SlideShare uma empresa Scribd logo
1 de 21
Baixar para ler offline
Universidade Estadual Vale do Acaraú – U.V.A.
           C.C.E.T. – Centro de Ciências Exatas e Tecnologia
                Curso de Engenharia Civil e Ambiental




Aplicação do Cálculo Diferencial e Integral
 no Estudo de Linhas Elásticas de Vigas
               Isostáticas


                          Sobral - Ce – 2012
2




“Ainda que o pecador faça o mal cem vezes, e os dias se lhe prolonguem,
contudo eu sei com certeza que bem sucede aos que temem a Deus, porque temem diante dele;
 ao ímpio, porém, não irá bem, e ele não prolongará os seus dias, que são como a sombra;
porque ele não teme diante de Deus.” (Eclesiates, 8)
3




SUMÁRIO

CONTEÚDO                                                                 PÁGINA

INTRODUÇÃO                                                                 04

UNIDADES ADOTADAS                                                          05

LEI DE HOOKE E DIAGRAMA TENSÃO-DEFORMAÇÃO                                  05

FLEXÃO ELÁSTICA NAS VIGAS                                                  07

MOMENTO DE INÉRCIA                                                         08

PROCESSO DE INTEGRAÇÃO DIRETA DA EQUAÇÃO DIFERENCIAL DA LINHA ELÁSTICA     08

CÁLCULO DA LINHA ELÁSTICA PARA ALGUNS TIPOS DE VIGAS ISOSTÁTICAS           09

CONCLUSÃO                                                                  18

TABELA - LINHA ELÁSTICA DE VIGAS PRISMÁTICAS                               19

BIBLIOGRAFIA                                                               20
4




INTRODUÇÃO


      Concluído o primeiro Trabalho, que relacionou a aplicação da Matemática à Engenharia Civil, foi dado inicio a este segundo Estudo que,
identicamente, relaciona as duas Ciências.
    No primeiro Trabalho, foi abordada a relação existente entre o Cálculo Diferencial e Integral e o estudo dos esforços Momento Fletor e Força
Cortante que atuam em uma viga isostática.
    O assunto atual, aborda o cálculo da Linha Elástica de uma viga isostática aplicando integração direta.
        Sabe-se que o Cálculo Diferencial e Integral permite encontrar a Equação da Linha Elástica de uma viga em determinado trecho,
possibilitando, assim, que sejam calculadas as deformações lineares verticais – flechas - bem como a deflexão angular em qualquer ponto da viga.
      Em diversas situações encontradas na Engenharia Civil, a dimensão da flecha de uma viga deve ser pré-determinada; este fato, por si só, já
mostraria a importância do assunto aqui abordado.
       Este Estudo vem com o mesmo objetivo do anterior, qual seja, propiciar aos estudantes do Curso de Engenharia Civil da Universidade
Estadual Vale do Acaraú e do Curso de Tecnologia da Construção de Edifícios da mesma Instituição, mais uma opção de material didático.



omnia mecum porto


Sobral, Ce, agosto de 2012.


Daniel Caetano de Figueiredo (*)




(*) O Autor é Engenheiro Civil formado pela Universidade de Fortaleza em Dezembro de 1982 e Professor Concursado da Universidade Estadual Vale do Acaraú.
5




UNIDADES ADOTADAS COMUMENTE NO DIA-A-DIA DA ENGENHARIA CIVIL

      Sabe-se o quanto é difícil para aqueles que hipervalorizam a teoria, aceitar que o carregamento distribuído de uma viga venha a ser, por
                                                          N                                       kg                            kgf      N
exemplo, expresso na unidade kg/m ao invés de kgf/m; ou      ;o u que uma tensão seja expressa em 2 ao invés de ser expressa em 2 ou 2 .
                                                          m                                       m                              m      m
 Abaixo alguns comentários são tecidos a respeito.
                                                                                                                 m
    Sabe-se que a força que atua em um corpo de massa 1,0 quilograma e lhe imprime uma aceleração igual a 1,0       na mesma direção e sentido
                                                                                                                 s2
desta força, equivale a 1,0 Newton.
                                                                                                                                m
     Considerando que um corpo de massa 1,0 kg tem peso igual a 9,8 N em um local onde a aceleração da gravidade vale 9,8           (valor médio
                                                                                                                                s2
aceito para toda a superfície da Terra) e que 1,0 kgf equivale a 9,8N, pode-se, para efeitos didáticos e por praticidade, substituir a unidade
kgf(unidade de força) por kg(unidade de massa); isto sem prejuízo algum, já que na superfície da Terra um corpo de massa 1,0 kg pesa 1,0 kgf.
     Evidentemente que após isto feito, deve-se fazer as adaptações necessárias das outras unidades.
     Com relação à unidade de comprimento, foram adotadas o metro e o milímetro. O metro é comumente usado em Engenharia Civil para medir
o vão de vigas, a altura de pilares, o comprimento de fachadas, apenas para ficarmos nestes exemplos.
   As flechas, por outro lado, por possuírem comprimento muito reduzido, podem ser expressas em milímetro ou outro submúltiplo do metro.
     Será vista, a seguir, a dedução da Equação da Linha elástica para cinco tipos de vigas comumente encontradas. Antes, porém, será abordada a
Lei de Hooke.


LEI DE HOOKE E DIAGRAMA TENSÃO-DEFORMAÇÃO:


     Existem basicamente dois tipos de deformação em um corpo quando submetido a tensões: a deformação elástica e a deformação plástica. Qual
seria a diferença primordial entre as duas?
      Quando submetida a uma tensão, uma viga, assim como qualquer corpo, tende a se deformar. Até atingir o valor de determinada tensão,
chamada de tensão de escoamento, uma vez cessada a força que atuava sobre o corpo, este volta à sua forma inicial, caracterizando-se com isto o
chamado Regime Elástico. Ultrapassada porém o valor da tensão de escoamento, o corpo continua, muitas vezes, a se deformar mesmo sem que a
força ainda atue sobre ele: temos o Regime Plástico.
6



     Assim, pode ser dito que Plasticidade é a propriedade que possui um corpo de mudar sua forma de modo irreversível, ao ser submetido a uma
tensão . Em outras palavras, plasticidade é quando o material se deforma e assim fica(deformado), não voltando mais ao seu estado normal. As
argilas(o barro, por ex., comumente usado nas construções) são bons exemplos de materiais plásticos.
    Pode-se, ainda, dizer que a Deformação Plástica existe quando a tensão que atua sobre o corpo não é mais proporcional à sua deformação(do
corpo), ocorrendo então uma deformação não recuperável e permanente; quando isto ocorre a Lei de Hooke deixa de ser obedecida.
      O Diagrama Tensão vs Deformação varia basicamente de material para material. De uma maneira geral, contudo, citado diagrama possui
propriedades comuns.
     Analisando o comportamento de alguns materiais usados na Construção Civil, vê-se que o aço e o alumínio, por exemplo, apresentam grandes
deformações antes da ruptura. São materiais dúcteis. Por outro lado materiais como o concreto e o vidro, rompem sem que se apresentem grandes
deformações. São chamados de materiais frágeis.
      A Lei de Hooke nos diz que as tensões são proporcionais às deformações, ou seja, σ = Eε , onde E é o coeficiente de Elasticidade do
material, σ é a tensão e ε é a deformação. Conforme já visto, esta Lei é obedecida até determinada tensão, que varia de material para material.
      Pode-se afirmar que nenhum corpo real segue, com rigor, a Lei de Hooke. Para determinados valores abaixo do limite de proporcionalidade,
porém, os corpos se comportam como o sólido hipotético de Hooke.
    Neste Estudo os materiais(vigas, apoios, engastes) seguem a Lei de Hooke.
    Abaixo encontra-se o Diagrama Tensão-Deformação para materiais dúcteis e frágeis:




      Analisando as duas curvas nota-se que ambas obedecem à Lei de Hooke ( σ = Eε ) no trecho 0-A; o ponto A corresponde à Tensão de
Proporcionalidade; no trecho A-R a Lei de Hooke não é mais obedecida e finalmente ambos os materiais se rompem no ponto R(Tensão de
Ruptura).
7



     Pelo gráfico acima, vê-se que os materiais dúcteis apresentam grandes deformações antes de se romperem(na Construção Civil existem o aço,
o alumínio e o cobre, entre diversos outros). Enquanto isto ocorre com os materiais dúcteis, os materiais frágeis rompem-se sem que se apresentem
grandes deformações. (o caso do vidro, do ferro fundido, do mármore, do granito, das cerâmicas, e de diversos outros, também usados na
Construção Civil).
FLEXÃO ELÁSTICA NAS VIGAS


        Seja a viga biapoiada abaixo inicialmente com o eixo reto(figura superior), que é submetida a um carregamento perpendicular a este
eixo(figura inferior). Tal carregamento produz nas diferentes seções da viga Momentos Fletores que deformam a mesma. Chama-se de flecha, num
ponto qualquer do eixo da viga, à componente do deslocamento linear deste ponto que é perpendicular ao eixo originalmente reto da viga(f1, f2 e
f3, por ex.). A outra componente deste deslocamento, paralela ao eixo inicial da viga, é, geralmente, desprezível em relação a flecha e por isto não
fará parte deste Estudo. A curva na qual se transforma o eixo da viga, inicialmente reto, recebe o nome de Linha Elástica(curva que liga o ponto O
ao ponto M). Na figura dada nota-se a viga antes de deformar-se e após sofrer deformação devido ao carregamento. Observa-se que o
deslocamento y é a flecha da viga, correspondente à seção que dista x do apoio à esquerda. A função y=f(x) é a equação da linha elástica da viga
correspondente ao carregamento indicado. Vale salientar que será analisada neste Trabalho apenas a linha elástica produzida por Momento Fletor
M(x). Outros fatores como o esforço Cortante, por ex., não serão levados em consideração. Outra condição é que o Momento de Inércia (J) da
seção transversal da viga, seja constante, haja vista que existem vigas com J variável; e que as vigas devem obedecer à Lei de Hooke(neste caso a
linha neutra passa pelo centróide da seção transversal da viga).
     Existem vários processos para se determinar a linha elástica de uma viga, assim como a deflexão angular e a flecha em qualquer ponto de seu
eixo. Neste Trabalho será usado o Método da Integração Direta. Convém citar apenas que, entre outros processos existentes, destacam-se o
Teorema de Castigliano(Carlo Alberto Castigliano(1847/1884), engenheiro e matemático italiano), o Método da Integração Numérica e outros, os
quais não serão abordados neste Estudo.
8




