SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 347
1. Universidade do Vale do Paraíba – IP&D – Laboratório de Fisiologia e
Farmacodinâmica – São José dos Campos – São Paulo – Brasil.
2. Universidade de Taubaté – Instituto de Biociências – Taubaté – São
Paulo – Brasil.
3. Universidade de Taubaté – Departamento de Educação Física – Tauba-
té – São Paulo – Brasil.
Recebido em 14/2/05. Versão final recebida em 2/8/05. Aceito em 5/9/05.
Endereço para correspondência: Ricardo Pombo Sales, Rua Irmã Maria
Rita de Moura, 230, Independência – 12031-140 – Taubaté, SP. Tel.: (12)
3681-4430. E-mail: ricardofisiologia@hotmail.com
Efeitos da suplementação aguda de aspartato de
arginina na fadiga muscular em voluntários treinados
Ricardo Pombo Sales1
, Carlos Eduardo César Miné1
, Andréia Dellú Franco1
, Érika Lima Rodrigues1
,
Naira Correia Cusma Pelógia2
, Renato de Souza e Silva3
, José Carlos Cogo1
, Rodrigo A.B. Lopes-Martins1
,
Rodrigo Lazo Osorio1 e Wellington Ribeiro1
ARTIGO ORIGINAL
Palavras-chave: Lactato. Aminoácido. Exaustão.
Keywords: Lactate. Aminoacid. Exhaustion.
Palabras-clave: Lactato. Aminoácido. Agotamiento.
RESUMO
A atividade física influi em mecanismos específicos responsá-
veis pela redução da produção de força e conseqüentemente à
fadiga. A preocupação em melhorar o desempenho físico tem sido
propostos; observamos que estudos dão atenção para reduzir acú-
mulos dos metabólitos que diminuem a fadiga durante o exercício
físico intenso, usando aminoácidos conhecidos por induzir mudan-
ças metabólicas, entre eles a arginina. O presente estudo teve
como objetivo estudar o efeito da suplementação aguda de aspar-
tato de arginina em indivíduos sadios treinados submetidos a um
protocolo de exaustão em um cicloergômetro. Foram utilizados
12 indivíduos treinados do sexo masculino, idade de 22,6 ± 3,5
anos. Realizaram três testes 90 minutos após a administração em
dose única do aspartato de arginina ou solução placebo, em um
cicloergômetro, em que incrementos de cargas foram adiciona-
dos até a exaustão. Amostras sanguíneas foram obtidas para análi-
ses bioquímicas como: creatinina, uréia, glicose e lactato. Dife-
renças estatísticas não foram encontradas ao comparar os valores
de Freqüência Cardíaca Máxima, Tempo Máximo e Carga Máxima
e também ao comparar os resultados anteriores e posteriores ao
teste para uréia, creatinina e glicose. As concentrações de lactato
(mmol/l) apresentaram diferença estatística ao comparar os valo-
res pré-teste (Controle: 2,2 ± 0,14; Arginina: 2,43 ± 0,23; Placebo:
2,26 ± 0,11) com valores pós-teste (Controle 10,35 ± 0,57; Argini-
na: 12,07 ± 0,88; Placebo: 12,2 ± 0,96), p < 0,001. Os principais
resultados deste estudo indicam que a administração aguda de
aspartato de arginina não se mostrou efetiva em aumentar a tole-
rância à fadiga dos indivíduos avaliados e tratados no protocolo de
teste incremental até a exaustão. Assim, podemos concluir que a
dose utilizada não foi capaz de aumentar a tolerância à fadiga
muscular.
ABSTRACT
Effects of the acute arginine aspartate supplement on the
muscular fatigue in trained volunteers
The physical activity influences specific mechanisms responsi-
ble by a reduction in the power production, and consequently on
the fatigue. It has been proposed premises to improve the physi-
cal performance, and we observed that some studies have been
focused on the reduction of the metabolites that decrease the
fatigue on intense physical exercising, using aminoacids known
for their properties to induce to metabolic changes, and among
these, it is the arginine. The present study had the purpose to
study the effects of the acute arginine aspartate supplement in
trained healthy individuals submitted to an exhaustion protocol on
ergonomic bicycle. Twelve 22.6 ± 3.5 years old trained individuals
were used in the research. After taking a single dose of arginine
aspartate or a placebo solution, they performed three 90 minute
test on an ergonomic bicycle to which load increments were add-
ed up to reaching the exhaustion. The blood samples were ob-
tained through biochemical analysis, such as: creatinine, urea, gly-
cosis, and lactate. It was found no statistical differences upon the
comparison of the Maximal Heart Rate, Maximal Time and Load,
and also comparing to the previous and later results on the urea,
creatinine and glycosis tests. The lactate concentrations (mmol/l)
presented statistical differences compared to the pre-test values
(Control: 2.2 ± 0.14; Arginine: 2.43 ± 0.23; Placebo: 2.26 ± 0.11)
to the post-test values (Control 10.35 ± 0.57; Arginine: 12.07 ±
0.88; Placebo: 12.2 ± 0.96), p < 0.001. The main results found in
this study indicate that the acute administration of the arginine
aspartate did not show effective to increase the fatigue tolerance
in the individuals evaluated and treated in the incremental test
protocol up to the exhaustion. Thus, it can be concluded that the
dosage used was not able to increase the muscular fatigue toler-
ance.
RESUMEN
Efectos de la suplementación aguda de aspartato de arginina
en la fatiga muscular en voluntarios entrenados
La actividad física influencia los mecanismos específicos res-
ponsables por la reducción de la producción de fuerza y por consi-
guiente a la fatiga. La preocupación por mejorar la acción física se
ha propuesto constantemente; nosotros hemos observamos que
los estudios prestan la atención para reducir acumulaciones del
metabólitos que reducen la fatiga durante el intenso ejercicio físi-
co, mientras se usan los aminoácidos conocidos que puedan in-
ducir cambios metabólicos, entre ellos la arginina. El estudio pre-
sente tiene como objetivo el analizar los estudios del efecto de la
suplementación de aspartato del arginina en individuos saludables
sometidos a un protocolo de agotamiento en un cicloergómetro.
Se usaron 12 individuos especializados de sexo masculino, de edad
de 22,6 ± 3,5 años. Ellos lograron tres pruebas de 90 minutos
después de la administración en una sóla dosis del aspartato del
348 Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005
arginina o de solución placebo, en un cicloergómetro dónde se
incrementaron las cargas hasta el agotamiento. Se obtuvieron las
muestras sanguíneas para los análisis bioquímicos como de crea-
tinina, urea, glucosa y lactato. No se encontraron diferencias con
las estadísticas al comparar los valores de frecuencia máxima del
corazón FMC, Tiempo Máximo y Carga Máxima y también al com-
parar los resultados anteriores y subsecuentes a la prueba para el
urea, creatinina y glucosa. Las concentraciones del lactato (el mmol/
l) si, presentaron la diferencia estadística al comparar el pré-prue-
ba de valores (Controles: 2,2 ± 0,14; Arginina: 2,43 ± 0,23; Place-
bo: 2,26 ± 0,11) con el power-proof de valores (Control 10,35 ±
0,57; Arginina: 12,07 ± 0,88; Placebo: 12,2 ± 0,96), p < 0,001. Los
resultados principales de este estudio indican que la administraci-
ón marcada de aspartato del arginina no fue demostrada aumen-
tando la tolerancia a la fatiga de los individuos estimados y trata-
dos en el protocolo de prueba incremental al agotamiento. Así,
podemos concluir que la dosis usada no fue capaz de aumentar la
tolerancia a la fatiga muscular.
INTRODUÇÃO
Sabe-se que durante o exercício de alta intensidade, as maiores
vias de fornecimento de ATP são a quebra da creatina fosfato e a
degradação do glicogênio muscular a ácido lático. Assim, a redu-
ção da creatina fosfato e glicogênio contribuem para o declínio da
produção anaeróbia de energia e desempenho do exercício(1-3). É
evidente que o desempenho músculo-esquelético diminui duran-
te a atividade física intensa e este fenômeno é conhecido como
fadiga(4,5). Existe um consenso entre vários pesquisadores de que
o termo fadiga é a diminuição da capacidade muscular de manter
a geração da força e a velocidade de relaxamento, indução de alte-
rações nas características contráteis do músculo e de alterações
das propriedades elétricas que geram disfunções no sistema neu-
romuscular humano(5-13)
. A fadiga é muito pesquisada, porém os
mecanismos exatos que levam às alterações causadas por ela ainda
não são esclarecidos(14)
