1 - ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO E DIVISÃO
A CRIAÇÃO DOS NÚMEROS
Os números foram inventados pelos homens. Mas sua cri...
CCC = 100 + 100 + 100 = 300
- Dois símbolos diferentes juntos, com o número menor aparecendo antes do
maior, significava s...
_____
XXIII = 23000
obs: Os Romanos não conheciam um símbolo para representar o número zero
A NÚMERAÇÃO DOS HINDUS
Foram o...
1) todo número natural tem um sucessor (é o que vem depois)
2) todo número natural tem um antecessor (é o que vem antes), ...
R: 6.083.999
j) o antecessor de 1.000.000
R: 999.999
2) Adicione
a) 137 com o seu sucessor
R: 137 + 138 = 275
b) 298 com o...
72 + 64 = 136
ou
72 +
64
----
136
Adicionar significa somar, juntar , ajuntar, acrescentar.
No exemplo acima, os números 7...
1748---parcela
+566---parcela
----
2314---soma ou total (resultado da operação)
logo, podemos dizer que nessa empresa trab...
49---parcelas
18---parcelas
+5---parcelas
--
72---soma ou total
Logo, podemos dizer que essa equipe disputou 72 partidas
E...
v) 37 + 67 = 104
x) 88 + 88 = 176
z) 99 + 99 = 198
2) calcule as somas
a) 110 + 100 = 210
b) 120 + 101 = 221
c) 130 + 111 ...
d) 3258 + 9632 = 12890
e) 7896 + 5697 = 13593
f) 5423 + 8912 = 14335
g) 7463 + 9641 = 17104
h) 2536 + 5847 = 8383
i) 7788 ...
despesa de frete. Quanto o comprador vai pagar?
R: 444632
7) Ao receber o meu salário paguei R$ 437,12 de aluguel, R$ 68,1...
trimestre, a mesma empresa produziu 795 peças a mais que no primeiro
trimestre. Nessas condições:
a) Quantas peças a empre...
trocando a ordem dos números, vamos determinar a sua soma
24 + 40 = 64
De acordo com as situações apresentadas, podemos es...
3º) Consideremos os números naturais 15 e 0 e vamos determinar a sua soma,
independentemente da ordem dos números:
15 + 0 ...
Na subtração anterior, o número 138.000 é chamado minuendo e 40.000 é o
subtraendo, o resultado, 98.000, é chamado diferen...
e) 80469-6458 = (R: 74011)
f) 866 - 638 = (R: 228)
g) 131012-88142= (R: 42870)
h)2238 - 909 = (R: 1329)
i) 802-638 = (R: 1...
10)Umaindustria, no final de 1991, tinha 10.635 empregados. No inicio de
1992 em virtude da crise econômica dispensou 1.88...
veja
3+3+3+3 = 12
Podemos representar a mesma igualdade por
4 x 3 = 12 ou 4 . 3 = 12
Essa operação chama-se multiplicação ...
Cada equipe pode inscrever 12 jogadores. Quantos jogadores serão inscritos
para disputar a fase final desse torneio?
resol...
x) 7 x 125 = 875
z) 7 x 55 = 385
2) Calcule as multiplicações
a) 7 x 75 = 525
b) 7 x 375 = 2625
c) 7 x 1257 = 8799
d) 8 x ...
f) 289 x 140 = 40460
g) 1782 x 240 = 427680
h) 2008 x 405 = 813240
i) 2453 x 1002 = 2457906
4) Efetue as multiplicações
a)...
Se numa viagem foram consumidos 46 litro, qual a distância em quilômetos
que o carro percorreu? R: 552 quilômetros
11) Em ...
PROPRIEDADES ESTRUTURAIS DA MULTIPLICAÇÃO
1) FECHAMENTO
O priduto de dois números naturais é um número natural
5 x 3 = 15
...
2) 2 x 5 + 2 x 3 = 10 + 6 = 16
DIVISÃO EXATA
Consideremos dois números naturais, dados numa certa ordem, 10 é o
primeiro d...
EXERCÍCIOS
1) Calcule as divisões
a)20:5=4
b)16:8=2
c)12:1=12
d)48:8=6
e)37:37=1
f)56:14=4
2)Observe a igualdade 56:7=8 e ...
a)Qual é a metade de 784?
R: 392
b)Qual é a terça parte de 144?
