SlideShare uma empresa Scribd logo
Apostila




Análise de Circuitos Elétricos
Informática Industrial

                                                                Profa.Luciana Faletti Almeida


                        Introdução a Eletricidade

1. O que é eletricidade?

       Todos os efeitos da eletricidade podem ser explicados e previstos, se
considerarmos a existência de uma partícula minúscula chamada elétron.
       Essa teoria eletrônica afirma que todos os efeitos elétricos e eletrônicos são
devido ao movimento de elétrons de um lugar para outro, ou a existência de mais ou
menos elétrons em um determinado lugar.

1.1. Matéria

        A matéria é aquilo que existe, que ocupa lugar no espaço e tem massa. É sempre
constituída de partículas elementares com massa não nula (como os átomos, em escala
menor, os prótons, elétrons e nêutrons);

Exemplo: água, madeira, ferro, petróleo, ar, etc.

1.2. Átomo

        É a unidade fundamental da matéria, constituindo a menor partícula de um
elemento.
        O átomo é composto de um núcleo central contendo prótons (com carga
positiva), e nêutrons (sem carga). Elétrons (com carga negativa e massa insignificante)
revolvem em torno do núcleo em diferentes trajetórias imaginárias chamadas órbitas.




                             Figura 1. Estrutura de um átomo.

1.3. Molécula

       Uma molécula é formada quando átomos do mesmo ou de diferentes elementos
se combinam através de uma forte ligação.
       Para separar os átomos de uma molécula é necessário uma quantidade razoável
de energia.

Exemplo: molécula da água = H2O – dois átomos do elemento hidrogênio e um átomo
do elemento oxigênio.




                                                                                                 2
Informática Industrial

                                                         Profa.Luciana Faletti Almeida



1.4. Revisão

       Molécula = combinação forte de dois ou mais átomos
       Átomo = menor partícula física em que se pode dividir um elemento.
           o Núcleo = parte pesada do átomo carregada positivamente, em torno do
               qual giram os elétrons.
           o Nêutron = partícula neutra e pesada do núcleo, composta por um próton e
               um elétron.
           o Próton = partícula pesada carregada positivamente.
           o Elétron = pequena partícula que gira em torno do núcleo, carregada
               negativamente e praticamente sem peso.
       Elétrons presos = elétrons da órbita interna de um átomo, que dificilmente
       poderão ser retirados da mesma.
       Elétrons livres = elétrons das órbitas externas do átomo, facilmente removível.
       Eletricidade = efeito do movimento de elétrons de um ponto para outro, ou
       efeito causado pelo excesso ou falta de elétrons em um material.




                                                                                          3
Informática Industrial

                                                              Profa.Luciana Faletti Almeida




                         Princípios da Eletrostática

2. Carga elétrica

        Os elétrons circulam ao redor do núcleo de um átomo, e são mantidos nas suas
órbitas pela ação da carga positiva do núcleo. Quando se pode forçar o elétron a sair de
sua órbita, a ação deste elétron passará a ser conhecida pelo nome de eletricidade.
        Os elétrons que forem retirados de suas órbitas, sob uma ação qualquer, causarão
uma falta de elétrons no lugar de onde saíram, e um excesso de elétrons no ponto que
atingirem. O excesso de elétrons em uma substância é chamado de carga negativa. A
falta de elétrons em uma substância é chamada de carga positiva.
        A existência dessas cargas é conhecida como eletricidade estática. Para originar
uma carga positiva ou negativa, ó elétron terá que se movimentar, enquanto os prótons
no núcleo permanecem imóveis.
        Qualquer material que apresente uma carga positiva terá seu número normal de
prótons no núcleo e falta de elétrons.
        No material carregado negativamente, teremos excesso de elétrons.


         +   -       +     -       +    -       +       +        +   -         -       -

         +   -       +     -       +        +       +   -        -        -        +   -
         Barra sem Carga       Barra com Carga Positiva Barra com Carga Negativa
                               Figura 2. Corpos carregados.

       A carga elétrica fundamental é simbolizada pela letra q e sua unidade de medida
é o Coulomb [C].
       O módulo da carga elétrica de um próton e de um elétron vale: q = 1.6X10-19.
       Assim, a carga Q de um corpo pode ser calculada multiplicando-se a carga q de
um elétron pelo número de elétrons inseridos ou retirados.
                                        Q = n.q

2.1 Atração e Repulsão de Cargas

       Quando os corpos se apresentam carregados de eletricidade estática, eles se
comportam de modo diferente do normal.
       Quando se coloca uma esfera carregada positivamente, próximo à outra
carregada negativamente, elas se atrairão mutuamente.
       Se as cargas forem suficientemente grandes e as esferas leves e tiverem
liberdade de movimento, elas entrarão em contato.
       Assim, cargas opostas se atraem e cargas iguais se repelem.




                                                                                                  4
Informática Industrial

                                                               Profa.Luciana Faletti Almeida




                               Figura 3. Atração e Repulsão.



2.2 Descargas das cargas estáticas

        Sempre que dois corpos carregados com cargas opostas são colocados próximos,
o excesso de elétrons do corpo carregado negativamente será atraído na direção do
corpo carregado positivamente.
        Unindo-se os dois corpos por um fio, estamos oferecendo um caminho para os
elétrons da carga negativa se deslocarem em direção a carga positiva, e então as cargas
se equilibrarão.
        Ao invés de ligarmos os corpos por um fio podemos encostá-los (contato) e
outra vez as cargas se equilibrarão.
        Se aproximarmos corpos com cargas elevadas, os elétrons poderão pular da
carga negativa para a carga positiva, antes dos dois corpos entrarem em contato. Nesse
caso, veremos de fato a descarga sob forma de um arco.

2.3 Condutores e isolantes

        Quando vários átomos se reúnem para formar certos sólidos, como por exemplo,
metais, os elétrons das orbitais mais externas não permanecem ligados aos respectivos
átomos, adquirindo liberdade de se movimentar no interior do sólido.
        Esses elétrons são denominados elétrons livres, e materiais que possuem esse
tipo de elétron, permitem o transporte de carga elétrica através dele, sendo chamados de
condutores de eletricidade.
        Ao contrário dos condutores, existem sólidos nos quais os elétrons estão
firmemente ligados aos respectivos átomos, essas substâncias não possuem elétrons
livres.
        Assim, não será possível o deslocamento de carga elétrica através desses corpos,
que são denominados isolantes elétricos ou dielétricos.

2.4 Processos de Eletrização

       Eletrização por atrito = atritando dois materiais isolantes diferentes, o calor
       gerado pode ser suficiente para transferir elétrons de um material para outro,
       ficando ambos os materiais eletrizados, sendo um positivo (o que cedeu elétrons)
       e outro negativo (o que recebeu elétrons);
       Eletrização por contato = se um corpo eletrizado negativamente é colocado em
       contato com outro neutro, o excesso de elétrons do corpo negativo será
       transferido para o neutro até que ocorra o equilíbrio eletrostático. Assim, o corpo
       neutro fica eletrizado negativamente.
       Eletrização por indução:




                                                                                                5
Informática Industrial

                                                            Profa.Luciana Faletti Almeida

          o Aproximando-se um corpo eletrizado positivamente de um corpo
            condutor neutro isolado, seus elétrons livres serão atraídos para a
            extremidade mais próxima do corpo positivo.
          o Dessa forma o corpo neutro fica polarizado, ou seja, com excesso de
            elétrons em uma extremidade (pólo negativo) e falta de elétrons na outra
            (pólo positivo).
          o Aterrando o pólo positivo desse corpo, ele atrairá elétrons da terra, até
            que essa extremidade fique novamente neutra.
          o Desfazendo o aterramento e afastando o corpo com carga positiva, o
            corpo inicialmente neutro fica eletrizado negativamente.

                                        Corpo neutro polarizado e
               Corpo Positivo         eletrizando-se negativamente
                     + +
                      +                        --      +
                                                        +           -
                     + +                       -       +            -
                                                      +             -
                                     - -                            -
                                 -         -
                                 -         -
                                     - -
                    Corpo eletrizado negativamente
                           Figura 4. Eletrização por Indução.



3. Campo Elétrico

       Uma carga cria ao seu redor um campo elétrico E, que pode ser representado por
linhas de campo radiais orientadas, uma vez que é uma grandeza vetorial, sendo que a
sua unidade de medida é Newton/Coulomb [N/C].

                                      E                                  E

                               +                                –

                     Campo Divergente             Campo Convergente
                          Figura 5. Campos Convergentes e Divergentes.

       Se a carga é positiva o campo é divergente, isto é, as linhas de campo saem da
       carga;
       Se a carga é negativa o campo é convergente, isto é, as linhas de campo chegam
       à carga;

       A intensidade E do campo elétrico criado por uma carga Q é diretamente
proporcional à intensidade dessa carga e da constante dielétrica do meio K, e é
inversamente proporcional ao quadrado da distância d entre a carga e o ponto
considerado.


                                                                                                 6
Informática Industrial

                                                            Profa.Luciana Faletti Almeida


                                      E = K.Q / d2
Onde:
        K = 9x109 N.m2/C2 (no vácuo e no ar)
        Q = módulo da carga elétrica, em Coulomb [C].
        d = distância, em metro [m].

3.1 Comportamento das Linhas de Campo

        Quando duas cargas de sinais contrários estão próximas, as linhas de campo
divergentes da carga positiva tendem a convergir para a carga negativa. Força de atração
entre as cargas.
        Quando duas cargas de mesmos sinais estão próximas, se elas são positivas, as
linhas de campo são divergentes para ambas as cargas, e se elas são negativas as linhas
de campo são convergentes para ambas as cargas. Força de repulsão entre as cargas.




                               Figura 6. Linhas de Campo.



        Quando duas placas paralelas são eletrizadas com cargas de sinais contrários,
surge entre elas um campo elétrico uniforme, caracterizado por linhas de campo
paralelas.




                                Figura 7. Campo Uniforme.

3.2 Força Elétrica

       Consideremos uma região submetida a um campo elétrico E uniforme.
Colocando uma carga Q num ponto dessa região, essa carga ficará sujeita a uma força F,
cuja unidade de medida é newton [N] e cujo módulo pode ser calculado por:



                                                                                             7
Informática Industrial

                                                                 Profa.Luciana Faletti Almeida

                                           F = Q.E

Onde:
        Q = módulo da carga elétrica em Coulomb [C];
        E = módulo do campo elétrico, em newton/Coulomb [N/C];
        Se a carga é positiva a força age no mesmo sentido da linha de campo.
        Se a carga é negativa a força age no sentido contrário ao da linha de campo.

   Na realidade, essa força que age na carga é de atração ou repulsão entre Q e a carga
geradora desse campo elétrico.

3.3 Lei de Coulomb

        Como decorrência do estudo do campo elétrico gerado por uma carga e da força
que surge em outra carga colocada nesse campo, pode-se deduzir a expressão que nos
dá o módulo da força de atração ou de repulsão entre duas cargas elétricas, devido à
interação dos seus campos elétricos.
Essa expressão é denominada Lei de Coulomb:

                                       F = K.QA.QB / d2

Onde:
        K = 9x109 N.m2/C2 (no vácuo e no ar)
        QA e QB = módulos das cargas, em Coulomb [C]
        d = distância, em metro [m]

4. Potencial Elétrico

        Vimos que em uma região submetida a um campo elétrico, uma carga fica
sujeita a uma força, fazendo com que ela se movimente.
        Isto significa que em cada ponto dessa região existe um potencial para realização
de trabalho, independente da carga ali colocada.
        O símbolo do potencial elétrico é V e a sua unidade de medida é o volt [V].
        Na realidade, esse potencial depende da carga Q geradora do campo elétrico,
sendo que, quanto maior à distância d entre o ponto considerado e a carga geradora,
menor o potencial elétrico V.




          Figura 8. Relação do Potencial Elétrico com a distância d da carga geradora.




                                                                                                   8
Informática Industrial

                                                              Profa.Luciana Faletti Almeida


      O potencial elétrico é uma grandeza escalar, podendo ser positivo ou negativo,
   dependendo da carga.
                                    V = K.Q/d

Onde:
        K = 9x109 N.m2/C2 (no vácuo e no ar);
        Q = valor absoluto da carga, em Coulomb [C];
        d = distância, em metro [m];

        Por essa expressão, vê-se que uma carga positiva cria ao seu redor potenciais
positivos e uma carga negativa cria potenciais negativos.

                                         V                              -V
                 Q+                      •     Q-                       •
                            d                                d

                        Figura 9. Potenciais Negativos e Positivos.

       Em uma superfície, em que todos os pontos são eqüidistantes em relação à carga
geradora, os potenciais são iguais.
       Nesse caso temos as denominadas superfícies eqüipotenciais.


                                          V2
                                         V1
                                   Q         V1 V 2 V3
                                       V1
                                         V2
                          Figura 10. Superfícies Equipotenciais.




                                                                                               9
Informática Industrial

                                                                Profa.Luciana Faletti Almeida




                       Princípios da Eletrodinâmica

5. Tensão Elétrica

        Seja uma região submetida a um campo elétrico E criado por uma carga positiva
Q. Colocando um elétron –q no ponto A, situado a uma distância dA da carga Q, ele se
movimentará no sentido contrário do campo, devido à força F que surge no elétron,
indo em direção ao ponto B, situado a uma distância dB da carga Q.
        Como dA > dB, o potencial do ponto A é menor que o do ponto B, isto é, VA < VB.
Conclui-se, então, que uma carga negativa move-se do potencial menor para o maior.
        Se uma carga positiva +q fosse colocada no ponto B, ela se movimentaria na
mesma direção do campo elétrico, indo do potencial maior para o menor.
        Assim, para que uma carga se movimente, isto é, para que haja condução de
eletricidade, é necessário que ela esteja submetida a uma diferença de potencial ou ddp.
        A ddp entre dois pontos é denominada tensão elétrica, podendo ser simbolizada
pelas letras V, U ou E, cuja unidade de medida também é o volt [V].

                                     V=U=E=VB-VA
Observação: Usaremos os símbolos: E para identificar fontes de alimentação contínuas
(pilhas, bateria e fonte de tensão eletrônica); V para identificar a tensão contínua entre
terminais de outros dispositivos (resistores, indutores e capacitores);

                     Fonte de Alimentação                  Dispositivo

                                 VB                                 VB
                                                                    +
                       E        +       VB>VA         V
                                -
                                                                    -
                                 VA                                 VA
                              Figura 11. Simbologia de tensão



6. Corrente Elétrica

        O conceito de diferença de potencial elétrico e movimento de carga elétrica leva-
nos a eletrodinâmica, isto é, ao estudo das cargas elétricas em movimento.
        Aplicando-se uma ddp em um condutor metálico, os seus elétrons livres
movimentam-se de forma ordenada no sentido contrário ao do campo elétrico.
        Essa movimentação de elétrons denomina-se corrente elétrica, que pode ser
simbolizada por i ou I, sendo que sua unidade de medida é o ampère [A].




                                                                                             10
Informática Industrial

                                                                 Profa.Luciana Faletti Almeida



6.1 Intensidade da Corrente Elétrica

       A intensidade i da corrente elétrica é a medida da variação da carga dQ, em
Coulomb [C], por meio da seção transversal de um condutor durante um intervalo de
temo dt, em segundos [s]:
                                            i = dQ / dt
       Se a variação da carga for linear, a corrente será contínua e constante. Nesse
caso ela será simbolizada por I e poderá ser calculada por:
                                           I = ∆Q / ∆t

OBS: pelas expressões apresentadas, vemos que o ampère [A] é a denominação usual
para unidade de medida de corrente, que é Coulomb/segundo [C/s].

6.2 Corrente elétrica convencional

       Nos condutores metálicos, a corrente elétrica é formada apenas por cargas
negativas (elétrons) que se deslocam do potencial menor para o maior.

                                          VB>VA

                           VB                        -       E       VA
                                             -           -
                                    Corrente Elétrica
                                I
                 Figura 12. Deslocamento de Corrente com cargas negativas.

       Assim, para evitar o uso freqüente do valor negativo para a corrente, utiliza-se
um sentido convencional para ela, isto é, considera-se que a corrente elétrica em um
condutor metálico seja formada por cargas positivas, indo do potencial maior para o
menor.