MOMENTO DE INÉRCIA


    Por ser uma grandeza física muito usada em Engenharia Civil, é necessário que seja definido o que vem a ser Momento de Inércia de uma área.
Normalmente o Momento de Inércia é representado nos livros didáticos pela letras latinas maiúsculas I ou J.
    Por definição, o Momento de Inércia de um elemento de área em relação a um eixo de seu plano é dado pelo produto do elemento de área pelo
quadrado da distância deste elemento até o eixo considerado.
    Em relação ao eixo x, por exemplo, para um elemento diferencial de área dA tem-se que:
       dJ x = y 2 dA
   É evidente que, em relação ao eixo y, se encontrará para o mesmo elemento:
       dJ y = x 2 dA
   Para obter-se o Momento de Inércia de uma área finita deve-se aplicar integração, já que citado Momento é dado pela soma de todos os
momentos dos elementos dA que constituem a superfície, ou seja:

J x = ∫ dJ x = ∫ y 2 dA .
         S       S

       Consequentemente tem-se que: J y =   ∫ dJ
                                             S
                                                   y   = ∫ x 2 dA .
                                                          S
    A unidade do Momento de Inércia é a unidade de comprimento elevada à quarta potência. Convém ressaltar, mais uma vez, que neste Estudo o
valor de J é considerado constante para todas as vigas estudadas.


PROCESSO DE INTEGRAÇÃO DA EQUAÇÃO DIFERENCIAL DA LINHA ELÁSTICA

       De acordo com o Cálculo Diferencial e Integral, a equação da linha elástica de uma viga flexionada (fletida), em sua forma diferencial, é dada
por:

d 2 y − M ( x)
     =
dx 2    EJ
9




    Onde M(x) corresponde à função que dá o valor do Momento Fletor no trecho onde se deseja escrever a equação da linha elástica. A constante
E corresponde ao módulo de elasticidade(Módulo de Young) do material do qual é feita a viga, e J é o Momento de Inércia da seção transversal da
mesma(viga) em relação ao eixo horizontal que passa pela linha neutra de referida seção. O sinal negativo deve ser colocado na equação com a
finalidade de adequar a equação original, que não possui citado sinal, com o referencial de sinais, que adota flecha positiva para baixo e rotações
positivas no sentido horário. Em outras palavras, pode ser dito que o eixo y é orientado para baixo e o eixo x da esquerda para a direita.
    O Módulo de Young é muito usado e também é de fundamental importância na Engenharia Civil, sendo um parâmetro que se relaciona com a
rigidez de um material sólido, e é uma propriedade inerente a cada material.
    O Momento de Inércia, conforme já afirmado, é bastante usado em Engenharia Civil, e sabe-se que os perfis das vigas são escolhidos também
em função dele, já que, quanto maior for o momento de inércia da seção de uma viga, mais difícil será fazê-la girar, melhorando com isto a
estabilidade das construções.
     A equação da linha elástica do referido trecho será dada pela função y=f(x), que é a solução da equação diferencial apresentada anteriormente.
Para isto deve-se integrar duas vezes citada equação e aplicar as condições de contorno para a determinação das constantes de integração. A
aplicação correta das condições de contorno é primordial para a obtenção da Equação da Linha Elástica. Ao ser integrada a primeira vez a
Equação Diferencial da Linha Elástica, é obtida a Equação da Deflexão Angular. Integrando-se esta, obtém-se a Equação da Deformação Linear.


CÁLCULO DA LINHA ELÁSTICA PARA ALGUNS TIPOS DE VIGAS ISOSTÁTICAS.

    Serão deduzidas a seguir as equações da Linha Elástica para algumas vigas comumente estudadas.



01-VIGA BIAPOIADA COM CARGA UNIFORMEMENTE DISTRIBUIDA

                                                                                                 kg
    Considere-se a viga abaixo com vão igual a l metros e carga uniformemente distribuída de q      , apoiada nas extremidades A e B.
                                                                                                 m
10




                                                                                                ql
   Calculadas as reações de apoio, são encontrados os valores de R A e RB , os quais são iguais a  .
                                                                                                 2
    Seja uma seção perpendicular ao eixo da viga e distante x metros do apoio A. Nesta seção, assim como nas demais, o valor do momento fletor
                             ql  qx 2
é dado pela função M ( x) = x −       .
                             2    2
     A Equação Diferencial da Linha Elástica será dada portanto por:
     d 2 y − 1 ql       qx 2
          =    .( x −        ).
     dx 2 EJ 2           2
    Integrando uma primeira vez encontra-se:
     dy − 1      qx 3 qlx 2 ql 3                 ql 3
       =    .( −     +     −     ) onde o termo       é o valor da constante C1 que foi encontrado aplicando as condições de contorno, ou seja,
     dx EJ        6    4     24                 24 EJ
para x =l/2 tem-se que dy/dx = 0 (A tangente à curva é horizontal no meio do vão da viga, logo dy/dx = 0 neste ponto).
     Integrando uma segunda vez encontra-se a equação da Linha Elástica para a viga:
      −1       qx 4 qlx 3 ql 3 x           qx
  y=      .( −     +     −       ) ou y =       .(l 3 − 2lx 2 + x 3 ) . Nesta integração a constante C2 é igual a zero e foi determinada aplicando-se,
      EJ       24    12    24             24 EJ
mais uma vez, as condições de contorno. Desta vez foi feito y = 0 para x = 0(A deformação vertical da viga é nula nos apoios) .
                                                                          5ql 4
       A flecha no meio da viga(deformação máxima) tem valor f =                  e é obtida ao substituir-se na Equação da Linha Elástica x pelo valor
                                                                         384 EJ
l/2. Aqui cabe uma observação: no caso da viga estudada o maior valor da deformação na direção vertical ocorreu onde o valor do Momento
Fletor é máximo. Em outras vigas a flecha máxima está localizada no ponto onde o momento é mínimo.
     Em seguida vem o caso de uma viga biapoiada sujeita a uma carga concentrada.
11




02-VIGA BIAPOIADA COM CARGA CONCENTRADA


   Seja agora a viga abaixo , apoiada em A e B, com l metros de comprimento e possuindo um carregamento de P kg aplicado no ponto situado a
uma distancia igual a a metros do apoio A e distante b metros do apoio B, conforme a figura.




                                                               Pa         Pb
    Aplicando as Equações da Estática tem-se as reações R B =      e RA =    .
                                                                l          l
    No caso, existem dois trechos a serem estudados. O primeiro para x compreendido entre 0 e a; o segundo para x compreendido entre a e l.
      Seja uma seção S1 perpendicular ao eixo da viga, distante x metros do apoio A e compreendida entre o apoio A e o ponto de aplicação da
força P.
     Nesta seção, assim como nas demais do trecho em questão, o valor do momento fletor é dado pela função M ( x ) = R A x . Convém reforçar que
a função acima vale apenas para o trecho compreendido entre o apoio A e o ponto de aplicação da força P.
                Pb
Como M ( x) =      x , a Equação Diferencial da Linha Elástica no trecho 0 ≤ x ≤ a é:
                 l
d 2 y1  − M ( x) − Pb
    2
         =       =      x
  dx       EJ       EJl
Integrando uma vez, acha-se a equação da rotação angular(ou deflexão angular):
 dy1 − Pbx 2
     =         + C1
 dx     2 EJl
Integrando novamente encontra-se a Equação da Linha Elástica para o trecho 0 ≤ x ≤ a :
12




     − Pbx 3
y1 =         + C1 x + C 2 . A flecha é nula no apoio, logo, ao se fazer x = 0 na equação obtém-se C 2 = 0
      6 EJl
Abaixo seguem as duas primeiras equações(intevalo 0 ≤ x ≤ a ):
dy1 − Pbx 2                    − Pbx 3
    =          + C1 e y1 =             + C1 x
 dx     2 EJl                   6 EJl
    Deve-se agora analisar o trecho compreendido entre a carga P e o apoio B( a ≤ x ≤ l ).
                                                                                                    Pb
Neste trecho, em qualquer seção distante x metros de A encontra-se M ( x ) = R A x − P ( x − a) =      x − Px + Pa
                                                                                                     l
Daí vem que:
d 2 y 2 − 1 Pb                 1             Pb
    2
       =   (   x − Px + Pa) =    ( Px − Pa −    x)
 dx      EJ l                 EJ              l
Integrando uma primeira vez:
dy 2   1 Px 2         Pb 2
     =   (    − Pax −    x ) + C3
dx EJ 2               2l
Mais uma integração e a Equação da Linha Elástica para o trecho considerado é obtida:
       1 Px 3 Pax 2 Pb 3
 y2 =     (      −        −     x ) + C3 x + C 4
      EJ 6           2       6l
Agora vem uma parte muito importante, que trata das condições de contorno para a viga. É sabido que se forem aplicadas de forma errada as
condições de contorno, o resultado obtido não estará correto.
Tem-se pois:
01- para x = a, os valores de y obtidos nas duas equações deverão ser iguais;
                                                                                            dy1 dy 2
02- o mesmo deve ocorrer com os valores das deflexões angulares obtidos na igualdade           =     para x = a ;
                                                                                            dx   dx
03- substituindo x = l na equação y2, deve-se ter y = 0(no apoio B);
Aplicando-se as condições acima:
                          dy1 dy 2
Faz-se x = a na equação      =     , tem-se:
                          dx   dx
− Pba 2          1 Pa 2            Pba 2
        + C1 =      (     − Pa 2 −       ) + C3
 2 EJl          EJ 2                2l
Depois de feitos os cálculos é encontrada a relação:
13




