módulo máximo nas posições de
inversão – A e + A e valor zero na posição de equilíbrio O. Assim,
podemos construir o seguinte gráfico:
F
x
+ A
– A
– kA
kA
x = – A → |F| = k ∙ A
x = A → |F| = - k ∙ A
x = 0 → |F| = 0
Exercícios de salaExercícios de sala
1 Um corpo realiza um movimento oscilatório, sob ação de
uma força resultante, cujo valor algébrico varia em função da
abscissa x, conforme o gráfico ao lado. Determine:
a) O tipo de movimento realizado pela partícula;
b) A amplitude do movimento;
c) A constante elástica da mola;
1.3 Energia do MHS
Existem três tipos de energia que podem estar envolvidas em um movimento harmônico simples: energia
potencial gravitacional (EPG), energia potencial elástica (EPEL) e energia cinética (EC). A soma dessas
três energias é igual à energia mecânica (EM) do sistema, ou seja:
EM = EC + EPG + EPEL
Quando num sistema não atuarem forças dissipativas (exemplo, o atrito), a energia mecânica se
conserva. No nosso estudo, trabalharemos sempre com sistemas em que a EM é constante durante o
movimento qualquer de um corpo.
Disponívelem:<www.parrswood.manchester.sch.uk>.
Acessoem:12set.2013.
Robert Hooke.
F (N)
x (m)
+ 5
– 5
– 10
10
Física
Movimento Harmônico Simples
8
De maneira informal, diz-se que energia potencial gravitacional é a energia que um corpo tem devido
à sua altura em relação a um nível de referência. Na verdade, ela está intimamente ligada à posição, em
relação a um ponto qualquer, de um corpo imerso em um campo gravitacional. Para entender de maneira
mais clara, imagine que o chão da sala é o nível de referência. Qualquer coisa que não esteja no chão terá
energia por estar a certa altura em relação a ele.
Matematicamente, calcula-se a energia potencial gravitacional de um corpo da seguinte forma:
EPG = m∙g∙h
sendo que h é a altura do corpo em relação a um nível de referência, g é a aceleração da gravidade local e,
m é a massa do corpo.
No entanto, em geral, os sistemas que executam MHS são construídos de forma a não haver variação
da energia potencial gravitacional, ou seja, eles são colocados na horizontal. Geralmente esses sistemas são
representados pelo sistema massa-mola, sendo assim, as duas energias mais importantes para o MHS são
a energia potencial elástica (EPEL) e a energia cinética (Ec).
A EPEL, como visto na Mecânica, é dada por:
EPEL = kx2
2
Na posição de equilíbrio (x = 0), podemos verificar que a EPEL é nula e, nos pontos de inversão, onde
ocorre a máxima deformação (x = ± A), a EPEL é máxima. Em suma, temos:
O + A– A
EPEL
= EPEL
= 0
máx
kA2
2
EPEL
=
máx
kA2
2
A equação da EPEL é uma função de segundo grau
em relação a x, logo, um gráfico da EPEL em função da sua
deformação é um arco de parábola, com concavidade voltada
para cima, conforme o gráfico ao lado.
A EC é bastante importante no estudo dos movimentos,
como visto na Mecânica. Por definição, um corpo de massa m
e com uma velocidade v possui uma energia cinética dada por:
EC = mv2
2
Como a energia cinética está relacionada à velocidade de um corpo, observa-se que ela é máxima na
posição de equilíbrio, e zero nos extremos (x = ± A). Daí, temos:
O + A– A
EC
= 0EC
= 0 EC
=
máx
mv2
máx
2
Como dito anteriormente, nas situações mais comuns de corpos se movimentando em MHS, a
energia potencial gravitacional não varia. Sendo assim, a energia mecânica do sistema em um ponto é a
soma da energia potencial elástica e da energia cinética no referido ponto. Assim, temos:
EM = EC + EPEL
EM =
mv2
2
+
kx2
2
0 x
x
A– A
kx2
kA21
2
1
2
EPEL
Física
Movimento Harmônico Simples
9
Nos pontos x = ± A, a EC = 0 e a energia mecânica será igual à energia potencial máxima. Logo:
EM = EC + EPEL
EM = 0 +
kA2
2
EM = kA2
2
Com isso, o gráfico da EM em função de x é uma reta paralela ao eixo x (EM constante), como
indicado na figura ao lado.
Para qualquer elongação x, temos que:
EM = EC + EPEL
kA2
2
= EC +
kx2
2
EC = kA2
2
– kx2
2
Portanto, podemos provar o que foi dito anteriormente, que a
EC é máxima no ponto de equilíbrio (x = 0), e que é igual à energia
mecânica, e zero nos extremos (x = ± A). Analisando graficamente a EC
em função da elongação x, verifica-se que trata de um arco de parábola
com concavidade voltada para baixo. Assim, obtemos o gráfico dado
ao lado.
Fazendo um resumo dos gráficos apresentados anteriormente,
teremos:
Podemos observar por esse gráfico ao lado que quando uma
energia é máxima, a outra é nula, demonstrando a conservação da
energia mecânica do sistema.
Exercícios de salaExercícios de sala
2 Uma partícula cuja massa é 100 g realiza um MHS presa a uma mola de constante elástica igual a
20 N/m. Quando a elongação da mola é de 10 cm, a velocidade da partícula é 4,0 m/s.
Determine:
a) A energia mecânica da partícula;
b) A amplitude do movimento.
0 Ax
x
– A
EM
kA21
2
0 x
x
A– A
EC
kA2
k (A2
– x2
)1
2
1
2
0
Energia
Ec
EM
EPEL x
Física
Movimento Harmônico Simples
10
3 (PUC) Uma partícula de massa 0,5 kg move-
se sob ação de apenas uma força, à qual está
associada uma energia potencial Ep cujo gráfico
em função de x está representado nesta figura.
0
1,0 J
+ 1,0– 1,0 x (m)
Ep (J)
Esse gráfico consiste em uma parábola
passando pela origem. A partícula inicia o
movimento a partir do repouso, em x = -2,0 m.
Pede-se:
a) Sua energia mecânica;
b) A velocidade da partícula ao passar por
x = 0;
c) A energia cinética da partícula ao passar por
x = 1 m.
4 (UFBA) Uma partícula oscila em MHS com
amplitude A = 15 cm. Determine, em cm, a
elongação no instante em que a energia cinética
da partícula iguala-se à energia potencial.
1.4 Equações do MHS
O MHS e o movimento circular uniforme
(MCU) estão estritamente relacionados de modo
que um pode ser estudado através do outro. Para
isso, basta observar o fato que o MHS pode ser
visto como a projeção ortogonal do MCU sobre
qualquer diâmetro da circunferência que constitui
a trajetória da partícula no referencial adotado.
Consideramos que uma partícula esteja
realizando um MCU e que os pontos A1, A2,
A3, A4, A5 e A6 correspondem às posições dessa
partícula em um determinado instante. Agora,
fazendo a projeção desses pontos em seu diâmetro,
encontramos os pontos P1, P2, P3, P4, P5 e P6,
que estão realizando um MHS. Verifica-se que
o período T do MCU é igual ao do MHS, pois,
quando a partícula realiza uma volta completa, sua
projeção também realiza uma oscilação completa e
recomeça o movimento.
P4
P5
P2
P3
P6
P1
A1
A6A5
A4
A2
A3
O x
Seja A1 a posição inicial de uma partícula
(no instante inicial t0) que realiza um MCU,
numa circunferência de raio igual a A, e A2 a
posição final (num instante posterior t). Como
visto no estudo do MCU, aos espaços inicial
e final correspondem ângulos centrais θ0 e θ,
denominados, respectivamente, espaço angular
inicial e final.
x
x
PO
R = A
θ
θ0
A1
A2
A projeção do movimento circular uniforme
se comporta como um movimento harmônico
simples. Isso pode ser utilizada para calcular a
elongação de um objeto em MHS. Através da
Mecânica, sabe-se que:
θ = θ0 + ω∙t
Física
Movimento Harmônico Simples
11
onde ω é a velocidade angular (pulsação ou frequência angular) da partícula no MCU, que pode ser
representador por:
ω = 2π
T
ou ω = 2π ∙ f
em que T é o período de rotação da partícula e f a sua frequência.
AsposiçõesdaprojeçãoP,querealizaMHS,sãoencontradasnumeixocomorigemnocentrodacircunferência
O e orientado da esquerda para a direita, como indicado na figura anterior. Pelo triângulo OA2P, temos:
x = OA2 · cos θ