.
Está evidente que a fadiga é acompanhada por um número de
mudanças fisiológicas e metabólicas. Entre elas, fatores indicati-
vos como parâmetros hematológicos e imunológicos, glicemia,
nível de lipídios, atividade enzimática, uréia sanguínea, ácido úrico
e outros fatores(15). A natureza da atividade física realizada influi
em mecanismos específicos responsáveis pela redução na capa-
cidade de produção de força e conseqüentemente à fadiga(16,17)
.
Dois mecanismos principais foram descritos para explicar a fa-
diga no músculo esquelético isoladamente: (i) declínio na geração
de força contrátil no músculo via efeito metabólico nas proteínas
contráteis e (ii) diminuição da liberação de Ca2+ do retículo sarco-
plasmático(18)
. Afirma-se também que o ponto de fadiga durante o
exercício prolongado coincide com a baixa nas reservas de glico-
gênio muscular(19,20).
Uma prática dos Laboratórios de Fisiologia do Exercício é a de-
terminação da concentração sanguínea de lactato ([La]b)(21,22)
. As
concentrações altas de lactato podem favorecer o surgimento da
fadiga por aumentarem a concentração de íons H+
gerada pela
dissociação do ácido lático em lactato e H+
, diminuindo o pH. O
pH diminuído pode ser associado a uma redução da potência pro-
duzida por inibição da glicólise, via inibição da enzima fosfofruto-
quinase e, conseqüentemente, interrupção do suprimento ener-
gético(2,7,13). A questão do acúmulo de lactato no músculo e no
sangue em cargas de trabalho submáximas está atribuída ao de-
sequilíbrio entre o suprimento e utilização de O2 no trabalho mus-
cular(21,23).
Outro fator considerado é retículo sarcoplasmático que atua
como um local de armazenamento de Ca2+
e ainda controla as
concentrações citoplasmáticas de Ca2+, a qual regula a força das
contrações musculares. Se for reduzida a função do retículo sar-
coplasmático pode iniciar um papel crítico, o surgimento da fadi-
ga. Especialmente a diminuição da utilização de Ca2+
pode ser res-
ponsável pela dificuldade no relaxamento bem como pela redu-
ção da força durante a fadiga(14,24-26)
.
O lactato, por sua vez, inibe significantemente a ativação dos
canais de Ca2+. Desta forma o processo de acoplamento contra-
ção-excitação e inibição da liberação de Ca2+
no retículo sarcoplas-
mático podem não ser totalmente responsáveis pelo declínio do
desempenho, mas o distúrbio desta transição de Ca2+ contribui
para a fadiga muscular(18,27)
.
Estudos recentes indicam que na redução do pH sanguíneo ocor-
re um aumento do fluxo sanguíneo(28). Esta vasodilatação metabó-
lica aumenta o suprimento de oxigênio e nutrientes em resposta à
demanda tecidual(12,29)
.
Assim, com a preocupação de melhorar o desempenho físico,
os mais diversos recursos têm sido propostos nos últimos anos(30,
31)
. Desta forma, observamos que estudos dão maior atenção para
reduzir acúmulos dos metabólitos que diminuem e/ou induzem a
fadiga durante o exercício físico, usando suplementação de ami-
noácidos conhecidos por induzir beneficamente mudanças meta-
bólicas(31-35). Entre estes aminoácidos, a L-arginina, essencial para
o crescimento infantil e substrato para diferentes e importantes
enzimas, como a arginase, NO sintase (NOS), arginina descarboxi-
lase, etc. Arginase é a enzima clássica catabolizante da arginina
no Ciclo da Uréia e a arginina descarboxilase catalisa a transfor-
mação da L-arginina à agmatina, um agonista endógeno da α2-
adrenoceptores que pode ter um papel no efeito anti-hipertensivo
da L-arginina. Em humanos saudáveis e em certos animais, a L-
arginina é elucidada por induzir a hipotensão que é advinda da
estimulação da formação de óxido nítrico (NO) pela via L-arginina-
NO(13,36-42)
. A bioquímica da arginina é complexa e envolve muitas
vias metabólicas e sistemas orgânicos. A arginina tem papel im-
portante na síntese de uréia, proteína, compostos de alta energia
(creatina e creatina-fosfato), poliamina e óxido nítrico(42-48)
.
A vasodilatação de arteríolas músculo-esqueléticas em respos-
ta ao exercício aumentam o fornecimento de nutrientes e oxigê-
nio aos músculos que estão sendo solicitados durante a movi-
mentação. Estudo com camundongos e a ação da suplementação
com l-arginina como determinante da capacidade de executar uma
atividade física específica mostrou melhoria na capacidade de exe-
cução da atividade por causa do aumento sistêmico da produção
de óxido nítrico derivado do endotélio(49). Estudos já ressaltavam
que a suplementação de arginina ajudou a reduzir a fadiga fisioló-
gica, mediante a redução da concentração de amônia após algum
tempo da administração oral(50).
O presente estudo teve como objetivo estudar o efeito da su-
plementação aguda de aspartato de arginina em indivíduos sadios
treinados submetidos a um protocolo de exaustão em um cicloer-
gômetro.
METODOLOGIA
A seqüência de administração de aspartato de arginina para cada
voluntário foi baseada em uma tabela de randomização, aprovada
pelo Comitê de Ética em Pesquisa com Seres Humanos sob o no
A020/2003/CEP.
Para a realização do estudo foram utilizados comprimidos con-
tendo 1,5g de aspartato de arginina, cujo nome comercial é Targi-
for ®
, sendo o mesmo produzido pela empresa Aventispharma, Lote
no 300971, com validade até 02/2006. Os voluntários receberam
4,5g (3 comprimidos) de aspartato de arginina por via oral em dose
única diluídos em água mineral (250ml) contendo um corante sem
efeito energético. Já o grupo placebo recebeu apenas água mine-
ral (250ml) com corante.
Foram utilizados 12 indivíduos saudáveis do sexo masculino,
com a idade de 22,6 ± 3,5 anos.
Os voluntários foram submetidos a um protocolo de indução a
fadiga organizado da seguinte forma: os voluntários foram avalia-
Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 349
dos para obtenção de valores de controle. Posteriormente passa-
ram por duas fases (FI e FII) experimentais, descritas abaixo:
FI: Administração de 4,5g de aspartato de arginina para os vo-
luntários I, II, IV, VII, IX e XII.
FII: Administração de 4,5g de aspartato de arginina para os vo-
luntários III, V, VI, VIII, X e XI.
O protocolo de indução à fadiga foi realizado 90 minutos após a
administração do aspartato de arginina ou solução placebo, quan-
do os voluntários foram orientados a posicionar-se no cicloergô-
metro (LifeFitness). Pedalando a uma freqüência de 60rpm, sen-
do que após o período de 2 minutos a 38 Watts, foi aumentado a
cada 2 minutos, aproximadamente 25 Watts, com exceção do sexto
minuto (50 Watts) até a fadiga, utilizando-se ainda de um freqüen-
címetro para registro da freqüência cardíaca.
Cada voluntário executou o mesmo protocolo de indução à fadi-
ga quatro vezes (adaptação, controle, arginina e placebo), sempre
utilizando os mesmos critérios(adaptado 13).
Análise Bioquímica: Coleta de sangue, 5ml antes e 5ml após o
protocolo para análises bioquímicas como: creatinina, uréia, glice-
mia e lactato. As análises bioquímicas foram feitas utilizando-se
de kits diagnósticos da marca Laborlab®
(Guarulhos/São Paulo) atra-
vés de metodologia não cinética todos a 37°C em espectrofotô-
metro Shimadzu UV-1650 PC. O lactato plasmático foi analisado
antes e após o protocolo de indução à fadiga utilizando-se o equi-
pamento Accusport®
e fitas para análise BM-Lactate (Roche Diag-
nostics, Mannheim, Alemanha).
Análise estatística: Foi utilizada análise de variância (ANOVA)
seguida do teste de Tukey para amostras independentes. O nível
de significância menor que 5% (p < 0,05) foi adotado.
RESULTADOS
Os dados a seguir apresentados representam a Média ± Erro
Padrão da Média (EPM). A Freqüência Cardíaca Máxima (FCmáx.)
foi registrada em batimentos/minuto (bpm) imediatamente após a
execução do protocolo de indução da fadiga e comparada entre os
três grupos, não havendo diferença estatisticamente significante.
Controle (185 ± 4) versus Arginina (184 ± 3) e Placebo (185 ± 3).
O Tempo Máximo (Tmáx.) obtido para o protocolo de indução à
fadiga nos diferentes grupos não apresentaram diferença estatís-
tica, onde foram verificados o Controle (17,86 ± 0,78) versus Argi-
nina (18,87 ± 0,71) e Placebo (18,31 ± 0,72).
Nenhuma diferença estatística pode ser observada em respos-