            Pa 2
C3 − C1 =
            2 EJ
Substitui-se x = a, desta vez na equação     y1 = y2 :
− Pa 3b          1 Pa 3 Pa 3 Pa 3b
        + C1a =    (   −    −      ) + C3 x + C 4
 6 EJl          EJ 6     2    6l

Feitas as operações é encontrado o valor de C4:
      − Pa 3
C4 =
       6 EJ
Substitui-se x = l na equação y 2 pois sabe-se que no ponto considerado a flecha é nula.
      1 Pl 3 Pal 2 Pbl 3
0=      (   −     −      ) + C 3l + C 4
     EJ 6     2     6l
                                                        Pa 3 + 2 Pal 2
Como já foi calculado o valor de C 4 , daí vem que C3 =                ;
                                                            6 EJl
Achado o valor de C3 , encontra-se finalmente o valor da constante C1
          Pa 2 Pa 3 + 2 Pal 2 − 3Pa 2l
C1 = C3 −      =
          2 EJ          6 EJl

Tem-se assim para a viga dada no primeiro intervalo( 0 ≤ x ≤ a ):
dy1 − Pbx 2 Pa 3 + 2 Pal 2 − 3Pa 2 l
    =           +
 dx     2 EJl               6 EJl
      − Pbx  3
                 Pa + 2 Pal 2 − 3Pa 2 l
                    3
y1 =           +                        x
       6 EJl               6 EJl
E no intervalo a ≤ x ≤ l :
dy 2    1 Px 2         Pb 2    Pa 3 + 2 Pal 2
     =    (    − Pax −    x )+
dx     EJ 2            2l          6 EJl
      1 Px 3 Pax 2 Pb 3     Pa 3 + 2 Pal 2    Pa 3
y2 =    (   −     −    x )+                x−
     EJ 6     2     6l          6 EJl         6 EJl
14



Substituindo x = a em qualquer das equações da Linha Elástica, obtém-se o valor da flecha em função de a e b:
     Pa 2b 2
 y=
      3EJl
A flecha é uma função de duas variáveis(a e b). O Cálculo (Funções de Duas Variáveis) permite afirmar que a flecha máxima ocorre quando
        l
a = b = (A carga P está localizada no meio da viga).
        2
Se for desejada a deflexão angular no apoio A basta substituir x = 0 na equação abaixo:
dy1 − Pbx 2 Pa 3 + 2 Pal 2 − 3Pa 2 l
   =       +
dx   2 EJl           6 EJl
Feitas as contas, encontra-se:
       dy Pab(2b + a )
ϕA =      =
       dx    6 EJl
    Será analisada a seguir o caso de uma viga isostática simplesmente engastada e sujeita a uma carga concentrada em sua extremidade livre.


03-VIGA COM UM ENGASTE E COM CARGA CONCENTRADA EM SUA EXTREMIDADE

      Seja agora a viga abaixo , simplesmente engastada em A e com a extremidade B livre, com l metros de comprimento e possuindo um
carregamento de P kg aplicado no ponto B, situado à uma distância igual a l metros do apoio A, de acordo com a figura seguinte.




      Após calculadas as reações em A, estas serão constituídas por um momento no sentido anti-horário e uma força vertical, respectivamente
iguais a M A = Pl kg.m e R A = P kg.
15



      Considere-se uma seção perpendicular ao eixo da viga e distante x metros do apoio A. Nesta seção, assim como nas demais, o valor do
momento fletor é dado pela função M ( x) = − Pl + Px .
     Assim, a EquaçãoDiferencial da Linha Elástica será dada por:
    d 2 y −1
         =    .( − Pl + Px ) .
    dx 2 EJ
   Integrando uma primeira vez encontra-se:
    dy − 1           Px 2
      =    .(− Plx +      ) ; onde o valor da constante C1 é nulo, pois aplicando as condições de contorno tem-se que dy/dx = 0 para x = 0. (A
    dx EJ             2
tangente à curva é horizontal no apoio A da viga, logo dy/dx = 0 neste ponto).
    Integrando uma segunda vez encontra-se a equação da Linha Elástica para a viga em questão:
     −1      Plx 2 Px 3            Px 2
 y=     .( −      +      ) ou y =       .(3l − x) . Nesta segunda integração a constante C2 também é igual a zero e foi determinada aplicando-se,
     EJ       2       6           6 EJ
mais uma vez, as condições de contorno, qual seja, fez-se y = 0 para x = 0(A deformação vertical da viga é nula no apoio) .
                                                                    Pl 3
      A flecha no final da viga(deformação máxima) tem valor f =         e foi obtida ao substituir-se na Equação da Linha Elástica x pelo valor l.
                                                                    3EJ
Aqui cabe uma observação: neste caso o maior valor da deformação da viga na direção vertical ocorre no ponto onde o valor do Momento Fletor é
mínimo, diferentemente do caso da viga apoiada com carregamento uniforme, já visto.
       Outra observação diz respeito ao fato de que pode-se ter diversas linhas elásticas para uma mesma viga, dependendo do referencial. A
Equação da Linha Elástica para esta viga, por ex., difere da encontrada no final(vide Tabelas), mas são equivalente. Para verificar isto basta
substituir valores nas equações e vê-se que os resultados obtidos são idênticos.

    A seguir será visto o caso de uma viga com um engaste apenas e com carregamento uniformemente distribuído.
16




04-VIGA COM UM ENGASTE E COM CARGA UNIFORMEMENTE DISTRIBUIDA




     Seja agora a viga acima, engastada na extremidade B, de comprimento igual a l metros e submetida ao carregamento uniforme de q kg/m ao
longo de seu vão.
                                                                                                             ql 2
      Usando as equações da Estática encontra-se a reação (Momento) no ponto B , cujo valor será igual a          no sentido horário. A reação
                                                                                                              2
horizontal H B , a exemplo de todos os casos anteriores, não existe, por não atuar, conforme já afirmado anteriormente, carregamento que possua
componente de força na direção horizontal.      Por outro lado, RB = ql kg, com direção vertical e sentido de baixo para cima.
                                                                                                           − qx 2
    Em uma seção S qualquer, distante x metros do ponto A, a função do Momento Fletor é dada por M ( x ) =        .
                                                                                                             2
A Equação Diferencial da Linha Elástica será:
d 2 y qx 2
     =     . Ao resolver a equação encontra-se:
dx 2 2 EJ
dy qx 3                 dy                                             − ql 3
  =     + C1 ; para x=l, = 0 (A rotação é nula no engaste); assim C1 =        , o que conduz à equação da deformação angular:
dx 6 EJ                 dx                                             6 EJ
dy qx 3   ql 3
  =     −      .
dx 6 EJ 6 EJ
17



Integrando uma segunda vez, obtem-se a Equação da Linha Elástica para a viga em questão:
      qx 4   ql 3 x ql 4
y=         −       +     .
     24 EJ 6 EJ 8 EJ
          ql 4
O valor        (constante de integração C2) foi obtido aplicando as condições de contorno( y = 0 para x = l).
          8EJ
Colocando alguns termos em evidência tem-se a Equação da Linha Elástica final:
       q
y=         ( x 4 − 4l 3 x + 3l 4 )
     24 EJ
                                          − ql 3                  ql 4
Na extremidade livre de citada viga ϕ =          (radianos) e f =      .
                                           6 EJ                   8 EJ
Será visto a seguir outro caso a ser estudado.




05-VIGA COM UM ENGASTE E COM CARGA TRIANGULAR




    Seja a viga engastada em B e submetida a um carregamento de q kg/m em B, carregamento este que vai diminuindo linearmente até ser nulo
em A.
18




                                                           ql 2        ql
    Aplicando as Equações da Estática encontra-se M B =         e RB =    .
                                                            6          2
                                                                                                 qx
    Para uma determinada seção S distante x metros do ponto A, a carga terá valor igual a q1 =        , já que o triângulo maior de altura igual a q e
                                                                                                   l
                                                                                                     q l
base l é semelhante ao triângulo menor de altura igual a q1 e base x (por semelhança de triângulos       = ).
                                                                                                     q1 x
                                                                                                           − qx 3
     Para qualquer seção S distante x metros de A o Momento Fletor será dado pela expressão M ( x) =              .
                                                                                                             6l
Tem-se portanto a Equação Diferencial da Linha Elástica:
d 2 y qx 3
     =     ;
dx 2 6 EJl
Integrando uma vez:
dy   qx 4                              dy                              − ql 3
   =      + C1 . Sabe-se que em x = l,    = 0 , o que resulta em: C1 =        .
dx 24 EJl                              dx                              24 EJ
           dy   qx 4   ql 3
Portanto      =      −      , que é a Equação da Deformação Angular.
           dx 24 EJl 24 EJ
Integrando a equação acima encontra-se:
       qx 5    ql 3 x
 y=         −          + C 2 ; O valor de C2 é obtido aplicando a condição de contorno x = l implica em y = 0.
    120 EJl 24 EJ
A equação final da Linha Elástica resultante é:
      qx 5     ql 3 x     ql 4
 y=         −          +        .
    120 EJl 24 EJ 30 EJ
Finalizando, ao substituir-se x = 0 em ambas as equações, obtém-se, na extremidade livre da viga(Ponto A):
 dy − ql 3             ql 4
    =         e y=            que são os valores, respectivamente, da deformação angular e da deformação linear.
 dx 24 EJ             30 EJ
19



CONCLUSÃO


     O Autor destas linhas espera, mais uma vez, ter contribuído para difundir o assunto abordado.
      Os desenhos encontrados neste trabalho foram elaborados pelo Autor, que fez uso dos programas Auto-CAD 2000 e Paint para confeccioná-
los. Para a digitação de texto foi usado o Word.