                                            VB>VA

                             VB                  +               E       VA
                                            +            +
                                      Corrente Elétrica
                                                                     I
                        Figura 13. Deslocamento da Corrente Convencional.



       Em um circuito indica-se a corrente convencional por uma seta, no sentido do
potencial maior para o menor.




                                                                                                   11
Informática Industrial

                                                                  Profa.Luciana Faletti Almeida




           Figura 14. Indicação do sentido da corrente convencional em um circuito.



6.3 Fontes de Alimentação

        O dispositivo que fornece tensão a um circuito é chamado genericamente de
fonte de tensão ou fonte de alimentação.
        As Pilhas e Baterias são fontes de alimentação que produzem energia elétrica a
partir de energia liberada por reações químicas.




                                   Figura 15. Pilhas e Baterias

       As Fontes de Alimentação Eletrônicas são circuitos eletrônicos que convertem a
tensão alternada da rede elétrica em tensão contínua. São conhecidos como eliminadores
de bateria, e são fartamente utilizados em equipamentos portáteis como videogames e
aparelhos de som.


                   V                                              V
                                          Fonte
                                        Eletrônica
                           t                                                t
           Figura 16. Conversão de tensão alternada em contínua por fonte eletrônica

       Em laboratórios e oficinas de eletrônica, é mais utilizada a fonte de alimentação
variável (ou ajustável). Essa fonte tem vantagem de oferecer tensão contínua e constante,
cujo valor pode ser ajustado manualmente, conforme a necessidade.
       Fontes variáveis mais simples, o único tipo de controle é o de ajuste de tensão.
Nas mais sofisticadas, existem ainda os controles de ajuste fino de tensão e de limite de
corrente.




                                                                                               12
Informática Industrial

                                                                                  Profa.Luciana Faletti Almeida




                                                          E
                    Figura 17. Símbolo da fonte de alimentação variável

       As fontes de alimentação analisadas têm em comum a característica de fornecer
corrente contínua ao circuito (CC).
       Assim, as fontes de alimentação CC mantêm sempre a mesma polaridade, de
forma que a corrente no circuito tem sempre o mesmo sentido.


                            V                                    I
                                     E                                       It
                                         t


                                         It
                                 E                        Circuito

                                              It
                       Figura 18. Sentido da corrente em fontes CC

        A rede elétrica fornece às residências e indústrias a corrente alternada (CA).
Assim, a tensão muda de polaridade em períodos bem definidos, de forma que a
corrente no circuito circula hora de um lado, hora de outro.
        A corrente alternada pode ser gerada em diferentes tipos de usina de energia
elétrica, como por exemplo, as hidrelétricas, termoelétricas e nucleares.

                                v(t)                           i(t)


                                             t                           t


                                                   i(t)
                                 v(t)            ∼ i(t)       Circuito


                       Figura 19. Sentido da corrente em fontes CA



6.4 Bipolos Gerador e Receptor

    Denomina-se bipolo qualquer dispositivo formado por dois terminais, podendo ser
representado genericamente pelo símbolo mostrado ao lado.


                                                                                                               13
Informática Industrial

                                                                  Profa.Luciana Faletti Almeida

                                            Bipolo genérico

                                            Figura 20. Bipolo

    O gerador ou bipolo ativo é aquele que eleva o potencial elétrico do circuito, ou seja,
a corrente entra no dispositivo pelo pólo de menor potencial e sai pelo pólo de maior
potencial. Exemplo: Fonte de alimentação.

                                                 V
                                   I                        I
                                        -               +
                                       Figura 21. Bipolo Ativo.

       O receptor ou bipolo passivo é aquele que provoca queda de potencial elétrico
no circuito, ou seja, a corrente entra no dispositivo pelo pólo de maior potencial e sai
pelo pólo de menor potencial. Exemplo: Lâmpada.

                                                  V
                                    I                       I
                                         +              -
                                    Figura 22. Bipolo Passivo.

        Acompanhando o sentido da corrente elétrica, verificamos que a bateria eleva o
potencial do circuito, fornecendo energia, e a lâmpada provoca queda de potencial no
circuito, consumindo energia, isto é, transformando-a em luz (e em calor).


                                                                   +


                                                                    -
                                             I= 200mA


                  Figura 23. Ação de um Bipolo Ativo e de um Bipolo Passivo

6.5 Terra (GND) ou Potencial de Referência

        Num circuito deve-se sempre estabelecer um ponto cujo potencial elétrico
servirá de referência para a medida das tensões.
        Em geral, a referência é o pólo negativo da fonte de alimentação, que pode ser
considerado um ponto de potencial zero, fazendo com que a tensão entre qualquer outro
ponto do circuito e essa referência seja o próprio potencial elétrico do ponto
considerado. A essa referência damos o nome de terra.

Exemplo = VA é a referência; tensão VBA = VB-VA = VB-0 = VB.




                                                                                               14
Informática Industrial

                                                                    Profa.Luciana Faletti Almeida




                             Figura 24. Representação gráfica do terra


              B      VB                                                    +E
              ●                                                             ●


          E                       L        E                    L                             L
                     I                               I                             I
              ●
              A          VA= 0

                         Figura 25. Representação do terra em um circuito



6.6 Instrumentos de Medidas Elétricas

   a. Multímetro
            Tem finalidade de medir as grandezas elétricas: tensão, corrente e
            resistência.
            Possui dois terminais nos quais são ligadas as pontas de prova ou pontas
            de teste (ponta vermelha ligada ao terminal positivo, ponta preta ligada
            ao terminal negativo)
            Possui alguns controles, sendo o principal a chave rotativa ou conjunto
            de teclas para a seleção da grandeza a ser medida.




                  Figura 26. Exemplo de um multímetro analógico e um

   b. Voltímetro
            Utilizado para medir a tensão elétrica (diferença de potencial) entre dois
            pontos de um circuito elétrico.
            Os terminais do voltímetro devem ser ligados aos dois pontos do circuito
            em que se deseja conhecer a ddp, essa ligação deve ser feita em paralelo
            podendo envolver um ou mais dispositivos.
            Se a tensão a ser medida for CC, o pólo positivo do voltímetro deve ser
            ligado ao ponto de maior potencial e o pólo negativo ao ponto de menor
            potencial.
            Se a tensão a ser medida for CA, os pólos positivo e negativo do
            voltímetro podem ser ligados ao circuito sem se levar em conta a
            polaridade, resultando em uma medida sempre positiva.



                                                                                                  15
Informática Industrial

                                                          Profa.Luciana Faletti Almeida




                    Figura 27. Conexão do voltímetro ao circuito


c. Amperímetro
         É o instrumento utilizado para medir a corrente elétrica que atravessa um
         condutor ou um dispositivo,
         Para medir uma corrente o circuito deve ser aberto no ponto desejado,
         ligando o amperímetro em série para que a corrente passe por ele.
         A corrente que passa por um dispositivo pode ser medida antes ou depois
         dele, já que a corrente que entra num bipolo é a mesma que sai.
         Se CC o pólo positivo do amperímetro deve ser ligado ao ponto pelo qual
         a corrente entra, e o pólo negativo ao ponto pelo qual ela sai.




                 Figura 28. Conexão do amperímetro ao circuito




                                                                                        16
Informática Industrial

                                                               Profa.Luciana Faletti Almeida



7. Resistência Elétrica

        A resistência é uma característica elétrica dos materiais, que representa a
oposição à passagem da corrente elétrica. Essa oposição à condução da corrente elétrica
é provocada, principalmente, pela dificuldade dos elétrons livres se movimentarem pela
estrutura atômica dos materiais.
        A resistência elétrica é representada pela letra R e sua unidade de medida é ohm
[Ω]. A seguir, estão os símbolos mais usuais para representar a resistência em um
circuito elétrico.




                     Figura 29. Simbologia de resistências em circuitos

7.1. Primeira lei de Ohm

        Uma resistência comporta-se como um bipolo passivo, isto é, consome a
energia elétrica fornecida por uma fonte de alimentação, provocando queda de potencial
elétrico no circuito quando a corrente passa por ela. A intensidade dessa corrente I
depende do valor da tensão V aplicada e da própria resistência R.




                           Figura 30. Queda de potencial na Resistência

        O circuito abaixo mostra uma fonte variável ligada a uma resistência elétrica.
Em paralelo com a resistência, o voltímetro mede a tensão nela aplicada. Em série com
a resistência, o amperímetro mede a corrente que atravessa.




                                 Figura 31. Relação entre V, I e R

       Para cada tensão aplicada à resistência (V1, V2, ..., Vn), obtém-se uma corrente
diferente (I1, I2,...In).



                                                                                               17
Informática Industrial

                                                                  Profa.Luciana Faletti Almeida



       Fazendo a relação entre V e I para cada caso observa-se que V1/ I1 = V2 / I2 = Vn /
In = constante.
       Essa característica linear é o que chamamos de comportamento ôhmico, sendo
que esse valor constante equivale à resistência elétrica R do material, cuja unidade de
medida é ohm [Ω].
       A relação entre tensão, corrente e resistência é denominada primeira lei de Ohm,
cuja expressão matemática é:
                                             V=R.I
7.2 Condutância

        A condutância é outra característica dos materiais e, ao contrário da resistência
expressa a facilidade com que a corrente elétrica pode atravessá-los.
        Assim, a expressão da condutância é o inverso da resistência, sendo simbolizada
pela letra G, cuja unidade de medida é 1/ohm [Ω-1] ou siemens [S].

                                             G = 1/R




                           Figura 32. Relação de condutância e resistência

7.3 Curto Circuito

        Quando ligamos um condutor (R≅0) diretamente entre os pólos de uma fonte de
alimentação ou de uma tomada da rede elétrica, a corrente tende a ser extremamente
elevada.
        Essa condição é denominada curto circuito, devendo ser evitada, pois a corrente
alta produz um calor intenso, podendo danificar a fonte de alimentação ou provocar
incêndio na instalação elétrica.




                                      Figura 33. Curto circuito

       Por isso, é comum as fontes de alimentação possuírem internamente circuitos de
proteção contra curto circuito e ou circuitos limitadores de corrente.
       É o que ocorre também com as instalações elétricas, que possui fusíveis que
queimam ou disjuntores que se desarmam na ocorrência de uma elevação brusca da
corrente, protegendo toda fiação da instalação.


                                                                                               18
Informática Industrial

                                                           Profa.Luciana Faletti Almeida



7.4 Resistor

      O resistor é um dispositivo cujo valor de resistência, sob condições normais,
permanece constante.
      Das características dos resistores duas merecem uma explicação adicional:

               Potência: o conceito de potência, isto é, relacionado ao aquecimento
               provocado pela passagem da corrente pela resistência. Por isso o
               fabricante informa qual a potência máxima que o resistor suporta sem
               alterar o seu valor além da tolerância prevista e sem danificá-lo.
               Tolerância: os resistores não são componentes ideais. Por isso os
               fabricantes fornecem seu valor nominal RN acompanhado de uma
               tolerância r%, que nada mais é do que sua margem de erro, expressando
               a faixa de valores prevista para ele. Assim, o valor real R de um resistor
               pode estar compreendido entre um valor mínimo Rm e o máximo RM,
               sendo essa faixa de resistências dada por R = RN ± r%.

7.4.1 Código de cores

       Os resistores de maior potência, por terem maiores dimensões, podem ter
gravados em seus corpos os seus valores nominais e tolerâncias. Porém, os resistores de
baixa potência são muito pequenos, tornando inviável essa gravação.
       Assim sendo, gravam-se nos resistores anéis coloridos que, a partir de um
código de cores preestabelecido, informam os seus valores nominais e suas tolerâncias.
       Existem dois códigos de cores: um para resistores de 5% e 10% de tolerância,
formado por quatro anéis; outro para resistores de 1% e 2% de tolerância (resistores de
precisão) formado por cinco anéis.
       A leitura do valor nominal e da tolerância de um resistor é feita conforma mostra
o esquema abaixo:




                                                                                        19
Informática Industrial

                                                               Profa.Luciana Faletti Almeida




                          Figura 34. Código de cores de resistores

7.5 Resistências Variáveis

        Diversos dispositivos são fabricados para atuarem como resistências variáveis
num circuito elétrico. A resistência variável é aquela que possui uma haste para o ajuste
manual da resistência entre os seus terminais.
        Os símbolos usuais para essas resistências variáveis são mostrados na figura
abaixo.



                             Figura 35. Simbologia resistência variável

       As resistências variáveis possuem três terminais. A resistência entre as duas
extremidades é o seu valor nominal RN (resistência máxima), sendo que a resistência
ajustada é obtida entre uma das extremidades e o terminal central, que é acoplado
mecanicamente à haste de ajuste, conforme mostra a figura abaixo.




                              Figura 36. Esquema resistência variável




                                                                                               20
Informática Industrial

                                                                Profa.Luciana Faletti Almeida



7.6 Segunda Lei de Ohm

        A segunda lei de Ohm estabelece a relação entre a resistência de um material
com a sua natureza e suas dimensões.
        Quanto à natureza, os materiais se diferenciam por suas resistividades,
característica essa representada pela letra grega ρ (rô), cuja unidade de medida é ohm.
metro [Ω.m]. Quanto às dimensões do material, é importante o seu comprimento L, em
[m], e a área da seção transversal S, em [m2].
        A segunda lei de Ohm expressa a relação entre essas características da seguinte
forma: “A resistência R de um material é diretamente proporcional à sua resistividade ρ
e ao seu comprimento L, e inversamente proporcional à área de sua seção transversal S”.

                                            R = (ρ.L) / S

       Portanto a resistência elétrica aumenta com o aumento da resistividade do
material, com o aumento do seu comprimento e com a diminuição da área de sua seção
transversal.




       Figura 37. Relação da resistência do material com seu comprimento, sua resistividade e sua
                                        área transversal.



       A tabela a seguir mostra a resistividade média ρ de diferentes materiais. Esses
valores são aproximados e tomados a uma temperatura de 20°C.




                                                                                              21
Informática Industrial

                                                          Profa.Luciana Faletti Almeida




8. Potência e Energia Elétrica

        Em um circuito elétrico, a potência é definida como sendo a quantidade de carga
elétrica Q que uma fonte de tensão V pode fornecer ao circuito num intervalo de tempo
∆t.
                                          P = (V.Q) /∆t

        Mas Q/∆t corresponde a corrente elétrica I fornecida pela fonte de alimentação
ao circuito. Assim a expressão da potência pode ser resumida como:

                                            P=V.I

       A unidade de medida de potência em circuitos CC é denominada watt [W].
       No resistor a potência dissipada em função de R pode ser calculada pelas
expressões:
                               P = R.I2     ou     P = V2/R


9. Leis de Kirchhoff e Associação de Resistores

As leis de Kirchhoff envolvem conceitos básicos para resolução e análise de circuitos
elétricos, tanto em corrente contínua como em alternada. Antes de apresentá-las
precisamos conhecer os elementos que formam um circuito elétrico.
                Ramo = qualquer parte de um circuito elétrico composta por um ou mais
                dispositivos ligados em série é denominada ramo;
                Nó = qualquer ponto de um circuito elétrico no qual há a conexão de três
                ou mis ramos é denominado nó;
                Malha = qualquer parte de um circuito elétrico cujos ramos formam um
                caminho fechado para a corrente é denominada malha;




                                                                                       22
Informática Industrial

                                                           Profa.Luciana Faletti Almeida




                              Figura 38. Exemplo de Ramo




                               Figura 39. Exemplo de Nó




                             Figura 40. Exemplo de Malha

9.1 Leis de Kirchhoff

        Um circuito admite um único sentido de corrente com um único valor para cada
ramo. Uma vez conhecido os sentidos e as intensidades das correntes em todos os ramos
de um circuito, todas as tensões podem também ser denominadas.
        A compreensão e análise de um circuito dependem das duas leis básicas da
eletricidade apresentadas em seguida.

9.1.1 Lei de Kirchhoff para corrente – Lei dos nós

       Definindo arbitrariamente as correntes que chegam ao nó como positivas e as
que saem do nó como negativas, a lei de Kirchhoff para correntes é: “A soma algébrica
das correntes em um nó é igual a zero, ou seja, a soma das correntes que chegam em
um nó é igual a soma das correntes que saem desse nó”.