ta à Carga Máxima (Cargamáx.) obtida em Watts (W) após a execu-
ção do protocolo de indução à fadiga, sendo Controle (266,08 ±
9,20) versus Arginina (285,36 ± 8,23) e Placebo (276,67 ± 7,94).
ção plasmática do Lactato pré-protocolo, em que não podem ser
observadas diferenças entre os grupos experimentais: Controle
Pré (2,2 ± 0,14) versus Arginina Pré (2,43 ± 0,23) e Placebo Pré
(2,26 ± 0,11). A concentração plasmática pós-protocolo, Controle
Pós (10,35 ± 0,57) versus Arginina Pós (12,07 ± 0,88) e Placebo
Pós (12,2 ± 0,96), não apresentou diferença estatística. Já ao com-
parar [La]b antes e após o protocolo de indução a fadiga nas dife-
rentes fases observamos diferenças estatísticas. Controle Pré (2,2
± 0,14) versus Controle Pós (10,35 ± 0,57); Arginina Pré (2,43 ±
0,23) versus Arginina Pós (12,07 ± 0,88); Placebo Pré (2,26 ± 0,11)
versus Placebo Pós (12,2 ± 0,96), p < 0,001.
Nenhuma diferença estatística foi observada em relação às con-
centrações de Uréia, Creatinina e Glicose. Sendo para Uréia: Con-
trole Pré (41,67 ± 3,34), Arginina Pré (42,56 ± 2,58) e Placebo Pré
(42,54 ± 3,25); Controle Pós (45,06 ± 3,58), Arginina Pós (44,44 ±
2,59) e Placebo Pós (43,08 ± 2,94). Para Creatinina: Controle Pré
(1,68 ± 0,29), Arginina Pré (2,19 ± 0,31) e Placebo Pré (2,49 ±
0,40); Controle Pós (2,38 ± 0,33), Arginina Pós (2,55 ± 0,30) e
Placebo Pós (2,82 ± 0,29) e para Glicose: Controle Pré (74,48 ±
4,19), Arginina Pré (78,70 ± 3,91) e Placebo Pré (73,60 ± 4,31);
Controle Pós (85,53 ± 5,04), Arginina Pós (79,28 ± 3,95) e Placebo
Pós (70,83 ± 4,63).
DISCUSSÃO
Um grande número de pesquisas tem sido feito para identificar
substâncias ergogênicas mais efetivas na melhora do desempe-
nho atlético, sempre focando na energia requerida na variedade
de esportes e controlando o consumo dietético(31). A suplementa-
ção oral de L-arginina tem mostrado ambos resultados negativos
e positivos. A discrepância entre observações clínicas de que a L-
arginina pode, em alguns casos, aumentar a formação de óxido
nítrico e a expectativa de que esta deveria ser a base da cinética
da L-arginina para a reação do NO é titulada de “paradoxo da argi-
nina”. Teorias que dizem respeito ao paradoxo da arginina têm
focado a possibilidade de altas doses de L-arginina para a obten-
ção dos efeitos requeridos(42)
. Pois, se o fluxo sanguíneo aumen-
tar, pode permite maior liberação de lactato e íons do músculo,
promovendo a maior remoção na circulação devido à distribuição
sanguínea(51)
.
A Freqüência Cardíaca Máxima (FCmáx
) obtida nos testes duran-
te as fases elucidam a alta intensidade desenvolvida pelos volun-
tários, observando que a suplementação com aspartato de argini-
na não modificou o ritmo cardíaco (bpm) dos indivíduos durante o
teste após a administração.
Outra característica que não sofreu alteração foi o Tempo Máxi-
mo (Tmáx
) de execução do protocolo de indução à fadiga nas dife-
rentes etapas, mostrando que o desempenho final não foi altera-
do pela administração de 4,5g de aspartato de arginina.
Ao avaliarmos a Carga Máxima produzida no cicloergômetro nos
dias de indução à fadiga nas diferentes fases de administração as
cargas mantiveram-se sem qualquer alteração, o que certamente
condiz com o fato de que a suplementação utilizada não exerce
efeito na obtenção de maiores cargas de trabalho quando utiliza-
do tal protocolo de indução à fadiga.
A mensuração da concentração de lactato sanguíneo é um pro-
cedimento padrão para determinar a intensidade do exercício físi-
co. O valor absoluto da concentração de lactato é usado em cer-
tos grupos de sujeitos para objetivamente estimar a intensidade
do exercício ou como um critério de exaustão máxima(52)
. Neste
estudo, utilizamo-nos de tais conceitos para determinar a intensi-
dade do exercício, que por sua vez ao verificar os valores encon-
trados no pós-protocolo determinaram que os voluntários chega-
ram à exaustão máxima, onde consideramos o ponto de fadiga. O
acúmulo de lactato durante a execução de um protocolo de exer-
cício de alta intensidade significa que a produção de lactato exce-
de a quantidade de sua remoção. O acúmulo de lactato é indicati-
A concentração de Lactato (mmol/L) em voluntários treinados
foi determinada previamente e logo após o término da execução
do protocolo de indução à fadiga. O gráfico 1 exibe a concentra-
LACTATO (PRÉ vs PÓS)
0
5
10
15
mmol/L
Controle pré
Arginina pré
Placebo pré
Controle pós
Arginina pós
Placebo pós
* * *
Gráfico 1 – Média da Concentração Plasmática do Lactato obtida em 12
voluntários treinados antes e após a execução do protocolo de indução à
fadiga nos diferentes grupos experimentais. Os dados representam a mé-
dia ± EPM, n = 12. * P < 0,001.
350 Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005
vo da depleção de glicogênio, fazendo sentido o encontro de altas
concentrações de lactato no momento do ponto de fadiga, condi-
zendo com relatos de outros autores(18-20,51)
.
Assim, observamos o aumento significativo da [La]b aos com-
pararmos o pré com o pós-protocolo. Desta forma, podemos afir-
mar que a elevação da concentração plasmática de lactato existiu
pela alta intensidade do exercício proposto, não havendo nenhu-
ma diferenciação devido à presença da suplementação com as-
partato de arginina.
Sabe-se que o excesso de aminoácidos é metabolizado dentro
do ciclo da uréia e excretado pela urina. O excesso de suplemen-
tação pode causar danos renais. Desta forma, analisando a con-
centração de uréia e creatinina, observam-se efeitos sobre a fun-
ção renal(35). Em estudo realizado em 1994, foi verificado que a
administração oral de 20g, aguda, de arginina induziu um aumento
da ureiogênese e da concentração celular de ATP(50)
. Porém, nos-
sos resultados referentes à concentração da uréia não se modifi-
caram após a administração oral, aguda, de 4,5g de aspartato de
arginina, reafirmando que a dose oral sugerida em estudo não foi
suficiente para induzir o aumento da ureiogênese(13).
Por si só, a creatinina tem sido usada para determinar a capaci-
dade e/ou sobrecarga renal após a ingestão de aminoácidos. A
arginina, por sua vez, induz a síntese endógena de creatina, geran-
do uma fonte adicional de creatinina para ser excretada. Com rela-
ção a isto, a arginina, junto com glicina e S-adenosilmetionina, é
um dos aminoácidos precursores da creatina. O que para nosso
estudo poderia ser uma energia adicional para a melhoria da per-
formance que de fato não ocorreu. O aumento na síntese de crea-
tina requer um processo complexo que inclui a captação da argini-
na pelos órgãos sintetizadores de creatina, formar creatina fosfato
e desfosforilar a creatina e assim a circulação(53)
.
Os resultados referentes à glicose não alteraram durante os
testes nas diferentes etapas, atribuindo ao não aumento do fluxo
mediado pela arginina na formação de NO, pois, diversos autores
já mostram um papel fundamental da via de formação do NO no
músculo esquelético ao tratar de transporte de glicose(47)
. Desta
forma, destacamos a ineficiência da suplementação utilizada em
nossa pesquisa.
Apesar de estudo sugerir que administração oral de 4 a 5g de
arginina poderia oferecer benefícios, tais como a redução das con-
centrações de lactato, amônia e talvez uma melhoria de desem-
penho, nossos resultados sugerem que estudos com outras do-
ses e com outros períodos de administração sejam realizados para
talvez obter um aumento na tolerância à fadiga(13).
Finalmente, este estudo objetivou avaliar o efeito da suplemen-
tação aguda de aspartato de arginina em indivíduos sadios treina-
dos submetidos a um protocolo de exaustão em um cicloergôme-
tro. Porém, mediante os resultados apresentados, podemos
concluir que a suplementação aguda de aspartato de arginina, na
dose de 4,5g, não foi capaz de aumentar o desempenho físico, o
que caracteriza que não auxiliou na tolerância à fadiga muscular.
Todos os autores declararam não haver qualquer potencial confli-
to de interesses referente a este artigo.
REFERÊNCIAS
1. Lucia A, Hoyos J, Pardo J, Chicharro JL. Effects of endurance training on the
breathing pattern of professional cyclists. Jpn J Physiol 2001;51:133-41.