TABELA – LINHAS ELÁSTICAS DE VIGAS PRISMÁTICAS(EJ é constante)

01-




       qx
y=          ( x 3 − 2lx 2 + l 3 )
      24 EJ
02-
20




       qx
y=          ( x 4 − 4l 3 x + 3l 4 )
      24 EJ
03-




        qx
y=            (3 x 4 − 10l 2 x 2 + 7l 4 )
      360 EJl
04-




        P
y=         ( x 3 − 3l 2 x + 2l 3 )
      6 EJ
05-
21




        q
y=           ( x 5 − 5l 4 x + 4l 5 )
     120 EJl

BIBLIOGRAFIA

-NASH, William A., Resistência dos Materiais, 2ª. Edição, Coleção Schaum, Editora McGraw- Hill;
-SILVA Jr., Jayme Ferreira da – Resistência dos Materiais, Segunda Edição, Editora Ao Livro Técnico, 1972;
- Leithold, Louis - “O Cálculo com Geometria Analítica” – Volume 1 – Editora Harbra Ltda – 1994;
-Thomas Jr, George B. – “Cálculo” Volumes I e II – Editora Ao Livro Técnico;

Mais conteúdo relacionado

Mais procurados

Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio beco
Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio becoEstruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio beco
Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio becoJonatas Ramos
 
Flexão normal simples e composta
Flexão normal simples e compostaFlexão normal simples e composta
Flexão normal simples e compostaEDER OLIVEIRA
 
introdução a mecanica dos materiias
introdução a mecanica dos materiiasintrodução a mecanica dos materiias
introdução a mecanica dos materiiasDiego Henrique
 
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticasdanielceh
 
5 projeto de vigas em flexao
5 projeto de vigas em flexao5 projeto de vigas em flexao
5 projeto de vigas em flexaoDande_Dias
 
Centro de gravidade, centro de massa e centroide
Centro de gravidade, centro de massa e centroideCentro de gravidade, centro de massa e centroide
Centro de gravidade, centro de massa e centroidemai3286
 
Memória de cálculo de linha de vida
Memória de cálculo de linha de vida  Memória de cálculo de linha de vida
Memória de cálculo de linha de vida gbozz832
 
Aula diagramas
Aula diagramasAula diagramas
Aula diagramasRoseno11
 
230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circularesDaiane Machado
 
Álbum de Projetos - Tipo de dispositivos de drenagem
Álbum de Projetos - Tipo de dispositivos de drenagemÁlbum de Projetos - Tipo de dispositivos de drenagem
Álbum de Projetos - Tipo de dispositivos de drenagemJiselmo Vieira
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
Engrenagem teoria completa
Engrenagem teoria completaEngrenagem teoria completa
Engrenagem teoria completaRonan Mattedi
 
Apostila Teoria das Estruturas
Apostila Teoria das EstruturasApostila Teoria das Estruturas
Apostila Teoria das EstruturasEngenheiro Civil
 

Mais procurados (20)

Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio beco
Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio becoEstruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio beco
Estruturas de sustentação dos alimentadores n1 n2-n3-n4 e meio beco
 
Processos..[1]
Processos..[1]Processos..[1]
Processos..[1]
 
Flexão normal simples e composta
Flexão normal simples e compostaFlexão normal simples e composta
Flexão normal simples e composta
 
introdução a mecanica dos materiias
introdução a mecanica dos materiiasintrodução a mecanica dos materiias
introdução a mecanica dos materiias
 
flambagem
flambagemflambagem
flambagem
 
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
 
5 projeto de vigas em flexao
5 projeto de vigas em flexao5 projeto de vigas em flexao
5 projeto de vigas em flexao
 
Centro de gravidade, centro de massa e centroide
Centro de gravidade, centro de massa e centroideCentro de gravidade, centro de massa e centroide
Centro de gravidade, centro de massa e centroide
 
E flexao pura
E   flexao puraE   flexao pura
E flexao pura
 
Memória de cálculo de linha de vida
Memória de cálculo de linha de vida  Memória de cálculo de linha de vida
Memória de cálculo de linha de vida
 
Aula diagramas
Aula diagramasAula diagramas
Aula diagramas
 
Resistência dos Materiais II
Resistência dos Materiais IIResistência dos Materiais II
Resistência dos Materiais II
 
230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares230053351 2-torcao-de-eixos-circulares
230053351 2-torcao-de-eixos-circulares
 
Álbum de Projetos - Tipo de dispositivos de drenagem
Álbum de Projetos - Tipo de dispositivos de drenagemÁlbum de Projetos - Tipo de dispositivos de drenagem
Álbum de Projetos - Tipo de dispositivos de drenagem
 
Cargas em vigas
Cargas em vigasCargas em vigas
Cargas em vigas
 
Vaos e cargas
Vaos e cargasVaos e cargas
Vaos e cargas
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Exercício Resolvido 1 - Tensão Média
Exercício Resolvido 1 - Tensão MédiaExercício Resolvido 1 - Tensão Média
Exercício Resolvido 1 - Tensão Média
 
Engrenagem teoria completa
Engrenagem teoria completaEngrenagem teoria completa
Engrenagem teoria completa
 
Apostila Teoria das Estruturas
Apostila Teoria das EstruturasApostila Teoria das Estruturas
Apostila Teoria das Estruturas
 

Destaque

Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticasdanielceh
 
3. cálculo dos esforços em vigas
3. cálculo dos esforços em vigas3. cálculo dos esforços em vigas
3. cálculo dos esforços em vigasWillian De Sá
 
Exercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolExercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolDanieli Franco Mota
 
Professor helanderson sousa...
Professor helanderson sousa...Professor helanderson sousa...
Professor helanderson sousa...Dayanne Sousa
 
Aula04 leida inércia
Aula04 leida inérciaAula04 leida inércia
Aula04 leida inérciacristbarb
 
Apostila sensacional !! deformacao de vigas em flexao
Apostila sensacional !! deformacao de vigas em flexaoApostila sensacional !! deformacao de vigas em flexao
Apostila sensacional !! deformacao de vigas em flexaoHenrique Almeida
 
Hibbeler 10 ed cap. 10- momento de inércia
Hibbeler 10 ed   cap. 10- momento de inérciaHibbeler 10 ed   cap. 10- momento de inércia
Hibbeler 10 ed cap. 10- momento de inérciaAldemar Tavares
 
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidos
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidosResistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidos
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidosAndre Luiz Vicente
 
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
Resolução do livro de estática   hibbeler 10ª ed - cap 7-10Resolução do livro de estática   hibbeler 10ª ed - cap 7-10
Resolução do livro de estática hibbeler 10ª ed - cap 7-10Wagner R. Ferreira
 
Estrutura de concreto armado imprimir
Estrutura de concreto armado   imprimirEstrutura de concreto armado   imprimir
Estrutura de concreto armado imprimirBook LOver Writer
 
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
Resolução do livro de estática   hibbeler 10ª ed - cap 4-6Resolução do livro de estática   hibbeler 10ª ed - cap 4-6
Resolução do livro de estática hibbeler 10ª ed - cap 4-6Jefferson_Melo
 
Süssekind curso de análise estrutural 2
Süssekind   curso de análise estrutural 2Süssekind   curso de análise estrutural 2
Süssekind curso de análise estrutural 2Uniceuma
 
Resistência dos Materiais - Torção
Resistência dos Materiais - TorçãoResistência dos Materiais - Torção
Resistência dos Materiais - TorçãoRodrigo Meireles
 
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS IUeiglas C. Vanderlei
 
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar esteturmacivil51
 
Pré dimensionamento estrutural
Pré dimensionamento estruturalPré dimensionamento estrutural
Pré dimensionamento estruturalCarlos Elson Cunha
 

Destaque (20)

Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
 
Resistencia estabilidade
Resistencia estabilidadeResistencia estabilidade
Resistencia estabilidade
 
3. cálculo dos esforços em vigas
3. cálculo dos esforços em vigas3. cálculo dos esforços em vigas
3. cálculo dos esforços em vigas
 
Exercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsolExercicios resolvidos de resmat mecsol
Exercicios resolvidos de resmat mecsol
 
Lista de-revisão estruturas
Lista de-revisão estruturasLista de-revisão estruturas
Lista de-revisão estruturas
 
Professor helanderson sousa...
Professor helanderson sousa...Professor helanderson sousa...
Professor helanderson sousa...
 
Aula04 leida inércia
Aula04 leida inérciaAula04 leida inércia
Aula04 leida inércia
 
Apostila sensacional !! deformacao de vigas em flexao
Apostila sensacional !! deformacao de vigas em flexaoApostila sensacional !! deformacao de vigas em flexao
Apostila sensacional !! deformacao de vigas em flexao
 
Hibbeler 10 ed cap. 10- momento de inércia
Hibbeler 10 ed   cap. 10- momento de inérciaHibbeler 10 ed   cap. 10- momento de inércia
Hibbeler 10 ed cap. 10- momento de inércia
 
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidos
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidosResistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidos
Resistência dos Materiais - Hibbeler 5ª Ed.Cap10 - Exercícios resolvidos
 
3 torcao
3 torcao3 torcao
3 torcao
 
Momentos exercicios
Momentos exerciciosMomentos exercicios
Momentos exercicios
 
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
Resolução do livro de estática   hibbeler 10ª ed - cap 7-10Resolução do livro de estática   hibbeler 10ª ed - cap 7-10
Resolução do livro de estática hibbeler 10ª ed - cap 7-10
 
Estrutura de concreto armado imprimir
Estrutura de concreto armado   imprimirEstrutura de concreto armado   imprimir
Estrutura de concreto armado imprimir
 
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
Resolução do livro de estática   hibbeler 10ª ed - cap 4-6Resolução do livro de estática   hibbeler 10ª ed - cap 4-6
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
 
Süssekind curso de análise estrutural 2
Süssekind   curso de análise estrutural 2Süssekind   curso de análise estrutural 2
Süssekind curso de análise estrutural 2
 
Resistência dos Materiais - Torção
Resistência dos Materiais - TorçãoResistência dos Materiais - Torção
Resistência dos Materiais - Torção
 
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS INOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
NOTAS DE AULA – RESISTÊNCIA DOS MATERIAIS I
 