                                                                                        23
Informática Industrial

                                                            Profa.Luciana Faletti Almeida




                                  Figura 41. Lei dos Nós

9.1.2 Lei de Kirchhoff para tensões – Lei das malhas

        Adotando um sentido arbitrário de corrente para análise de uma malha, e
considerando as tensões que elevam o potencial do circuito como positivas (geradores) e
as tensões que causam quedas de potencial como negativas (receptores passivos e
ativos), a Lei de Kirchhoff para tensões é: “A soma algébrica das tensões em uma malha
é zero, ou seja, a soma das tensões que elevam o potencial do circuito é igual à soma das
tensões que causam a queda de potencial”.




                                Figura 42. Lei das Malhas

9.2 Associação de Resistores

        Num circuito elétrico, os resistores podem estar ligados em série e/ou paralelo,
em função das características dos dispositivos envolvidos no circuito, da necessidade de
dividir uma tensão ou uma corrente, ou de obter uma resistência com valores diferentes
dos valores encontrados comercialmente.
        Uma rede resistiva é um circuito formado por diversas resistências, ligadas em
série e /ou paralelo, alimentadas por uma única fonte de alimentação E.




                                                                                         24
Informática Industrial

                                                               Profa.Luciana Faletti Almeida




                                 Figura 43. Rede Resistiva

        As principais características de uma rede resistiva são:
                A resistência equivalente Req vista pela fonte de alimentação;
                A corrente total I fornecia pela fonte de alimentação;
        Isso significa que se todos os resistores dessa rede forem substituídos uma única
resistência de valor Req, a fonte de alimentação E fornecerá a mesma corrente I,
conforme figura abaixo.




                             Figura 44. Resistência Equivalente



9.2.1 Associação Série de Resistores

        Na associação série o resistores estão ligados de forma que a corrente I que
passa por eles seja a mesma, e a tensão total E aplicada aos resistores se subdivida entre
eles proporcionalmente aos seus valores.




                          Figura 45. Associação Série de Resistores

        Pela lei de Kirchhoff para tensões, a soma das tensões nos resistores é igual à
tensão total aplicada E:
                                   E = V1+V2+...+Vn

Em que: V1 = R1.I; V2 = R2.I;...; Vn = Rn.I
Substituindo as tensões nos resistores pela primeira lei de Ohm tem-se:

                 E = R1.I + R2.I + ...+ Rn.I ⇒ E = I.( R1+ R2+ ...+ Rn)



                                                                                            25
Informática Industrial

                                                              Profa.Luciana Faletti Almeida

Dividindo-se a tensão E pela corrente I chega-se a:

                                E/I = ( R1+ R2+ ...+ Rn)

         O resultado E/I corresponde à resistência equivalente Req da associação série,
isto é, a resistência que a fonte de alimentação entende como sendo sua carga.

                                 Req = R1+ R2+ ...+ Rn

       Se os n resistores da associação série forem iguais a R, a resistência equivalente
pode ser calculada por:

                                        Req = n.R

       Nesse circuito, a potência total Pe fornecida pela fonte ao circuito é igual à soma
das potências dissipadas pelos resistores (P1 + P2 + ...+Pn).




                             Figura 46. Potência Circuito Série

       Portanto a potencia total PE = E.I fornecida pela fonte é igual a potencia
dissipada pela resistência equivalente Peq = Req. I2.

                              PE = P1 + P2 + ...+Pn = Peq.

9.2.2 Associação Paralela de Resistores

       Na associação paralela, os resistores estão ligados de forma que a tensão total E
aplicada ao circuito seja a mesma em todos os resistores, e a corrente I do circuito se
subdivida entre eles de forma inversamente proporcional aos seus valores.




                        Figura 47. Associação Paralela de Resistores




                                                                                            26
Informática Industrial

                                                             Profa.Luciana Faletti Almeida


       Pela lei de Kirchhoff para correntes, a soma das correntes nos resistores é igual à
corrente total I fornecida pela fonte:

                                      I = I1+I2+...+In

Em que: I1 = E/R1 ; I2 = E/R2 ; ... ; In = E/Rn

Substituindo as correntes nos resistores pela primeira lei de Ohm tem-se:

             I = E/R1 + E/R2 + ... + E/Rn ; I = E(1/R1 + 1/R2 + ... + 1/Rn)

Dividindo-se a corrente I pela tensão E, chega-se a:

                             I/E = (1/R1 + 1/R2 + ... + 1/Rn)

        O resultado I/E corresponde à condutância equivalente Geq da associação
paralela. Invertendo esse valor, obtém-se, portanto, a resistência equivalente Req que a
fonte de alimentação entende como sendo a sua carga.

                             1/Req = 1/R1 + 1/R2 + ... + 1/Rn

       Se os n resistores da associação paralela forem iguais a R, a resistência
equivalente pode ser calculada por:
                                    Req = R/n

       No caso especifico de dois resistores ligados em paralelo à resistência
equivalente pode ser calculada por uma equação mais simples:

                         1/Req = 1/R1 + 1/R2 = (R1 + R2) / R1.R2

                                   Req = R1.R2 / R1 + R2

Finalmente as relações entre as potências envolvidas é PE = P1 + P2 + ...+ Pn = Peq

9.2.3 Associação Mista de Resistores

         A associação mista é formada por resistores ligados em série e em paralelo, não
existindo uma equação geral para a resistência equivalente, pois ela depende da
configuração do circuito.
        Se o circuito tiver apenas uma fonte de alimentação (rede resistiva), a sua análise,
isto é, a determinação das correntes e tensões nos diversos ramos e resistores do circuito
pode ser feita aplicando apenas os conceitos de associação série e paralela de resistores,
e da lei de Ohm.

Método de análise

   No caso de não se conhecer nenhuma tensão ou corrente interna do circuito, o
método para a sua análise completa é o seguinte:


                                                                                          27
Informática Industrial

                                                              Profa.Luciana Faletti Almeida


   1) Calcula-se a resistência equivalente Req do circuito;




                                Figura 48. Associação Mista

   2) Calcula-se a corrente I fornecida pela fonte de alimentação ao circuito;




                          Figura 49. Corrente fornecida pela fonte

   3) Desmembra-se a resistência equivalente, passo a passo, calculando as tensões e
      ou/ correntes em cada parte do circuito, conforme a necessidade, até obter as
      tensões e correntes desejadas.




                            Figura 50. Análise do Circuito Misto



9.3 Configuração Estrela e Triângulo

        Em um circuito é comum os resistores estarem ligados conforme as
configurações estrela ou triângulo, conforme figura abaixo.
        Essas configurações não se caracterizam nem como série nem como paralelo,
dificultando o cálculo da resistência equivalente do circuito e, portanto, a sua análise.




                        Figura51. Confugurações Triângulo e Estrela



                                                                                           28
Informática Industrial

                                                             Profa.Luciana Faletti Almeida


       Para resolver esse problema, é possível converter uma configuração na outra,
fazendo com que os resistores mudem de posição sem, no entanto, mudarem as
características elétricas do circuito.

9.3.1 Conversão estrela-triângulo




                         Figura52. Conversão Estrela-Triângulo



                          R12 = R1.R2 + R1.R3 + R2.R3 / R3

                          R13 = R1.R2 + R1.R3 + R2.R3 / R2

                          R23 = R1.R2 + R1.R3 + R2.R3 / R1


9.3.2 Conversão triângulo-estrela




                         Figura53. Conversão Triângulo-Estrela

                            R1 = R12.R13 / R12 + R13 + R23

                            R2 = R12.R23 / R12 + R13 + R23

                            R3 = R13.R23 / R12 + R13 + R23




                                                                                          29
Informática Industrial

                                                                Profa.Luciana Faletti Almeida



10. Capacitor e Capacitância

10.1 Conceito de dispositivo reativo

        Vamos tratar de dois dispositivos chamados reativos: o capacitor e o indutor,
bem como suas aplicações básicas.
        Vamos diferenciar um dispositivo resistivo de um dispositivo reativo. Um
dispositivo resistivo, como por exemplo, o resistor, é aquele que resiste à passagem de
corrente, mantendo o seu valor ôhmico R constante tanto para corrente contínua como
para corrente alternada. Isso significa que a resistência R depende unicamente das
características do dispositivo, e não de como variam a tensão e a corrente nele aplicadas.
        Já o dispositivo reativo reage às variações de corrente, e seu valor ôhmico muda
conforme a velocidade da variação da corrente nele aplicada. Essa reação às variações
de corrente é denominada reatância capacitiva XC [Ω] ou reatância indutiva XL [Ω].
        Nesse capítulo trataremos do comportamento desse tipo de dispositivo apenas
em corrente contínua, incluindo, porém, o período de transição entre a ligação do
circuito reativo e a sua estabilização.

10.2 Capacitor

       Considere duas placas condutoras paralelas A e B, denominadas armaduras,
separadas por um material isolante denominado dielétrico.




                              Figura54. Armadura e dielétrico

       Aplicando uma diferença de potencial (tensão) entre as placas, com potencial
positivo na placa A e potencial negativo na placa B, a placa A começa a ceder elétrons
para o pólo positivo da fonte, carregando-se positivamente +q, e a placa B,
simultaneamente, começa a atrair elétrons do pólo negativo da fonte carregando-se
negativamente com carga –q, formando um fluxo de elétrons (corrente i).




                               Figura55. DDP entre as placas

       Como entre as placas existe um material isolante, esse fluxo de elétrons não o
atravessa, fazendo com que as cargas fiquem armazenadas nas placas.


                                                                                             30
Informática Industrial

                                                               Profa.Luciana Faletti Almeida

        Conforme aumenta a carga q armazenada nas placas, aumenta a diferença de
potencial v entre elas, fazendo com que o fluxo de elétrons diminua.
        Após um determinado tempo, a carga armazenada atinge seu valor máximo Q.
Isso ocorre quando a diferença de potencial entre as placas se iguala à tensão da fonte (v
= E), cessando o fluxo de elétrons (i = 0).




                      Figura56. DDP entre placas igual a tensão da fonte

        Esse dispositivo, com capacidade de armazenar cargas elétricas (energia
eletrostática) é chamado de capacitor ou condensador, cujos símbolos mais comuns são
representados na figura a seguir.




                              Figura57. Símbolos de capacitores

        Em geral, nos capacitores fabricados com placas condutoras separadas por um
dielétrico, a tensão pode ser aplicada aos seus terminais com qualquer polaridade.
        Em alguns capacitores, como os eletrolíticos de alumínio ou de tântalo, os
terminais devem ser polarizados corretamente; caso contrário eles pode ser danificados.
Para isso os fabricantes indicam o terminal positivo ou negativo no próprio
encapsulamento, por meio de sinais + ou -.

10.3 Capacitância

       A capacidade de armazenamento de cargas elétricas é chamada de capacitância,
simbolizada pela letra C.

10.3.1 Características elétricas

       A capacitância é a medida da carga elétrica Q, em coulomb [C], que o capacitor
pode armazenar por unidade de tensão V, em volts [V]. Matematicamente temos:

                                     C=Q/V
Pela expressão, a unidade de capacitância é coulomb/volt [C/V], mas é conhecida por
farad [F].

10.3.2 Características físicas

        A capacitância de um capacitor de placas paralelas depende da área S [m2] das
placas, da distância d [m] entre elas e do tipo de material dielétrico.



                                                                                                31
Informática Industrial

                                                               Profa.Luciana Faletti Almeida




                              Figura58. Símbolos de capacitores

       A característica do material dielétrico que é determinante na capacitância é
denominada permissividade absoluta, e é representada pela letra grega ε (épsilon), cuja
unidade de medida é farad/metro [F/m]. Matematicamente temos:

                                         C = ε. S / d
                               -12
       No vácuo, ε0 = 8,9. 10 F/m. Para os demais materiais essa característica pode
ser dada em relação à permissividade do vácuo, conforme a tabela abaixo:

                          Dielétrico       Permissividade - ε [F/m]
                              Ar                      ε0
                          Polietileno              2,3. ε0
                            Papel                  3,5. ε0
                          Baquelite                4,8. ε0
                            Mica                    6. ε0
                          Porcelana                6,5. ε0

10.3.3 Comportamento elétrico do capacitor

       Vamos analisar, em detalhes, o comportamento da tensão e da corrente no
capacitor. Considere o circuito abaixo com a chave S aberta e o capacitor inicialmente
descarregado, isto é, VC = 0.




      Figura59. Circuito para análise de comportamento de tensão e corrente no capacitor

      Fechando a chave no instante t = 0, a tensão entre as placas do capacitor cresce
exponencialmente até atingir o valor máximo, isto é, VC = E.




                                                                                             32
Informática Industrial

                                                             Profa.Luciana Faletti Almeida




                       Figura60. Gráfico de estabilização da tensão

       Com a corrente acontece o contrário, inicialmente, com as placas do capacitor
descarregadas, a corrente não encontra qualquer resistência para fluir, tendo um valor
máximo i = I, caindo exponencialmente até cessar, i = 0.
       O período entre o fechamento da chave e a estabilização da tensão é rápido, mas
não instantâneo, sendo denominado transitório.




                                  Figura61. Transitório

Esse comportamento do capacitor leva-nos as seguintes conclusões:




                       Figura62. Resumo comportamento capacitor

   1) Quando o capacitor está totalmente descarregado, a fonte o “enxerga” como um
      curto circuito (XC = 0). Por isso, VC = 0 e i = imáx = I.
   2) Conforme as placas se carregam e a tensão VC aumenta, a fonte “enxerga” o
      capacitor como se ele fosse uma reatância XC crescente, fazendo com que a
      corrente i diminua.
   3) Quando o capacitor está totalmente carregado, a tensão entre as suas placas se
      iguala a da fonte, VC = E, que o “enxerga” como um circuito aberto (XC = ∞ ).
      Por isso, i = 0.

10.4 Especificações dos capacitores

       Dentre as especificações fornecidas pelos fabricantes de capacitores as mais
importantes são:



                                                                                           33
Informática Industrial

                                                              Profa.Luciana Faletti Almeida

       Valor nominal = É o valor da capacitância do capacitor que, dependendo do
       tipo, pode abranger uma ampla faixa, desde alguns picofarads [pF] até alguns
       milifarads [mF].
       Tolerância = dependendo da tecnologia de fabricação e do material dielétrico
       empregado, a tolerância dos capacitores pode variar em geral ela está entre ±1%
       e ±20%.
       Tensão de isolação = é a máxima tensão que pode ser aplicada continuamente
       ao capacitor, indo desde alguns volts [V] até alguns quilovolts [KV]. A máxima
       tensão de isolação está relacionada, principalmente, com o dielétrico utilizado na
       fabricação do capacitor. Isso se justifica pelo fato de que uma tensão muito
       elevada pode gerar um campo elétrico entre as placas suficiente para romper o
       dielétrico, abrindo um caminho de baixa resistência para a corrente. Quando isso
       ocorre, dizemos que o capacitor possui uma resistência de fuga, podendo,
       inclusive, entrar em curto circuito.

10.5 Associação de Capacitores

       Os capacitores podem ser ligados em série e/ou em paralelo, em função da
necessidade de dividir a tensão ou obter uma capacitância diferente dos valores
comerciais.

10.5.1 Associação em Série

       Na associação série, os capacitores estão ligados de forma que a carga Q
armazenada em cada um deles seja a mesma, e a tensão E total aplicada aos capacitores
se subdivida entre eles de forma inversamente proporcional aos seus valores.




                        Figura63. Circuito com capacitores em série

        Pela lei de Kirchhoff para tensões, a soma das tensões nos capacitores é igual à
tensão total E aplicada: E = V1 + V2 +...+ Vn. Como V = Q/C, tem-se:

           E = Q/C1 + Q/C2 + ... + Q/Cn => E = Q.(1/C1 + 1/C2 +...+1/Cn)

                           E/Q = (1/C1 + 1/C2 +...+1/Cn)
       O termo E/Q corresponde ao inverso da capacitância equivalente vista pela fonte
de alimentação. Assim:

                                 Ceq = (1/C1 + 1/C2 +...+1/Cn)




                                                                                           34
Informática Industrial

                                                             Profa.Luciana Faletti Almeida

       Isso significa que, se todos os capacitores dessa associação forem substituídos
por uma única capacitância de valor Ceq, a fonte de alimentação E fornecerá a mesma
carga Q ao circuito.
       No caso de n capacitores em série e iguais a C, tem-se:

                                       Ceq = C/n

       Para dois capacitores em série tem-se:

                                 Ceq = C1.C2 / C1 + C2

10.5.2 Associação em Paralela

       Na associação paralela, os capacitores estão ligados de forma que a tensão total
E aplicada ao circuito seja a mesma em todos os capacitores, e a carga total do circuito
se subdivida entre eles proporcionalmente aos seus valores.