R: 48
c)Qual é a quinta parte de 1800?
R: 360
d)Qual é a d...
12)Uma tonelada de cana de açucar produz aproximadamente 85 litros de
álcool. Quantas toneladas de cana são necessárias pa...
a 79:8=9 resto=7
b)49:8=6 resto=1
c)57:8=7 resto=1
d)181:15=12 resto=1
e)3214:10=321 resto=4
f)825:18=45 resto=15
g)4937:3...
Próximos SlideShares
Carregando em…5
×

Operações fundamentais da matemática

406 visualizações

Publicada em

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
406
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
10
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Operações fundamentais da matemática

  1. 1. 1 - ADIÇÃO, SUBTRAÇÃO, MULTIPLICAÇÃO E DIVISÃO A CRIAÇÃO DOS NÚMEROS Os números foram inventados pelos homens. Mas sua criação não aconteceu de repente surgiu da necessidade de contar coisas. O homem primitivo, por exemplo, contava traçando riscos na madeira ou no osso, ou ainda, fazendo nós em uma corda. Como erádificil contar quantidades grandes e efetuar cálculos com pedras, nós ou riscos simples, a necessidade de efetuar cálculos com maior rapidez levou o homem a criar símbolos, para representar quantidade. Na antiguidade, nem todos os povos usavam os mesmos símbolos. Vamos conhecer como alguns povos dessa época contavam. A NUNERAÇÃO DOS ROMANOS Os romanos representavam quantidades usando as próprias letras de seu alfabeto: I - valia uma unidade V - valia cinco unidades X - representava dez unidades L - indicava cinquenta unidades C - valia cem unidades D - representava quinhentas unidades M - indicava mil unidades As quantidades eram representadas colocando-se os símbolos uns ao lado dos outros, conforme a seguinte regra: - Os símbolos iguais juntos, até três , significava soma de valores: II = 1 + 1 = 2 XXX = 10 + 10 + 10 = 30
  2. 2. CCC = 100 + 100 + 100 = 300 - Dois símbolos diferentes juntos, com o número menor aparecendo antes do maior, significava subtração de valores: IV = 5 - 1 = 4 XL = 50 - 10 = 40 XC = 100 - 10 = 90 - Dois símbolos diferentes juntos, com o maior aparecendo antes do menor, significa soma de valores: LX = 50 + 10 = 60 CCXXX = 200 + 30 = 230 DC = 500 + 100 = 600 MMMD = 3000 + 500 = 3500 - Para indicar quantidades a partir de 4000, os romanos usavam um traço horizontal sobre as letras correspondentes à quantidade de milhares: __ IV = 4000 _ V = 5000 _ VCCCXX = 5320
  3. 3. _____ XXIII = 23000 obs: Os Romanos não conheciam um símbolo para representar o número zero A NÚMERAÇÃO DOS HINDUS Foram os hindus que inventaram os símbolos que usamos até hoje : 0,1,2,3,4,5,6,7,8 e 9 Esses símbolos, divulgados pelos árabes, são conhecidos como algarismos indo- arábicos e com eles escrevemos todos os números. Mais adiante vamos falar sobre o sistema de numeração que usamos. Você sabe, por exemplo, que 51 e 15 representam quantidades bem diferentes. NÚMEROS NATURAIS Quando contamos uma quantidade de qualquer coisa (objetos, animais,estrelas,pessoas,etc) empregamos os números 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,.......... Esses números são chamados de números naturais. Existem infinitos números naturais os números que aparecem juntos, como na sequencia acima são chamados números consecutivos. Por exemplo 12 e 13 são consecutivos 13 é o sucessor (vem depois ) de 12 e 12 é o antecessor (vem antes) de 13 Observações:
  4. 4. 1) todo número natural tem um sucessor (é o que vem depois) 2) todo número natural tem um antecessor (é o que vem antes), com exeção do zero 3) Um número natural e o seu sucessor são chamados números consecutivos. PAR OU IMPAR Um número natural é par quando termina em 0,2,4,6 ou 8 Os números pares são: 0,2,4,6,8,10,12,14,16...... Um número é ímpar quando termina em 1,3,5,7, ou 9. Os números ímpares são: 1,3,5,7,9,11,13,15....... EXERCICIOS 1) Determine a) O sucessor de 199 R: 200 b) o sucessor de 7.777 R:7.778 c) o sucessor de 1.005.000 R: 1.005.001 d) o sucessor de 7.777.779 R: 7.777.780 e) o sucessor de 4.060.999 R: 4.061.000 f) o antecessor de 399 R: 398 g) o antecessor de 6.666 R: 6.665 h) o antecessor de 50.000 R: 49.999 i) o antecessor de 6.084.000
  5. 5. R: 6.083.999 j) o antecessor de 1.000.000 R: 999.999 2) Adicione a) 137 com o seu sucessor R: 137 + 138 = 275 b) 298 com o seus antecessor R: 297 + 298 = 595 3) Pense em todos os números naturais que se escreve com dois algarismos a) Quantos são pares? R: 45 b) Quantos são ímpares? R: 45 ADIÇÃO juntando, quanto dá? A professora de língua Portuguesa indicou aos alunos de 5° série os livros que eles deverão ler no primeiro bimestre do ano letivo, o primeiro tem 64 páginas e o segundo têm 72 páginas. Nesses dois livros, quantas páginas, ao todo, os alunos vão ler? Devemos contar as 72 páginas de um livro mais as 64 páginas do outro. Partindo de 72 e contando mais 64 vemos chegar ao resultado. Essa contagem é demorada, não é? Por isso, você aprendeu a fazer esta conta:
  6. 6. 72 + 64 = 136 ou 72 + 64 ---- 136 Adicionar significa somar, juntar , ajuntar, acrescentar. No exemplo acima, os números 72 e 64 são parcelas da adição. O resultado, 136, é chamado soma. Veja outro exemplo: 600 + 280= 880--soma parcelas Vamos somar os números 272 e 339 em duas ordens diferentes calcule e compare os resultados a) 272 + 339 b) 339 + 272 Na matemática, a operação da adição é usada quando devemos juntar duas ou mais quantidades. Consideremos, então, as seguintes situações em que vamos empregar a operação de adição 1º EXEMPLO Uma empresa tem 1748 pessoas trabalhando na sua fábrica e 566 pessoas trabalhando no seu escritório. Quantas pessoas trabalham, ao todo, nessa empresa? Resolução Para resolver esse problema, devemos fazer 1748 + 566, ou seja
  7. 7. 1748---parcela +566---parcela ---- 2314---soma ou total (resultado da operação) logo, podemos dizer que nessa empresa trabalham 2314 pessoas 2º EXEMPLO Em uma escola, o início das aulas é às 7h 30min. Como cada aula tem 50 minutos de duração, a que horas termina a primeira aula? Resolução Para resolver esse problema, devemos fazer 7h 30min + 50 min, ou seja 7h 30 min----parcela + 50 min----parcela --------- 7h 80 min----soma ou total Como 1 hora tem 60 minutos, então 80 minutos correspondem a 1h 20 min. Então 7h 80 min = 7 h + 1h 20 min = 8 h 20 min logo, podemos dizer que a primeira aula termina às 8 h 20 min 3º EXEMPLO Durante o ano de 2008, uma equipe de futebol venceu 49 partidas, empatou 18 partidas e perdeu 5 partidas. Quantas partidas essa equipe disputou durante o ano de 2008? Resolução Para resolver o Problema, devemos calcular 49 + 18 + 5, ou seja :
  8. 8. 49---parcelas 18---parcelas +5---parcelas -- 72---soma ou total Logo, podemos dizer que essa equipe disputou 72 partidas EXERCÍCIOS 1) Calcule as somas a) 10 + 11 = 21 b) 10 + 21 = 31 c) 10 + 31 = 41 d) 10 + 41 = 51 e) 10 + 51 = 61 f) 10 + 61 = 71 g) 10 + 71 = 81 h) 10 + 81 = 91 i) 10 + 91 = 101 j) 12 + 66 = 78 l) 13 + 48 = 61 m) 67 + 89 = 156 n) 97 + 89 = 186 o) 56 + 87 = 143 p) 84 + 77 = 161 q) 38 + 98 = 136 r) 69 + 73 = 142 s) 83 + 99 = 182 t) 73 + 37 = 110 u) 75 + 23 = 98