Mas OA2 = R = A é o raio da circunferência, que é igual à amplitude do MHS e θ = θ0 + ω ∙ t. Assim, temos:
x = A∙cos (ω∙t + θ0)
Nessa equação, o termo θ = θ0 + ω ∙ t é denominado fase do MHS, que é expresso em radiano, sendo
variável com o tempo t. Quando t = 0, a fase vale θ = θ0, sendo chamado de fase inicial do MHS, cujo
valor depende da posição inicial do móvel em seu movimento, como indicado nos casos seguintes.
O A– A
t = 0
X
x = A
x decrescente
θ0
= 0
A partícula inicia o seu movimento (t = 0) no ponto A,
ou seja, de máxima elongação, que forma zero grau com o
eixo x, que serve como referencial de estudo.
O A– A
t = 0
X
x = 0
x decrescente
θ0
= π/2
B
A partícula inicia o seu movimento (t = 0) no ponto B,
que forma 90º com o eixo x positivo.
O A– A
t = 0
X
x = – A
x Crescente
θ0
= π
A partícula inicia o seu movimento (t = 0) no ponto
x = – A, ou seja, de máxima deformação, que forma 180º
com o eixo x positivo.
A– A
X
O
C
x = 0
x Crescente
θ0
= 3π/2
A partícula inicia o seu movimento (t = 0) no ponto C,
formando 270º com o eixo x positivo.
Física
Movimento Harmônico Simples
12
Enquanto uma partícula qualquer descreve
um MCU, suas projeções oscilam no diâmetro
com um movimento não uniforme, cuja função
horária é cossenoidal com o tempo. A velocidade
do objeto que está sob a ação de um MHS pode
ser calculada da seguinte maneira:
VMHS = VMCU · cos (90º – θ)
VMHS = VMCU · (– sen θ)
VMHS = – VMCU · sen θ
em que V
MCU
= ω∙A e θ = θ0 + ωt. Sendo assim,
observa-se que:
VMHS = - ωA∙sen (ωt + θ0)
Agora, analisando a equação da elongação x e da velocidade V do MHS, poderemos obter algumas
conclusões, tais como:
x = A · cos (ωt + θ0) V = – ωA · sen (ωt + θ0)
• x = 0 (posição de equilíbrio)
cos (ωt + θ0) = 0 e como sen2θ + cos2θ = 1, onde θ = ωt + θ0, dai temos:
sen (ωt + θ0) = ± 1
v= ± ωA
|vmáx| = ωA
• x = ± A (amplitude)
cos (ωt + θ0) = ± 1
sen (ωt + θ0) = 0
v = 0
O valor máximo da velocidade para um corpo que realiza
MHS ocorre quando ele passa pela sua posição de equilíbrio
e, possui velocidade nula, quando o corpo está nas posições de
elongação máxima (x = ± A), já que é nesse instante que ocorre
a inversão do movimento.
Observando, a partir de um referencial inercial, um
objeto só realiza movimento circular se ele estiver sob a ação
de uma força centrípeta. No MHS, a aceleração de um corpo,
em cada instante, pode ser calculada através da projeção da
aceleração centrípeta sofrida por um corpo em MCU. Como
o sentido dessa aceleração é contrário ao sentido positivo de x,
acrescentamos o sinal negativo:
αMHS = – αMCU · cos θ
aMCU = acentrípeta = ω2A
θ = θ0 + ωt
αMHS = – ω2A · cos (ωt + θ0)
A
Vmcu
Vmhs
θ
θ
90º – θ
Além da posição, é possível calcular a velocidade do objeto
em MHS como se fosse a projeção da velocidade linear de um
objeto que esteja em MCU.
A velocidade máxima será v = + ωA quando
o corpo estiver em movimento progressivo
(movimentando no sentido positivo de x) e
v = – ωA, quando seu movimento for retrógrado
(movimentando no sentido negativo de x).
amhs
amcu
θ
θ
A aceleração de um objeto em MHS pode ser
calculada como se fosse a projeção da aceleração
centrípeta de um objeto que esteja em MCU.
Os módulos da
aceleração e da elongação são
diretamente proporcionais.
Física
Movimento Harmônico Simples
13
De acordo com as expressões anteriores encontradas, verificamos que são nos extremos (elongações
máximas, ou seja, x = ± A) que ocorrem as maiores variações de velocidade. Em outras palavras, nos
extremos da trajetória, sua aceleração é máxima e o seu valor é dado por:
|amáx| = ω2A
Também, podemos verificar que a aceleração é nula na posição de equilíbrio, já que x = 0.
A seguir, apresentamos um esquema resumindo alguns conceitos e conclusões até aqui abordados,
para que sirva de fácil memorização e aprendizado.
m
– A + A0
v = 0
ECinética = 0
EPmáxima = Em =
amáxima = ω2A
kA2
2
mvmáx
2
2
vmáxima = ± ωA
EPotencial = 0
ECmáxima = Em =
a = 0
kA2
2
v = 0
ECinética = 0
EPmáxima = Em =
amáxima = – ω2A
Consideramos uma partícula em MHS que se desloca entre as posições – 10 cm e + 10 cm de sua
trajetória, gastando 10 s para ir de uma à outra. Vamos determinar algumas grandezas físicas, como
amplitude, período e pulsação.
Para encontrar a amplitude do movimento, deve-se considerar a distância da posição de equilíbrio até
os extremos da trajetória, logo a amplitude é A = 10 cm.
Sabendo que o período T é o tempo gasto para realizar uma oscilação completa e, portanto, deve
ser o tempo gasto para ir de uma extremidade à outra (tempo de ida) mais o tempo de retorno à sua
extremidade inicial (tempo de volta). Assim, o período é de T = 20 s.
Sabendo que a frequência é o inverso do período, logo, a frequência é dada por:
f = 1
T
→ f = 1
20
Hz
A pulsação ω é dada por:
ω = 2π · f → ω = 2π ·
1
20
→ ω = π
10
rad/s
Agora, consideremos um corpo que executa um MHS de amplitude 4 m, pulsação 4π rad/s e fase
inicial π rad. Vamos determinar as equações horárias da elongação, velocidade e aceleração desse corpo.
A equação horária da elongação pode ser obtida diretamente, já que todas as grandezas físicas
necessárias foram dadas pelo exercício, logo:
x = A · cos (ωt + θ0) → x = 4 · cos (4πt + π)
A equação horária da velocidade obedece à forma:
V = – ωA · sen (ωt + θ0) → V = – 4π · 4 · sen (4πt + π) → V = – 16π · sen (4πt + π)
Física
Movimento Harmônico Simples
14
A equação horária da aceleração é dada por:
α = – ω2A · cos (ωt + θ0) → α = – (4π)2 · 4 · cos (4πt + π) →
α = – 16π2 · 4 · cos (4πt + π) → α = – 64π2 · cos (4πt + π)
Agora, vamos encontrar os módulos da velocidade e aceleração máxima do móvel.
Vmáxima = ωA → Vmáxima = 4π · 4 → Vmáxima = 16π m/s
amáxima = ω2 · A → amáxima = (4π)2 · 4 → amáxima = 64π2 m/s2
Exercícios de salaExercícios de sala
5 A pulsação de um MHS é π rad/s, a fase inicial é
3π
2
rad e a amplitude é 1 m.
a) Qual o período e a frequência desse MHS?
b) Escreva as equações horárias da elongação, da velocidade escalar e da aceleração escalar para esse
movimento.
c) Determine o máximo valor assumido pela velocidade escalar e pela aceleração escalar nesse MHS.
6 A equação horária da elongação de um móvel em MHS, em unidades do Sistema Internacional, é:
x = 5 ∙ cos πt +
π
4
a) Determine a amplitude, a pulsação, a fase inicial, o período e a frequência do movimento.
b) Escreva as equações horárias da velocidade escalar e da aceleração escalar desse MHS.
c) Determine a velocidade escalar máxima e a aceleração escalar máxima nesse MHS.
Física
Movimento Harmônico Simples
15
1.5 Gráficos do MHS
Agora, vamos analisar os gráficos do MHS, considerando, inicialmente, a fase inicial θ0 = 0. As equações
horárias do MHS ficam:
x = A · cos (ωt)
v = – ωA ∙ sen (ωt)
α = – ω2A ∙ cos (ωt)
Em seguida, vamos substituir a pulsação que multiplica o tempo por ω = 2π
T
, para que os cálculos
sejam facilitados, e substituir o tempo t por frações do período T. Logo, teremos:
t 0 T/4 T/2 3T/4 T
x A 0 - A 0 A
v 0 - ωA 0 ωA 0
α - ω2A 0 ω2A 0 - ω2A
A partir do quadro construído, obtemos os seguintes gráficos:
0
0
0
+ A
x
– A
x = A · cos ωt
T/4
T/4
T/4
T/2
T/2
3T/4
3T/4
T
T
T
t
t
t
θo
= 0
+ ω · A
+ ω2
· A
– ω2
· A
– ω · A
v = – ω · A · sen ωtv
α = – ω2
· A · cos ωt
3T/4
T/2
α
Exercícios de salaExercícios de sala
7 É dada a equação horária da elongação x = 5 cos
π
4
t +
π
2
, com unidades no Sistema Internacional,
para o MHS realizado por um móvel. Construa os gráficos horários da elongação, da velocidade escalar
e da aceleração escalar em função do tempo.
loja.cneceduca.com.br
Prezado leitor,
 