                      Figura64. Circuito com capacitores em paralelo

       Adaptando a lei de Kirchhoff para a distribuição das cargas, a soma das cargas
nos capacitores é igual à carga total Q fornecida pela fonte: Q = Q1 + Q2 + ...+ Qn.
       Substituindo as cargas dos capacitores por Q = E.C, tem-se que:

                    Q = C1.E + C2.E+ ... +Cn.E => Q = E (C1 + C2+ ... +Cn)

        Dividindo a carga Q pela tensão E, chega-se a: Q/E = C1 + C2+ ... +Cn.
        O resultado Q/E corresponde à capacitância equivalente Ceq da associação
paralela, isto é, a capacitância que a fonte de alimentação entende como sendo a sua
carga. Assim:
                                  Ceq = C1 + C2+ ... +Cn

       Isso significa que, se todos os capacitores dessa associação forem substituídos
por uma única capacitância de valor Ceq, a fonte de alimentação E fornecerá a mesma
carga Q ao circuito.
       No caso de n capacitores em paralelo e iguais a C, tem-se:

                                    Ceq = n.C
Obs: em um texto, podemos representar dois capacitores em paralelo da seguinte forma:
C1 // C2.




                                                                                            35
Informática Industrial

                                                               Profa.Luciana Faletti Almeida


10.5.3 Associação Mista

       A associação mista é formada por capacitores ligados em série e em paralelo,
não existindo uma equação geral para a capacitância equivalente, pois ela depende da
configuração do circuito.
       Assim, o calculo deve ser feito por etapas, conforme as ligações entre os
capacitores.


10.6 Circuito RC de Temporização

        Um circuito temporizador é aquele que executa uma ação após um intervalo de
tempo preestabelecido.
        Analisaremos o comportamento de um circuito formado por um resistor e um
capacitor ligados em série que estabelece uma relação entre os níveis de tensão e um
intervalo de tempo definido pelos valores do resistor e do capacitor.

10.6.1 Constante de Tempo

        Como vimos o tempo de carga de um capacitor alimentado diretamente por uma
fonte de tensão não é instantâneo, embora seja muito pequeno.
        Ligando um resistor em série com um capacitor, pode-se retardar o tempo de
carga, fazendo com que a tensão entre os seus terminais cresça mais lentamente.




              Figura 65. Retardo do tempo de carga do capacitor pelo uso de um resistor

       Vamos analisar dimensionalmente o produto entre resistência e capacitância
[R.C], considerando as seguintes unidades de medida das grandezas envolvidas:

   •   [R] = Ω (ohm) = V/A (volt/ampère)
   •   [C] = F (farad) = C/V (coulomb/volt)
   •   [I] =A (ampère) = C/s (coulomb/segundos)

               [R.C] = Ω.F = V/A . C/V = C/A = C/(C/s) = s = segundo

        Portanto, o produto R.C resulta na grandeza tempo [segundo]. Esse produto é
denominado constante de tempo, representado pela letra grega τ (tau). Matematicamente:

                                              τ = R.C



                                                                                            36
Informática Industrial

                                                             Profa.Luciana Faletti Almeida


       Num circuito RC, quanto maior a constante de tempo, maior é o tempo
necessário para que o capacitor se carregue.

10.6.2 Carga do Capacitor

       Considere um circuito RC série ligado a uma fonte de tensão contínua E e a
chave S aberta, com o capacitor completamente descarregado.




                                 Figura 66. Circuito RC de carga

       Pela lei de Kirchhoff para tensões, a equação geral desse circuito é (S fechada):

                                       vc (t) + vr (t) = E

       A corrente que flui no circuito durante a carga do capacitor pode ser determinada
aplicando a primeira lei de Ohm no resistor R:

                                      i(t) = vr(t)/R

        Ligando a chave S no instante t = 0, observa-se que as tensões e a corrente do
circuito resultam nos seguintes gráficos e expressões:

   a) Tensão no Resistor
      A tensão vr cai exponencialmente de E até zero, pois o capacitor descarregado
      comporta-se como um curto circuito e totalmente carregado comporta-se como
      um circuito aberto. Matematicamente:

                                vr(t) = E.e-t/τ , em que e ≈ 2,72.

       Observe que o termo e-t/τ diminui com o aumento do instante t.




                                                                                          37
Informática Industrial

                                                            Profa.Luciana Faletti Almeida




                  Figura 67. Gráfico de queda de tensão no resistor

b) Tensão no Capacitor
   A tensão vc no capacitor cresce exponencialmente desde zero até a tensão E,
   quando a sua carga é total. Portanto, a tensão no capacitor é uma exponencial
   crescente, que pode ser deduzida da equação geral do circuito e da expressão de
   vr: vc (t) + vr (t) = E ⇒ vc (t) = E - E.e-t/τ .

                                   vc (t) = E(1 -E.e-t/τ)

   Observe que o termo (1 – E.e-t/τ) aumenta com o aumento do instante t.




                Figura 68. Gráfico de aumento de tensão no capacitor

c) Corrente no Circuito
   A corrente i inicia com um valor máximo I = E/R quando o capacitor esta
   descarregado (curto circuito), caindo até zero quando o capacitor esta totalmente
   carregado (circuito aberto). Matematicamente: i(t) = vr(t)/R.

                                        i(t) = I.e-t/τ

   Observe que o termo e-t/τ diminui com o aumento do instante t.




                                                                                           38
Informática Industrial

                                                               Profa.Luciana Faletti Almeida




                Figura 69. Gráfico de queda de corrente na carga do capacitor

10.6.3 Descarga no Capacitor

       Considere um circuito RC em série ligado a uma fonte de tensão E e a uma
chave S inicialmente na posição 1, com o capacitor já completamente carregado.




                     Figura 70. Circuito de Descarga do capacitor S em 1

        Dessa forma tem-se: i = 0; vc = E; vr = 0. Ao mudar a chave S para posição 2 no
instante t = 0, a fonte de alimentação é desligada, ficando o circuito RC em curto.




                     Figura 71. Circuito de descarga de capacitor S em 2

        Assim, o capacitor se descarrega sobre o resistor, de forma que sua tensão
descreve uma curva exponencial decrescente.
        Nesse caso, o capacitor comporta-se como uma fonte de tensão, cuja capacidade
de fornecimento de corrente é limitada pelo tempo de descarga.
        Pela lei de Kirchhoff para tensões, a equação geral do circuito quando a chave S
esta na posição 2 é:
                                           vc(t) = -vr(t)




                                                                                                39
Informática Industrial

                                                            Profa.Luciana Faletti Almeida


a) Corrente no Circuito
   A corrente i flui agora no sentido contrário, decrescendo exponencialmente
   desde -I = -E/R até zero, devido à descarga do capacitor. Assim sua expressão é
   dada por:
                                     i(t) = -I. e-t/τ




             Figura 72. Curva característica da corrente na descarga do capacitor

b) Tensão no Resistor
   A tensão vr no resistor acompanha a corrente, de forma que sua expressão é dada
   por:
                                   vr(t) = - E.e-t/τ




         Figura 73. Curva característica da tensão no resitor na descarga do capacitor

c) Tensão no Capacitor

   A expressão de descarga no capacitor é dada por:

                                       vc(t) = E. e-t/τ




                                                                                          40
Informática Industrial

                                                                Profa.Luciana Faletti Almeida




            Figura 74. Curva característica da tensão no capacitor na descarga do capacitor



10.7 Aplicação do Circuito RC

        Nesse tópico analisaremos uma aplicação prática de um circuito RC gerador de
onda quadrada. Porém esse circuito utiliza um dispositivo ainda não estudado: a porta
lógica inversora. Assim vamos realizar uma rápida análise desse dispositivo.

Porta Lógica Inversora
       A eletrônica digital trabalha com apenas dois níveis de tensão, caracterizando,
assim, o nível lógico de um bit. O nível lógico zero corresponde a uma tensão baixa ou
0V. O nível lógico um corresponde a uma tensão alta cujo valor depende da tensão de
alimentação Vcc do circuito integrado considerado, sendo Vcc igual a 5V se a família for
TTL e entre 3V e 18V se a família for CMOS.




                            Figura 75. Gráfico nível lógico porta inversora

        A porta lógica inversora, também denominada porta não (not), caracteriza-se
por complementar o nível lógico presente em sua entrada, isto é, S = Ā, conforme
mostra a tabela da figura 76 a seguir:

                                   Símbolo             Tabela Verdade
                                                          A    S
                               A                S         0    1
                                                          1    0
                         Figura 76. Símbolo e tabela verdade porta inversora



Gerador de Onda Quadrada

       O circuito da figura 77 é muito utilizado para gerar uma onda quadrada de alta
freqüência (MHz), servindo como sinal de relógio (clock) em sistemas digitais
seqüenciais e microprocessadores.


                                                                                              41
Informática Industrial

                                                              Profa.Luciana Faletti Almeida




                           Figura 77. Circuito Gerador de onda quadrada

       Considerando inicialmente o capacitor descarregado, a entrada da porta B
encontra-se com o nível lógico “0”, de forma que a saída do circuito apresenta nível
lógico “1”.
       O nível lógico “1” da saída é realimentado simultaneamente para a entrada da
porta A (impondo nível lógico “0” em sua saída) e para extremidade X do resistor R.
       Assim, o capacitor C começa a se carregar por meio de R. Quando Vc atinge um
nível V1 suficientemente alto, a porta B complementa a saída, que passa a ter nível
lógico “0”.




                 Figura 78. Circuito Gerador de onda quadrada – Carga do capacitor

       O nível lógico “0” da saída é agora realimentado simultaneamente para a entrada
da porta A (impondo nível lógico “1” em sua saída) e para extremidade X do resistor R.
Assim, o capacitor C começa a se descarregar por meio de R. Quando Vc atinge um
nível V0 suficientemente baixo, a porta B atua, de forma que a saída do circuito é
novamente complementada, voltando a apresentar nível lógico “1”.




                Figura 79. Circuito Gerador de onda quadrada – Descarga do capacitor

       Esse processo cíclico repete-se continuamente, fazendo com que o sinal de saída
tenha a forma de uma onda quadrada, cujo período T, em [s], é diretamente
proporcional à constante de tempo R.C, sendo a freqüência f, em [Hz] dada por: f = 1 / T.



                                                                                           42
Informática Industrial

                       Profa.Luciana Faletti Almeida




Figura 80. Onda Quadrada




                                                    43

Mais conteúdo relacionado

Mais procurados

3 Eletrónica Fundamental - Noções básicas de eletricidade
3   Eletrónica Fundamental - Noções básicas de eletricidade3   Eletrónica Fundamental - Noções básicas de eletricidade
3 Eletrónica Fundamental - Noções básicas de eletricidade
Sandra Minhós
 
Relatório de física resistência e resistividade
Relatório de física   resistência e resistividadeRelatório de física   resistência e resistividade
Relatório de física resistência e resistividade
Victor Said
 
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente ContínuaCircuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
José Albuquerque
 
Curso eletricista básico iniciante abril 2011
Curso eletricista básico iniciante   abril 2011Curso eletricista básico iniciante   abril 2011
Curso eletricista básico iniciante abril 2011
Marcio Roberto Patelli
 
Apostila eletricidade senai
Apostila eletricidade senaiApostila eletricidade senai
Apostila eletricidade senai
comentada
 
Fundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicosFundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicos
Robson Josué Molgaro
 
Conceitos fundamentais de eletricidade feito (2)
Conceitos fundamentais de eletricidade feito (2)Conceitos fundamentais de eletricidade feito (2)
Conceitos fundamentais de eletricidade feito (2)
Bento Lafayet
 
Aula 2 - Noções Básicas de Eletricidade
Aula 2 - Noções Básicas de EletricidadeAula 2 - Noções Básicas de Eletricidade
Aula 2 - Noções Básicas de Eletricidade
Vitor Hugo Melo Araújo
 
400 questões de física resolvidas e comentadas
400 questões de física resolvidas e comentadas400 questões de física resolvidas e comentadas
400 questões de física resolvidas e comentadas
LuizHenriqueFerreira46
 
Capítulo 1 noções gerais de eletricidade
Capítulo 1   noções gerais de eletricidadeCapítulo 1   noções gerais de eletricidade
Capítulo 1 noções gerais de eletricidade
Jorge Alex Rodrigues
 
Relatório de física 3 lei de ohm
Relatório de física 3  lei de ohmRelatório de física 3  lei de ohm
Relatório de física 3 lei de ohm
Antonio Rizonaldo Lima de Oliveira
 
Corrente continua e leis
Corrente continua e leisCorrente continua e leis
Corrente continua e leis
João Ferreira
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação Eletrostática
Victor Said
 
Eletricidade
EletricidadeEletricidade
Eletricidade
Saulo Costa
 
Fazer os exercicios
Fazer os exerciciosFazer os exercicios
Fazer os exercicios
Paulo Miguel De Toni
 
Apostila eletrostática
Apostila eletrostáticaApostila eletrostática
Apostila eletrostática
Marco Antonio Sanches
 
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF) Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
Ronaldo Santana
 
Eletronica
EletronicaEletronica
Eletronica
Gilberto Andrade
 
Eletrodinâmica
EletrodinâmicaEletrodinâmica
Eletrodinâmica
Fabrício Souza
 

Mais procurados (19)

3 Eletrónica Fundamental - Noções básicas de eletricidade
3   Eletrónica Fundamental - Noções básicas de eletricidade3   Eletrónica Fundamental - Noções básicas de eletricidade
3 Eletrónica Fundamental - Noções básicas de eletricidade
 
Relatório de física resistência e resistividade
Relatório de física   resistência e resistividadeRelatório de física   resistência e resistividade
Relatório de física resistência e resistividade
 
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente ContínuaCircuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
Circuitos eletricos 1 - Circuitos Elétricos em Corrente Contínua
 
Curso eletricista básico iniciante abril 2011
Curso eletricista básico iniciante   abril 2011Curso eletricista básico iniciante   abril 2011
Curso eletricista básico iniciante abril 2011
 
Apostila eletricidade senai
Apostila eletricidade senaiApostila eletricidade senai
Apostila eletricidade senai
 
Fundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicosFundamentos da eletricidade - Conceitos básicos
Fundamentos da eletricidade - Conceitos básicos
 
Conceitos fundamentais de eletricidade feito (2)
Conceitos fundamentais de eletricidade feito (2)Conceitos fundamentais de eletricidade feito (2)
Conceitos fundamentais de eletricidade feito (2)
 
Aula 2 - Noções Básicas de Eletricidade
Aula 2 - Noções Básicas de EletricidadeAula 2 - Noções Básicas de Eletricidade
Aula 2 - Noções Básicas de Eletricidade
 
400 questões de física resolvidas e comentadas
400 questões de física resolvidas e comentadas400 questões de física resolvidas e comentadas
400 questões de física resolvidas e comentadas
 
Capítulo 1 noções gerais de eletricidade
Capítulo 1   noções gerais de eletricidadeCapítulo 1   noções gerais de eletricidade
Capítulo 1 noções gerais de eletricidade
 
Relatório de física 3 lei de ohm
Relatório de física 3  lei de ohmRelatório de física 3  lei de ohm
Relatório de física 3 lei de ohm
 
Corrente continua e leis
Corrente continua e leisCorrente continua e leis
Corrente continua e leis
 
Relatório de Física - Atuação Eletrostática
Relatório de Física - Atuação EletrostáticaRelatório de Física - Atuação Eletrostática
Relatório de Física - Atuação Eletrostática
 
Eletricidade
EletricidadeEletricidade
Eletricidade
 
Fazer os exercicios
Fazer os exerciciosFazer os exercicios
Fazer os exercicios
 
Apostila eletrostática
Apostila eletrostáticaApostila eletrostática
Apostila eletrostática
 
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF) Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
Aula de Eletricidade 9º Ano (FÍSICA - Ensino Fundamental EF)
 