  9. 9. v) 37 + 67 = 104 x) 88 + 88 = 176 z) 99 + 99 = 198 2) calcule as somas a) 110 + 100 = 210 b) 120 + 101 = 221 c) 130 + 111 = 141 d) 140 + 121 = 161 e) 150 + 131 = 181 f) 170 + 132 = 302 g) 180 + 134 = 314 h) 190 + 135 = 325 i) 200 + 136 = 336 j) 201 + 137 = 338 l) 210 + 138 = 348 m) 220 + 139 = 359 n) 230 + 140 = 370 o) 240 + 150 = 390 p) 250 + 160 = 410 q) 260 + 170 = 430 r) 270 + 180 = 450 s) 280 + 190 = 470 t) 290 + 200 = 490 u) 311 + 212 = 523 v) 548 + 645 = 1193 x) 665 + 912 = 1577 z) 987 + 789 = 1776 3) Efetue as adições a) 1487 + 2365 = 3852 b) 6547 + 5478 = 12025 c) 4589 + 4587 = 9176
  10. 10. d) 3258 + 9632 = 12890 e) 7896 + 5697 = 13593 f) 5423 + 8912 = 14335 g) 7463 + 9641 = 17104 h) 2536 + 5847 = 8383 i) 7788 + 9988 = 17776 J) 1122 + 4477 = 5599 l) 7946 + 3146 = 11092 m) 4562 + 3215 = 7777 n) 1478 + 8632 = 10110 o) 8437 + 2791 = 11228 p) 2491 + 8461 = 10952 q) 6258 + 6412 = 12670 r) 5353 + 7887 = 13240 s) 3226 + 9558 = 12784 t) 1112 + 9994 = 11106 u) 6537 + 4538 = 11075 v) 2197 + 8617 = 10814 x) 1002 + 9913 = 10915 z) 9999 + 8888 = 18887 4) Efetue as adições a) 296 + 1634 + 98 = 2028 b) 109 + 432 + 7482 = 8023 c) 48 + 16409 + 287 = 16744 d) 31 + 1487 + 641 + 109 = 2268 e) 3412 + 1246 = 4658 5) Determine a soma do número 273 com o seu sucessor R: 547 6) Um objeto custa R$ 415.720,00. O comprador terá ainda R$ 28.912,00 de
  11. 11. despesa de frete. Quanto o comprador vai pagar? R: 444632 7) Ao receber o meu salário paguei R$ 437,12 de aluguel, R$ 68,14 de impostos. R$ 1.089,67 de gastos com alimentação e ainda me sobraram R$ 749,18. Quanto recebi de salário? R: 2344,11 8) Um menino estuda 2 horas e 45 minutos pela manhã e 4 horas e 30 minutos à tarde. Quantos minutos estuda diariamente? R: 435 min 9) Um automóvel passou pelo quilômetro 435 de uma rodovia. Ele ainda deverá percorrer 298 quilômetros até chegar ao seu destino. Quantos quilômetros da estrada vai percorrer para chegar ao destino? R: 733 10) Em 1990 o Brasil vendeu para o exterior 283.356 veículos e, em 1991, essa venda foi de 345.760 veículos. Quantos veículos o Brasil vendeu para o exterior nesses dois anos? R: 629.116 11) Uma empresa tem sede em São Paulo e feliais em outros estados. Na sede trabalham 316 pessoas e nas feliais 1098 pessoas. Quantas pessoas trabalham nessa empresa? R: 1.414 12) Em um condomínio, há 675 lotes já vendidos e 1095 lotes para vender. Quantos lotes de terreno há nesse condomínio? R: 1770 13) Uma escola funciona em dois turnos. No turno matutino há 1407 alunos e no turno vespertino há 1825 alunos. Quantos alunos estudam nessa escola? R: 3232 14) Uma empresa produziu no primeiro trismestre 6905 peças. no segundo
  12. 12. trimestre, a mesma empresa produziu 795 peças a mais que no primeiro trimestre. Nessas condições: a) Quantas peças a empresa produziu no segundo trimestre? R: 7670 b) Quantas peças a empresa produziu no semestre? R: 14575 15) Nei comprou um aparelho de som por 635 reais e as caixas de som por 128 reais. Tendo pago 12 reais pela instalação, qual a quantia que ele gastou ? R: 775 16) De acordo com o censo realizado em 1991, o estado da Paraíba tem 1.546.042 homens e 1.654.578 mulheres. Qual é a população da Paraíba segundo esse censo? R: 3.200.620 18) Calcule: a) 1705 + 395 =2100 b) 11.048 + 9.881 = 21.029 c) 4.907 + 62.103 = 67010 d) 275.103 + 94.924 = 370027 e) 545 + 2.298 + 99 = 2.942 f) 7.502 + 209.169 + 38.425 = 255.096 PROPRIEDADES DA ADIÇÃO DE NÚMEROS NATURAIS Vamos observar a seguinte situações: 1º) consideremos os números naturais 40 e 24 e vamos determinar a sua soma ? (R: 40 + 24 = 64)