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este1   resistencia materiais-estaticas_estruturas - importantíssimo - usar este
1 resistencia materiais-estaticas_estruturas - importantíssimo - usar este
 
Pré dimensionamento estrutural
Pré dimensionamento estruturalPré dimensionamento estrutural
Pré dimensionamento estrutural
 

Semelhante a Aplicação do Cálculo Diferencial e Integral no Estudo de Linhas Elásticas de Vigas Isostáticas

Simulado 9 _novembro1417220008_exercicio
Simulado 9 _novembro1417220008_exercicioSimulado 9 _novembro1417220008_exercicio
Simulado 9 _novembro1417220008_exercicioROBSONVINAS
 
Lista (D1) - Dinâmica
Lista (D1) - DinâmicaLista (D1) - Dinâmica
Lista (D1) - DinâmicaGilberto Rocha
 
Livro intr. campos tensoriais em 31 jan 2013
Livro intr. campos tensoriais em 31 jan 2013Livro intr. campos tensoriais em 31 jan 2013
Livro intr. campos tensoriais em 31 jan 2013elysioruggeri
 
Experimento rodadura sin deslizamiento
Experimento rodadura sin deslizamientoExperimento rodadura sin deslizamiento
Experimento rodadura sin deslizamientoalsua2000
 
Aula 16 ensaio de impacto
Aula 16   ensaio de impactoAula 16   ensaio de impacto
Aula 16 ensaio de impactoRenaldo Adriano
 
Lista 16 eletrostatica1
Lista 16 eletrostatica1Lista 16 eletrostatica1
Lista 16 eletrostatica1rodrigoateneu
 
Aula 02 ensaio de tração - cálculo da tensão
Aula 02   ensaio de tração - cálculo da tensãoAula 02   ensaio de tração - cálculo da tensão
Aula 02 ensaio de tração - cálculo da tensãoRenaldo Adriano
 
Física - Lei de Coulomb
Física - Lei de CoulombFísica - Lei de Coulomb
Física - Lei de CoulombThiago Santiago
 
Fisica 06 vol_2[1]
Fisica 06 vol_2[1]Fisica 06 vol_2[1]
Fisica 06 vol_2[1]Paulo Souto
 
Exercícios eletrostática
Exercícios eletrostáticaExercícios eletrostática
Exercícios eletrostáticaVictor Said
 
Corrente Elétrica - Conteúdo vinculado ao blog http://fisicanoenem.blogs...
Corrente Elétrica - Conteúdo vinculado ao blog      http://fisicanoenem.blogs...Corrente Elétrica - Conteúdo vinculado ao blog      http://fisicanoenem.blogs...
Corrente Elétrica - Conteúdo vinculado ao blog http://fisicanoenem.blogs...Rodrigo Penna
 

Semelhante a Aplicação do Cálculo Diferencial e Integral no Estudo de Linhas Elásticas de Vigas Isostáticas (20)

2862949
28629492862949
2862949
 
2862949
28629492862949
2862949
 
fabio_coulomb.pdf
fabio_coulomb.pdffabio_coulomb.pdf
fabio_coulomb.pdf
 
Simulado 9 _novembro1417220008_exercicio
Simulado 9 _novembro1417220008_exercicioSimulado 9 _novembro1417220008_exercicio
Simulado 9 _novembro1417220008_exercicio
 
Tracaocompressaoleidehooke
TracaocompressaoleidehookeTracaocompressaoleidehooke
Tracaocompressaoleidehooke
 
Tracaocompressaoleidehooke
TracaocompressaoleidehookeTracaocompressaoleidehooke
Tracaocompressaoleidehooke
 
Lei de coulomb
Lei de coulombLei de coulomb
Lei de coulomb
 
Aula 1
Aula 1Aula 1
Aula 1
 
Lista (D1) - Dinâmica
Lista (D1) - DinâmicaLista (D1) - Dinâmica
Lista (D1) - Dinâmica
 
Lista Dinâmica (D1)
Lista Dinâmica (D1)Lista Dinâmica (D1)
Lista Dinâmica (D1)
 
Livro intr. campos tensoriais em 31 jan 2013
Livro intr. campos tensoriais em 31 jan 2013Livro intr. campos tensoriais em 31 jan 2013
Livro intr. campos tensoriais em 31 jan 2013
 
Experimento rodadura sin deslizamiento
Experimento rodadura sin deslizamientoExperimento rodadura sin deslizamiento
Experimento rodadura sin deslizamiento
 
Aula 16 ensaio de impacto
Aula 16   ensaio de impactoAula 16   ensaio de impacto
Aula 16 ensaio de impacto
 
Lista 16 eletrostatica1
Lista 16 eletrostatica1Lista 16 eletrostatica1
Lista 16 eletrostatica1
 
Aula 02 ensaio de tração - cálculo da tensão
Aula 02   ensaio de tração - cálculo da tensãoAula 02   ensaio de tração - cálculo da tensão
Aula 02 ensaio de tração - cálculo da tensão
 
Física - Lei de Coulomb
Física - Lei de CoulombFísica - Lei de Coulomb
Física - Lei de Coulomb
 
Fisica 06 vol_2[1]
Fisica 06 vol_2[1]Fisica 06 vol_2[1]
Fisica 06 vol_2[1]
 
Exercícios eletrostática
Exercícios eletrostáticaExercícios eletrostática
Exercícios eletrostática
 
Corrente Elétrica - Conteúdo vinculado ao blog http://fisicanoenem.blogs...
Corrente Elétrica - Conteúdo vinculado ao blog      http://fisicanoenem.blogs...Corrente Elétrica - Conteúdo vinculado ao blog      http://fisicanoenem.blogs...
Corrente Elétrica - Conteúdo vinculado ao blog http://fisicanoenem.blogs...
 
Lei de-hooke
Lei de-hookeLei de-hooke
Lei de-hooke
 

Mais de danielceh

Cronologia Sobralense volume 5 de 1911 a 1950 parte 02 de 04
Cronologia Sobralense  volume 5 de 1911 a 1950 parte 02 de 04Cronologia Sobralense  volume 5 de 1911 a 1950 parte 02 de 04
Cronologia Sobralense volume 5 de 1911 a 1950 parte 02 de 04danielceh
 
Ahnentafel Chart de Angela von Halle
Ahnentafel  Chart de Angela von HalleAhnentafel  Chart de Angela von Halle
Ahnentafel Chart de Angela von Halledanielceh
 
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04danielceh
 
Guia do aluno colégio sobralense - 2005
Guia do aluno   colégio sobralense - 2005Guia do aluno   colégio sobralense - 2005
Guia do aluno colégio sobralense - 2005danielceh
 
A Familia Paula Pessoa
A Familia Paula PessoaA Familia Paula Pessoa
A Familia Paula Pessoadanielceh
 
Apostila de Fíisica do Colégio Geo Sobralense 1998
Apostila de Fíisica do Colégio Geo Sobralense 1998Apostila de Fíisica do Colégio Geo Sobralense 1998
Apostila de Fíisica do Colégio Geo Sobralense 1998danielceh
 
Álbum Fotos Turma Humaitá Escola Naval 1974
Álbum Fotos Turma Humaitá Escola Naval 1974Álbum Fotos Turma Humaitá Escola Naval 1974
Álbum Fotos Turma Humaitá Escola Naval 1974danielceh
 
A Familia Saboia (Saboya) Versão de Maio de 2011
A Familia Saboia (Saboya) Versão de Maio de 2011A Familia Saboia (Saboya) Versão de Maio de 2011
A Familia Saboia (Saboya) Versão de Maio de 2011danielceh
 
Cronologia-1960-2011 Versão de Maio de 2011
Cronologia-1960-2011 Versão de Maio de 2011Cronologia-1960-2011 Versão de Maio de 2011
Cronologia-1960-2011 Versão de Maio de 2011danielceh
 
A familia cavalcanti(e)
A familia cavalcanti(e)A familia cavalcanti(e)
A familia cavalcanti(e)danielceh
 
A Familia Ferreira da Ponte(versão completa)
A Familia Ferreira da Ponte(versão completa)A Familia Ferreira da Ponte(versão completa)
A Familia Ferreira da Ponte(versão completa)danielceh
 
O Cartaz da OBMEP 2011
O Cartaz da OBMEP 2011O Cartaz da OBMEP 2011
O Cartaz da OBMEP 2011danielceh
 

Mais de danielceh (12)

Cronologia Sobralense volume 5 de 1911 a 1950 parte 02 de 04
Cronologia Sobralense  volume 5 de 1911 a 1950 parte 02 de 04Cronologia Sobralense  volume 5 de 1911 a 1950 parte 02 de 04
Cronologia Sobralense volume 5 de 1911 a 1950 parte 02 de 04
 
Ahnentafel Chart de Angela von Halle
Ahnentafel  Chart de Angela von HalleAhnentafel  Chart de Angela von Halle
Ahnentafel Chart de Angela von Halle
 
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04
Cronologia Sobralense - Volume 5 (de 1911 a 1950) parte 01 de 04
 
Guia do aluno colégio sobralense - 2005
Guia do aluno   colégio sobralense - 2005Guia do aluno   colégio sobralense - 2005
Guia do aluno colégio sobralense - 2005
 
A Familia Paula Pessoa
A Familia Paula PessoaA Familia Paula Pessoa
A Familia Paula Pessoa
 
Apostila de Fíisica do Colégio Geo Sobralense 1998
Apostila de Fíisica do Colégio Geo Sobralense 1998Apostila de Fíisica do Colégio Geo Sobralense 1998
Apostila de Fíisica do Colégio Geo Sobralense 1998
 
Álbum Fotos Turma Humaitá Escola Naval 1974
Álbum Fotos Turma Humaitá Escola Naval 1974Álbum Fotos Turma Humaitá Escola Naval 1974
Álbum Fotos Turma Humaitá Escola Naval 1974
 