Eletronica
EletronicaEletronica
Eletronica
 
Eletrodinâmica
EletrodinâmicaEletrodinâmica
Eletrodinâmica
 

Destaque

Relatorio redes dinamica
Relatorio redes dinamicaRelatorio redes dinamica
Relatorio redes dinamica
luizgraf
 
Apostila de Pneumática
Apostila de PneumáticaApostila de Pneumática
Apostila de Pneumática
luizgraf
 
Comunicação PC - PC via porta paralela
Comunicação PC - PC via porta paralelaComunicação PC - PC via porta paralela
Comunicação PC - PC via porta paralela
luizgraf
 
NR-10
NR-10NR-10
NR-10
luizgraf
 
Apostila de PIC
Apostila de PICApostila de PIC
Apostila de PIC
luizgraf
 
Aula de eletrônica digital
Aula de eletrônica digitalAula de eletrônica digital
Aula de eletrônica digital
luizgraf
 
Apostila metrologia
Apostila metrologiaApostila metrologia
Apostila metrologia
luizgraf
 
Relatorio redes estática
Relatorio redes estáticaRelatorio redes estática
Relatorio redes estática
luizgraf
 
Aulas de Eletrônica Analógica
Aulas de Eletrônica Analógica Aulas de Eletrônica Analógica
Aulas de Eletrônica Analógica
luizgraf
 
Apostila de hidráulica
Apostila de hidráulicaApostila de hidráulica
Apostila de hidráulica
luizgraf
 

Destaque (10)

Relatorio redes dinamica
Relatorio redes dinamicaRelatorio redes dinamica
Relatorio redes dinamica
 
Apostila de Pneumática
Apostila de PneumáticaApostila de Pneumática
Apostila de Pneumática
 
Comunicação PC - PC via porta paralela
Comunicação PC - PC via porta paralelaComunicação PC - PC via porta paralela
Comunicação PC - PC via porta paralela
 
NR-10
NR-10NR-10
NR-10
 
Apostila de PIC
Apostila de PICApostila de PIC
Apostila de PIC
 
Aula de eletrônica digital
Aula de eletrônica digitalAula de eletrônica digital
Aula de eletrônica digital
 
Apostila metrologia
Apostila metrologiaApostila metrologia
Apostila metrologia
 
Relatorio redes estática
Relatorio redes estáticaRelatorio redes estática
Relatorio redes estática
 
Aulas de Eletrônica Analógica
Aulas de Eletrônica Analógica Aulas de Eletrônica Analógica
Aulas de Eletrônica Analógica
 
Apostila de hidráulica
Apostila de hidráulicaApostila de hidráulica
Apostila de hidráulica
 

Semelhante a Apostila de análise de circuitos elétricos

eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisieletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
kauannogueira700
 
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
AdsonGuimares1
 
M2_CIRCUITOS_CORRENTE_CONTINUA.pdf
M2_CIRCUITOS_CORRENTE_CONTINUA.pdfM2_CIRCUITOS_CORRENTE_CONTINUA.pdf
M2_CIRCUITOS_CORRENTE_CONTINUA.pdf
desportistaluis
 
Eletricidade básica mesquita
Eletricidade básica mesquitaEletricidade básica mesquita
Eletricidade básica mesquita
rlaabs
 
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .pptELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
marioaraujorosas1
 
Introdução a Eletrostática e Processos de eletrização.
Introdução a Eletrostática e Processos de eletrização.Introdução a Eletrostática e Processos de eletrização.
Introdução a Eletrostática e Processos de eletrização.
Lara Lídia
 
Apostila eja-3-serie-medio-20111
Apostila eja-3-serie-medio-20111Apostila eja-3-serie-medio-20111
Apostila eja-3-serie-medio-20111
Marcia Marcia.Cristina2
 
Cap 8 eletricidade básica
Cap 8 eletricidade básicaCap 8 eletricidade básica
Cap 8 eletricidade básica
Priscilla Sky
 
Eletrostatica
EletrostaticaEletrostatica
Eletrostatica
Carol Higa
 
08a eletricidade básica
08a   eletricidade básica08a   eletricidade básica
08a eletricidade básica
Ricardo Pampu
 
Plantão eletrostática
Plantão eletrostáticaPlantão eletrostática
Plantão eletrostática
Roberto Bagatini
 
Aula 1 física terceiro ano
Aula 1 física terceiro anoAula 1 física terceiro ano
Aula 1 física terceiro ano
Flávia Freitas Morais
 
Eletrostática fundamentos
Eletrostática   fundamentosEletrostática   fundamentos
Eletrostática fundamentos
Marco Antonio Sanches
 
Apostila eletricidade aula 1
Apostila eletricidade aula 1Apostila eletricidade aula 1
Apostila eletricidade aula 1
Jhurengo Margon
 
EletrostáTica
EletrostáTicaEletrostáTica
EletrostáTica
guestafb584
 
Eletrostática
EletrostáticaEletrostática
Aula 3 - Carga Elétrica e Eletrização.pptx
Aula 3 - Carga Elétrica e Eletrização.pptxAula 3 - Carga Elétrica e Eletrização.pptx
Aula 3 - Carga Elétrica e Eletrização.pptx
RafaelRocha658505
 
Processos de eletrização e Lei de Coulomb
Processos de eletrização e Lei de CoulombProcessos de eletrização e Lei de Coulomb
Processos de eletrização e Lei de Coulomb
O mundo da FÍSICA
 
Eletricidade capítulo 01
Eletricidade capítulo 01Eletricidade capítulo 01
Eletricidade capítulo 01
Antonio Tadeu Segat
 
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
leandro50276492
 

Semelhante a Apostila de análise de circuitos elétricos (20)

eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisieletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
eletricidade.pdfprofessorhistoriafisicauaiwiwiwiwisi
 
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
TREINAMENTO BÁSICO ELETRICIDADE DE NR 10.
 
M2_CIRCUITOS_CORRENTE_CONTINUA.pdf
M2_CIRCUITOS_CORRENTE_CONTINUA.pdfM2_CIRCUITOS_CORRENTE_CONTINUA.pdf
M2_CIRCUITOS_CORRENTE_CONTINUA.pdf
 
Eletricidade básica mesquita
Eletricidade básica mesquitaEletricidade básica mesquita
Eletricidade básica mesquita
 
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .pptELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
ELETROSTÁTICA e FORÇA ELÉTRICA força eletrica .ppt
 
Introdução a Eletrostática e Processos de eletrização.
Introdução a Eletrostática e Processos de eletrização.Introdução a Eletrostática e Processos de eletrização.
Introdução a Eletrostática e Processos de eletrização.
 
Apostila eja-3-serie-medio-20111
Apostila eja-3-serie-medio-20111Apostila eja-3-serie-medio-20111
Apostila eja-3-serie-medio-20111
 
Cap 8 eletricidade básica
Cap 8 eletricidade básicaCap 8 eletricidade básica
Cap 8 eletricidade básica
 
Eletrostatica
EletrostaticaEletrostatica
Eletrostatica
 
08a eletricidade básica
08a   eletricidade básica08a   eletricidade básica
08a eletricidade básica
 
Plantão eletrostática
Plantão eletrostáticaPlantão eletrostática
Plantão eletrostática
 
Aula 1 física terceiro ano
Aula 1 física terceiro anoAula 1 física terceiro ano
Aula 1 física terceiro ano
 
Eletrostática fundamentos
Eletrostática   fundamentosEletrostática   fundamentos
Eletrostática fundamentos
 
Apostila eletricidade aula 1
Apostila eletricidade aula 1Apostila eletricidade aula 1
Apostila eletricidade aula 1
 
EletrostáTica
EletrostáTicaEletrostáTica
EletrostáTica
 
Eletrostática
EletrostáticaEletrostática
Eletrostática
 
Aula 3 - Carga Elétrica e Eletrização.pptx
Aula 3 - Carga Elétrica e Eletrização.pptxAula 3 - Carga Elétrica e Eletrização.pptx
Aula 3 - Carga Elétrica e Eletrização.pptx
 
Processos de eletrização e Lei de Coulomb
Processos de eletrização e Lei de CoulombProcessos de eletrização e Lei de Coulomb
Processos de eletrização e Lei de Coulomb
 
Eletricidade capítulo 01
Eletricidade capítulo 01Eletricidade capítulo 01
Eletricidade capítulo 01
 
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
Aula de eletrostática - eletrodinamica - eletricidade - magnetismo e eletroma...
 

Último

Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTAEstudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
deboracorrea21
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Mary Alvarenga
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Falcão Brasil
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
Sandra Pratas
 
Conhecimento sobre Vestimenta Anti chamas
Conhecimento sobre Vestimenta Anti chamasConhecimento sobre Vestimenta Anti chamas
Conhecimento sobre Vestimenta Anti chamas
edusegtrab
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
principeandregalli
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
LeideLauraCenturionL
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
Luzia Gabriele
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
Atividade Análise literária O GUARANI.pdf
Atividade Análise literária O GUARANI.pdfAtividade Análise literária O GUARANI.pdf
Atividade Análise literária O GUARANI.pdf
sesiomzezao
 
escrita criativa utilizada na arteterapia
escrita criativa   utilizada na arteterapiaescrita criativa   utilizada na arteterapia
escrita criativa utilizada na arteterapia
shirleisousa9166
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
Mary Alvarenga
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
AntHropológicas Visual PPGA-UFPE
 
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdfPERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
EsterGabriiela1
 
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONALEMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
JocelynNavarroBonta
 

Último (20)

Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTAEstudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
Estudo Infantil - MISSÕES NACIONAIS - IGREJA BATISTA
 
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.Atividade Dias dos Pais -  Meu Pai, Razão da Minha História.
Atividade Dias dos Pais - Meu Pai, Razão da Minha História.
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
 
Conhecimento sobre Vestimenta Anti chamas
Conhecimento sobre Vestimenta Anti chamasConhecimento sobre Vestimenta Anti chamas
Conhecimento sobre Vestimenta Anti chamas
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdfHistória das ideias pedagógicas no Brasil - Demerval Saviani.pdf
História das ideias pedagógicas no Brasil - Demerval Saviani.pdf
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
Atividade Análise literária O GUARANI.pdf
Atividade Análise literária O GUARANI.pdfAtividade Análise literária O GUARANI.pdf
Atividade Análise literária O GUARANI.pdf
 
escrita criativa utilizada na arteterapia
escrita criativa   utilizada na arteterapiaescrita criativa   utilizada na arteterapia
escrita criativa utilizada na arteterapia
 
Mini livro sanfona - Minha Escola Tem História.
Mini livro  sanfona - Minha Escola Tem História. Mini livro  sanfona - Minha Escola Tem História.
Mini livro sanfona - Minha Escola Tem História.
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
 
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdfPERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
PERÍODO COMPOSTO POR COORDENAÇÃO PDF.pdf
 
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONALEMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
 