  13. 13. trocando a ordem dos números, vamos determinar a sua soma 24 + 40 = 64 De acordo com as situações apresentadas, podemos escrever 40 + 24 = 24 + 40 Esse fato sempre vai ocorrer quando consideremos dois números naturais Daí concluímos Numa adição de dois números naturais, a ordem das parcelas não altera a soma. Essa propriedade é chamada PROPRIEDADE COMUTATIVA DA ADIÇÃO 2º) Consideremos os números naturais 16,20 e 35 e vamos determinar a sua soma: 16 + 20 + 35 =36 + 35 =71 16 + 20 + 35 = 16 + 55= =71 De acordo com as situações apresentadas, temos (16 + 20) + 35 = 16 + (20 + 35) Esse fato se repete quando consideramos três números naturais quaísquer Então: Numa adição de três ou mais números naturais quaisquer, podemos associar as parcelas de modo diferentes. Essa propriedade é chamada PROPRIEDADE ASSOCIATIVA DA ADIÇÃO
  14. 14. 3º) Consideremos os números naturais 15 e 0 e vamos determinar a sua soma, independentemente da ordem dos números: 15 + 0 = 15 0 + 15 = 15 Você nota que o número o não influi no resultado da adição. Então Numa adição de um número natural com zero a soma é sempre igual a esse número natural. Nessas condições, o numero zero é chamado ELEMENTO NEUTRO DA ADIÇÃO. SUBTRAÇÃO Na matemática, a operação da subtração é empregada quando devemos tirar uma quantidade de outrea quantidade. veja o exemplo O estádio do Pacaembu, na cidade de São Paulo, tem capacidade para 40.000 pessoas. È também na cidade de São Paulo que se encontra o estádio do Morumbi que tem capacidade para 138.000 pessoas. Para se ter uma idéia do tamanho do Morumbi, se colocarmos nele 40.000 ainda sobrarão muitos lugares. Quanto sobrarão? Dos 138.000 lugares devemos tirar os 40.000 assim 138.000 - 40.000 = 98.000 sobrarão 98.000 lugares. Subtrair significa tirar,diminuir.
  15. 15. Na subtração anterior, o número 138.000 é chamado minuendo e 40.000 é o subtraendo, o resultado, 98.000, é chamado diferença ou resto. 1) calcule as subtrações a) 47 - 31=16 b) 58 - 45=13 c) 65 - 57=8 d) 89 - 65=24 e) 97 - 21=76 f) 78 - 34=44 g) 56 - 31=25 h) 87 - 78=9 i) 98 - 78=20 j) 48 - 29=19 l) 38 - 29=9 m) 68 - 59=9 n) 56 - 37=19 o) 23 - 19=4 p) 99 - 81=18 q) 21 - 19=2 r) 23 - 22=1 s) 18 - 14=4 t) 74 - 49=25 u) 74 - 37=37 v) 74 - 52=22 x) 74 - 63=11 z) 96 - 13=83 2) Calcule as Subtrações a) 72224-6458= (R: 65766) b) 701-638= (R: 63) c) 131003-88043= (R: 42960) d) 1138-909= (R: 229)
  16. 16. e) 80469-6458 = (R: 74011) f) 866 - 638 = (R: 228) g) 131012-88142= (R: 42870) h)2238 - 909 = (R: 1329) i) 802-638 = (R: 164) 3)Dom Pedro II, imperador do Brasil, faleceu em 1891 com 66 anos de idade. Em que ano ele nasceu? R: 1825 4) Um avião Boeing 747 pode transportar 370 passageiros e um avião DC-10 pode transportar 285 passageiros. Quantos passageiros o Boeing 747 pode transportar a mais que o DC10? R: 85 passageiros 5) À vista um automóvel custa 26.454 reais. À prazo o mesmo automóvel custa 38.392 reais. A diferença entre o preço cobrado é chamado de juros. Qual é a quantia que pagará de juros? R: 11.938 6) Um avião