Agradecemos o interesse em nosso
material. Entretanto, essa é somente
uma amostra gratuita.
Caso haja interesse, todos os materiais
do Sistema de Ensino CNEC estão
disponíveis para aquisição através
de nossa loja virtual.

Mais conteúdo relacionado

Mais procurados

Campo magnético
Campo magnéticoCampo magnético
Campo magnéticofisicaatual
 
Lei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de KeplerLei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de KeplerFábio Ribeiro
 
As leis de newton pronto
As leis de newton prontoAs leis de newton pronto
As leis de newton prontoyaragessica
 
Exercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonExercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonBrenda Carvalho
 
Formação dos continentes
Formação dos continentesFormação dos continentes
Formação dos continentesNaira Delazari
 
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempo
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempoFísica 9º (Ciências) EF UNASP - Posição, deslocamento e tempo
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempoRonaldo Santana
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaVictor Said
 
6 trabalho de uma forca
6   trabalho de uma forca6   trabalho de uma forca
6 trabalho de uma forcadaniela pinto
 

Mais procurados (20)

Campo magnético
Campo magnéticoCampo magnético
Campo magnético
 
Vetores
VetoresVetores
Vetores
 
Diagrama de fases
Diagrama de fasesDiagrama de fases
Diagrama de fases
 
Fenômenos naturais
Fenômenos naturaisFenômenos naturais
Fenômenos naturais
 
Lei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de KeplerLei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de Kepler
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Impulso e quantidade de movimento
Impulso e quantidade de movimentoImpulso e quantidade de movimento
Impulso e quantidade de movimento
 
As leis de newton pronto
As leis de newton prontoAs leis de newton pronto
As leis de newton pronto
 
Exercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonExercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newton
 
Formação dos continentes
Formação dos continentesFormação dos continentes
Formação dos continentes
 
Força e movimento
Força e movimentoForça e movimento
Força e movimento
 
As paisagens e o relevo
As paisagens e o relevoAs paisagens e o relevo
As paisagens e o relevo
 
Magnetismo e eletromagnetismo
Magnetismo e eletromagnetismoMagnetismo e eletromagnetismo
Magnetismo e eletromagnetismo
 
CINEMÁTICA
CINEMÁTICACINEMÁTICA
CINEMÁTICA
 
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempo
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempoFísica 9º (Ciências) EF UNASP - Posição, deslocamento e tempo
Física 9º (Ciências) EF UNASP - Posição, deslocamento e tempo
 
9 ano leis de newton
9 ano leis de newton9 ano leis de newton
9 ano leis de newton
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação Eletrostática
 
Cinematica
CinematicaCinematica
Cinematica
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 
6 trabalho de uma forca
6   trabalho de uma forca6   trabalho de uma forca
6 trabalho de uma forca
 

Semelhante a MHS: Energias no Movimento Harmônico Simples

AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptx
AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptxAULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptx
AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptxMarcellusPinheiro1
 
Habilidade 20 enem_fisica_aula_02
Habilidade 20 enem_fisica_aula_02Habilidade 20 enem_fisica_aula_02
Habilidade 20 enem_fisica_aula_02William Ananias
 
FOO1-Cap13-MovimentoOndulatorio-Righi.pdf
FOO1-Cap13-MovimentoOndulatorio-Righi.pdfFOO1-Cap13-MovimentoOndulatorio-Righi.pdf
FOO1-Cap13-MovimentoOndulatorio-Righi.pdfMatheusGomes712135
 
Cap13 movimentocorposrigidos
Cap13 movimentocorposrigidosCap13 movimentocorposrigidos
Cap13 movimentocorposrigidosjperceu
 
Trabalho e energia
Trabalho e energiaTrabalho e energia
Trabalho e energiaEldon Avelar
 
MHS_ movimento harmonico_simples
MHS_ movimento harmonico_simplesMHS_ movimento harmonico_simples
MHS_ movimento harmonico_simplesRui100100
 
Trabalho e Energia Mecânica
Trabalho e Energia MecânicaTrabalho e Energia Mecânica
Trabalho e Energia MecânicaPibid Física
 
AULAS 2° E Karine Felix.pptx
AULAS 2° E Karine Felix.pptxAULAS 2° E Karine Felix.pptx
AULAS 2° E Karine Felix.pptxKarine Felix
 
AULAS 3° C Karine Felix.pptx
AULAS 3° C Karine Felix.pptxAULAS 3° C Karine Felix.pptx
AULAS 3° C Karine Felix.pptxKarine Felix
 
Conteúdo de Física para a prova do CBM.pptx
Conteúdo de Física para a prova do CBM.pptxConteúdo de Física para a prova do CBM.pptx
Conteúdo de Física para a prova do CBM.pptxwilliancardx
 
AULAS 2° D Karine Felix.pptx
AULAS 2° D Karine Felix.pptxAULAS 2° D Karine Felix.pptx
AULAS 2° D Karine Felix.pptxKarine Felix
 
Espectros moleculares reparado
Espectros moleculares  reparado Espectros moleculares  reparado
Espectros moleculares reparado FERNANDO DE SOUZA
 
Movimento harmônico simples
Movimento harmônico simplesMovimento harmônico simples
Movimento harmônico simplesPaulino Lopes
 
AULAS 2° A Karine Felix.pptx
AULAS 2° A Karine Felix.pptxAULAS 2° A Karine Felix.pptx
AULAS 2° A Karine Felix.pptxKarine Felix
 
Fisica -resumao_de_formulas
Fisica  -resumao_de_formulasFisica  -resumao_de_formulas
Fisica -resumao_de_formulasCelso Franzotti
 
fdocumentos.tips_introducao-biofisica.ppt
fdocumentos.tips_introducao-biofisica.pptfdocumentos.tips_introducao-biofisica.ppt
fdocumentos.tips_introducao-biofisica.pptTedJunior1
 
09 Mecânica Energia
09 Mecânica Energia09 Mecânica Energia
09 Mecânica EnergiaEletrons
 

Semelhante a MHS: Energias no Movimento Harmônico Simples (20)

AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptx
AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptxAULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptx
AULA - PRINCÍPIOS DA CONSERVAÇÃO DA ENERGIA.pptx
 
Habilidade 20 enem_fisica_aula_02
Habilidade 20 enem_fisica_aula_02Habilidade 20 enem_fisica_aula_02
Habilidade 20 enem_fisica_aula_02
 
FOO1-Cap13-MovimentoOndulatorio-Righi.pdf
FOO1-Cap13-MovimentoOndulatorio-Righi.pdfFOO1-Cap13-MovimentoOndulatorio-Righi.pdf
FOO1-Cap13-MovimentoOndulatorio-Righi.pdf
 
Cap13 movimentocorposrigidos
Cap13 movimentocorposrigidosCap13 movimentocorposrigidos
Cap13 movimentocorposrigidos
 
Trabalho e energia
Trabalho e energiaTrabalho e energia
Trabalho e energia
 
MHS_ movimento harmonico_simples
MHS_ movimento harmonico_simplesMHS_ movimento harmonico_simples
MHS_ movimento harmonico_simples
 
Ondulatória
OndulatóriaOndulatória
Ondulatória
 
Ondas_MHS_Física_Engenharia Civil
Ondas_MHS_Física_Engenharia CivilOndas_MHS_Física_Engenharia Civil
Ondas_MHS_Física_Engenharia Civil
 
Trabalho e Energia Mecânica
Trabalho e Energia MecânicaTrabalho e Energia Mecânica
Trabalho e Energia Mecânica
 
AULAS 2° E Karine Felix.pptx
AULAS 2° E Karine Felix.pptxAULAS 2° E Karine Felix.pptx
AULAS 2° E Karine Felix.pptx
 
AULAS 3° C Karine Felix.pptx
AULAS 3° C Karine Felix.pptxAULAS 3° C Karine Felix.pptx
AULAS 3° C Karine Felix.pptx
 
Colisoes.ppt
Colisoes.pptColisoes.ppt
Colisoes.ppt
 
Conteúdo de Física para a prova do CBM.pptx
Conteúdo de Física para a prova do CBM.pptxConteúdo de Física para a prova do CBM.pptx
Conteúdo de Física para a prova do CBM.pptx
 