Apostila de análise de circuitos elétricos

  • 2. Informática Industrial Profa.Luciana Faletti Almeida Introdução a Eletricidade 1. O que é eletricidade? Todos os efeitos da eletricidade podem ser explicados e previstos, se considerarmos a existência de uma partícula minúscula chamada elétron. Essa teoria eletrônica afirma que todos os efeitos elétricos e eletrônicos são devido ao movimento de elétrons de um lugar para outro, ou a existência de mais ou menos elétrons em um determinado lugar. 1.1. Matéria A matéria é aquilo que existe, que ocupa lugar no espaço e tem massa. É sempre constituída de partículas elementares com massa não nula (como os átomos, em escala menor, os prótons, elétrons e nêutrons); Exemplo: água, madeira, ferro, petróleo, ar, etc. 1.2. Átomo É a unidade fundamental da matéria, constituindo a menor partícula de um elemento. O átomo é composto de um núcleo central contendo prótons (com carga positiva), e nêutrons (sem carga). Elétrons (com carga negativa e massa insignificante) revolvem em torno do núcleo em diferentes trajetórias imaginárias chamadas órbitas. Figura 1. Estrutura de um átomo. 1.3. Molécula Uma molécula é formada quando átomos do mesmo ou de diferentes elementos se combinam através de uma forte ligação. Para separar os átomos de uma molécula é necessário uma quantidade razoável de energia. Exemplo: molécula da água = H2O – dois átomos do elemento hidrogênio e um átomo do elemento oxigênio. 2
  • 3. Informática Industrial Profa.Luciana Faletti Almeida 1.4. Revisão Molécula = combinação forte de dois ou mais átomos Átomo = menor partícula física em que se pode dividir um elemento. o Núcleo = parte pesada do átomo carregada positivamente, em torno do qual giram os elétrons. o Nêutron = partícula neutra e pesada do núcleo, composta por um próton e um elétron. o Próton = partícula pesada carregada positivamente. o Elétron = pequena partícula que gira em torno do núcleo, carregada negativamente e praticamente sem peso. Elétrons presos = elétrons da órbita interna de um átomo, que dificilmente poderão ser retirados da mesma. Elétrons livres = elétrons das órbitas externas do átomo, facilmente removível. Eletricidade = efeito do movimento de elétrons de um ponto para outro, ou efeito causado pelo excesso ou falta de elétrons em um material. 3
  • 4. Informática Industrial Profa.Luciana Faletti Almeida Princípios da Eletrostática 2. Carga elétrica Os elétrons circulam ao redor do núcleo de um átomo, e são mantidos nas suas órbitas pela ação da carga positiva do núcleo. Quando se pode forçar o elétron a sair de sua órbita, a ação deste elétron passará a ser conhecida pelo nome de eletricidade. Os elétrons que forem retirados de suas órbitas, sob uma ação qualquer, causarão uma falta de elétrons no lugar de onde saíram, e um excesso de elétrons no ponto que atingirem. O excesso de elétrons em uma substância é chamado de carga negativa. A falta de elétrons em uma substância é chamada de carga positiva. A existência dessas cargas é conhecida como eletricidade estática. Para originar uma carga positiva ou negativa, ó elétron terá que se movimentar, enquanto os prótons no núcleo permanecem imóveis. Qualquer material que apresente uma carga positiva terá seu número normal de prótons no núcleo e falta de elétrons. No material carregado negativamente, teremos excesso de elétrons. + - + - + - + + + - - - + - + - + + + - - - + - Barra sem Carga Barra com Carga Positiva Barra com Carga Negativa Figura 2. Corpos carregados. A carga elétrica fundamental é simbolizada pela letra q e sua unidade de medida é o Coulomb [C]. O módulo da carga elétrica de um próton e de um elétron vale: q = 1.6X10-19. Assim, a carga Q de um corpo pode ser calculada multiplicando-se a carga q de um elétron pelo número de elétrons inseridos ou retirados. Q = n.q 2.1 Atração e Repulsão de Cargas Quando os corpos se apresentam carregados de eletricidade estática, eles se comportam de modo diferente do normal. Quando se coloca uma esfera carregada positivamente, próximo à outra carregada negativamente, elas se atrairão mutuamente. Se as cargas forem suficientemente grandes e as esferas leves e tiverem liberdade de movimento, elas entrarão em contato. Assim, cargas opostas se atraem e cargas iguais se repelem. 4
  • 5. Informática Industrial Profa.Luciana Faletti Almeida Figura 3. Atração e Repulsão. 2.2 Descargas das cargas estáticas Sempre que dois corpos carregados com cargas opostas são colocados próximos, o excesso de elétrons do corpo carregado negativamente será atraído na direção do corpo carregado positivamente. Unindo-se os dois corpos por um fio, estamos oferecendo um caminho para os elétrons da carga negativa se deslocarem em direção a carga positiva, e então as cargas se equilibrarão. Ao invés de ligarmos os corpos por um fio podemos encostá-los (contato) e outra vez as cargas se equilibrarão. Se aproximarmos corpos com cargas elevadas, os elétrons poderão pular da carga negativa para a carga positiva, antes dos dois corpos entrarem em contato. Nesse caso, veremos de fato a descarga sob forma de um arco. 2.3 Condutores e isolantes Quando vários átomos se reúnem para formar certos sólidos, como por exemplo, metais, os elétrons das orbitais mais externas não permanecem ligados aos respectivos átomos, adquirindo liberdade de se movimentar no interior do sólido. Esses elétrons são denominados elétrons livres, e materiais que possuem esse tipo de elétron, permitem o transporte de carga elétrica através dele, sendo chamados de condutores de eletricidade. Ao contrário dos condutores, existem sólidos nos quais os elétrons estão firmemente ligados aos respectivos átomos, essas substâncias não possuem elétrons livres. Assim, não será possível o deslocamento de carga elétrica através desses corpos, que são denominados isolantes elétricos ou dielétricos. 2.4 Processos de Eletrização Eletrização por atrito = atritando dois materiais isolantes diferentes, o calor gerado pode ser suficiente para transferir elétrons de um material para outro, ficando ambos os materiais eletrizados, sendo um positivo (o que cedeu elétrons) e outro negativo (o que recebeu elétrons); Eletrização por contato = se um corpo eletrizado negativamente é colocado em contato com outro neutro, o excesso de elétrons do corpo negativo será transferido para o neutro até que ocorra o equilíbrio eletrostático. Assim, o corpo neutro fica eletrizado negativamente. Eletrização por indução: 5
  • 6. Informática Industrial Profa.Luciana Faletti Almeida o Aproximando-se um corpo eletrizado positivamente de um corpo condutor neutro isolado, seus elétrons livres serão atraídos para a extremidade mais próxima do corpo positivo. o Dessa forma o corpo neutro fica polarizado, ou seja, com excesso de elétrons em uma extremidade (pólo negativo) e falta de elétrons na outra (pólo positivo). o Aterrando o pólo positivo desse corpo, ele atrairá elétrons da terra, até que essa extremidade fique novamente neutra. o Desfazendo o aterramento e afastando o corpo com carga positiva, o corpo inicialmente neutro fica eletrizado negativamente. Corpo neutro polarizado e Corpo Positivo eletrizando-se negativamente + + + -- + + - + + - + - + - - - - - - - - - - Corpo eletrizado negativamente Figura 4. Eletrização por Indução. 3. Campo Elétrico Uma carga cria ao seu redor um campo elétrico E, que pode ser representado por linhas de campo radiais orientadas, uma vez que é uma grandeza vetorial, sendo que a sua unidade de medida é Newton/Coulomb [N/C]. E E + – Campo Divergente Campo Convergente Figura 5. Campos Convergentes e Divergentes. Se a carga é positiva o campo é divergente, isto é, as linhas de campo saem da carga; Se a carga é negativa o campo é convergente, isto é, as linhas de campo chegam à carga; A intensidade E do campo elétrico criado por uma carga Q é diretamente proporcional à intensidade dessa carga e da constante dielétrica do meio K, e é inversamente proporcional ao quadrado da distância d entre a carga e o ponto considerado. 6
  • 7. Informática Industrial Profa.Luciana Faletti Almeida E = K.Q / d2 Onde: K = 9x109 N.m2/C2 (no vácuo e no ar) Q = módulo da carga elétrica, em Coulomb [C]. d = distância, em metro [m]. 3.1 Comportamento das Linhas de Campo Quando duas cargas de sinais contrários estão próximas, as linhas de campo divergentes da carga positiva tendem a convergir para a carga negativa. Força de atração entre as cargas. Quando duas cargas de mesmos sinais estão próximas, se elas são positivas, as linhas de campo são divergentes para ambas as cargas, e se elas são negativas as linhas de campo são convergentes para ambas as cargas. Força de repulsão entre as cargas. Figura 6. Linhas de Campo. Quando duas placas paralelas são eletrizadas com cargas de sinais contrários, surge entre elas um campo elétrico uniforme, caracterizado por linhas de campo paralelas. Figura 7. Campo Uniforme. 3.2 Força Elétrica Consideremos uma região submetida a um campo elétrico E uniforme. Colocando uma carga Q num ponto dessa região, essa carga ficará sujeita a uma força F, cuja unidade de medida é newton [N] e cujo módulo pode ser calculado por: 7
  • 8. Informática Industrial Profa.Luciana Faletti Almeida F = Q.E Onde: Q = módulo da carga elétrica em Coulomb [C]; E = módulo do campo elétrico, em newton/Coulomb [N/C]; Se a carga é positiva a força age no mesmo sentido da linha de campo. Se a carga é negativa a força age no sentido contrário ao da linha de campo. Na realidade, essa força que age na carga é de atração ou repulsão entre Q e a carga geradora desse campo elétrico. 3.3 Lei de Coulomb Como decorrência do estudo do campo elétrico gerado por uma carga e da força que surge em outra carga colocada nesse campo, pode-se deduzir a expressão que nos dá o módulo da força de atração ou de repulsão entre duas cargas elétricas, devido à interação dos seus campos elétricos. Essa expressão é denominada Lei de Coulomb: F = K.QA.QB / d2 Onde: K = 9x109 N.m2/C2 (no vácuo e no ar) QA e QB = módulos das cargas, em Coulomb [C] d = distância, em metro [m] 4. Potencial Elétrico Vimos que em uma região submetida a um campo elétrico, uma carga fica sujeita a uma força, fazendo com que ela se movimente. Isto significa que em cada ponto dessa região existe um potencial para realização de trabalho, independente da carga ali colocada. O símbolo do potencial elétrico é V e a sua unidade de medida é o volt [V]. Na realidade, esse potencial depende da carga Q geradora do campo elétrico, sendo que, quanto maior à distância d entre o ponto considerado e a carga geradora, menor o potencial elétrico V. Figura 8. Relação do Potencial Elétrico com a distância d da carga geradora. 8
  • 9. Informática Industrial Profa.Luciana Faletti Almeida O potencial elétrico é uma grandeza escalar, podendo ser positivo ou negativo, dependendo da carga. V = K.Q/d Onde: K = 9x109 N.m2/C2 (no vácuo e no ar); Q = valor absoluto da carga, em Coulomb [C]; d = distância, em metro [m]; Por essa expressão, vê-se que uma carga positiva cria ao seu redor potenciais positivos e uma carga negativa cria potenciais negativos. V -V Q+ • Q- • d d Figura 9. Potenciais Negativos e Positivos. Em uma superfície, em que todos os pontos são eqüidistantes em relação à carga geradora, os potenciais são iguais. Nesse caso temos as denominadas superfícies eqüipotenciais. V2 V1 Q V1 V 2 V3 V1 V2 Figura 10. Superfícies Equipotenciais. 9
  • 10. Informática Industrial Profa.Luciana Faletti Almeida Princípios da Eletrodinâmica 5. Tensão Elétrica Seja uma região submetida a um campo elétrico E criado por uma carga positiva Q. Colocando um elétron –q no ponto A, situado a uma distância dA da carga Q, ele se movimentará no sentido contrário do campo, devido à força F que surge no elétron, indo em direção ao ponto B, situado a uma distância dB da carga Q. Como dA > dB, o potencial do ponto A é menor que o do ponto B, isto é, VA < VB. Conclui-se, então, que uma carga negativa move-se do potencial menor para o maior. Se uma carga positiva +q fosse colocada no ponto B, ela se movimentaria na mesma direção do campo elétrico, indo do potencial maior para o menor. Assim, para que uma carga se movimente, isto é, para que haja condução de eletricidade, é necessário que ela esteja submetida a uma diferença de potencial ou ddp. A ddp entre dois pontos é denominada tensão elétrica, podendo ser simbolizada pelas letras V, U ou E, cuja unidade de medida também é o volt [V]. V=U=E=VB-VA Observação: Usaremos os símbolos: E para identificar fontes de alimentação contínuas (pilhas, bateria e fonte de tensão eletrônica); V para identificar a tensão contínua entre terminais de outros dispositivos (resistores, indutores e capacitores); Fonte de Alimentação Dispositivo VB VB + E + VB>VA V - - VA VA Figura 11. Simbologia de tensão 6. Corrente Elétrica O conceito de diferença de potencial elétrico e movimento de carga elétrica leva- nos a eletrodinâmica, isto é, ao estudo das cargas elétricas em movimento. Aplicando-se uma ddp em um condutor metálico, os seus elétrons livres movimentam-se de forma ordenada no sentido contrário ao do campo elétrico. Essa movimentação de elétrons denomina-se corrente elétrica, que pode ser simbolizada por i ou I, sendo que sua unidade de medida é o ampère [A]. 10
  • 11. Informática Industrial Profa.Luciana Faletti Almeida 6.1 Intensidade da Corrente Elétrica A intensidade i da corrente elétrica é a medida da variação da carga dQ, em Coulomb [C], por meio da seção transversal de um condutor durante um intervalo de temo dt, em segundos [s]: i = dQ / dt Se a variação da carga for linear, a corrente será contínua e constante. Nesse caso ela será simbolizada por I e poderá ser calculada por: I = ∆Q / ∆t OBS: pelas expressões apresentadas, vemos que o ampère [A] é a denominação usual para unidade de medida de corrente, que é Coulomb/segundo [C/s]. 6.2 Corrente elétrica convencional Nos condutores metálicos, a corrente elétrica é formada apenas por cargas negativas (elétrons) que se deslocam do potencial menor para o maior. VB>VA VB - E VA - - Corrente Elétrica I Figura 12. Deslocamento de Corrente com cargas negativas. Assim, para evitar o uso freqüente do valor negativo para a corrente, utiliza-se um sentido convencional para ela, isto é, considera-se que a corrente elétrica em um condutor metálico seja formada por cargas positivas, indo do potencial maior para o menor. VB>VA VB + E VA + + Corrente Elétrica I Figura 13. Deslocamento da Corrente Convencional. Em um circuito indica-se a corrente convencional por uma seta, no sentido do potencial maior para o menor. 11
  • 12. Informática Industrial Profa.Luciana Faletti Almeida Figura 14. Indicação do sentido da corrente convencional em um circuito. 6.3 Fontes de Alimentação O dispositivo que fornece tensão a um circuito é chamado genericamente de fonte de tensão ou fonte de alimentação. As Pilhas e Baterias são fontes de alimentação que produzem energia elétrica a partir de energia liberada por reações químicas. Figura 15. Pilhas e Baterias As Fontes de Alimentação Eletrônicas são circuitos eletrônicos que convertem a tensão alternada da rede elétrica em tensão contínua. São conhecidos como eliminadores de bateria, e são fartamente utilizados em equipamentos portáteis como videogames e aparelhos de som. V V Fonte Eletrônica t t Figura 16. Conversão de tensão alternada em contínua por fonte eletrônica Em laboratórios e oficinas de eletrônica, é mais utilizada a fonte de alimentação variável (ou ajustável). Essa fonte tem vantagem de oferecer tensão contínua e constante, cujo valor pode ser ajustado manualmente, conforme a necessidade. Fontes variáveis mais simples, o único tipo de controle é o de ajuste de tensão. Nas mais sofisticadas, existem ainda os controles de ajuste fino de tensão e de limite de corrente. 12
  • 13. Informática Industrial Profa.Luciana Faletti Almeida E Figura 17. Símbolo da fonte de alimentação variável As fontes de alimentação analisadas têm em comum a característica de fornecer corrente contínua ao circuito (CC). Assim, as fontes de alimentação CC mantêm sempre a mesma polaridade, de forma que a corrente no circuito tem sempre o mesmo sentido. V I E It t It E Circuito It Figura 18. Sentido da corrente em fontes CC A rede elétrica fornece às residências e indústrias a corrente alternada (CA). Assim, a tensão muda de polaridade em períodos bem definidos, de forma que a corrente no circuito circula hora de um lado, hora de outro. A corrente alternada pode ser gerada em diferentes tipos de usina de energia elétrica, como por exemplo, as hidrelétricas, termoelétricas e nucleares. v(t) i(t) t t i(t) v(t) ∼ i(t) Circuito Figura 19. Sentido da corrente em fontes CA 6.4 Bipolos Gerador e Receptor Denomina-se bipolo qualquer dispositivo formado por dois terminais, podendo ser representado genericamente pelo símbolo mostrado ao lado. 13