pode transportar 295 passageiros. Em determinado vôo, o avião está transportando 209 passageiros. Quantas poltronas desse avião não estão ocupadas? R: 86 7) Se Antonio tem 518 selos e Pedro tem 702 selos, Quantos selos Pedsro tem a mais que Antonio? R: 184 8)Ézio tem 95 reais e quer comprar uma máquina fotográfica que dusta 130 reais. Quantos reais faltam para ele comprar a máquina? R: 35 9)De acordo com o Censo de 1980, a população de uma cidade era de 79.412 habitantes. Feito o Censo em 1991, verificou-se que a população dessa cidade passou a ser de 94.070 habitantes. Qual foi o aumento da população dessa cidade nesse período de tempo? R: 14.658
  17. 17. 10)Umaindustria, no final de 1991, tinha 10.635 empregados. No inicio de 1992 em virtude da crise econômica dispensou 1.880 funcionários. Com quantos funcionários a indúria ficou? R: 8.755 11) Qual a diferença entre 10.000 e 5.995? R: 4005 12) Quantas unidades faltam a 499 para atingir 1inidade de milhar? R: 501 13) Efetue: a) 2620 - 945 = 1.675 b) 7000 - 1096 = 3904 c) 11011 - 7997 = 3014 d) 140926 - 78016 = 62910 14) Considere os números 645 e 335. Nessas condições: a) Determine a diferença entre eles R: 310 b) Adicione 5 unidades ao primeiro número e 5 unidades ao segundo número e calcule a difença entre os novos números que você obteve. R: 650,340, 310 MULTIPLICAÇÃO A multiplicação é uma adição de parcelas iguais.
  18. 18. veja 3+3+3+3 = 12 Podemos representar a mesma igualdade por 4 x 3 = 12 ou 4 . 3 = 12 Essa operação chama-se multiplicação e é indicada pelo sinal .ou x Na multiplicação 4 x 3 = 12 dizemos que; 4 e 3 são os fatores 12 é o produto 1º exemplo Um edifício de apartamentos tem 6 andares. Em cada andar a 4 apartamentos. Quantos apartamentos tem o edificio todo? Resolução Para resolver esse problema, podemos fazer 4 + 4 + 4 + 4 + 4 + 4 = 24 Essa mesma igualdade pode ser representada por: 6 x 4 = 24 Logo podemos dizer que o edificio tem 24 apartamentos 2° Exemplo A fase final do torneio de voleibol da liga nacional é disputado por 4 equipes.
  19. 19. Cada equipe pode inscrever 12 jogadores. Quantos jogadores serão inscritos para disputar a fase final desse torneio? resolução Para resolver esse problema podemos fazer 12 + 12 + 12 + 12 = 48 Essa mesma igualdade pode ser representada por: 4 x 12 = 48 EXERCÍCIOS 1) Calcule as multiplicações a) 5 x 5 = 25 b) 5 x 15 = 75 c) 5 x 115 = 575 d) 5 x 25 = 125 e) 5 X 125 = 625 f) 5 x 55 = 275 g) 5 x 75 = 375 h) 5 x 375 = 1875 g) 5 x 1257 = 6285 h) 6 x 5 = 30 i) 6 x 15 = 90 j) 6 x 115 = 690 l) 6 x 25 = 150 m) 6 x 125 = 750 n) 6 x 55 = 330 o) 6 x 75 = 450 p) 6 x 375 = 2250 q) 6 x 1257 = 7542 r) 7 x 5 = 35 s) 7 x 15 = 105 t) 7 x 115 = 805 u) 7 x 25 = 175
  20. 20. x) 7 x 125 = 875 z) 7 x 55 = 385 2) Calcule as multiplicações a) 7 x 75 = 525 b) 7 x 375 = 2625 c) 7 x 1257 = 8799 d) 8 x 5 = 40 e) 8 x 15 = 120 f) 8 x 115 = 920 g) 8 x 25 = 200 h) 8 x 125 = 1000 i) 8 x 55 = 440 j) 8 x 75 = 600 l) 8 x 375 = 3000 m) 8 x 1257 = 10056 n) 9 x 5 = 45 o) 9 x 15 = 135 p) 9 x 115 = 1035 q) 9 x 25 = 225 r) 9 x 125 = 1125 s) 9 x 55 = 495 t) 9 x 75 = 675 u 9 x 375 = 3375 v) 9 x 1257 = 11313 x) 9 x 999 = 8991 z) 9 x 123 = 1107 3) Efetue as Multiplicações a) 153 x 7 = 1071 b) 1007 x 9 = 9063 c) 509 x 62 = 31558 d) 758 x 46 = 34868 e) 445 x 93 = 41385