AULAS 2° D Karine Felix.pptx
AULAS 2° D Karine Felix.pptxAULAS 2° D Karine Felix.pptx
AULAS 2° D Karine Felix.pptx
 
Espectros moleculares reparado
Espectros moleculares  reparado Espectros moleculares  reparado
Espectros moleculares reparado
 
Movimento harmônico simples
Movimento harmônico simplesMovimento harmônico simples
Movimento harmônico simples
 
AULAS 2° A Karine Felix.pptx
AULAS 2° A Karine Felix.pptxAULAS 2° A Karine Felix.pptx
AULAS 2° A Karine Felix.pptx
 
Fisica -resumao_de_formulas
Fisica  -resumao_de_formulasFisica  -resumao_de_formulas
Fisica -resumao_de_formulas
 
fdocumentos.tips_introducao-biofisica.ppt
fdocumentos.tips_introducao-biofisica.pptfdocumentos.tips_introducao-biofisica.ppt
fdocumentos.tips_introducao-biofisica.ppt
 
09 Mecânica Energia
09 Mecânica Energia09 Mecânica Energia
09 Mecânica Energia
 

Último

E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?Rosalina Simão Nunes
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptxthaisamaral9365923
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxBeatrizLittig1
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptx
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptxAULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptx
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptxLaurindo6
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...licinioBorges
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.silves15
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 

Último (20)

E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?E agora?! Já não avalio as atitudes e valores?
E agora?! Já não avalio as atitudes e valores?
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docx
 
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
Orientação Técnico-Pedagógica EMBcae Nº 001, de 16 de abril de 2024
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptx
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptxAULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptx
AULA SOBRE AMERICA LATINA E ANGLO SAXONICA.pptx
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 