2. Hargreaves M, Mckenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, et al.
Muscle metabolites and performance during high-intensity, intermittent exercise.
J Appl Physiol 1998;84:1687-91.
3. Bangsbo J, Krustrup P, Alonso JG, Saltin B. ATP production and efficiency of
human skeletal muscle during intense exercise: effect of previous exercise. Am
J Physiol Endocrinol Metab 2001;280:956-64.
4. Dahlstedt AJ, Westerblad H. Inhibition of creatine kinase reduces the rate of fa-
tigue-induced decrease in tetanic [Ca2+
], in mouse skeletal muscle. J Physiol
2001;533:639-49.
5. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fa-
tigue. Exerc Sports Sci Rev 2001;29:109-12.
6. Kirkendal DT. Mechanisms of peripheral fatigue. Med Sci Sports Exerc 1990;22:
444-9.
7. Marquezi ML, Lancha Junior AH. Possível efeito da suplementação de aminoáci-
dos de cadeia ramificada, aspartato e asparagina sobre o limiar anaeróbio. Rev
Paul Educ Fis 1997;11:90-101.
8. Green HJ. Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta
Physiol Scand 1998;162:201-13.
9. Harmer AR, Mckenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, et al. Skeletal
muscle metabolic and ionic adaptations during intense exercise following sprint
training in humans. J Appl Physiol 2000;89:1793-803.
10. Danion F, Latash ML, Li ZM, Zatsiorsky VM. The effect of fatigue on multifinger
co-ordination in force tasks in humans. J Physiol 2000;523:523-32.
11. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol
Rev 2001;81:1725-89.
12. Santos RS. Estudo do efeito da administração oral de l-arginina na resistência
muscular em voluntários sadios por meio de dinamometria isocinética 2001; f.62.
Dissertação (Mestrado em Engenharia Biomédica) – Instituto de Pesquisa e De-
senvolvimento, Universidade do Vale do Paraíba.
13. Schaefer A, Piquard F, Geny B, Doutreleau S, Lampert E, Mettaure B, et al. L-
Arginine reduce exercise-induced increase in plasma lactate and ammonia. Int J
Sports Med 2002;23:403-7.
14. Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phos-
phorylase associated with sarcoplasmatic reticulum: effects of fatiguing activity.
J Appl Physiol 2001;91:1638-44.
15. Tsopanakis C, Tsopanakis A. Stress hormonal factors, fatigue, and antioxidant
responses to prolonged speed driving. Pharmacol Biochem Behav 1998;60:747-
51.
16. Rassier DE, Macintosh BR. Coexistence of potentiation an fatigue in skeletal
muscle. Braz J Med Biol Res 2000;33:499-508.
17. Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL. Effect of aging on
fatigue characteristics of elbow flexor muscle during sustained submaximal con-
traction. J Appl Physiol 2001;91:2654-64.
18. Favero TG, Zable AC, Colter D, Abramson JJ. Lactate inhibits Ca2+
-activated Ca2+
-
channel activity from skeletal muscle sarcoplasmic reticulum. J Appl Physiol
1997;82:447-52.
19. Febbraio MA, Dancey J. Skeletal muscle energy metabolism during prolonged,
fatiguing exercise. J Appl Physiol 1999;87:2341-7.
20. Baldwin J, Snow RJ, Gibala MJ, Garnham A, Howarth K, Febbraio MA. Glycogen
availability does not affect the TCA cycle or TAN pools during prolonged, fatigu-
ing exercise. J Appl Physiol 2003;94:2181-7.
21. Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumu-
lation and muscle deoxygenation during incremental exercise. J Appl Physiol
1999;87:348-55.
22. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondri-
al lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.
Proc Natl Acad Sci USA 1999;96:1129-34.
23. Von Grumbckow L, Elsner P, Hellsten Y, Quistorff B, Juel C. Kinetics of lactate
and pyruvate transport in cultured rat myotubes. Biochim Biophys Acta 1999;1417:
267-75.
24. Ferrington DA, Reijneveld JC, Bar PR, Bigelow DJ. Activation of the sarcoplasmic
reticulum Ca2+-ATPase induced by exercise. Biochim Biophys Acta 1996;1279:
203-13.
25. Favero TG. Sarcoplasmic reticulum Ca2+
release and muscle fatigue. J Appl Phys-
iol 1999;87:471-83.
26. Kabbara AA, Allen DG. The role of calcium stores in fatigue of isolated single
muscle fibres from the cane toad. J Physiol 1999;519:169-76.
27. Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at
different intensities in mammalian single muscle fibres. J Physiol 2000;512:523-
32.
28. Modin A, Björne H, Herulf M, Aluin K, Weitzbeg E, Lundberg JON. Nitrite-derived
nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol
Scand 2001;171:9-16.
29. Jacob TL, Segal SS. Attenuation of vasodilatation with skeletal muscle fatigue in
hamster retractor..... J Physiol 2000;524:929-41.
30. Barros Neto TL. A controvérsia dos agentes ergogênicos: estamos subestiman-
do os efeitos naturais da atividade física? Arq Bras Endocrinol Metab 2001;45:
121-2.
31. Ohtani M, Maruyama K, Sugita M, Kobayashi K. Amino acid supplementation
affects hematological and biochemical parameters in elite rugby players. Biosci
Biotechnol Biochem 2001;65:1970-6.
32. Lemon PWR. Protein and exercise: update 1987. Med Sci Sports Exerc 1987;
19:179-90.
33. Rossi L, Tirapegui J. Aspectos atuais sobre exercício físico, fadiga e nutrição. Rev
Paul Educ Fís 1999;13:67-82.
Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 351
34. Stevens BR, Godfrey MD, Kaminski TW, Brainth RW. High-intensity dynamic
human muscle performance enhanced by metabolic intervention. Med Sci Sports
Exerc 2000;32:2102-8.
35. Lawrence ME, Kirby DF. Nutrition and sports supplements. J Clin Gastroenterol
2002;35:299-306.
36. Tricarico D, Casini G, Conte Camerino D. Effects of high energy phosphates and
L-arginine on the electrical parameters of ischemic-reperfused rat skeletal mus-
cle fibers. Eur J Pharmacol 1995;287:17-25.
37. Marin J, Rodriguez-Martinez A. Role of vascular nitric oxide in physiological and
pathological conditions. Pharmacol Ther 1997;75:111-34.
38. Newsholme E, Hardy G. Supplementation of diets with nutritional pharmaceuti-
cals. Nutrition 1997;13:837-9.
39. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction.
J Clin Invest 1997;100:2153-7.
40. Hiroaki K. Nitric oxide and hemoglobin interactions in the vasculature. Biochim
Biophys Acta 1999;1411:370-7.
41. Marareli MRT. Oxido nítrico: un gás contaminante con propiedades biológicas: su
importancia en fisiopatologia cardiovascular. Rev Sanid Mil 2000;54:164-75.
42. Abdelhamed AI, Reis SE, Sane DC, Brosnihan KB, Preli RB, Herrington DM. No
effect of an l-arginine-enriched medical food (HeartBars) on endothelial function
and platelet aggregation in subjects with hypercholesterolemia. Am Heart J 2003;
145:e15.
43. Field CJ, Johnson I, Partt VC. Glutamine and arginine: immunonutrients for im-
proved health. Med Sci Sports Exerc 2000;32:5377-88.
44. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Educ
Heart 2001;85:342-50.
45. Koller-Strametz J. Role of nitric oxide in exercise-induced vasodilation in man.
Life Sci 1998;62:1035-42.
46. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction.
Med Sci Sports Exerc 2001;33:371-6.
47. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects
of training in health and cardiovascular disease. FASEB J 2000;14:1685-96.
48. Racké K, Hey C, Mösner J, Hammermann R, Stichnote C, Wessler I. Activation of
l-arginine transpot by protein kinase C in rabbit, rat and mouse alveolar macroph-
ages. J Physiol 1998;511:813-25.
49. Maxwell AJ, Ho HV, Le CQ, Lin PS, Bernstein D, Cooke JP. L-arginine enhances
aerobic exercise capacity in association with augmented nitric oxide production.
J Appl Physiol 2001;90:933-8.
50. Eto B, Peres G, Le Moel G. Effects of an ingested glutamate arginine salt on
ammonemia during and after long lasting cycling. Arch Int Physiol Biochim Bio-
phys 1994;102:161-2.
51. Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lac-
tate steady state: a bridge between biochemistry, physiology and sport science.
Sports Med 2003;33:407-26.
52. Roecker K, Mayer F, Striegel H, Dickhuth HH. Increase characteristics of the cu-
mulated excess-CO2
and the lactate concentration during exercise. Int J Sports
Med 2000;21:419-23.
53. Bello E, Caramelo C. Increase of tubular secretion of creatinine by l-arginine:
mechanism of practical significance in the assessment of renal function based
on creatinine clearance. Nefrologia 2000;20:517-22.