  21. 21. f) 289 x 140 = 40460 g) 1782 x 240 = 427680 h) 2008 x 405 = 813240 i) 2453 x 1002 = 2457906 4) Efetue as multiplicações a) 28 x 0 = 0 b) 49 x 10 = 490 c) 274 x 10 = 2740 d) 158 x 100 = 15800 e) 164 x 1000 = 164000 f) 89 x 10000 = 890000 5) Considerando 1 mês = 30 dias e 1 ano = 365 dias, uma semana = 7 dias, determine: a) quantos dias há em 15 semanas completas. (R: 105 dias) b) Quantos dias há em 72 meses completos. (R: 2160 dias) c) Quantos dias há em 8 anos completos. (R: 2920 dias) 6) Para uma demonstração de ginástica, um professor de Educação Fisica prepara 64 grupos de alunos. Cada grupo é formado por 25 alunos. Quantos alunos devem participar dessa demostração? R: 1600 7) Com 12 prestações mensais iguais de 325 reais posso comprar uma moto. Quanto vou pagar por essa moto? R: 3900 reais 8) Qual é o número natural que você vai obter quando multiplicar 736 por 208? R: 153.088 9) Para cobrir o piso de um barracão foram colocados 352 placas de 35 metros quadrados cada uma. Quantos metros quadrados tem o piso desse barracão? R: 12320 metros quadrados 10) Um carro bem regulado percorre 12 quilômetros com um litro de gasolina.
  22. 22. Se numa viagem foram consumidos 46 litro, qual a distância em quilômetos que o carro percorreu? R: 552 quilômetros 11) Em um teatro há 18 fileiras de poltronas. Em cada fileira foram colocadas 26 poltronas. Quantas poltronas há nesse teatro? R: 468 poltronas . 12) Em uma multiplicação, os fatores são 134 e 296. Qual o produto?R: 39.664 13) Numa mercearia há 7 caixas de bombons e cada caixa contém 3 duzias de bombons. Quantos bombons há na mercearia? R: 252 14) Uma pessoa deu R$ 4.700,00 de entrada na compra de um objeto e pagou mais 6 prestações de R$ 2.300,00. Quanto custou o objeto?R: 18.500 16) Um motorista percorreu 749 km em 6 dias. Nos cinco primeiros dias andou 132 km por dia. Quanto percorreu no 6º dia ? R: 89 17) Calcule: a) 19x6=114 b) 46x12=552 c) 321x11=3531 d) 329x25=8225 e) 1246x24=29904 f) 67632x101=6830832 18) Calcule as contas: a) 18x5x2=180 b) 5x2x24=240 c) 2x5x44=440 d) 37x2x5=370 e) 12x4x5=240 f) 4x5x15=300 19)
  23. 23. PROPRIEDADES ESTRUTURAIS DA MULTIPLICAÇÃO 1) FECHAMENTO O priduto de dois números naturais é um número natural 5 x 3 = 15 2) COMUTATIVA A ordem dos fatores não altera o produto. 2 x 7 = 14 7 x 2 = 14 assim: 2 x 7 = 7 x 2 3) ELEMENTO NEUTRO O número 1´na multiplicação é um número neutro 5 x 1 = 5 1 x 5 = 5 4) ASSOCIATIVA A multiplicação de três números naturais pode ser feita associando-se os os dois primeiros ou os dois ultimos fatores (3 x 4 ) x 5 = 12 x 5 = 60 3 x ( 4 x 5 ) = 3 x 20 = 60 5) DISTRIBUTIVA DA MULTIPLICAÇÃO EM RELAÇÃO A ADIÇÃO Na multiplicação de uma soma por um número natural, multiplica-se cada um dos termos por esse número . veja: 1) 2 x (5+3) = 2 x 8 = 16
  24. 24. 2) 2 x 5 + 2 x 3 = 10 + 6 = 16 DIVISÃO EXATA Consideremos dois números naturais, dados numa certa ordem, 10 é o primeiro deles e 2 é o segundo . Por meio deles determina-se um terceiro número natural que, multiplicado pelo segundo dá como resultado o primeiro. Essa operação chama-se divisão e é indicada pelo sinal : Assim, 10:2 = 5 porque 5x2 = 10 Na divisão 10:2=5 dizemos que 10 é o dividendo 2 é o divisor 5 é o resultado ou quociente EXEMPLO Um cólegio levou 72 alunos numa excursão ao jardim zoológico e para isso repartiu igualmente os alunos em 4 ônibus. Quantos alunos o colégio colocou em cada ônibus? Para resolver esse problema, devemos fazer uma divisão 72 : 4 = 18 , sendo assim cada ônibus tinha 18 alunos.