MHS: Energias no Movimento Harmônico Simples

  • 1.
  • 2. Física2 SUMÁRIO DO VOLUME FÍSICA 1. Movimento Harmônico Simples 5 1.1 Movimento Oscilatório Periódico 5 1.2 Movimento Harmônico Simples 6 1.3 Energia do MHS 7 1.4 Equações do MHS 10 1.5 Gráficos do MHS 15 1.6 Frequência e Período do MHS 16 2. Ondas 22 2.1 Classificação das Ondas 23 2.2 Ondas Periódicas 27 2.3 Velocidade das Ondas Mecânicas 30 2.4 Potência e Intensidade de uma Onda 32 2.5 Equação de uma Onda Unidimensional 33 2.6 Defasagem entre Dois Pontos de uma Onda 35 2.7 Reflexão e Refração de Ondas em Cordas 36 2.8 Reflexão e Refração de Ondas Bi e Tridimensionais 38 2.9 Difração de Ondas 42 2.10 Interferência (Superposição de Ondas) 43 2.11 Ondas Estacionárias 47 2.12 Experiência de Young 49 2.13 Ressonância 53 2.14 Polarização 53 2.15 Batimento 55 2.16 Espectro Eletromagnético 56 3. Acústica 70 3.1 Considerações Iniciais 70 3.2 Frequência e Velocidade das Ondas Sonoras 71 3.3 Intensidade Sonora e Nível de Intensidade 74 3.4 Qualidades Fisiológicas do Som 76 3.5 Reflexão de Ondas Sonoras 77 3.6 Cordas Vibrantes 78 3.7 Tubos Sonoros 81 3.8 Efeito Doppler 83
  • 3. Física 3 SUMÁRIO COMPLETO VOLUME 1 UNIDADE: ONDULATÓRIA 1. Movimento Harmônico Simples 2. Ondas 3. Acústica VOLUME 2 UNIDADE: ÓPTICA 4. Introdução 5. Espelho plano 6. Espelho esférico 7. Refração 8. Lentes esféricas 9. Instrumentos ópticos 10. Óptica da visão VOLUME 3 UNIDADE: TERMOLOGIA 11. Termometria 12. Dilatação térmica dos sólidos 13. Dilatação térmica dos líquidos 14. Propagação de calor 15. Calorimetria 16. Mudanças de estado físico 17. Estudo dos gases 18. Termodinâmica
  • 5. Física Movimento Harmônico Simples 5 ONDULATÓRIA 1. Movimento HARMÔNICO SIMPLES 1.1 Movimento Oscilatório Periódico Oque um relógio de pêndulo, um diapasão, um balanço, as cordas de um piano ou de um violão, os átomos nos corpos sólidos têm em comum? Todos eles têm funcionamento baseado em acontecimentos que se repetem, de tempo em tempo. Uma observação rápida do nosso cotidiano é capaz de nos mostrar vários fenômenos naturais com essa característica. Todo movimento que se repete em intervalos de tempo sucessivos e iguais, recebe o nome de fenômenos periódicos. Outros exemplos de movimentos periódicos são: fases da lua, translação da Terra em torno do Sol, movimento circular uniforme, as estações do ano, etc. Chama-se Período (t) o tempo gasto para a realização de uma oscilação completa. Isso quer dizer que o período é o tempo gasto para que o objeto realize seu ciclo completo de movimento. No Sistema Internacional de unidades, o período é medido em segundos. Caso, num intervalo de tempo ∆t, ocorreu n repetições (oscilações), o período é dado por: T = ∆t n Outra grandeza física muito importante, e que está relacionada com o período, é a frequência, que é o número de vezes que o movimento se repete por unidade de tempo, ou seja, se ocorreu n oscilações em um intervalo de tempo ∆t, a frequência é dada por: f = n ∆t Se o intervalo de tempo for medido em segundos, a unidade de frequência será o Hertz (Hz). Como o período e a frequência estão relacionados às medidas de tempo, há uma forte ligação entre eles. Matematicamente, uma grandeza é o inverso da outra, ou seja: f = 1 T ou T = 1 f Disponívelem:<http://wikiteca.iesb.br>.Acessoem:01ago.2013.Disponívelem:<www.estudiolivre.org>. Acessoem:01ago.2013. Disponívelem:<http://mundodascordas. webnode.com.br>.Acessoem: 01ago.2013. Disponívelem:<www.rabrinquedos.com.br>. Acessoem:01ago.2013. Relógio. Diapasão. Balanço. Corda de um violão.
  • 6. Física Movimento Harmônico Simples 6 Imaginemos que um balanço esteja realizando um movimento com 10 repetições (oscilações) a cada 20 s. Seu período e sua frequência podem ser determinados da seguinte maneira: T = ∆t n → T = 20 10 → T = 2,0 s f = n ∆t → f = 10 20 → f = 0,5 Hz ou f = 1 T = 1 2,0 = 0,5 Hz Todo movimento cujo sentido é regularmente invertido (alternância de sentidos), dá-se o nome de movimento oscilatório ou vibratório. São exemplos de movimentos oscilatórios: movimento do pêndulo simples, movimento de um diapasão, movimento de um sistema formado por uma massa e uma mola, movimento da corda de um violão, etc. A B C O m x+ A– A Em todos esses exemplos, existem forças que atuam sobre os corpos oscilantes a fim de trazê-los para sua posição de equilíbrio. Essas forças são chamadas de forças restauradoras. No nosso curso, não iremos considerar as forças dissipativas, como, por exemplo, as forças de resistência do ar ou de atrito, que atuam nos corpos até que eles parem em sua posição de equilíbrio. 1.2 Movimento Harmônico Simples Nesta figura, temos um sistema constituído por um corpo de massa m preso a uma mola de constante elástica k (sistema massa-mola) que passa a oscilar entre os pontos – A e + A, simétricos ao ponto de equilíbrio O (em que a força resultante na partícula é nula). A mola é ideal, e os atritos são desprezíveis. k m x O + A– A x Em relação ao eixo x, a posição do corpo, num determinado tempo t, é chamada elongação da mola. Lógico, se o corpo se encontra na posição de equilíbrio, a elongação é zero. Nos pontos de inversão do movimento – A e + A ocorre a elongação máxima da mola, denominada de amplitude do movimento. DizemosqueumcorporealizaumMovimentoHarmônicoSimplesLinearquandoaforçarestauradora, que age nele, tem valor algébrico diretamente proporcional à elongação da mola, ou seja: F = –k · x onde k é a constante elástica da força e o sinal negativo indica que a força F tem sentido negativo ao do eixo x. A esfera do pêndulo oscila entre A e B. C é a posição de equilíbrio. O corpo de massa m preso em uma mola oscila entre + A e – A. O é a posição de equilíbrio.
  • 7. Física Movimento Harmônico Simples 7 No exemplo citado anteriormente do sistema massa-mola, a força restauradora aplicada pela mola é do tipo elástica, que pela Lei de Hooke, é proporcional à elongação x. Observamos que a força F tem módulo máximo nas posições de inversão – A e + A e valor zero na posição de equilíbrio O. Assim, podemos construir o seguinte gráfico: F x + A – A – kA kA x = – A → |F| = k ∙ A x = A → |F| = - k ∙ A x = 0 → |F| = 0 Exercícios de salaExercícios de sala 1 Um corpo realiza um movimento oscilatório, sob ação de uma força resultante, cujo valor algébrico varia em função da abscissa x, conforme o gráfico ao lado. Determine: a) O tipo de movimento realizado pela partícula; b) A amplitude do movimento; c) A constante elástica da mola; 1.3 Energia do MHS Existem três tipos de energia que podem estar envolvidas em um movimento harmônico simples: energia potencial gravitacional (EPG), energia potencial elástica (EPEL) e energia cinética (EC). A soma dessas três energias é igual à energia mecânica (EM) do sistema, ou seja: EM = EC + EPG + EPEL Quando num sistema não atuarem forças dissipativas (exemplo, o atrito), a energia mecânica se conserva. No nosso estudo, trabalharemos sempre com sistemas em que a EM é constante durante o movimento qualquer de um corpo. Disponívelem:<www.parrswood.manchester.sch.uk>. Acessoem:12set.2013. Robert Hooke. F (N) x (m) + 5 – 5 – 10 10