A Familia Saboia (Saboya) Versão de Maio de 2011
A Familia Saboia (Saboya) Versão de Maio de 2011A Familia Saboia (Saboya) Versão de Maio de 2011
A Familia Saboia (Saboya) Versão de Maio de 2011
 
Cronologia-1960-2011 Versão de Maio de 2011
Cronologia-1960-2011 Versão de Maio de 2011Cronologia-1960-2011 Versão de Maio de 2011
Cronologia-1960-2011 Versão de Maio de 2011
 
A familia cavalcanti(e)
A familia cavalcanti(e)A familia cavalcanti(e)
A familia cavalcanti(e)
 
A Familia Ferreira da Ponte(versão completa)
A Familia Ferreira da Ponte(versão completa)A Familia Ferreira da Ponte(versão completa)
A Familia Ferreira da Ponte(versão completa)
 
O Cartaz da OBMEP 2011
O Cartaz da OBMEP 2011O Cartaz da OBMEP 2011
O Cartaz da OBMEP 2011
 

Aplicação do Cálculo Diferencial e Integral no Estudo de Linhas Elásticas de Vigas Isostáticas

  • 1. Universidade Estadual Vale do Acaraú – U.V.A. C.C.E.T. – Centro de Ciências Exatas e Tecnologia Curso de Engenharia Civil e Ambiental Aplicação do Cálculo Diferencial e Integral no Estudo de Linhas Elásticas de Vigas Isostáticas Sobral - Ce – 2012
  • 2. 2 “Ainda que o pecador faça o mal cem vezes, e os dias se lhe prolonguem, contudo eu sei com certeza que bem sucede aos que temem a Deus, porque temem diante dele; ao ímpio, porém, não irá bem, e ele não prolongará os seus dias, que são como a sombra; porque ele não teme diante de Deus.” (Eclesiates, 8)
  • 3. 3 SUMÁRIO CONTEÚDO PÁGINA INTRODUÇÃO 04 UNIDADES ADOTADAS 05 LEI DE HOOKE E DIAGRAMA TENSÃO-DEFORMAÇÃO 05 FLEXÃO ELÁSTICA NAS VIGAS 07 MOMENTO DE INÉRCIA 08 PROCESSO DE INTEGRAÇÃO DIRETA DA EQUAÇÃO DIFERENCIAL DA LINHA ELÁSTICA 08 CÁLCULO DA LINHA ELÁSTICA PARA ALGUNS TIPOS DE VIGAS ISOSTÁTICAS 09 CONCLUSÃO 18 TABELA - LINHA ELÁSTICA DE VIGAS PRISMÁTICAS 19 BIBLIOGRAFIA 20
  • 4. 4 INTRODUÇÃO Concluído o primeiro Trabalho, que relacionou a aplicação da Matemática à Engenharia Civil, foi dado inicio a este segundo Estudo que, identicamente, relaciona as duas Ciências. No primeiro Trabalho, foi abordada a relação existente entre o Cálculo Diferencial e Integral e o estudo dos esforços Momento Fletor e Força Cortante que atuam em uma viga isostática. O assunto atual, aborda o cálculo da Linha Elástica de uma viga isostática aplicando integração direta. Sabe-se que o Cálculo Diferencial e Integral permite encontrar a Equação da Linha Elástica de uma viga em determinado trecho, possibilitando, assim, que sejam calculadas as deformações lineares verticais – flechas - bem como a deflexão angular em qualquer ponto da viga. Em diversas situações encontradas na Engenharia Civil, a dimensão da flecha de uma viga deve ser pré-determinada; este fato, por si só, já mostraria a importância do assunto aqui abordado. Este Estudo vem com o mesmo objetivo do anterior, qual seja, propiciar aos estudantes do Curso de Engenharia Civil da Universidade Estadual Vale do Acaraú e do Curso de Tecnologia da Construção de Edifícios da mesma Instituição, mais uma opção de material didático. omnia mecum porto Sobral, Ce, agosto de 2012. Daniel Caetano de Figueiredo (*) (*) O Autor é Engenheiro Civil formado pela Universidade de Fortaleza em Dezembro de 1982 e Professor Concursado da Universidade Estadual Vale do Acaraú.
  • 5. 5 UNIDADES ADOTADAS COMUMENTE NO DIA-A-DIA DA ENGENHARIA CIVIL Sabe-se o quanto é difícil para aqueles que hipervalorizam a teoria, aceitar que o carregamento distribuído de uma viga venha a ser, por N kg kgf N exemplo, expresso na unidade kg/m ao invés de kgf/m; ou ;o u que uma tensão seja expressa em 2 ao invés de ser expressa em 2 ou 2 . m m m m Abaixo alguns comentários são tecidos a respeito. m Sabe-se que a força que atua em um corpo de massa 1,0 quilograma e lhe imprime uma aceleração igual a 1,0 na mesma direção e sentido s2 desta força, equivale a 1,0 Newton. m Considerando que um corpo de massa 1,0 kg tem peso igual a 9,8 N em um local onde a aceleração da gravidade vale 9,8 (valor médio s2 aceito para toda a superfície da Terra) e que 1,0 kgf equivale a 9,8N, pode-se, para efeitos didáticos e por praticidade, substituir a unidade kgf(unidade de força) por kg(unidade de massa); isto sem prejuízo algum, já que na superfície da Terra um corpo de massa 1,0 kg pesa 1,0 kgf. Evidentemente que após isto feito, deve-se fazer as adaptações necessárias das outras unidades. Com relação à unidade de comprimento, foram adotadas o metro e o milímetro. O metro é comumente usado em Engenharia Civil para medir o vão de vigas, a altura de pilares, o comprimento de fachadas, apenas para ficarmos nestes exemplos. As flechas, por outro lado, por possuírem comprimento muito reduzido, podem ser expressas em milímetro ou outro submúltiplo do metro. Será vista, a seguir, a dedução da Equação da Linha elástica para cinco tipos de vigas comumente encontradas. Antes, porém, será abordada a Lei de Hooke. LEI DE HOOKE E DIAGRAMA TENSÃO-DEFORMAÇÃO: Existem basicamente dois tipos de deformação em um corpo quando submetido a tensões: a deformação elástica e a deformação plástica. Qual seria a diferença primordial entre as duas? Quando submetida a uma tensão, uma viga, assim como qualquer corpo, tende a se deformar. Até atingir o valor de determinada tensão, chamada de tensão de escoamento, uma vez cessada a força que atuava sobre o corpo, este volta à sua forma inicial, caracterizando-se com isto o chamado Regime Elástico. Ultrapassada porém o valor da tensão de escoamento, o corpo continua, muitas vezes, a se deformar mesmo sem que a força ainda atue sobre ele: temos o Regime Plástico.
  • 6. 6 Assim, pode ser dito que Plasticidade é a propriedade que possui um corpo de mudar sua forma de modo irreversível, ao ser submetido a uma tensão . Em outras palavras, plasticidade é quando o material se deforma e assim fica(deformado), não voltando mais ao seu estado normal. As argilas(o barro, por ex., comumente usado nas construções) são bons exemplos de materiais plásticos. Pode-se, ainda, dizer que a Deformação Plástica existe quando a tensão que atua sobre o corpo não é mais proporcional à sua deformação(do corpo), ocorrendo então uma deformação não recuperável e permanente; quando isto ocorre a Lei de Hooke deixa de ser obedecida. O Diagrama Tensão vs Deformação varia basicamente de material para material. De uma maneira geral, contudo, citado diagrama possui propriedades comuns. Analisando o comportamento de alguns materiais usados na Construção Civil, vê-se que o aço e o alumínio, por exemplo, apresentam grandes deformações antes da ruptura. São materiais dúcteis. Por outro lado materiais como o concreto e o vidro, rompem sem que se apresentem grandes deformações. São chamados de materiais frágeis. A Lei de Hooke nos diz que as tensões são proporcionais às deformações, ou seja, σ = Eε , onde E é o coeficiente de Elasticidade do material, σ é a tensão e ε é a deformação. Conforme já visto, esta Lei é obedecida até determinada tensão, que varia de material para material. Pode-se afirmar que nenhum corpo real segue, com rigor, a Lei de Hooke. Para determinados valores abaixo do limite de proporcionalidade, porém, os corpos se comportam como o sólido hipotético de Hooke. Neste Estudo os materiais(vigas, apoios, engastes) seguem a Lei de Hooke. Abaixo encontra-se o Diagrama Tensão-Deformação para materiais dúcteis e frágeis: Analisando as duas curvas nota-se que ambas obedecem à Lei de Hooke ( σ = Eε ) no trecho 0-A; o ponto A corresponde à Tensão de Proporcionalidade; no trecho A-R a Lei de Hooke não é mais obedecida e finalmente ambos os materiais se rompem no ponto R(Tensão de Ruptura).