Mais conteúdo relacionado

Mais procurados

Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...
Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...
Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...Rafael Pereira
 
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...Denis Alves
 
High Intensity Interval Training and Metabolic Syndrome
High Intensity Interval Training and Metabolic SyndromeHigh Intensity Interval Training and Metabolic Syndrome
High Intensity Interval Training and Metabolic Syndromefabricioboscolo
 
Exercício aeróbio revisão 2009
Exercício aeróbio   revisão 2009Exercício aeróbio   revisão 2009
Exercício aeróbio revisão 2009juuliacarolina
 
Estratégias nutricionais para o ganho de massa muscular
Estratégias nutricionais para o ganho de massa muscularEstratégias nutricionais para o ganho de massa muscular
Estratégias nutricionais para o ganho de massa muscularArícia Motta Nutrição
 
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...fabricioboscolo
 
Ne aula 4. suplementação
Ne   aula 4. suplementaçãoNe   aula 4. suplementação
Ne aula 4. suplementaçãoEric Liberato
 
Nutrição esportiva
Nutrição esportivaNutrição esportiva
Nutrição esportivaRenata Jardim
 
2016 apostila de kettlebell basico claudio novelli
2016 apostila de kettlebell basico claudio novelli2016 apostila de kettlebell basico claudio novelli
2016 apostila de kettlebell basico claudio novelliClaudio Novelli
 
Treinamento aeróbico em pacientes neurológicos
Treinamento aeróbico em pacientes neurológicos Treinamento aeróbico em pacientes neurológicos
Treinamento aeróbico em pacientes neurológicos Gilmar Roberto Batista
 
Palestra sobre Exercício Intermitente
Palestra sobre Exercício IntermitentePalestra sobre Exercício Intermitente
Palestra sobre Exercício Intermitentefabricioboscolo
 
Marcadores de Stress e Fadiga no Futebol
Marcadores de Stress e Fadiga no FutebolMarcadores de Stress e Fadiga no Futebol
Marcadores de Stress e Fadiga no FutebolRodrigo Saffi Mello
 

Mais procurados (20)

Recursos ergogênicos
Recursos ergogênicosRecursos ergogênicos
Recursos ergogênicos
 
Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...
Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...
Efeito hipotensivo dos exercícios resistidos realizados com diferentes interv...
 
Artigo hidratação
Artigo hidrataçãoArtigo hidratação
Artigo hidratação
 
Nutrição esportiva e suplementação FV
Nutrição esportiva e suplementação FVNutrição esportiva e suplementação FV
Nutrição esportiva e suplementação FV
 
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...
Cargas elevadas de treinamento alteram funções cognitivas em jogadores de fut...
 
High Intensity Interval Training and Metabolic Syndrome
High Intensity Interval Training and Metabolic SyndromeHigh Intensity Interval Training and Metabolic Syndrome
High Intensity Interval Training and Metabolic Syndrome
 
Exercício aeróbio revisão 2009
Exercício aeróbio   revisão 2009Exercício aeróbio   revisão 2009
Exercício aeróbio revisão 2009
 
Estratégias nutricionais para o ganho de massa muscular
Estratégias nutricionais para o ganho de massa muscularEstratégias nutricionais para o ganho de massa muscular
Estratégias nutricionais para o ganho de massa muscular
 
Bases fisiologicas do exercicio aerobio
Bases fisiologicas do exercicio aerobioBases fisiologicas do exercicio aerobio
Bases fisiologicas do exercicio aerobio
 
Grupos especiais
Grupos especiaisGrupos especiais
Grupos especiais
 
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...
Treinamento intervalado de alta intensidade nos componentes da Síndrome Metab...
 
Envelhecimento fisiológico
Envelhecimento fisiológicoEnvelhecimento fisiológico
Envelhecimento fisiológico
 
Ne aula 4. suplementação
Ne   aula 4. suplementaçãoNe   aula 4. suplementação
Ne aula 4. suplementação
 
Santos et al[1]. por - supl creatina - 2004
Santos et al[1].   por - supl creatina - 2004Santos et al[1].   por - supl creatina - 2004
Santos et al[1]. por - supl creatina - 2004
 
Nutrição esportiva
Nutrição esportivaNutrição esportiva
Nutrição esportiva
 
Aula 8 exercicio para populacoes especiais
Aula 8    exercicio para populacoes especiaisAula 8    exercicio para populacoes especiais
Aula 8 exercicio para populacoes especiais
 
2016 apostila de kettlebell basico claudio novelli
2016 apostila de kettlebell basico claudio novelli2016 apostila de kettlebell basico claudio novelli
2016 apostila de kettlebell basico claudio novelli
 
Treinamento aeróbico em pacientes neurológicos
Treinamento aeróbico em pacientes neurológicos Treinamento aeróbico em pacientes neurológicos
Treinamento aeróbico em pacientes neurológicos
 
Palestra sobre Exercício Intermitente
Palestra sobre Exercício IntermitentePalestra sobre Exercício Intermitente
Palestra sobre Exercício Intermitente
 
Marcadores de Stress e Fadiga no Futebol
Marcadores de Stress e Fadiga no FutebolMarcadores de Stress e Fadiga no Futebol
Marcadores de Stress e Fadiga no Futebol
 

Semelhante a Sales et al[1]. por - supl arginina - 2005

Efecto de la cafeina en el ejercicio
Efecto de la cafeina en el ejercicioEfecto de la cafeina en el ejercicio
Efecto de la cafeina en el ejercicioCerefindjye
 
Dislipidemia tratamento exercicio
Dislipidemia tratamento exercicioDislipidemia tratamento exercicio
Dislipidemia tratamento exercicioCleberVieira21
 
apresentações 5ª sessão.ppt
apresentações 5ª sessão.pptapresentações 5ª sessão.ppt
apresentações 5ª sessão.pptLuisPinheiro46
 
Revista Bifórmula Informa - Med Esportiva - 2015
Revista Bifórmula  Informa - Med Esportiva - 2015Revista Bifórmula  Informa - Med Esportiva - 2015
Revista Bifórmula Informa - Med Esportiva - 2015Sylvia Ferreira
 
Persistent Metabolic Adaptation 6 Years After.pptx
Persistent Metabolic Adaptation 6 Years After.pptxPersistent Metabolic Adaptation 6 Years After.pptx
Persistent Metabolic Adaptation 6 Years After.pptxArthurCalegari1
 
Creatina esplosão de musculos
Creatina esplosão de musculosCreatina esplosão de musculos
Creatina esplosão de musculoswaldyr
 
Fatores metabólicos na fadiga
Fatores metabólicos na fadigaFatores metabólicos na fadiga
Fatores metabólicos na fadigaFernando Farias
 
Necessidades nutricionais
Necessidades nutricionaisNecessidades nutricionais
Necessidades nutricionaisYoan Rodriguez
 
Fatores metabólicos na fadiga
Fatores metabólicos na fadigaFatores metabólicos na fadiga
Fatores metabólicos na fadigaFrancisco de Sousa
 
Nutrição para atletas signed
Nutrição para atletas signedNutrição para atletas signed
Nutrição para atletas signedMarcelo Chagas
 

Semelhante a Sales et al[1]. por - supl arginina - 2005 (20)

Efecto de la cafeina en el ejercicio
Efecto de la cafeina en el ejercicioEfecto de la cafeina en el ejercicio
Efecto de la cafeina en el ejercicio
 
Dislipidemia tratamento exercicio
Dislipidemia tratamento exercicioDislipidemia tratamento exercicio
Dislipidemia tratamento exercicio
 
Crioterapia e lactato
Crioterapia e lactatoCrioterapia e lactato
Crioterapia e lactato
 
apresentações 5ª sessão.ppt
apresentações 5ª sessão.pptapresentações 5ª sessão.ppt
apresentações 5ª sessão.ppt
 
Peralta por - supl creatina - 2002
Peralta   por - supl creatina - 2002Peralta   por - supl creatina - 2002
Peralta por - supl creatina - 2002
 
Rawson et al[1]. por - supl creatina - 2004
Rawson et al[1].   por - supl creatina - 2004Rawson et al[1].   por - supl creatina - 2004
Rawson et al[1]. por - supl creatina - 2004
 