  25. 25. EXERCÍCIOS 1) Calcule as divisões a)20:5=4 b)16:8=2 c)12:1=12 d)48:8=6 e)37:37=1 f)56:14=4 2)Observe a igualdade 56:7=8 e responda: a)Qual é o nome da operação? R: divisão b)Como se chama o número 56? R: dividendo c)Como se chama o número 7? R: divisor d)como se chama o número 8? R: Quociente ou resultado 3)Efetue as divisões a)492:4=123 b)891:9=99 c)4416:6=736 d)2397:17=141 e)1584:99=16 f)1442:14=103 g)21000:15=1400 h)7650:102=75 i)11376:237=48 4) Responda
  26. 26. a)Qual é a metade de 784? R: 392 b)Qual é a terça parte de 144? R: 48 c)Qual é a quinta parte de 1800? R: 360 d)Qual é a décima parte de 3500? R: 350 5)Em um teatro há 126 poltronas distribuídas igualmente em 9 fileiras. Quantas poltronas foram colocadas em cada fileira? R: 14 poltronas 6)Quantos garrafões de 5 litros são necessários para engarrafar 315 litros de vinho? R: 63 garrafões 7)Uma pessoa ganha R$ 23,00 por hora de trabalho. Quanto tempo deverá trabalhar para receber R$ 391,00? R: 17 horas 8)Uma torneira despeja 75 litros de água por hora. Quanto tempo levará para encher uma caixa de 3150 litros ? R: 42 horas 9) Numa pista de atlestismo uma volta tem 400 metros. Numa corrida de 10.000 metros, quantas voltas o atleta tem de dar nessa pista? R: 25 voltas 10) Um livro tem 216 páginas. Quero terminar a leitura desse livro em 18 dias, lendo o mesmo número de páginas todos os dias. Quantas páginas preciso ler por dia? R: 12 paginas 11)Quantos grupos de 18 alunos podem ser formados com 666 alunos? R: 37 grupos
  27. 27. 12)Uma tonelada de cana de açucar produz aproximadamente 85 litros de álcool. Quantas toneladas de cana são necessárias para produzir 6970 litros de álcool? R: 82 toneladas DIVISÃO NÃO EXATA Nem sempre é possivel realizar a divisão exata em N considerando este exemplo 7 : 2 = 3 sobra 1 que chamamos de resto Numa divisão, o resto é sempre menor que o divisor Exemplo Uma industria produziu 183 peças e quer colocá-las em 12 caixas, de modo que todas as caixas tenham o mesmo número de peças. Quantas peças serão colocadas em cada caixa? resolução Para resolver esse problema devemos fazer 183 : 12, tendo como resultado 15 e resto 3. Como o resto é 3, dizemos que esta é uma divisão com resto ou uma divisão não exata. Logo na caixa serão colocadas 15 peças, sobrando ainda 3 peças. EXERCÍCIOS 1) Determine o quociente e o resto das seguintes divisões:
  28. 28. a 79:8=9 resto=7 b)49:8=6 resto=1 c)57:8=7 resto=1 d)181:15=12 resto=1 e)3214:10=321 resto=4 f)825:18=45 resto=15 g)4937:32=154 resto=9 h)7902:12=658 resto=6 i)1545:114=13 resto=63

×