  • 7. 7 Pelo gráfico acima, vê-se que os materiais dúcteis apresentam grandes deformações antes de se romperem(na Construção Civil existem o aço, o alumínio e o cobre, entre diversos outros). Enquanto isto ocorre com os materiais dúcteis, os materiais frágeis rompem-se sem que se apresentem grandes deformações. (o caso do vidro, do ferro fundido, do mármore, do granito, das cerâmicas, e de diversos outros, também usados na Construção Civil). FLEXÃO ELÁSTICA NAS VIGAS Seja a viga biapoiada abaixo inicialmente com o eixo reto(figura superior), que é submetida a um carregamento perpendicular a este eixo(figura inferior). Tal carregamento produz nas diferentes seções da viga Momentos Fletores que deformam a mesma. Chama-se de flecha, num ponto qualquer do eixo da viga, à componente do deslocamento linear deste ponto que é perpendicular ao eixo originalmente reto da viga(f1, f2 e f3, por ex.). A outra componente deste deslocamento, paralela ao eixo inicial da viga, é, geralmente, desprezível em relação a flecha e por isto não fará parte deste Estudo. A curva na qual se transforma o eixo da viga, inicialmente reto, recebe o nome de Linha Elástica(curva que liga o ponto O ao ponto M). Na figura dada nota-se a viga antes de deformar-se e após sofrer deformação devido ao carregamento. Observa-se que o deslocamento y é a flecha da viga, correspondente à seção que dista x do apoio à esquerda. A função y=f(x) é a equação da linha elástica da viga correspondente ao carregamento indicado. Vale salientar que será analisada neste Trabalho apenas a linha elástica produzida por Momento Fletor M(x). Outros fatores como o esforço Cortante, por ex., não serão levados em consideração. Outra condição é que o Momento de Inércia (J) da seção transversal da viga, seja constante, haja vista que existem vigas com J variável; e que as vigas devem obedecer à Lei de Hooke(neste caso a linha neutra passa pelo centróide da seção transversal da viga). Existem vários processos para se determinar a linha elástica de uma viga, assim como a deflexão angular e a flecha em qualquer ponto de seu eixo. Neste Trabalho será usado o Método da Integração Direta. Convém citar apenas que, entre outros processos existentes, destacam-se o Teorema de Castigliano(Carlo Alberto Castigliano(1847/1884), engenheiro e matemático italiano), o Método da Integração Numérica e outros, os quais não serão abordados neste Estudo.
  • 8. 8 MOMENTO DE INÉRCIA Por ser uma grandeza física muito usada em Engenharia Civil, é necessário que seja definido o que vem a ser Momento de Inércia de uma área. Normalmente o Momento de Inércia é representado nos livros didáticos pela letras latinas maiúsculas I ou J. Por definição, o Momento de Inércia de um elemento de área em relação a um eixo de seu plano é dado pelo produto do elemento de área pelo quadrado da distância deste elemento até o eixo considerado. Em relação ao eixo x, por exemplo, para um elemento diferencial de área dA tem-se que: dJ x = y 2 dA É evidente que, em relação ao eixo y, se encontrará para o mesmo elemento: dJ y = x 2 dA Para obter-se o Momento de Inércia de uma área finita deve-se aplicar integração, já que citado Momento é dado pela soma de todos os momentos dos elementos dA que constituem a superfície, ou seja: J x = ∫ dJ x = ∫ y 2 dA . S S Consequentemente tem-se que: J y = ∫ dJ S y = ∫ x 2 dA . S A unidade do Momento de Inércia é a unidade de comprimento elevada à quarta potência. Convém ressaltar, mais uma vez, que neste Estudo o valor de J é considerado constante para todas as vigas estudadas. PROCESSO DE INTEGRAÇÃO DA EQUAÇÃO DIFERENCIAL DA LINHA ELÁSTICA De acordo com o Cálculo Diferencial e Integral, a equação da linha elástica de uma viga flexionada (fletida), em sua forma diferencial, é dada por: d 2 y − M ( x) = dx 2 EJ
  • 9. 9 Onde M(x) corresponde à função que dá o valor do Momento Fletor no trecho onde se deseja escrever a equação da linha elástica. A constante E corresponde ao módulo de elasticidade(Módulo de Young) do material do qual é feita a viga, e J é o Momento de Inércia da seção transversal da mesma(viga) em relação ao eixo horizontal que passa pela linha neutra de referida seção. O sinal negativo deve ser colocado na equação com a finalidade de adequar a equação original, que não possui citado sinal, com o referencial de sinais, que adota flecha positiva para baixo e rotações positivas no sentido horário. Em outras palavras, pode ser dito que o eixo y é orientado para baixo e o eixo x da esquerda para a direita. O Módulo de Young é muito usado e também é de fundamental importância na Engenharia Civil, sendo um parâmetro que se relaciona com a rigidez de um material sólido, e é uma propriedade inerente a cada material. O Momento de Inércia, conforme já afirmado, é bastante usado em Engenharia Civil, e sabe-se que os perfis das vigas são escolhidos também em função dele, já que, quanto maior for o momento de inércia da seção de uma viga, mais difícil será fazê-la girar, melhorando com isto a estabilidade das construções. A equação da linha elástica do referido trecho será dada pela função y=f(x), que é a solução da equação diferencial apresentada anteriormente. Para isto deve-se integrar duas vezes citada equação e aplicar as condições de contorno para a determinação das constantes de integração. A aplicação correta das condições de contorno é primordial para a obtenção da Equação da Linha Elástica. Ao ser integrada a primeira vez a Equação Diferencial da Linha Elástica, é obtida a Equação da Deflexão Angular. Integrando-se esta, obtém-se a Equação da Deformação Linear. CÁLCULO DA LINHA ELÁSTICA PARA ALGUNS TIPOS DE VIGAS ISOSTÁTICAS. Serão deduzidas a seguir as equações da Linha Elástica para algumas vigas comumente estudadas. 01-VIGA BIAPOIADA COM CARGA UNIFORMEMENTE DISTRIBUIDA kg Considere-se a viga abaixo com vão igual a l metros e carga uniformemente distribuída de q , apoiada nas extremidades A e B. m
  • 10. 10 ql Calculadas as reações de apoio, são encontrados os valores de R A e RB , os quais são iguais a . 2 Seja uma seção perpendicular ao eixo da viga e distante x metros do apoio A. Nesta seção, assim como nas demais, o valor do momento fletor ql qx 2 é dado pela função M ( x) = x − . 2 2 A Equação Diferencial da Linha Elástica será dada portanto por: d 2 y − 1 ql qx 2 = .( x − ). dx 2 EJ 2 2 Integrando uma primeira vez encontra-se: dy − 1 qx 3 qlx 2 ql 3 ql 3 = .( − + − ) onde o termo é o valor da constante C1 que foi encontrado aplicando as condições de contorno, ou seja, dx EJ 6 4 24 24 EJ para x =l/2 tem-se que dy/dx = 0 (A tangente à curva é horizontal no meio do vão da viga, logo dy/dx = 0 neste ponto). Integrando uma segunda vez encontra-se a equação da Linha Elástica para a viga: −1 qx 4 qlx 3 ql 3 x qx y= .( − + − ) ou y = .(l 3 − 2lx 2 + x 3 ) . Nesta integração a constante C2 é igual a zero e foi determinada aplicando-se, EJ 24 12 24 24 EJ mais uma vez, as condições de contorno. Desta vez foi feito y = 0 para x = 0(A deformação vertical da viga é nula nos apoios) . 5ql 4 A flecha no meio da viga(deformação máxima) tem valor f = e é obtida ao substituir-se na Equação da Linha Elástica x pelo valor 384 EJ l/2. Aqui cabe uma observação: no caso da viga estudada o maior valor da deformação na direção vertical ocorreu onde o valor do Momento Fletor é máximo. Em outras vigas a flecha máxima está localizada no ponto onde o momento é mínimo. Em seguida vem o caso de uma viga biapoiada sujeita a uma carga concentrada.
  • 11. 11 02-VIGA BIAPOIADA COM CARGA CONCENTRADA Seja agora a viga abaixo , apoiada em A e B, com l metros de comprimento e possuindo um carregamento de P kg aplicado no ponto situado a uma distancia igual a a metros do apoio A e distante b metros do apoio B, conforme a figura. Pa Pb Aplicando as Equações da Estática tem-se as reações R B = e RA = . l l No caso, existem dois trechos a serem estudados. O primeiro para x compreendido entre 0 e a; o segundo para x compreendido entre a e l. Seja uma seção S1 perpendicular ao eixo da viga, distante x metros do apoio A e compreendida entre o apoio A e o ponto de aplicação da força P. Nesta seção, assim como nas demais do trecho em questão, o valor do momento fletor é dado pela função M ( x ) = R A x . Convém reforçar que a função acima vale apenas para o trecho compreendido entre o apoio A e o ponto de aplicação da força P. Pb Como M ( x) = x , a Equação Diferencial da Linha Elástica no trecho 0 ≤ x ≤ a é: l d 2 y1 − M ( x) − Pb 2 = = x dx EJ EJl Integrando uma vez, acha-se a equação da rotação angular(ou deflexão angular): dy1 − Pbx 2 = + C1 dx 2 EJl Integrando novamente encontra-se a Equação da Linha Elástica para o trecho 0 ≤ x ≤ a :