Revista Bifórmula Informa - Med Esportiva - 2015
Revista Bifórmula  Informa - Med Esportiva - 2015Revista Bifórmula  Informa - Med Esportiva - 2015
Revista Bifórmula Informa - Med Esportiva - 2015
 
Cindura-Literatura.pdf
Cindura-Literatura.pdfCindura-Literatura.pdf
Cindura-Literatura.pdf
 
Persistent Metabolic Adaptation 6 Years After.pptx
Persistent Metabolic Adaptation 6 Years After.pptxPersistent Metabolic Adaptation 6 Years After.pptx
Persistent Metabolic Adaptation 6 Years After.pptx
 
Atividades fisicas em academias
Atividades fisicas em academiasAtividades fisicas em academias
Atividades fisicas em academias
 
Rezende por - supl creatina - 2003
Rezende   por - supl creatina - 2003Rezende   por - supl creatina - 2003
Rezende por - supl creatina - 2003
 
Academia
AcademiaAcademia
Academia
 
Creatina
CreatinaCreatina
Creatina
 
Creatina esplosão de musculos
Creatina esplosão de musculosCreatina esplosão de musculos
Creatina esplosão de musculos
 
Texto+endurance
Texto+enduranceTexto+endurance
Texto+endurance
 
Continuo x intervalado
Continuo x intervaladoContinuo x intervalado
Continuo x intervalado
 
Fatores metabólicos na fadiga
Fatores metabólicos na fadigaFatores metabólicos na fadiga
Fatores metabólicos na fadiga
 
Necessidades nutricionais
Necessidades nutricionaisNecessidades nutricionais
Necessidades nutricionais
 
Fatores metabólicos na fadiga
Fatores metabólicos na fadigaFatores metabólicos na fadiga
Fatores metabólicos na fadiga
 
Nutrição para atletas signed
Nutrição para atletas signedNutrição para atletas signed
Nutrição para atletas signed
 

Mais de Muryllo Sirqueira Lopes Dos Santos (6)

Sistema digestório
Sistema digestórioSistema digestório
Sistema digestório
 
Sistema circulatrio 2
Sistema circulatrio 2Sistema circulatrio 2
Sistema circulatrio 2
 
S digestorio-2013
S digestorio-2013S digestorio-2013
S digestorio-2013
 
Netter anatomia-000
Netter anatomia-000Netter anatomia-000
Netter anatomia-000
 
Santos et al[1]. por - supl varios - 2002
Santos et al[1].   por - supl varios - 2002Santos et al[1].   por - supl varios - 2002
Santos et al[1]. por - supl varios - 2002
 
Philippi por - suple - 2004
Philippi   por - suple - 2004Philippi   por - suple - 2004
Philippi por - suple - 2004
 