  • 8. Física Movimento Harmônico Simples 8 De maneira informal, diz-se que energia potencial gravitacional é a energia que um corpo tem devido à sua altura em relação a um nível de referência. Na verdade, ela está intimamente ligada à posição, em relação a um ponto qualquer, de um corpo imerso em um campo gravitacional. Para entender de maneira mais clara, imagine que o chão da sala é o nível de referência. Qualquer coisa que não esteja no chão terá energia por estar a certa altura em relação a ele. Matematicamente, calcula-se a energia potencial gravitacional de um corpo da seguinte forma: EPG = m∙g∙h sendo que h é a altura do corpo em relação a um nível de referência, g é a aceleração da gravidade local e, m é a massa do corpo. No entanto, em geral, os sistemas que executam MHS são construídos de forma a não haver variação da energia potencial gravitacional, ou seja, eles são colocados na horizontal. Geralmente esses sistemas são representados pelo sistema massa-mola, sendo assim, as duas energias mais importantes para o MHS são a energia potencial elástica (EPEL) e a energia cinética (Ec). A EPEL, como visto na Mecânica, é dada por: EPEL = kx2 2 Na posição de equilíbrio (x = 0), podemos verificar que a EPEL é nula e, nos pontos de inversão, onde ocorre a máxima deformação (x = ± A), a EPEL é máxima. Em suma, temos: O + A– A EPEL = EPEL = 0 máx kA2 2 EPEL = máx kA2 2 A equação da EPEL é uma função de segundo grau em relação a x, logo, um gráfico da EPEL em função da sua deformação é um arco de parábola, com concavidade voltada para cima, conforme o gráfico ao lado. A EC é bastante importante no estudo dos movimentos, como visto na Mecânica. Por definição, um corpo de massa m e com uma velocidade v possui uma energia cinética dada por: EC = mv2 2 Como a energia cinética está relacionada à velocidade de um corpo, observa-se que ela é máxima na posição de equilíbrio, e zero nos extremos (x = ± A). Daí, temos: O + A– A EC = 0EC = 0 EC = máx mv2 máx 2 Como dito anteriormente, nas situações mais comuns de corpos se movimentando em MHS, a energia potencial gravitacional não varia. Sendo assim, a energia mecânica do sistema em um ponto é a soma da energia potencial elástica e da energia cinética no referido ponto. Assim, temos: EM = EC + EPEL EM = mv2 2 + kx2 2 0 x x A– A kx2 kA21 2 1 2 EPEL
  • 9. Física Movimento Harmônico Simples 9 Nos pontos x = ± A, a EC = 0 e a energia mecânica será igual à energia potencial máxima. Logo: EM = EC + EPEL EM = 0 + kA2 2 EM = kA2 2 Com isso, o gráfico da EM em função de x é uma reta paralela ao eixo x (EM constante), como indicado na figura ao lado. Para qualquer elongação x, temos que: EM = EC + EPEL kA2 2 = EC + kx2 2 EC = kA2 2 – kx2 2 Portanto, podemos provar o que foi dito anteriormente, que a EC é máxima no ponto de equilíbrio (x = 0), e que é igual à energia mecânica, e zero nos extremos (x = ± A). Analisando graficamente a EC em função da elongação x, verifica-se que trata de um arco de parábola com concavidade voltada para baixo. Assim, obtemos o gráfico dado ao lado. Fazendo um resumo dos gráficos apresentados anteriormente, teremos: Podemos observar por esse gráfico ao lado que quando uma energia é máxima, a outra é nula, demonstrando a conservação da energia mecânica do sistema. Exercícios de salaExercícios de sala 2 Uma partícula cuja massa é 100 g realiza um MHS presa a uma mola de constante elástica igual a 20 N/m. Quando a elongação da mola é de 10 cm, a velocidade da partícula é 4,0 m/s. Determine: a) A energia mecânica da partícula; b) A amplitude do movimento. 0 Ax x – A EM kA21 2 0 x x A– A EC kA2 k (A2 – x2 )1 2 1 2 0 Energia Ec EM EPEL x
  • 10. Física Movimento Harmônico Simples 10 3 (PUC) Uma partícula de massa 0,5 kg move- se sob ação de apenas uma força, à qual está associada uma energia potencial Ep cujo gráfico em função de x está representado nesta figura. 0 1,0 J + 1,0– 1,0 x (m) Ep (J) Esse gráfico consiste em uma parábola passando pela origem. A partícula inicia o movimento a partir do repouso, em x = -2,0 m. Pede-se: a) Sua energia mecânica; b) A velocidade da partícula ao passar por x = 0; c) A energia cinética da partícula ao passar por x = 1 m. 4 (UFBA) Uma partícula oscila em MHS com amplitude A = 15 cm. Determine, em cm, a elongação no instante em que a energia cinética da partícula iguala-se à energia potencial. 1.4 Equações do MHS O MHS e o movimento circular uniforme (MCU) estão estritamente relacionados de modo que um pode ser estudado através do outro. Para isso, basta observar o fato que o MHS pode ser visto como a projeção ortogonal do MCU sobre qualquer diâmetro da circunferência que constitui a trajetória da partícula no referencial adotado. Consideramos que uma partícula esteja realizando um MCU e que os pontos A1, A2, A3, A4, A5 e A6 correspondem às posições dessa partícula em um determinado instante. Agora, fazendo a projeção desses pontos em seu diâmetro, encontramos os pontos P1, P2, P3, P4, P5 e P6, que estão realizando um MHS. Verifica-se que o período T do MCU é igual ao do MHS, pois, quando a partícula realiza uma volta completa, sua projeção também realiza uma oscilação completa e recomeça o movimento. P4 P5 P2 P3 P6 P1 A1 A6A5 A4 A2 A3 O x Seja A1 a posição inicial de uma partícula (no instante inicial t0) que realiza um MCU, numa circunferência de raio igual a A, e A2 a posição final (num instante posterior t). Como visto no estudo do MCU, aos espaços inicial e final correspondem ângulos centrais θ0 e θ, denominados, respectivamente, espaço angular inicial e final. x x PO R = A θ θ0 A1 A2 A projeção do movimento circular uniforme se comporta como um movimento harmônico simples. Isso pode ser utilizada para calcular a elongação de um objeto em MHS. Através da Mecânica, sabe-se que: θ = θ0 + ω∙t
  • 11. Física Movimento Harmônico Simples 11 onde ω é a velocidade angular (pulsação ou frequência angular) da partícula no MCU, que pode ser representador por: ω = 2π T ou ω = 2π ∙ f em que T é o período de rotação da partícula e f a sua frequência. AsposiçõesdaprojeçãoP,querealizaMHS,sãoencontradasnumeixocomorigemnocentrodacircunferência O e orientado da esquerda para a direita, como indicado na figura anterior. Pelo triângulo OA2P, temos: x = OA2 · cos θ Mas OA2 = R = A é o raio da circunferência, que é igual à amplitude do MHS e θ = θ0 + ω ∙ t. Assim, temos: x = A∙cos (ω∙t + θ0) Nessa equação, o termo θ = θ0 + ω ∙ t é denominado fase do MHS, que é expresso em radiano, sendo variável com o tempo t. Quando t = 0, a fase vale θ = θ0, sendo chamado de fase inicial do MHS, cujo valor depende da posição inicial do móvel em seu movimento, como indicado nos casos seguintes. O A– A t = 0 X x = A x decrescente θ0 = 0 A partícula inicia o seu movimento (t = 0) no ponto A, ou seja, de máxima elongação, que forma zero grau com o eixo x, que serve como referencial de estudo. O A– A t = 0 X x = 0 x decrescente θ0 = π/2 B A partícula inicia o seu movimento (t = 0) no ponto B, que forma 90º com o eixo x positivo. O A– A t = 0 X x = – A x Crescente θ0 = π A partícula inicia o seu movimento (t = 0) no ponto x = – A, ou seja, de máxima deformação, que forma 180º com o eixo x positivo. A– A X O C x = 0 x Crescente θ0 = 3π/2 A partícula inicia o seu movimento (t = 0) no ponto C, formando 270º com o eixo x positivo.
