O documento fornece uma introdução abrangente sobre o Sistema de Posicionamento Global (GPS), discutindo seu histórico, componentes, precisão, tipos de receptores, métodos de posicionamento e redes de monitoramento.
Desenvolvimento da Geodésiae da
cartografia
– Computadores
– Estações totais
– Sistemas de informações geográficas (SIG)
– Cad’s
– Sistema de Posicionamento Global (GPS)
Cartografia
Ciência e aarte de expressar graficamente,
por meio de mapas e cartas, o conhecimento
humano da superfície terrestre.
10.
Geodésia
Ciência que
determina, atravésde
observações, a forma e
o tamanho da terra, as
coordenadas dos
pontos, comprimentos
e direções de linhas da
superfície terrestre, e
as variações da
gravidade terrestre.
11.
A Geodésia édivida em:
– Geodésia geométrica
– Geodésia física
– Geodésia por satélite ou celeste
Coordenadas Geográficas
Latitude(F)
– Medida pelos paralelos
– 0° na linha do Equador
– Varia de +90° à -90°
– Ao norte do Equador:+
– Ao sul do Equador : -
Longitude (l)
– Medida pelos meridianos
– 0° no Meridiano de
Greenwich
– Varia de +180° à -180°
– Oeste de Greenwich : -
– Leste de Greenwich : +
Posição de ponto: Latitude e Longitude
Coordenadas Cartesianas
Ao elipsóideestá associado um
sistema cartesiano ortogonal, formado
pelos eixos X, Y e Z. Um ponto sobre a
superfície terrestre tem coordenadas
cartesianas geocêntricas, que podem ser
expressadas em latitude, longitude e
altitude e vice-versa.
Sistemas de Referência
DatumSuperfície de Referência
Datum Horizontal
Datum Vertical
Datum Horizontal um elipsóide e
um ponto de referência
IBGE Sistema Geodésico Brasileiro
SGB (www.ibge.gov.br/geodesia)
21.
Datum Oficial Brasileiro(1977) – SAD 69
Elipsóide ERI 67 (Elipsóide de Referência
Internacional de 1967)
Vértice : Chuá – MG ( geóide = elipsóide)
SIRGAS 2000
Decreto Nº 5334/2005, assinado em 06/01/2005
Elipsóide GRS 80 (Sistema de Referência
Geodésico de 1980)
Consistente, global e geocêntrico
Centro do Elipsóide = centro de massa da Terra
22.
Nos próximos 10anos serão Datuns oficiais :
SIRGAS, SAD 69 e Córrego Alegre (só para o SCN)
Datum GPS – WGS 84
Elipsóide GRS 80 (Sistema de Referência Geodésico de
1980)
Consistente, global e geocêntrico
Centro do Elipsóide = centro de massa da Terra
23.
Sistema de ReferênciaAltimétrico
Imbituba – SC usado por quase todo Brasil
Porto de Santana – utilizado pelo Amapá
(dificuldades de expandir a rede altimétrica
nesta área do país)
Temos três diferentestipos de projeção
quanto às propriedades:
Projeção equivalente conserva as áreas
Projeção eqüidistante conserva as
distâncias
Projeção conforme ou ortomorfa
conserva os ângulos
26.
SISTEMA DE PROJEÇÃOUNIVERSAL
TRANSVERSO DE MERCATOR (UTM)
Criado para aplicação mundial pelos militares para
um sistema de coordenadas planas
Em 1951 a Associação de Geodésia e Geofísica
Internacional (AGGI) recomendou o sistema UTM
para o mundo inteiro
No Brasil - sistema adotado pela Diretoria do
Serviço Geográfico (DSG) e IBGE, desde de 1955
para o mapeamento sistemático do país.
O elipsóideé dividido em 60 fusos de 6 de
longitude
Cada fuso tem um sistema de coordenadas
parcial
Cada fuso terá um meridiano central
A amplitude de 6 para os fusos no sistema
UTM coincide com os fusos da Carta
Internacional ao Milionésimo.
29.
A interseçãocom o equador é a origem do
sistema
Os fusos são limitados por duas longitudes
múltiplas de seis
As latitudes limites vão de 80 N a 80 S
O sistema UTM não é utilizado para
representar regiões polares.
30.
Os fusosde sistema de projeção UTM são
numerados de 1 a 60 contados a partir do anti-
meridiano de Greenwich no sentido anti-horário.
N do fuso = 30 – (l/6), para pontos a oeste
de Greenwich.
N do fuso = 30 + (l/6), para pontos a leste de
Greenwich.
31.