  • 12. 12 − Pbx 3 y1 = + C1 x + C 2 . A flecha é nula no apoio, logo, ao se fazer x = 0 na equação obtém-se C 2 = 0 6 EJl Abaixo seguem as duas primeiras equações(intevalo 0 ≤ x ≤ a ): dy1 − Pbx 2 − Pbx 3 = + C1 e y1 = + C1 x dx 2 EJl 6 EJl Deve-se agora analisar o trecho compreendido entre a carga P e o apoio B( a ≤ x ≤ l ). Pb Neste trecho, em qualquer seção distante x metros de A encontra-se M ( x ) = R A x − P ( x − a) = x − Px + Pa l Daí vem que: d 2 y 2 − 1 Pb 1 Pb 2 = ( x − Px + Pa) = ( Px − Pa − x) dx EJ l EJ l Integrando uma primeira vez: dy 2 1 Px 2 Pb 2 = ( − Pax − x ) + C3 dx EJ 2 2l Mais uma integração e a Equação da Linha Elástica para o trecho considerado é obtida: 1 Px 3 Pax 2 Pb 3 y2 = ( − − x ) + C3 x + C 4 EJ 6 2 6l Agora vem uma parte muito importante, que trata das condições de contorno para a viga. É sabido que se forem aplicadas de forma errada as condições de contorno, o resultado obtido não estará correto. Tem-se pois: 01- para x = a, os valores de y obtidos nas duas equações deverão ser iguais; dy1 dy 2 02- o mesmo deve ocorrer com os valores das deflexões angulares obtidos na igualdade = para x = a ; dx dx 03- substituindo x = l na equação y2, deve-se ter y = 0(no apoio B); Aplicando-se as condições acima: dy1 dy 2 Faz-se x = a na equação = , tem-se: dx dx − Pba 2 1 Pa 2 Pba 2 + C1 = ( − Pa 2 − ) + C3 2 EJl EJ 2 2l Depois de feitos os cálculos é encontrada a relação:
  • 13. 13 Pa 2 C3 − C1 = 2 EJ Substitui-se x = a, desta vez na equação y1 = y2 : − Pa 3b 1 Pa 3 Pa 3 Pa 3b + C1a = ( − − ) + C3 x + C 4 6 EJl EJ 6 2 6l Feitas as operações é encontrado o valor de C4: − Pa 3 C4 = 6 EJ Substitui-se x = l na equação y 2 pois sabe-se que no ponto considerado a flecha é nula. 1 Pl 3 Pal 2 Pbl 3 0= ( − − ) + C 3l + C 4 EJ 6 2 6l Pa 3 + 2 Pal 2 Como já foi calculado o valor de C 4 , daí vem que C3 = ; 6 EJl Achado o valor de C3 , encontra-se finalmente o valor da constante C1 Pa 2 Pa 3 + 2 Pal 2 − 3Pa 2l C1 = C3 − = 2 EJ 6 EJl Tem-se assim para a viga dada no primeiro intervalo( 0 ≤ x ≤ a ): dy1 − Pbx 2 Pa 3 + 2 Pal 2 − 3Pa 2 l = + dx 2 EJl 6 EJl − Pbx 3 Pa + 2 Pal 2 − 3Pa 2 l 3 y1 = + x 6 EJl 6 EJl E no intervalo a ≤ x ≤ l : dy 2 1 Px 2 Pb 2 Pa 3 + 2 Pal 2 = ( − Pax − x )+ dx EJ 2 2l 6 EJl 1 Px 3 Pax 2 Pb 3 Pa 3 + 2 Pal 2 Pa 3 y2 = ( − − x )+ x− EJ 6 2 6l 6 EJl 6 EJl
  • 14. 14 Substituindo x = a em qualquer das equações da Linha Elástica, obtém-se o valor da flecha em função de a e b: Pa 2b 2 y= 3EJl A flecha é uma função de duas variáveis(a e b). O Cálculo (Funções de Duas Variáveis) permite afirmar que a flecha máxima ocorre quando l a = b = (A carga P está localizada no meio da viga). 2 Se for desejada a deflexão angular no apoio A basta substituir x = 0 na equação abaixo: dy1 − Pbx 2 Pa 3 + 2 Pal 2 − 3Pa 2 l = + dx 2 EJl 6 EJl Feitas as contas, encontra-se: dy Pab(2b + a ) ϕA = = dx 6 EJl Será analisada a seguir o caso de uma viga isostática simplesmente engastada e sujeita a uma carga concentrada em sua extremidade livre. 03-VIGA COM UM ENGASTE E COM CARGA CONCENTRADA EM SUA EXTREMIDADE Seja agora a viga abaixo , simplesmente engastada em A e com a extremidade B livre, com l metros de comprimento e possuindo um carregamento de P kg aplicado no ponto B, situado à uma distância igual a l metros do apoio A, de acordo com a figura seguinte. Após calculadas as reações em A, estas serão constituídas por um momento no sentido anti-horário e uma força vertical, respectivamente iguais a M A = Pl kg.m e R A = P kg.
  • 15. 15 Considere-se uma seção perpendicular ao eixo da viga e distante x metros do apoio A. Nesta seção, assim como nas demais, o valor do momento fletor é dado pela função M ( x) = − Pl + Px . Assim, a EquaçãoDiferencial da Linha Elástica será dada por: d 2 y −1 = .( − Pl + Px ) . dx 2 EJ Integrando uma primeira vez encontra-se: dy − 1 Px 2 = .(− Plx + ) ; onde o valor da constante C1 é nulo, pois aplicando as condições de contorno tem-se que dy/dx = 0 para x = 0. (A dx EJ 2 tangente à curva é horizontal no apoio A da viga, logo dy/dx = 0 neste ponto). Integrando uma segunda vez encontra-se a equação da Linha Elástica para a viga em questão: −1 Plx 2 Px 3 Px 2 y= .( − + ) ou y = .(3l − x) . Nesta segunda integração a constante C2 também é igual a zero e foi determinada aplicando-se, EJ 2 6 6 EJ mais uma vez, as condições de contorno, qual seja, fez-se y = 0 para x = 0(A deformação vertical da viga é nula no apoio) . Pl 3 A flecha no final da viga(deformação máxima) tem valor f = e foi obtida ao substituir-se na Equação da Linha Elástica x pelo valor l. 3EJ Aqui cabe uma observação: neste caso o maior valor da deformação da viga na direção vertical ocorre no ponto onde o valor do Momento Fletor é mínimo, diferentemente do caso da viga apoiada com carregamento uniforme, já visto. Outra observação diz respeito ao fato de que pode-se ter diversas linhas elásticas para uma mesma viga, dependendo do referencial. A Equação da Linha Elástica para esta viga, por ex., difere da encontrada no final(vide Tabelas), mas são equivalente. Para verificar isto basta substituir valores nas equações e vê-se que os resultados obtidos são idênticos. A seguir será visto o caso de uma viga com um engaste apenas e com carregamento uniformemente distribuído.
  • 16. 16 04-VIGA COM UM ENGASTE E COM CARGA UNIFORMEMENTE DISTRIBUIDA Seja agora a viga acima, engastada na extremidade B, de comprimento igual a l metros e submetida ao carregamento uniforme de q kg/m ao longo de seu vão. ql 2 Usando as equações da Estática encontra-se a reação (Momento) no ponto B , cujo valor será igual a no sentido horário. A reação 2 horizontal H B , a exemplo de todos os casos anteriores, não existe, por não atuar, conforme já afirmado anteriormente, carregamento que possua componente de força na direção horizontal. Por outro lado, RB = ql kg, com direção vertical e sentido de baixo para cima. − qx 2 Em uma seção S qualquer, distante x metros do ponto A, a função do Momento Fletor é dada por M ( x ) = . 2 A Equação Diferencial da Linha Elástica será: d 2 y qx 2 = . Ao resolver a equação encontra-se: dx 2 2 EJ dy qx 3 dy − ql 3 = + C1 ; para x=l, = 0 (A rotação é nula no engaste); assim C1 = , o que conduz à equação da deformação angular: dx 6 EJ dx 6 EJ dy qx 3 ql 3 = − . dx 6 EJ 6 EJ
  • 17. 17 Integrando uma segunda vez, obtem-se a Equação da Linha Elástica para a viga em questão: qx 4 ql 3 x ql 4 y= − + . 24 EJ 6 EJ 8 EJ ql 4 O valor (constante de integração C2) foi obtido aplicando as condições de contorno( y = 0 para x = l). 8EJ Colocando alguns termos em evidência tem-se a Equação da Linha Elástica final: q y= ( x 4 − 4l 3 x + 3l 4 ) 24 EJ − ql 3 ql 4 Na extremidade livre de citada viga ϕ = (radianos) e f = . 6 EJ 8 EJ Será visto a seguir outro caso a ser estudado. 05-VIGA COM UM ENGASTE E COM CARGA TRIANGULAR Seja a viga engastada em B e submetida a um carregamento de q kg/m em B, carregamento este que vai diminuindo linearmente até ser nulo em A.
  • 18. 18 ql 2 ql Aplicando as Equações da Estática encontra-se M B = e RB = . 6 2 qx Para uma determinada seção S distante x metros do ponto A, a carga terá valor igual a q1 = , já que o triângulo maior de altura igual a q e l q l base l é semelhante ao triângulo menor de altura igual a q1 e base x (por semelhança de triângulos = ). q1 x − qx 3 Para qualquer seção S distante x metros de A o Momento Fletor será dado pela expressão M ( x) = . 6l Tem-se portanto a Equação Diferencial da Linha Elástica: d 2 y qx 3 = ; dx 2 6 EJl Integrando uma vez: dy qx 4 dy − ql 3 = + C1 . Sabe-se que em x = l, = 0 , o que resulta em: C1 = . dx 24 EJl dx 24 EJ dy qx 4 ql 3 Portanto = − , que é a Equação da Deformação Angular. dx 24 EJl 24 EJ Integrando a equação acima encontra-se: qx 5 ql 3 x y= − + C 2 ; O valor de C2 é obtido aplicando a condição de contorno x = l implica em y = 0. 120 EJl 24 EJ A equação final da Linha Elástica resultante é: qx 5 ql 3 x ql 4 y= − + . 120 EJl 24 EJ 30 EJ Finalizando, ao substituir-se x = 0 em ambas as equações, obtém-se, na extremidade livre da viga(Ponto A): dy − ql 3 ql 4 = e y= que são os valores, respectivamente, da deformação angular e da deformação linear. dx 24 EJ 30 EJ
  • 19. 19 CONCLUSÃO O Autor destas linhas espera, mais uma vez, ter contribuído para difundir o assunto abordado. Os desenhos encontrados neste trabalho foram elaborados pelo Autor, que fez uso dos programas Auto-CAD 2000 e Paint para confeccioná- los. Para a digitação de texto foi usado o Word. TABELA – LINHAS ELÁSTICAS DE VIGAS PRISMÁTICAS(EJ é constante) 01- qx y= ( x 3 − 2lx 2 + l 3 ) 24 EJ 02-
  • 20. 20 qx y= ( x 4 − 4l 3 x + 3l 4 ) 24 EJ 03- qx y= (3 x 4 − 10l 2 x 2 + 7l 4 ) 360 EJl 04- P y= ( x 3 − 3l 2 x + 2l 3 ) 6 EJ 05-
  • 21. 21 q y= ( x 5 − 5l 4 x + 4l 5 ) 120 EJl BIBLIOGRAFIA -NASH, William A., Resistência dos Materiais, 2ª. Edição, Coleção Schaum, Editora McGraw- Hill; -SILVA Jr., Jayme Ferreira da – Resistência dos Materiais, Segunda Edição, Editora Ao Livro Técnico, 1972; - Leithold, Louis - “O Cálculo com Geometria Analítica” – Volume 1 – Editora Harbra Ltda – 1994; -Thomas Jr, George B. – “Cálculo” Volumes I e II – Editora Ao Livro Técnico;