  • 12. Física Movimento Harmônico Simples 12 Enquanto uma partícula qualquer descreve um MCU, suas projeções oscilam no diâmetro com um movimento não uniforme, cuja função horária é cossenoidal com o tempo. A velocidade do objeto que está sob a ação de um MHS pode ser calculada da seguinte maneira: VMHS = VMCU · cos (90º – θ) VMHS = VMCU · (– sen θ) VMHS = – VMCU · sen θ em que V MCU = ω∙A e θ = θ0 + ωt. Sendo assim, observa-se que: VMHS = - ωA∙sen (ωt + θ0) Agora, analisando a equação da elongação x e da velocidade V do MHS, poderemos obter algumas conclusões, tais como: x = A · cos (ωt + θ0) V = – ωA · sen (ωt + θ0) • x = 0 (posição de equilíbrio) cos (ωt + θ0) = 0 e como sen2θ + cos2θ = 1, onde θ = ωt + θ0, dai temos: sen (ωt + θ0) = ± 1 v= ± ωA |vmáx| = ωA • x = ± A (amplitude) cos (ωt + θ0) = ± 1 sen (ωt + θ0) = 0 v = 0 O valor máximo da velocidade para um corpo que realiza MHS ocorre quando ele passa pela sua posição de equilíbrio e, possui velocidade nula, quando o corpo está nas posições de elongação máxima (x = ± A), já que é nesse instante que ocorre a inversão do movimento. Observando, a partir de um referencial inercial, um objeto só realiza movimento circular se ele estiver sob a ação de uma força centrípeta. No MHS, a aceleração de um corpo, em cada instante, pode ser calculada através da projeção da aceleração centrípeta sofrida por um corpo em MCU. Como o sentido dessa aceleração é contrário ao sentido positivo de x, acrescentamos o sinal negativo: αMHS = – αMCU · cos θ aMCU = acentrípeta = ω2A θ = θ0 + ωt αMHS = – ω2A · cos (ωt + θ0) A Vmcu Vmhs θ θ 90º – θ Além da posição, é possível calcular a velocidade do objeto em MHS como se fosse a projeção da velocidade linear de um objeto que esteja em MCU. A velocidade máxima será v = + ωA quando o corpo estiver em movimento progressivo (movimentando no sentido positivo de x) e v = – ωA, quando seu movimento for retrógrado (movimentando no sentido negativo de x). amhs amcu θ θ A aceleração de um objeto em MHS pode ser calculada como se fosse a projeção da aceleração centrípeta de um objeto que esteja em MCU. Os módulos da aceleração e da elongação são diretamente proporcionais.
  • 13. Física Movimento Harmônico Simples 13 De acordo com as expressões anteriores encontradas, verificamos que são nos extremos (elongações máximas, ou seja, x = ± A) que ocorrem as maiores variações de velocidade. Em outras palavras, nos extremos da trajetória, sua aceleração é máxima e o seu valor é dado por: |amáx| = ω2A Também, podemos verificar que a aceleração é nula na posição de equilíbrio, já que x = 0. A seguir, apresentamos um esquema resumindo alguns conceitos e conclusões até aqui abordados, para que sirva de fácil memorização e aprendizado. m – A + A0 v = 0 ECinética = 0 EPmáxima = Em = amáxima = ω2A kA2 2 mvmáx 2 2 vmáxima = ± ωA EPotencial = 0 ECmáxima = Em = a = 0 kA2 2 v = 0 ECinética = 0 EPmáxima = Em = amáxima = – ω2A Consideramos uma partícula em MHS que se desloca entre as posições – 10 cm e + 10 cm de sua trajetória, gastando 10 s para ir de uma à outra. Vamos determinar algumas grandezas físicas, como amplitude, período e pulsação. Para encontrar a amplitude do movimento, deve-se considerar a distância da posição de equilíbrio até os extremos da trajetória, logo a amplitude é A = 10 cm. Sabendo que o período T é o tempo gasto para realizar uma oscilação completa e, portanto, deve ser o tempo gasto para ir de uma extremidade à outra (tempo de ida) mais o tempo de retorno à sua extremidade inicial (tempo de volta). Assim, o período é de T = 20 s. Sabendo que a frequência é o inverso do período, logo, a frequência é dada por: f = 1 T → f = 1 20 Hz A pulsação ω é dada por: ω = 2π · f → ω = 2π · 1 20 → ω = π 10 rad/s Agora, consideremos um corpo que executa um MHS de amplitude 4 m, pulsação 4π rad/s e fase inicial π rad. Vamos determinar as equações horárias da elongação, velocidade e aceleração desse corpo. A equação horária da elongação pode ser obtida diretamente, já que todas as grandezas físicas necessárias foram dadas pelo exercício, logo: x = A · cos (ωt + θ0) → x = 4 · cos (4πt + π) A equação horária da velocidade obedece à forma: V = – ωA · sen (ωt + θ0) → V = – 4π · 4 · sen (4πt + π) → V = – 16π · sen (4πt + π)
  • 14. Física Movimento Harmônico Simples 14 A equação horária da aceleração é dada por: α = – ω2A · cos (ωt + θ0) → α = – (4π)2 · 4 · cos (4πt + π) → α = – 16π2 · 4 · cos (4πt + π) → α = – 64π2 · cos (4πt + π) Agora, vamos encontrar os módulos da velocidade e aceleração máxima do móvel. Vmáxima = ωA → Vmáxima = 4π · 4 → Vmáxima = 16π m/s amáxima = ω2 · A → amáxima = (4π)2 · 4 → amáxima = 64π2 m/s2 Exercícios de salaExercícios de sala 5 A pulsação de um MHS é π rad/s, a fase inicial é 3π 2 rad e a amplitude é 1 m. a) Qual o período e a frequência desse MHS? b) Escreva as equações horárias da elongação, da velocidade escalar e da aceleração escalar para esse movimento. c) Determine o máximo valor assumido pela velocidade escalar e pela aceleração escalar nesse MHS. 6 A equação horária da elongação de um móvel em MHS, em unidades do Sistema Internacional, é: x = 5 ∙ cos πt + π 4 a) Determine a amplitude, a pulsação, a fase inicial, o período e a frequência do movimento. b) Escreva as equações horárias da velocidade escalar e da aceleração escalar desse MHS. c) Determine a velocidade escalar máxima e a aceleração escalar máxima nesse MHS.
  • 15. Física Movimento Harmônico Simples 15 1.5 Gráficos do MHS Agora, vamos analisar os gráficos do MHS, considerando, inicialmente, a fase inicial θ0 = 0. As equações horárias do MHS ficam: x = A · cos (ωt) v = – ωA ∙ sen (ωt) α = – ω2A ∙ cos (ωt) Em seguida, vamos substituir a pulsação que multiplica o tempo por ω = 2π T , para que os cálculos sejam facilitados, e substituir o tempo t por frações do período T. Logo, teremos: t 0 T/4 T/2 3T/4 T x A 0 - A 0 A v 0 - ωA 0 ωA 0 α - ω2A 0 ω2A 0 - ω2A A partir do quadro construído, obtemos os seguintes gráficos: 0 0 0 + A x – A x = A · cos ωt T/4 T/4 T/4 T/2 T/2 3T/4 3T/4 T T T t t t θo = 0 + ω · A + ω2 · A – ω2 · A – ω · A v = – ω · A · sen ωtv α = – ω2 · A · cos ωt 3T/4 T/2 α Exercícios de salaExercícios de sala 7 É dada a equação horária da elongação x = 5 cos π 4 t + π 2 , com unidades no Sistema Internacional, para o MHS realizado por um móvel. Construa os gráficos horários da elongação, da velocidade escalar e da aceleração escalar em função do tempo.
  • 16. loja.cneceduca.com.br Prezado leitor,   Agradecemos o interesse em nosso material. Entretanto, essa é somente uma amostra gratuita. Caso haja interesse, todos os materiais do Sistema de Ensino CNEC estão disponíveis para aquisição através de nossa loja virtual.