Eixos coordenados dosistema UTM e
origem no hemisfério Sul
6
3 3
meridiano
central
N
E
6°(668km)
N
E
N
E
32.
Fundamentos do GPS
SistemaTRANSIT
Primeiro sistema de satélites artificiais
Objetivo de navegação
Idéia básica: localização sobre a Terra
Cálculo da posição baseado no Efeito Doppler
Desvantagens: longos períodos de observação e
baixa precisão
33.
NAVSTAR-GPS (Navigation SatelliteTime
And Rancing)
Criado para substituir o TRANSIT
Estudos iniciados em 1973
Desenvolvido e operado pelo Departamento de
Defesa dos Estados Unidos da América - DoD
Sistema de rádio navegação
Concebido para fins exclusivamente militares
Sistema de Posicionamento Global – GPS
34.
O GPS foiprojetado de forma que em
qualquer lugar do globo e a qualquer
momento existam pelo menos quatro
satélites acima do plano do horizonte do
observador.
35.
Em razão desua precisão e do grande
desenvolvimento da tecnologia dos
receptores, surgiram aplicações para uso
civil, tais como:
Navegação
Geodésia
Topografia
Sinais de tempo
Outros
36.
SPS
(Standard Positioning Service)
Serviço de Posicionamento Padrão
Uso civil
24 horas por dia
Em qualquer lugar
Componente temporal (data e hora)
Coordenadas (lat., long., altitude)
37.
SPS
Precisão nominal:
–20m componente horizontal
– 30m componente vertical
95% do tempo
Sistema degradado intencionalmente (SA)
– 100m componente horizontal
– 156m componente vertical
Precisão no posicionamento relativo – 5m à 5mm
38.
GPS posição depontos, coordenadas
TEMPO
velocidade
aceleração
direção do
deslocamento
39.
Sistema de controlede tempo
Extremamente importante
O GPS baseia-se na medida simultânea da
distância entre o receptor e pelo menos
quatro satélites
40.
A distânciaentre o receptor e os satélites se
obtém por meio do atraso temporal, entre o
sinal que o satélite emite até o momento em
que o sinal é recebido pelo receptor
Segmento Espacial
24satélites
Altura de 20.200km da superfície terrestre
6 planos orbitais
Órbitas com 55° de inclinação em relação
ao Equador
Período de 12 horas siderais
Satélites NAVSTAR ou Space Vehicles
(SVs)
44.
Segmento de Controle
5 estações rastreadoras fixas
Localizadas nas proximidades da linha do
Equador
Movimento orbital dos satélites
constantemente monitorado
Estação mestre – Colorado Springs
Correção das efemérides e dos relógios
46.
Segmento do Usuário
Constituídopelos receptores GPS e
comunidade de usuários. Os receptores
convertem os sinais dos satélites (SVs) em
estimativas de posições, velocidade e
tempo.
47.
Sistema de TempoGPS
GPS mede intervalo de tempo de
propagação do sinal
Tempo GPS – Início 0h de 06/01/80
48.
Tempo GPScontado desde o início
– número de semanas
– número de segundos
Semanas GPS (GPS Week Number)
– Varia de 0 – 1023 (aproxim. 20 anos)
N° de segundos - contador TOW (Time Of
Week – Tempo da Semana )
– Varia de 0 –604.800
49.
Sinais GPS
SatélitesGPS são sistemas unidirecionais de
emissão
A observação fundamental é a medida do
tempo de percurso do sinal entre a antena
do satélite e a antena do receptor
freqüência fundamental fo de 10,23 Mhz
Erros das medidasGPS
Erros do relógio do satélite
Atmosfera
Multitrajetória ou Multicaminhamento
Erros de recepção
Disponibilidade Seletiva - SA (Selective
Avaibility)
Anti-spoofing (AS)
55.
Diluição da Precisão(DOP)
HDOP: Para o posicionamento horizontal
VDOP: Para o posicionamento vertical
TDOP: Para a determinação do tempo
PDOP: Para o posicionamento tridimensional.
RDOP: Para o posicionamento relativo (relative)
57.
Valores de PDOP
<4 – ótimo
4 < PDOP < 6 – aceitável
6 < PDOP < 8 – compromete o resultado
> 8 – inaceitável para posicionamento
(geodésico ou topográfico)
58.
Tipos de receptoresGPS
Os receptores + baratos
– posicionamento em tempo real sem correção
– baseado somente no código C/A
– precisão SPS da ordem de 20 m na horizontal e
40 m na vertical
Receptores usam para suas soluções a observação
da fase da portadora, em vez da pseudodistância
são mais precisos e apresentam como resolução
comprimento de onda da portadora com valores
bem inferiores.