  • 14. Informática Industrial Profa.Luciana Faletti Almeida Bipolo genérico Figura 20. Bipolo O gerador ou bipolo ativo é aquele que eleva o potencial elétrico do circuito, ou seja, a corrente entra no dispositivo pelo pólo de menor potencial e sai pelo pólo de maior potencial. Exemplo: Fonte de alimentação. V I I - + Figura 21. Bipolo Ativo. O receptor ou bipolo passivo é aquele que provoca queda de potencial elétrico no circuito, ou seja, a corrente entra no dispositivo pelo pólo de maior potencial e sai pelo pólo de menor potencial. Exemplo: Lâmpada. V I I + - Figura 22. Bipolo Passivo. Acompanhando o sentido da corrente elétrica, verificamos que a bateria eleva o potencial do circuito, fornecendo energia, e a lâmpada provoca queda de potencial no circuito, consumindo energia, isto é, transformando-a em luz (e em calor). + - I= 200mA Figura 23. Ação de um Bipolo Ativo e de um Bipolo Passivo 6.5 Terra (GND) ou Potencial de Referência Num circuito deve-se sempre estabelecer um ponto cujo potencial elétrico servirá de referência para a medida das tensões. Em geral, a referência é o pólo negativo da fonte de alimentação, que pode ser considerado um ponto de potencial zero, fazendo com que a tensão entre qualquer outro ponto do circuito e essa referência seja o próprio potencial elétrico do ponto considerado. A essa referência damos o nome de terra. Exemplo = VA é a referência; tensão VBA = VB-VA = VB-0 = VB. 14
  • 15. Informática Industrial Profa.Luciana Faletti Almeida Figura 24. Representação gráfica do terra B VB +E ● ● E L E L L I I I ● A VA= 0 Figura 25. Representação do terra em um circuito 6.6 Instrumentos de Medidas Elétricas a. Multímetro Tem finalidade de medir as grandezas elétricas: tensão, corrente e resistência. Possui dois terminais nos quais são ligadas as pontas de prova ou pontas de teste (ponta vermelha ligada ao terminal positivo, ponta preta ligada ao terminal negativo) Possui alguns controles, sendo o principal a chave rotativa ou conjunto de teclas para a seleção da grandeza a ser medida. Figura 26. Exemplo de um multímetro analógico e um b. Voltímetro Utilizado para medir a tensão elétrica (diferença de potencial) entre dois pontos de um circuito elétrico. Os terminais do voltímetro devem ser ligados aos dois pontos do circuito em que se deseja conhecer a ddp, essa ligação deve ser feita em paralelo podendo envolver um ou mais dispositivos. Se a tensão a ser medida for CC, o pólo positivo do voltímetro deve ser ligado ao ponto de maior potencial e o pólo negativo ao ponto de menor potencial. Se a tensão a ser medida for CA, os pólos positivo e negativo do voltímetro podem ser ligados ao circuito sem se levar em conta a polaridade, resultando em uma medida sempre positiva. 15
  • 16. Informática Industrial Profa.Luciana Faletti Almeida Figura 27. Conexão do voltímetro ao circuito c. Amperímetro É o instrumento utilizado para medir a corrente elétrica que atravessa um condutor ou um dispositivo, Para medir uma corrente o circuito deve ser aberto no ponto desejado, ligando o amperímetro em série para que a corrente passe por ele. A corrente que passa por um dispositivo pode ser medida antes ou depois dele, já que a corrente que entra num bipolo é a mesma que sai. Se CC o pólo positivo do amperímetro deve ser ligado ao ponto pelo qual a corrente entra, e o pólo negativo ao ponto pelo qual ela sai. Figura 28. Conexão do amperímetro ao circuito 16
  • 17. Informática Industrial Profa.Luciana Faletti Almeida 7. Resistência Elétrica A resistência é uma característica elétrica dos materiais, que representa a oposição à passagem da corrente elétrica. Essa oposição à condução da corrente elétrica é provocada, principalmente, pela dificuldade dos elétrons livres se movimentarem pela estrutura atômica dos materiais. A resistência elétrica é representada pela letra R e sua unidade de medida é ohm [Ω]. A seguir, estão os símbolos mais usuais para representar a resistência em um circuito elétrico. Figura 29. Simbologia de resistências em circuitos 7.1. Primeira lei de Ohm Uma resistência comporta-se como um bipolo passivo, isto é, consome a energia elétrica fornecida por uma fonte de alimentação, provocando queda de potencial elétrico no circuito quando a corrente passa por ela. A intensidade dessa corrente I depende do valor da tensão V aplicada e da própria resistência R. Figura 30. Queda de potencial na Resistência O circuito abaixo mostra uma fonte variável ligada a uma resistência elétrica. Em paralelo com a resistência, o voltímetro mede a tensão nela aplicada. Em série com a resistência, o amperímetro mede a corrente que atravessa. Figura 31. Relação entre V, I e R Para cada tensão aplicada à resistência (V1, V2, ..., Vn), obtém-se uma corrente diferente (I1, I2,...In). 17
  • 18. Informática Industrial Profa.Luciana Faletti Almeida Fazendo a relação entre V e I para cada caso observa-se que V1/ I1 = V2 / I2 = Vn / In = constante. Essa característica linear é o que chamamos de comportamento ôhmico, sendo que esse valor constante equivale à resistência elétrica R do material, cuja unidade de medida é ohm [Ω]. A relação entre tensão, corrente e resistência é denominada primeira lei de Ohm, cuja expressão matemática é: V=R.I 7.2 Condutância A condutância é outra característica dos materiais e, ao contrário da resistência expressa a facilidade com que a corrente elétrica pode atravessá-los. Assim, a expressão da condutância é o inverso da resistência, sendo simbolizada pela letra G, cuja unidade de medida é 1/ohm [Ω-1] ou siemens [S]. G = 1/R Figura 32. Relação de condutância e resistência 7.3 Curto Circuito Quando ligamos um condutor (R≅0) diretamente entre os pólos de uma fonte de alimentação ou de uma tomada da rede elétrica, a corrente tende a ser extremamente elevada. Essa condição é denominada curto circuito, devendo ser evitada, pois a corrente alta produz um calor intenso, podendo danificar a fonte de alimentação ou provocar incêndio na instalação elétrica. Figura 33. Curto circuito Por isso, é comum as fontes de alimentação possuírem internamente circuitos de proteção contra curto circuito e ou circuitos limitadores de corrente. É o que ocorre também com as instalações elétricas, que possui fusíveis que queimam ou disjuntores que se desarmam na ocorrência de uma elevação brusca da corrente, protegendo toda fiação da instalação. 18
  • 19. Informática Industrial Profa.Luciana Faletti Almeida 7.4 Resistor O resistor é um dispositivo cujo valor de resistência, sob condições normais, permanece constante. Das características dos resistores duas merecem uma explicação adicional: Potência: o conceito de potência, isto é, relacionado ao aquecimento provocado pela passagem da corrente pela resistência. Por isso o fabricante informa qual a potência máxima que o resistor suporta sem alterar o seu valor além da tolerância prevista e sem danificá-lo. Tolerância: os resistores não são componentes ideais. Por isso os fabricantes fornecem seu valor nominal RN acompanhado de uma tolerância r%, que nada mais é do que sua margem de erro, expressando a faixa de valores prevista para ele. Assim, o valor real R de um resistor pode estar compreendido entre um valor mínimo Rm e o máximo RM, sendo essa faixa de resistências dada por R = RN ± r%. 7.4.1 Código de cores Os resistores de maior potência, por terem maiores dimensões, podem ter gravados em seus corpos os seus valores nominais e tolerâncias. Porém, os resistores de baixa potência são muito pequenos, tornando inviável essa gravação. Assim sendo, gravam-se nos resistores anéis coloridos que, a partir de um código de cores preestabelecido, informam os seus valores nominais e suas tolerâncias. Existem dois códigos de cores: um para resistores de 5% e 10% de tolerância, formado por quatro anéis; outro para resistores de 1% e 2% de tolerância (resistores de precisão) formado por cinco anéis. A leitura do valor nominal e da tolerância de um resistor é feita conforma mostra o esquema abaixo: 19
  • 20. Informática Industrial Profa.Luciana Faletti Almeida Figura 34. Código de cores de resistores 7.5 Resistências Variáveis Diversos dispositivos são fabricados para atuarem como resistências variáveis num circuito elétrico. A resistência variável é aquela que possui uma haste para o ajuste manual da resistência entre os seus terminais. Os símbolos usuais para essas resistências variáveis são mostrados na figura abaixo. Figura 35. Simbologia resistência variável As resistências variáveis possuem três terminais. A resistência entre as duas extremidades é o seu valor nominal RN (resistência máxima), sendo que a resistência ajustada é obtida entre uma das extremidades e o terminal central, que é acoplado mecanicamente à haste de ajuste, conforme mostra a figura abaixo. Figura 36. Esquema resistência variável 20
  • 21. Informática Industrial Profa.Luciana Faletti Almeida 7.6 Segunda Lei de Ohm A segunda lei de Ohm estabelece a relação entre a resistência de um material com a sua natureza e suas dimensões. Quanto à natureza, os materiais se diferenciam por suas resistividades, característica essa representada pela letra grega ρ (rô), cuja unidade de medida é ohm. metro [Ω.m]. Quanto às dimensões do material, é importante o seu comprimento L, em [m], e a área da seção transversal S, em [m2]. A segunda lei de Ohm expressa a relação entre essas características da seguinte forma: “A resistência R de um material é diretamente proporcional à sua resistividade ρ e ao seu comprimento L, e inversamente proporcional à área de sua seção transversal S”. R = (ρ.L) / S Portanto a resistência elétrica aumenta com o aumento da resistividade do material, com o aumento do seu comprimento e com a diminuição da área de sua seção transversal. Figura 37. Relação da resistência do material com seu comprimento, sua resistividade e sua área transversal. A tabela a seguir mostra a resistividade média ρ de diferentes materiais. Esses valores são aproximados e tomados a uma temperatura de 20°C. 21
  • 22. Informática Industrial Profa.Luciana Faletti Almeida 8. Potência e Energia Elétrica Em um circuito elétrico, a potência é definida como sendo a quantidade de carga elétrica Q que uma fonte de tensão V pode fornecer ao circuito num intervalo de tempo ∆t. P = (V.Q) /∆t Mas Q/∆t corresponde a corrente elétrica I fornecida pela fonte de alimentação ao circuito. Assim a expressão da potência pode ser resumida como: P=V.I A unidade de medida de potência em circuitos CC é denominada watt [W]. No resistor a potência dissipada em função de R pode ser calculada pelas expressões: P = R.I2 ou P = V2/R 9. Leis de Kirchhoff e Associação de Resistores As leis de Kirchhoff envolvem conceitos básicos para resolução e análise de circuitos elétricos, tanto em corrente contínua como em alternada. Antes de apresentá-las precisamos conhecer os elementos que formam um circuito elétrico. Ramo = qualquer parte de um circuito elétrico composta por um ou mais dispositivos ligados em série é denominada ramo; Nó = qualquer ponto de um circuito elétrico no qual há a conexão de três ou mis ramos é denominado nó; Malha = qualquer parte de um circuito elétrico cujos ramos formam um caminho fechado para a corrente é denominada malha; 22
  • 23. Informática Industrial Profa.Luciana Faletti Almeida Figura 38. Exemplo de Ramo Figura 39. Exemplo de Nó Figura 40. Exemplo de Malha 9.1 Leis de Kirchhoff Um circuito admite um único sentido de corrente com um único valor para cada ramo. Uma vez conhecido os sentidos e as intensidades das correntes em todos os ramos de um circuito, todas as tensões podem também ser denominadas. A compreensão e análise de um circuito dependem das duas leis básicas da eletricidade apresentadas em seguida. 9.1.1 Lei de Kirchhoff para corrente – Lei dos nós Definindo arbitrariamente as correntes que chegam ao nó como positivas e as que saem do nó como negativas, a lei de Kirchhoff para correntes é: “A soma algébrica das correntes em um nó é igual a zero, ou seja, a soma das correntes que chegam em um nó é igual a soma das correntes que saem desse nó”. 23
  • 24. Informática Industrial Profa.Luciana Faletti Almeida Figura 41. Lei dos Nós 9.1.2 Lei de Kirchhoff para tensões – Lei das malhas Adotando um sentido arbitrário de corrente para análise de uma malha, e considerando as tensões que elevam o potencial do circuito como positivas (geradores) e as tensões que causam quedas de potencial como negativas (receptores passivos e ativos), a Lei de Kirchhoff para tensões é: “A soma algébrica das tensões em uma malha é zero, ou seja, a soma das tensões que elevam o potencial do circuito é igual à soma das tensões que causam a queda de potencial”. Figura 42. Lei das Malhas 9.2 Associação de Resistores Num circuito elétrico, os resistores podem estar ligados em série e/ou paralelo, em função das características dos dispositivos envolvidos no circuito, da necessidade de dividir uma tensão ou uma corrente, ou de obter uma resistência com valores diferentes dos valores encontrados comercialmente. Uma rede resistiva é um circuito formado por diversas resistências, ligadas em série e /ou paralelo, alimentadas por uma única fonte de alimentação E. 24
  • 25. Informática Industrial Profa.Luciana Faletti Almeida Figura 43. Rede Resistiva As principais características de uma rede resistiva são: A resistência equivalente Req vista pela fonte de alimentação; A corrente total I fornecia pela fonte de alimentação; Isso significa que se todos os resistores dessa rede forem substituídos uma única resistência de valor Req, a fonte de alimentação E fornecerá a mesma corrente I, conforme figura abaixo. Figura 44. Resistência Equivalente 9.2.1 Associação Série de Resistores Na associação série o resistores estão ligados de forma que a corrente I que passa por eles seja a mesma, e a tensão total E aplicada aos resistores se subdivida entre eles proporcionalmente aos seus valores. Figura 45. Associação Série de Resistores Pela lei de Kirchhoff para tensões, a soma das tensões nos resistores é igual à tensão total aplicada E: E = V1+V2+...+Vn Em que: V1 = R1.I; V2 = R2.I;...; Vn = Rn.I Substituindo as tensões nos resistores pela primeira lei de Ohm tem-se: E = R1.I + R2.I + ...+ Rn.I ⇒ E = I.( R1+ R2+ ...+ Rn) 25
  • 26. Informática Industrial Profa.Luciana Faletti Almeida Dividindo-se a tensão E pela corrente I chega-se a: E/I = ( R1+ R2+ ...+ Rn) O resultado E/I corresponde à resistência equivalente Req da associação série, isto é, a resistência que a fonte de alimentação entende como sendo sua carga. Req = R1+ R2+ ...+ Rn Se os n resistores da associação série forem iguais a R, a resistência equivalente pode ser calculada por: Req = n.R Nesse circuito, a potência total Pe fornecida pela fonte ao circuito é igual à soma das potências dissipadas pelos resistores (P1 + P2 + ...+Pn). Figura 46. Potência Circuito Série Portanto a potencia total PE = E.I fornecida pela fonte é igual a potencia dissipada pela resistência equivalente Peq = Req. I2. PE = P1 + P2 + ...+Pn = Peq. 9.2.2 Associação Paralela de Resistores Na associação paralela, os resistores estão ligados de forma que a tensão total E aplicada ao circuito seja a mesma em todos os resistores, e a corrente I do circuito se subdivida entre eles de forma inversamente proporcional aos seus valores. Figura 47. Associação Paralela de Resistores 26
  • 27. Informática Industrial Profa.Luciana Faletti Almeida Pela lei de Kirchhoff para correntes, a soma das correntes nos resistores é igual à corrente total I fornecida pela fonte: I = I1+I2+...+In Em que: I1 = E/R1 ; I2 = E/R2 ; ... ; In = E/Rn Substituindo as correntes nos resistores pela primeira lei de Ohm tem-se: I = E/R1 + E/R2 + ... + E/Rn ; I = E(1/R1 + 1/R2 + ... + 1/Rn) Dividindo-se a corrente I pela tensão E, chega-se a: I/E = (1/R1 + 1/R2 + ... + 1/Rn) O resultado I/E corresponde à condutância equivalente Geq da associação paralela. Invertendo esse valor, obtém-se, portanto, a resistência equivalente Req que a fonte de alimentação entende como sendo a sua carga. 1/Req = 1/R1 + 1/R2 + ... + 1/Rn Se os n resistores da associação paralela forem iguais a R, a resistência equivalente pode ser calculada por: Req = R/n No caso especifico de dois resistores ligados em paralelo à resistência equivalente pode ser calculada por uma equação mais simples: 1/Req = 1/R1 + 1/R2 = (R1 + R2) / R1.R2 Req = R1.R2 / R1 + R2 Finalmente as relações entre as potências envolvidas é PE = P1 + P2 + ...+ Pn = Peq 9.2.3 Associação Mista de Resistores A associação mista é formada por resistores ligados em série e em paralelo, não existindo uma equação geral para a resistência equivalente, pois ela depende da configuração do circuito. Se o circuito tiver apenas uma fonte de alimentação (rede resistiva), a sua análise, isto é, a determinação das correntes e tensões nos diversos ramos e resistores do circuito pode ser feita aplicando apenas os conceitos de associação série e paralela de resistores, e da lei de Ohm. Método de análise No caso de não se conhecer nenhuma tensão ou corrente interna do circuito, o método para a sua análise completa é o seguinte: 27
  • 28. Informática Industrial Profa.Luciana Faletti Almeida 1) Calcula-se a resistência equivalente Req do circuito; Figura 48. Associação Mista 2) Calcula-se a corrente I fornecida pela fonte de alimentação ao circuito; Figura 49. Corrente fornecida pela fonte 3) Desmembra-se a resistência equivalente, passo a passo, calculando as tensões e ou/ correntes em cada parte do circuito, conforme a necessidade, até obter as tensões e correntes desejadas. Figura 50. Análise do Circuito Misto 9.3 Configuração Estrela e Triângulo Em um circuito é comum os resistores estarem ligados conforme as configurações estrela ou triângulo, conforme figura abaixo. Essas configurações não se caracterizam nem como série nem como paralelo, dificultando o cálculo da resistência equivalente do circuito e, portanto, a sua análise. Figura51. Confugurações Triângulo e Estrela 28