Sales et al[1]. por - supl arginina - 2005

  • 1. Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 347 1. Universidade do Vale do Paraíba – IP&D – Laboratório de Fisiologia e Farmacodinâmica – São José dos Campos – São Paulo – Brasil. 2. Universidade de Taubaté – Instituto de Biociências – Taubaté – São Paulo – Brasil. 3. Universidade de Taubaté – Departamento de Educação Física – Tauba- té – São Paulo – Brasil. Recebido em 14/2/05. Versão final recebida em 2/8/05. Aceito em 5/9/05. Endereço para correspondência: Ricardo Pombo Sales, Rua Irmã Maria Rita de Moura, 230, Independência – 12031-140 – Taubaté, SP. Tel.: (12) 3681-4430. E-mail: ricardofisiologia@hotmail.com Efeitos da suplementação aguda de aspartato de arginina na fadiga muscular em voluntários treinados Ricardo Pombo Sales1 , Carlos Eduardo César Miné1 , Andréia Dellú Franco1 , Érika Lima Rodrigues1 , Naira Correia Cusma Pelógia2 , Renato de Souza e Silva3 , José Carlos Cogo1 , Rodrigo A.B. Lopes-Martins1 , Rodrigo Lazo Osorio1 e Wellington Ribeiro1 ARTIGO ORIGINAL Palavras-chave: Lactato. Aminoácido. Exaustão. Keywords: Lactate. Aminoacid. Exhaustion. Palabras-clave: Lactato. Aminoácido. Agotamiento. RESUMO A atividade física influi em mecanismos específicos responsá- veis pela redução da produção de força e conseqüentemente à fadiga. A preocupação em melhorar o desempenho físico tem sido propostos; observamos que estudos dão atenção para reduzir acú- mulos dos metabólitos que diminuem a fadiga durante o exercício físico intenso, usando aminoácidos conhecidos por induzir mudan- ças metabólicas, entre eles a arginina. O presente estudo teve como objetivo estudar o efeito da suplementação aguda de aspar- tato de arginina em indivíduos sadios treinados submetidos a um protocolo de exaustão em um cicloergômetro. Foram utilizados 12 indivíduos treinados do sexo masculino, idade de 22,6 ± 3,5 anos. Realizaram três testes 90 minutos após a administração em dose única do aspartato de arginina ou solução placebo, em um cicloergômetro, em que incrementos de cargas foram adiciona- dos até a exaustão. Amostras sanguíneas foram obtidas para análi- ses bioquímicas como: creatinina, uréia, glicose e lactato. Dife- renças estatísticas não foram encontradas ao comparar os valores de Freqüência Cardíaca Máxima, Tempo Máximo e Carga Máxima e também ao comparar os resultados anteriores e posteriores ao teste para uréia, creatinina e glicose. As concentrações de lactato (mmol/l) apresentaram diferença estatística ao comparar os valo- res pré-teste (Controle: 2,2 ± 0,14; Arginina: 2,43 ± 0,23; Placebo: 2,26 ± 0,11) com valores pós-teste (Controle 10,35 ± 0,57; Argini- na: 12,07 ± 0,88; Placebo: 12,2 ± 0,96), p < 0,001. Os principais resultados deste estudo indicam que a administração aguda de aspartato de arginina não se mostrou efetiva em aumentar a tole- rância à fadiga dos indivíduos avaliados e tratados no protocolo de teste incremental até a exaustão. Assim, podemos concluir que a dose utilizada não foi capaz de aumentar a tolerância à fadiga muscular. ABSTRACT Effects of the acute arginine aspartate supplement on the muscular fatigue in trained volunteers The physical activity influences specific mechanisms responsi- ble by a reduction in the power production, and consequently on the fatigue. It has been proposed premises to improve the physi- cal performance, and we observed that some studies have been focused on the reduction of the metabolites that decrease the fatigue on intense physical exercising, using aminoacids known for their properties to induce to metabolic changes, and among these, it is the arginine. The present study had the purpose to study the effects of the acute arginine aspartate supplement in trained healthy individuals submitted to an exhaustion protocol on ergonomic bicycle. Twelve 22.6 ± 3.5 years old trained individuals were used in the research. After taking a single dose of arginine aspartate or a placebo solution, they performed three 90 minute test on an ergonomic bicycle to which load increments were add- ed up to reaching the exhaustion. The blood samples were ob- tained through biochemical analysis, such as: creatinine, urea, gly- cosis, and lactate. It was found no statistical differences upon the comparison of the Maximal Heart Rate, Maximal Time and Load, and also comparing to the previous and later results on the urea, creatinine and glycosis tests. The lactate concentrations (mmol/l) presented statistical differences compared to the pre-test values (Control: 2.2 ± 0.14; Arginine: 2.43 ± 0.23; Placebo: 2.26 ± 0.11) to the post-test values (Control 10.35 ± 0.57; Arginine: 12.07 ± 0.88; Placebo: 12.2 ± 0.96), p < 0.001. The main results found in this study indicate that the acute administration of the arginine aspartate did not show effective to increase the fatigue tolerance in the individuals evaluated and treated in the incremental test protocol up to the exhaustion. Thus, it can be concluded that the dosage used was not able to increase the muscular fatigue toler- ance. RESUMEN Efectos de la suplementación aguda de aspartato de arginina en la fatiga muscular en voluntarios entrenados La actividad física influencia los mecanismos específicos res- ponsables por la reducción de la producción de fuerza y por consi- guiente a la fatiga. La preocupación por mejorar la acción física se ha propuesto constantemente; nosotros hemos observamos que los estudios prestan la atención para reducir acumulaciones del metabólitos que reducen la fatiga durante el intenso ejercicio físi- co, mientras se usan los aminoácidos conocidos que puedan in- ducir cambios metabólicos, entre ellos la arginina. El estudio pre- sente tiene como objetivo el analizar los estudios del efecto de la suplementación de aspartato del arginina en individuos saludables sometidos a un protocolo de agotamiento en un cicloergómetro. Se usaron 12 individuos especializados de sexo masculino, de edad de 22,6 ± 3,5 años. Ellos lograron tres pruebas de 90 minutos después de la administración en una sóla dosis del aspartato del
  • 2. 348 Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 arginina o de solución placebo, en un cicloergómetro dónde se incrementaron las cargas hasta el agotamiento. Se obtuvieron las muestras sanguíneas para los análisis bioquímicos como de crea- tinina, urea, glucosa y lactato. No se encontraron diferencias con las estadísticas al comparar los valores de frecuencia máxima del corazón FMC, Tiempo Máximo y Carga Máxima y también al com- parar los resultados anteriores y subsecuentes a la prueba para el urea, creatinina y glucosa. Las concentraciones del lactato (el mmol/ l) si, presentaron la diferencia estadística al comparar el pré-prue- ba de valores (Controles: 2,2 ± 0,14; Arginina: 2,43 ± 0,23; Place- bo: 2,26 ± 0,11) con el power-proof de valores (Control 10,35 ± 0,57; Arginina: 12,07 ± 0,88; Placebo: 12,2 ± 0,96), p < 0,001. Los resultados principales de este estudio indican que la administraci- ón marcada de aspartato del arginina no fue demostrada aumen- tando la tolerancia a la fatiga de los individuos estimados y trata- dos en el protocolo de prueba incremental al agotamiento. Así, podemos concluir que la dosis usada no fue capaz de aumentar la tolerancia a la fatiga muscular. INTRODUÇÃO Sabe-se que durante o exercício de alta intensidade, as maiores vias de fornecimento de ATP são a quebra da creatina fosfato e a degradação do glicogênio muscular a ácido lático. Assim, a redu- ção da creatina fosfato e glicogênio contribuem para o declínio da produção anaeróbia de energia e desempenho do exercício(1-3). É evidente que o desempenho músculo-esquelético diminui duran- te a atividade física intensa e este fenômeno é conhecido como fadiga(4,5). Existe um consenso entre vários pesquisadores de que o termo fadiga é a diminuição da capacidade muscular de manter a geração da força e a velocidade de relaxamento, indução de alte- rações nas características contráteis do músculo e de alterações das propriedades elétricas que geram disfunções no sistema neu- romuscular humano(5-13) . A fadiga é muito pesquisada, porém os mecanismos exatos que levam às alterações causadas por ela ainda não são esclarecidos(14) . Está evidente que a fadiga é acompanhada por um número de mudanças fisiológicas e metabólicas. Entre elas, fatores indicati- vos como parâmetros hematológicos e imunológicos, glicemia, nível de lipídios, atividade enzimática, uréia sanguínea, ácido úrico e outros fatores(15). A natureza da atividade física realizada influi em mecanismos específicos responsáveis pela redução na capa- cidade de produção de força e conseqüentemente à fadiga(16,17) . Dois mecanismos principais foram descritos para explicar a fa- diga no músculo esquelético isoladamente: (i) declínio na geração de força contrátil no músculo via efeito metabólico nas proteínas contráteis e (ii) diminuição da liberação de Ca2+ do retículo sarco- plasmático(18) . Afirma-se também que o ponto de fadiga durante o exercício prolongado coincide com a baixa nas reservas de glico- gênio muscular(19,20). Uma prática dos Laboratórios de Fisiologia do Exercício é a de- terminação da concentração sanguínea de lactato ([La]b)(21,22) . As concentrações altas de lactato podem favorecer o surgimento da fadiga por aumentarem a concentração de íons H+ gerada pela dissociação do ácido lático em lactato e H+ , diminuindo o pH. O pH diminuído pode ser associado a uma redução da potência pro- duzida por inibição da glicólise, via inibição da enzima fosfofruto- quinase e, conseqüentemente, interrupção do suprimento ener- gético(2,7,13). A questão do acúmulo de lactato no músculo e no sangue em cargas de trabalho submáximas está atribuída ao de- sequilíbrio entre o suprimento e utilização de O2 no trabalho mus- cular(21,23). Outro fator considerado é retículo sarcoplasmático que atua como um local de armazenamento de Ca2+ e ainda controla as concentrações citoplasmáticas de Ca2+, a qual regula a força das contrações musculares. Se for reduzida a função do retículo sar- coplasmático pode iniciar um papel crítico, o surgimento da fadi- ga. Especialmente a diminuição da utilização de Ca2+ pode ser res- ponsável pela dificuldade no relaxamento bem como pela redu- ção da força durante a fadiga(14,24-26) . O lactato, por sua vez, inibe significantemente a ativação dos canais de Ca2+. Desta forma o processo de acoplamento contra- ção-excitação e inibição da liberação de Ca2+ no retículo sarcoplas- mático podem não ser totalmente responsáveis pelo declínio do desempenho, mas o distúrbio desta transição de Ca2+ contribui para a fadiga muscular(18,27) . Estudos recentes indicam que na redução do pH sanguíneo ocor- re um aumento do fluxo sanguíneo(28). Esta vasodilatação metabó- lica aumenta o suprimento de oxigênio e nutrientes em resposta à demanda tecidual(12,29) . Assim, com a preocupação de melhorar o desempenho físico, os mais diversos recursos têm sido propostos nos últimos anos(30, 31) . Desta forma, observamos que estudos dão maior atenção para reduzir acúmulos dos metabólitos que diminuem e/ou induzem a fadiga durante o exercício físico, usando suplementação de ami- noácidos conhecidos por induzir