Principais componentes dos
receptoresGPS
Antena com pré-amplificador;
Unidade de alta freqüência para sintonizar os
sinais provenientes de diversos satélites, de
preferência simultaneamente e com canais
independentes;
Unidades capacitadoras para receber os códigos
dos satélites, para fins de identificação, obtenção
das efemérides, sinais de tempo, catálogo, etc;
61.
Osciladores internosde alta precisão;
Porta de entrada e saída de dados;
Fonte de energia própria, por bateria, e ou externa,
via rede domiciliar;
Memória residente para armazenamento dos dados
de rastreamento.
Interface com o usuário, painel de exibição de
comandos;
62.
Métodos de Posicionamento
Posicionamento por Ponto ou Absoluto
Posicionamento Diferencial (DGPS)
Posicionamento Relativo
63.
Classificação quanto à
mobilidadedo receptor:
Estático
– receptores base e remoto ficam estacionados
– dependendo do comprimento da base a ser
medida e da precisão que se quer alcançar
64.
Cinemático
– permitea movimentação do receptor remoto;
– período de tempo maior no ponto inicial,
visando determinar as ambigüidades;
– fator restritivo - cycles slips (perda momentânea
do sinal de um ou mais satélites)
65.
Em TempoReal
Pós-processado
Correção do Posicionamento
66.
Redes de Monitoramento
Contínuo
Rede Brasileira de Monitoramento
Contínuo do Sistema GPS (RBMC – IBGE)
Rede INCRA de Bases Comunitárias
Rede de Rádio Faróis da Marinha
Redes SIGHT e Santiago & Cintra
RINEX
Cada fabricantetem seu formato binário
proprietário para os dados GPS
Dados diferentes não podem ser
processados juntos num mesmo programa
Criado formato único: Receiver Independent
Exchange Format - RINEX (Formato de
Intercâmbio Independente de Receptor)
71.
RINEX (continuação)
Visaintercâmbio de dados
Composto por três arquivos ASCII:
– um arquivo de observações
– dados meteorológicos (opcional)
– mensagem de navegação
RINEX 2 – versão mais completa
Programas disponíveis na internet
http:www.unvaco.ucar.edu
72.
Outros Sistemas de
Posicionamentopor Satélite
GLONASS
– GLONASS - GLObal NAvigation Satelitte System
– Sistema Russo equivalente ao GPS
– 3 planos orbitais com 8 satélites cada ( 24 satélites)
– Altura 19.000km; período 11:15h
– Satélites transmitem em freqüências diferentes:
– L1 = 1602MHz + N 0.5625MHz
– L2 = 1246MHz + N 0.4375MHz (N: canal)
– SA não implementada
73.
– TUC GLONASSdiferente da TUC GPS
– Datum PZ90 (Parametros Zemli 1990)
74.
GALILEO
– GNSS(GLOBAL NAVIGATION
SATELLITE SYSTEM)
– União Européia
– Controle Civil
– Compatível com GPS e GLONAS
– 4 portadoras da Banda L
– Em fase de desenvolvimento
75.
ALGUMAS ORIENTAÇÕES NOUSO DO GPS
Os receptores GPS foram concebidos para
funcionar quando não existirem barreiras
entre os satélites e a antena do receptor
Quando existem barreiras entre o receptor e
os satélites, há degradação ou interrupções
dos sinais.
76.
O aparelhoa ser utilizado vai depender da
precisão necessária para o trabalho
O erro na altitude é 150% maior do que o
erro na determinação da latitude e
longitude
77.
Os receptoresutilizam internamente o
sistema WGS 84 e podem exportar os
dados em diversos outros sistemas.
O usuário deve ter o cuidado de registrar os
pontos nas coordenadas e DATUM usados
no projeto em trabalho.
Quando os Estados Unidos ativam o erro
SA, a precisão da determinação de pontos
absolutos pode chegar a 100m.
78.
Na determinaçãode divisas de propriedades,
talhões, canais de irrigação, construções, poços e
etc. o posicionamento absoluto não satisfaz às
necessidades de precisão, neste caso deve-se
utilizar o DGPS
Os dados armazenados no receptor podem ser
utilizados para alimentar Sistemas de Informações
Geográficas ou Mapeamento Digital de forma
precisa, rápida e extremamente barata
79.
Conhecendo-se ascoordenadas de pontos de
interesse pode-se preparar uma rota na qual
o GPS auxilia o navegador a chegar a
diversos lugares.
No mundo atual o GPS é utilizado desde
grandes trabalhos científicos até momentos
de lazer.