  • 29. Informática Industrial Profa.Luciana Faletti Almeida Para resolver esse problema, é possível converter uma configuração na outra, fazendo com que os resistores mudem de posição sem, no entanto, mudarem as características elétricas do circuito. 9.3.1 Conversão estrela-triângulo Figura52. Conversão Estrela-Triângulo R12 = R1.R2 + R1.R3 + R2.R3 / R3 R13 = R1.R2 + R1.R3 + R2.R3 / R2 R23 = R1.R2 + R1.R3 + R2.R3 / R1 9.3.2 Conversão triângulo-estrela Figura53. Conversão Triângulo-Estrela R1 = R12.R13 / R12 + R13 + R23 R2 = R12.R23 / R12 + R13 + R23 R3 = R13.R23 / R12 + R13 + R23 29
  • 30. Informática Industrial Profa.Luciana Faletti Almeida 10. Capacitor e Capacitância 10.1 Conceito de dispositivo reativo Vamos tratar de dois dispositivos chamados reativos: o capacitor e o indutor, bem como suas aplicações básicas. Vamos diferenciar um dispositivo resistivo de um dispositivo reativo. Um dispositivo resistivo, como por exemplo, o resistor, é aquele que resiste à passagem de corrente, mantendo o seu valor ôhmico R constante tanto para corrente contínua como para corrente alternada. Isso significa que a resistência R depende unicamente das características do dispositivo, e não de como variam a tensão e a corrente nele aplicadas. Já o dispositivo reativo reage às variações de corrente, e seu valor ôhmico muda conforme a velocidade da variação da corrente nele aplicada. Essa reação às variações de corrente é denominada reatância capacitiva XC [Ω] ou reatância indutiva XL [Ω]. Nesse capítulo trataremos do comportamento desse tipo de dispositivo apenas em corrente contínua, incluindo, porém, o período de transição entre a ligação do circuito reativo e a sua estabilização. 10.2 Capacitor Considere duas placas condutoras paralelas A e B, denominadas armaduras, separadas por um material isolante denominado dielétrico. Figura54. Armadura e dielétrico Aplicando uma diferença de potencial (tensão) entre as placas, com potencial positivo na placa A e potencial negativo na placa B, a placa A começa a ceder elétrons para o pólo positivo da fonte, carregando-se positivamente +q, e a placa B, simultaneamente, começa a atrair elétrons do pólo negativo da fonte carregando-se negativamente com carga –q, formando um fluxo de elétrons (corrente i). Figura55. DDP entre as placas Como entre as placas existe um material isolante, esse fluxo de elétrons não o atravessa, fazendo com que as cargas fiquem armazenadas nas placas. 30
  • 31. Informática Industrial Profa.Luciana Faletti Almeida Conforme aumenta a carga q armazenada nas placas, aumenta a diferença de potencial v entre elas, fazendo com que o fluxo de elétrons diminua. Após um determinado tempo, a carga armazenada atinge seu valor máximo Q. Isso ocorre quando a diferença de potencial entre as placas se iguala à tensão da fonte (v = E), cessando o fluxo de elétrons (i = 0). Figura56. DDP entre placas igual a tensão da fonte Esse dispositivo, com capacidade de armazenar cargas elétricas (energia eletrostática) é chamado de capacitor ou condensador, cujos símbolos mais comuns são representados na figura a seguir. Figura57. Símbolos de capacitores Em geral, nos capacitores fabricados com placas condutoras separadas por um dielétrico, a tensão pode ser aplicada aos seus terminais com qualquer polaridade. Em alguns capacitores, como os eletrolíticos de alumínio ou de tântalo, os terminais devem ser polarizados corretamente; caso contrário eles pode ser danificados. Para isso os fabricantes indicam o terminal positivo ou negativo no próprio encapsulamento, por meio de sinais + ou -. 10.3 Capacitância A capacidade de armazenamento de cargas elétricas é chamada de capacitância, simbolizada pela letra C. 10.3.1 Características elétricas A capacitância é a medida da carga elétrica Q, em coulomb [C], que o capacitor pode armazenar por unidade de tensão V, em volts [V]. Matematicamente temos: C=Q/V Pela expressão, a unidade de capacitância é coulomb/volt [C/V], mas é conhecida por farad [F]. 10.3.2 Características físicas A capacitância de um capacitor de placas paralelas depende da área S [m2] das placas, da distância d [m] entre elas e do tipo de material dielétrico. 31
  • 32. Informática Industrial Profa.Luciana Faletti Almeida Figura58. Símbolos de capacitores A característica do material dielétrico que é determinante na capacitância é denominada permissividade absoluta, e é representada pela letra grega ε (épsilon), cuja unidade de medida é farad/metro [F/m]. Matematicamente temos: C = ε. S / d -12 No vácuo, ε0 = 8,9. 10 F/m. Para os demais materiais essa característica pode ser dada em relação à permissividade do vácuo, conforme a tabela abaixo: Dielétrico Permissividade - ε [F/m] Ar ε0 Polietileno 2,3. ε0 Papel 3,5. ε0 Baquelite 4,8. ε0 Mica 6. ε0 Porcelana 6,5. ε0 10.3.3 Comportamento elétrico do capacitor Vamos analisar, em detalhes, o comportamento da tensão e da corrente no capacitor. Considere o circuito abaixo com a chave S aberta e o capacitor inicialmente descarregado, isto é, VC = 0. Figura59. Circuito para análise de comportamento de tensão e corrente no capacitor Fechando a chave no instante t = 0, a tensão entre as placas do capacitor cresce exponencialmente até atingir o valor máximo, isto é, VC = E. 32
  • 33. Informática Industrial Profa.Luciana Faletti Almeida Figura60. Gráfico de estabilização da tensão Com a corrente acontece o contrário, inicialmente, com as placas do capacitor descarregadas, a corrente não encontra qualquer resistência para fluir, tendo um valor máximo i = I, caindo exponencialmente até cessar, i = 0. O período entre o fechamento da chave e a estabilização da tensão é rápido, mas não instantâneo, sendo denominado transitório. Figura61. Transitório Esse comportamento do capacitor leva-nos as seguintes conclusões: Figura62. Resumo comportamento capacitor 1) Quando o capacitor está totalmente descarregado, a fonte o “enxerga” como um curto circuito (XC = 0). Por isso, VC = 0 e i = imáx = I. 2) Conforme as placas se carregam e a tensão VC aumenta, a fonte “enxerga” o capacitor como se ele fosse uma reatância XC crescente, fazendo com que a corrente i diminua. 3) Quando o capacitor está totalmente carregado, a tensão entre as suas placas se iguala a da fonte, VC = E, que o “enxerga” como um circuito aberto (XC = ∞ ). Por isso, i = 0. 10.4 Especificações dos capacitores Dentre as especificações fornecidas pelos fabricantes de capacitores as mais importantes são: 33
  • 34. Informática Industrial Profa.Luciana Faletti Almeida Valor nominal = É o valor da capacitância do capacitor que, dependendo do tipo, pode abranger uma ampla faixa, desde alguns picofarads [pF] até alguns milifarads [mF]. Tolerância = dependendo da tecnologia de fabricação e do material dielétrico empregado, a tolerância dos capacitores pode variar em geral ela está entre ±1% e ±20%. Tensão de isolação = é a máxima tensão que pode ser aplicada continuamente ao capacitor, indo desde alguns volts [V] até alguns quilovolts [KV]. A máxima tensão de isolação está relacionada, principalmente, com o dielétrico utilizado na fabricação do capacitor. Isso se justifica pelo fato de que uma tensão muito elevada pode gerar um campo elétrico entre as placas suficiente para romper o dielétrico, abrindo um caminho de baixa resistência para a corrente. Quando isso ocorre, dizemos que o capacitor possui uma resistência de fuga, podendo, inclusive, entrar em curto circuito. 10.5 Associação de Capacitores Os capacitores podem ser ligados em série e/ou em paralelo, em função da necessidade de dividir a tensão ou obter uma capacitância diferente dos valores comerciais. 10.5.1 Associação em Série Na associação série, os capacitores estão ligados de forma que a carga Q armazenada em cada um deles seja a mesma, e a tensão E total aplicada aos capacitores se subdivida entre eles de forma inversamente proporcional aos seus valores. Figura63. Circuito com capacitores em série Pela lei de Kirchhoff para tensões, a soma das tensões nos capacitores é igual à tensão total E aplicada: E = V1 + V2 +...+ Vn. Como V = Q/C, tem-se: E = Q/C1 + Q/C2 + ... + Q/Cn => E = Q.(1/C1 + 1/C2 +...+1/Cn) E/Q = (1/C1 + 1/C2 +...+1/Cn) O termo E/Q corresponde ao inverso da capacitância equivalente vista pela fonte de alimentação. Assim: Ceq = (1/C1 + 1/C2 +...+1/Cn) 34
  • 35. Informática Industrial Profa.Luciana Faletti Almeida Isso significa que, se todos os capacitores dessa associação forem substituídos por uma única capacitância de valor Ceq, a fonte de alimentação E fornecerá a mesma carga Q ao circuito. No caso de n capacitores em série e iguais a C, tem-se: Ceq = C/n Para dois capacitores em série tem-se: Ceq = C1.C2 / C1 + C2 10.5.2 Associação em Paralela Na associação paralela, os capacitores estão ligados de forma que a tensão total E aplicada ao circuito seja a mesma em todos os capacitores, e a carga total do circuito se subdivida entre eles proporcionalmente aos seus valores. Figura64. Circuito com capacitores em paralelo Adaptando a lei de Kirchhoff para a distribuição das cargas, a soma das cargas nos capacitores é igual à carga total Q fornecida pela fonte: Q = Q1 + Q2 + ...+ Qn. Substituindo as cargas dos capacitores por Q = E.C, tem-se que: Q = C1.E + C2.E+ ... +Cn.E => Q = E (C1 + C2+ ... +Cn) Dividindo a carga Q pela tensão E, chega-se a: Q/E = C1 + C2+ ... +Cn. O resultado Q/E corresponde à capacitância equivalente Ceq da associação paralela, isto é, a capacitância que a fonte de alimentação entende como sendo a sua carga. Assim: Ceq = C1 + C2+ ... +Cn Isso significa que, se todos os capacitores dessa associação forem substituídos por uma única capacitância de valor Ceq, a fonte de alimentação E fornecerá a mesma carga Q ao circuito. No caso de n capacitores em paralelo e iguais a C, tem-se: Ceq = n.C Obs: em um texto, podemos representar dois capacitores em paralelo da seguinte forma: C1 // C2. 35
  • 36. Informática Industrial Profa.Luciana Faletti Almeida 10.5.3 Associação Mista A associação mista é formada por capacitores ligados em série e em paralelo, não existindo uma equação geral para a capacitância equivalente, pois ela depende da configuração do circuito. Assim, o calculo deve ser feito por etapas, conforme as ligações entre os capacitores. 10.6 Circuito RC de Temporização Um circuito temporizador é aquele que executa uma ação após um intervalo de tempo preestabelecido. Analisaremos o comportamento de um circuito formado por um resistor e um capacitor ligados em série que estabelece uma relação entre os níveis de tensão e um intervalo de tempo definido pelos valores do resistor e do capacitor. 10.6.1 Constante de Tempo Como vimos o tempo de carga de um capacitor alimentado diretamente por uma fonte de tensão não é instantâneo, embora seja muito pequeno. Ligando um resistor em série com um capacitor, pode-se retardar o tempo de carga, fazendo com que a tensão entre os seus terminais cresça mais lentamente. Figura 65. Retardo do tempo de carga do capacitor pelo uso de um resistor Vamos analisar dimensionalmente o produto entre resistência e capacitância [R.C], considerando as seguintes unidades de medida das grandezas envolvidas: • [R] = Ω (ohm) = V/A (volt/ampère) • [C] = F (farad) = C/V (coulomb/volt) • [I] =A (ampère) = C/s (coulomb/segundos) [R.C] = Ω.F = V/A . C/V = C/A = C/(C/s) = s = segundo Portanto, o produto R.C resulta na grandeza tempo [segundo]. Esse produto é denominado constante de tempo, representado pela letra grega τ (tau). Matematicamente: τ = R.C 36
  • 37. Informática Industrial Profa.Luciana Faletti Almeida Num circuito RC, quanto maior a constante de tempo, maior é o tempo necessário para que o capacitor se carregue. 10.6.2 Carga do Capacitor Considere um circuito RC série ligado a uma fonte de tensão contínua E e a chave S aberta, com o capacitor completamente descarregado. Figura 66. Circuito RC de carga Pela lei de Kirchhoff para tensões, a equação geral desse circuito é (S fechada): vc (t) + vr (t) = E A corrente que flui no circuito durante a carga do capacitor pode ser determinada aplicando a primeira lei de Ohm no resistor R: i(t) = vr(t)/R Ligando a chave S no instante t = 0, observa-se que as tensões e a corrente do circuito resultam nos seguintes gráficos e expressões: a) Tensão no Resistor A tensão vr cai exponencialmente de E até zero, pois o capacitor descarregado comporta-se como um curto circuito e totalmente carregado comporta-se como um circuito aberto. Matematicamente: vr(t) = E.e-t/τ , em que e ≈ 2,72. Observe que o termo e-t/τ diminui com o aumento do instante t. 37
  • 38. Informática Industrial Profa.Luciana Faletti Almeida Figura 67. Gráfico de queda de tensão no resistor b) Tensão no Capacitor A tensão vc no capacitor cresce exponencialmente desde zero até a tensão E, quando a sua carga é total. Portanto, a tensão no capacitor é uma exponencial crescente, que pode ser deduzida da equação geral do circuito e da expressão de vr: vc (t) + vr (t) = E ⇒ vc (t) = E - E.e-t/τ . vc (t) = E(1 -E.e-t/τ) Observe que o termo (1 – E.e-t/τ) aumenta com o aumento do instante t. Figura 68. Gráfico de aumento de tensão no capacitor c) Corrente no Circuito A corrente i inicia com um valor máximo I = E/R quando o capacitor esta descarregado (curto circuito), caindo até zero quando o capacitor esta totalmente carregado (circuito aberto). Matematicamente: i(t) = vr(t)/R. i(t) = I.e-t/τ Observe que o termo e-t/τ diminui com o aumento do instante t. 38
  • 39. Informática Industrial Profa.Luciana Faletti Almeida Figura 69. Gráfico de queda de corrente na carga do capacitor 10.6.3 Descarga no Capacitor Considere um circuito RC em série ligado a uma fonte de tensão E e a uma chave S inicialmente na posição 1, com o capacitor já completamente carregado. Figura 70. Circuito de Descarga do capacitor S em 1 Dessa forma tem-se: i = 0; vc = E; vr = 0. Ao mudar a chave S para posição 2 no instante t = 0, a fonte de alimentação é desligada, ficando o circuito RC em curto. Figura 71. Circuito de descarga de capacitor S em 2 Assim, o capacitor se descarrega sobre o resistor, de forma que sua tensão descreve uma curva exponencial decrescente. Nesse caso, o capacitor comporta-se como uma fonte de tensão, cuja capacidade de fornecimento de corrente é limitada pelo tempo de descarga. Pela lei de Kirchhoff para tensões, a equação geral do circuito quando a chave S esta na posição 2 é: vc(t) = -vr(t) 39
  • 40. Informática Industrial Profa.Luciana Faletti Almeida a) Corrente no Circuito A corrente i flui agora no sentido contrário, decrescendo exponencialmente desde -I = -E/R até zero, devido à descarga do capacitor. Assim sua expressão é dada por: i(t) = -I. e-t/τ Figura 72. Curva característica da corrente na descarga do capacitor b) Tensão no Resistor A tensão vr no resistor acompanha a corrente, de forma que sua expressão é dada por: vr(t) = - E.e-t/τ Figura 73. Curva característica da tensão no resitor na descarga do capacitor c) Tensão no Capacitor A expressão de descarga no capacitor é dada por: vc(t) = E. e-t/τ 40
  • 41. Informática Industrial Profa.Luciana Faletti Almeida Figura 74. Curva característica da tensão no capacitor na descarga do capacitor 10.7 Aplicação do Circuito RC Nesse tópico analisaremos uma aplicação prática de um circuito RC gerador de onda quadrada. Porém esse circuito utiliza um dispositivo ainda não estudado: a porta lógica inversora. Assim vamos realizar uma rápida análise desse dispositivo. Porta Lógica Inversora A eletrônica digital trabalha com apenas dois níveis de tensão, caracterizando, assim, o nível lógico de um bit. O nível lógico zero corresponde a uma tensão baixa ou 0V. O nível lógico um corresponde a uma tensão alta cujo valor depende da tensão de alimentação Vcc do circuito integrado considerado, sendo Vcc igual a 5V se a família for TTL e entre 3V e 18V se a família for CMOS. Figura 75. Gráfico nível lógico porta inversora A porta lógica inversora, também denominada porta não (not), caracteriza-se por complementar o nível lógico presente em sua entrada, isto é, S = Ā, conforme mostra a tabela da figura 76 a seguir: Símbolo Tabela Verdade A S A S 0 1 1 0 Figura 76. Símbolo e tabela verdade porta inversora Gerador de Onda Quadrada O circuito da figura 77 é muito utilizado para gerar uma onda quadrada de alta freqüência (MHz), servindo como sinal de relógio (clock) em sistemas digitais seqüenciais e microprocessadores. 41
  • 42. Informática Industrial Profa.Luciana Faletti Almeida Figura 77. Circuito Gerador de onda quadrada Considerando inicialmente o capacitor descarregado, a entrada da porta B encontra-se com o nível lógico “0”, de forma que a saída do circuito apresenta nível lógico “1”. O nível lógico “1” da saída é realimentado simultaneamente para a entrada da porta A (impondo nível lógico “0” em sua saída) e para extremidade X do resistor R. Assim, o capacitor C começa a se carregar por meio de R. Quando Vc atinge um nível V1 suficientemente alto, a porta B complementa a saída, que passa a ter nível lógico “0”. Figura 78. Circuito Gerador de onda quadrada – Carga do capacitor O nível lógico “0” da saída é agora realimentado simultaneamente para a entrada da porta A (impondo nível lógico “1” em sua saída) e para extremidade X do resistor R. Assim, o capacitor C começa a se descarregar por meio de R. Quando Vc atinge um nível V0 suficientemente baixo, a porta B atua, de forma que a saída do circuito é novamente complementada, voltando a apresentar nível lógico “1”. Figura 79. Circuito Gerador de onda quadrada – Descarga do capacitor Esse processo cíclico repete-se continuamente, fazendo com que o sinal de saída tenha a forma de uma onda quadrada, cujo período T, em [s], é diretamente proporcional à constante de tempo R.C, sendo a freqüência f, em [Hz] dada por: f = 1 / T. 42
  • 43. Informática Industrial Profa.Luciana Faletti Almeida Figura 80. Onda Quadrada 43