beneficamente mudanças meta- bólicas(31-35). Entre estes aminoácidos, a L-arginina, essencial para o crescimento infantil e substrato para diferentes e importantes enzimas, como a arginase, NO sintase (NOS), arginina descarboxi- lase, etc. Arginase é a enzima clássica catabolizante da arginina no Ciclo da Uréia e a arginina descarboxilase catalisa a transfor- mação da L-arginina à agmatina, um agonista endógeno da α2- adrenoceptores que pode ter um papel no efeito anti-hipertensivo da L-arginina. Em humanos saudáveis e em certos animais, a L- arginina é elucidada por induzir a hipotensão que é advinda da estimulação da formação de óxido nítrico (NO) pela via L-arginina- NO(13,36-42) . A bioquímica da arginina é complexa e envolve muitas vias metabólicas e sistemas orgânicos. A arginina tem papel im- portante na síntese de uréia, proteína, compostos de alta energia (creatina e creatina-fosfato), poliamina e óxido nítrico(42-48) . A vasodilatação de arteríolas músculo-esqueléticas em respos- ta ao exercício aumentam o fornecimento de nutrientes e oxigê- nio aos músculos que estão sendo solicitados durante a movi- mentação. Estudo com camundongos e a ação da suplementação com l-arginina como determinante da capacidade de executar uma atividade física específica mostrou melhoria na capacidade de exe- cução da atividade por causa do aumento sistêmico da produção de óxido nítrico derivado do endotélio(49). Estudos já ressaltavam que a suplementação de arginina ajudou a reduzir a fadiga fisioló- gica, mediante a redução da concentração de amônia após algum tempo da administração oral(50). O presente estudo teve como objetivo estudar o efeito da su- plementação aguda de aspartato de arginina em indivíduos sadios treinados submetidos a um protocolo de exaustão em um cicloer- gômetro. METODOLOGIA A seqüência de administração de aspartato de arginina para cada voluntário foi baseada em uma tabela de randomização, aprovada pelo Comitê de Ética em Pesquisa com Seres Humanos sob o no A020/2003/CEP. Para a realização do estudo foram utilizados comprimidos con- tendo 1,5g de aspartato de arginina, cujo nome comercial é Targi- for ® , sendo o mesmo produzido pela empresa Aventispharma, Lote no 300971, com validade até 02/2006. Os voluntários receberam 4,5g (3 comprimidos) de aspartato de arginina por via oral em dose única diluídos em água mineral (250ml) contendo um corante sem efeito energético. Já o grupo placebo recebeu apenas água mine- ral (250ml) com corante. Foram utilizados 12 indivíduos saudáveis do sexo masculino, com a idade de 22,6 ± 3,5 anos. Os voluntários foram submetidos a um protocolo de indução a fadiga organizado da seguinte forma: os voluntários foram avalia-
  • 3. Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 349 dos para obtenção de valores de controle. Posteriormente passa- ram por duas fases (FI e FII) experimentais, descritas abaixo: FI: Administração de 4,5g de aspartato de arginina para os vo- luntários I, II, IV, VII, IX e XII. FII: Administração de 4,5g de aspartato de arginina para os vo- luntários III, V, VI, VIII, X e XI. O protocolo de indução à fadiga foi realizado 90 minutos após a administração do aspartato de arginina ou solução placebo, quan- do os voluntários foram orientados a posicionar-se no cicloergô- metro (LifeFitness). Pedalando a uma freqüência de 60rpm, sen- do que após o período de 2 minutos a 38 Watts, foi aumentado a cada 2 minutos, aproximadamente 25 Watts, com exceção do sexto minuto (50 Watts) até a fadiga, utilizando-se ainda de um freqüen- címetro para registro da freqüência cardíaca. Cada voluntário executou o mesmo protocolo de indução à fadi- ga quatro vezes (adaptação, controle, arginina e placebo), sempre utilizando os mesmos critérios(adaptado 13). Análise Bioquímica: Coleta de sangue, 5ml antes e 5ml após o protocolo para análises bioquímicas como: creatinina, uréia, glice- mia e lactato. As análises bioquímicas foram feitas utilizando-se de kits diagnósticos da marca Laborlab® (Guarulhos/São Paulo) atra- vés de metodologia não cinética todos a 37°C em espectrofotô- metro Shimadzu UV-1650 PC. O lactato plasmático foi analisado antes e após o protocolo de indução à fadiga utilizando-se o equi- pamento Accusport® e fitas para análise BM-Lactate (Roche Diag- nostics, Mannheim, Alemanha). Análise estatística: Foi utilizada análise de variância (ANOVA) seguida do teste de Tukey para amostras independentes. O nível de significância menor que 5% (p < 0,05) foi adotado. RESULTADOS Os dados a seguir apresentados representam a Média ± Erro Padrão da Média (EPM). A Freqüência Cardíaca Máxima (FCmáx.) foi registrada em batimentos/minuto (bpm) imediatamente após a execução do protocolo de indução da fadiga e comparada entre os três grupos, não havendo diferença estatisticamente significante. Controle (185 ± 4) versus Arginina (184 ± 3) e Placebo (185 ± 3). O Tempo Máximo (Tmáx.) obtido para o protocolo de indução à fadiga nos diferentes grupos não apresentaram diferença estatís- tica, onde foram verificados o Controle (17,86 ± 0,78) versus Argi- nina (18,87 ± 0,71) e Placebo (18,31 ± 0,72). Nenhuma diferença estatística pode ser observada em respos- ta à Carga Máxima (Cargamáx.) obtida em Watts (W) após a execu- ção do protocolo de indução à fadiga, sendo Controle (266,08 ± 9,20) versus Arginina (285,36 ± 8,23) e Placebo (276,67 ± 7,94). ção plasmática do Lactato pré-protocolo, em que não podem ser observadas diferenças entre os grupos experimentais: Controle Pré (2,2 ± 0,14) versus Arginina Pré (2,43 ± 0,23) e Placebo Pré (2,26 ± 0,11). A concentração plasmática pós-protocolo, Controle Pós (10,35 ± 0,57) versus Arginina Pós (12,07 ± 0,88) e Placebo Pós (12,2 ± 0,96), não apresentou diferença estatística. Já ao com- parar [La]b antes e após o protocolo de indução a fadiga nas dife- rentes fases observamos diferenças estatísticas. Controle Pré (2,2 ± 0,14) versus Controle Pós (10,35 ± 0,57); Arginina Pré (2,43 ± 0,23) versus Arginina Pós (12,07 ± 0,88); Placebo Pré (2,26 ± 0,11) versus Placebo Pós (12,2 ± 0,96), p < 0,001. Nenhuma diferença estatística foi observada em relação às con- centrações de Uréia, Creatinina e Glicose. Sendo para Uréia: Con- trole Pré (41,67 ± 3,34), Arginina Pré (42,56 ± 2,58) e Placebo Pré (42,54 ± 3,25); Controle Pós (45,06 ± 3,58), Arginina Pós (44,44 ± 2,59) e Placebo Pós (43,08 ± 2,94). Para Creatinina: Controle Pré (1,68 ± 0,29), Arginina Pré (2,19 ± 0,31) e Placebo Pré (2,49 ± 0,40); Controle Pós (2,38 ± 0,33), Arginina Pós (2,55 ± 0,30) e Placebo Pós (2,82 ± 0,29) e para Glicose: Controle Pré (74,48 ± 4,19), Arginina Pré (78,70 ± 3,91) e Placebo Pré (73,60 ± 4,31); Controle Pós (85,53 ± 5,04), Arginina Pós (79,28 ± 3,95) e Placebo Pós (70,83 ± 4,63). DISCUSSÃO Um grande número de pesquisas tem sido feito para identificar substâncias ergogênicas mais efetivas na melhora do desempe- nho atlético, sempre focando na energia requerida na variedade de esportes e controlando o consumo dietético(31). A suplementa- ção oral de L-arginina tem mostrado ambos resultados negativos e positivos. A discrepância entre observações clínicas de que a L- arginina pode, em alguns casos, aumentar a formação de óxido nítrico e a expectativa de que esta deveria ser a base da cinética da L-arginina para a reação do NO é titulada de “paradoxo da argi- nina”. Teorias que dizem respeito ao paradoxo da arginina têm focado a possibilidade de altas doses de L-arginina para a obten- ção dos efeitos requeridos(42) . Pois, se o fluxo sanguíneo aumen- tar, pode permite maior liberação de lactato e íons do músculo, promovendo a maior remoção na circulação devido à distribuição sanguínea(51) . A Freqüência Cardíaca Máxima (FCmáx ) obtida nos testes duran- te as fases elucidam a alta intensidade desenvolvida pelos volun- tários, observando que a suplementação com aspartato de argini- na não modificou o ritmo cardíaco (bpm) dos indivíduos durante o teste após a administração. Outra característica que não sofreu alteração foi o Tempo Máxi- mo (Tmáx ) de execução do protocolo de indução à fadiga nas dife- rentes etapas, mostrando que o desempenho final não foi altera- do pela administração de 4,5g de aspartato de arginina. Ao avaliarmos a Carga Máxima produzida no cicloergômetro nos dias de indução à fadiga nas diferentes fases de administração as cargas mantiveram-se sem qualquer alteração, o que certamente condiz com o fato de que a suplementação utilizada não exerce efeito na obtenção de maiores cargas de trabalho quando utiliza- do tal protocolo de indução à fadiga. A mensuração da concentração de lactato sanguíneo é um pro- cedimento padrão para determinar a intensidade do exercício físi- co. O valor absoluto da concentração de lactato é usado em cer- tos grupos de sujeitos para objetivamente estimar a intensidade do exercício ou como um critério de exaustão máxima(52) . Neste estudo, utilizamo-nos de tais conceitos para determinar a intensi- dade do exercício, que por sua vez ao verificar os valores encon- trados no pós-protocolo determinaram que os voluntários chega- ram à exaustão máxima, onde consideramos o ponto de fadiga. O acúmulo de lactato durante a execução de um protocolo de exer- cício de alta intensidade significa que a produção de lactato exce- de a quantidade de sua remoção. O acúmulo de lactato é indicati- A concentração de Lactato (mmol/L) em voluntários treinados foi determinada previamente e logo após o término da execução do protocolo de indução à fadiga. O gráfico 1 exibe a concentra- LACTATO (PRÉ vs PÓS) 0 5 10 15 mmol/L Controle pré Arginina pré Placebo pré Controle pós Arginina pós Placebo pós * * * Gráfico 1 – Média da Concentração Plasmática do Lactato obtida em 12 voluntários treinados antes e após a execução do protocolo de indução à fadiga nos diferentes grupos experimentais. Os dados representam a mé- dia ± EPM, n = 12. * P < 0,001.
  • 4. 350 Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 vo da depleção de glicogênio, fazendo sentido o encontro de altas concentrações de lactato no momento do ponto de fadiga, condi- zendo com relatos de outros autores(18-20,51) . Assim, observamos o aumento significativo da [La]b aos com- pararmos o pré com o pós-protocolo. Desta forma, podemos afir- mar que a elevação da concentração plasmática de lactato existiu pela alta intensidade do exercício proposto, não havendo nenhu- ma diferenciação devido à presença da suplementação com as- partato de arginina. Sabe-se que o excesso de aminoácidos é metabolizado dentro do ciclo da uréia e excretado pela urina. O excesso de suplemen- tação pode causar danos renais. Desta forma, analisando a con- centração de uréia e creatinina, observam-se efeitos sobre a fun- ção renal(35). Em estudo realizado em 1994, foi verificado que a administração oral de 20g, aguda, de arginina induziu um aumento da ureiogênese e da concentração celular de ATP(50) . Porém, nos- sos resultados referentes à concentração da uréia não se modifi- caram após a administração oral, aguda, de 4,5g de aspartato de arginina, reafirmando que a dose oral sugerida em estudo não foi suficiente para induzir o aumento da ureiogênese(13). Por si só, a creatinina tem sido usada para determinar a capaci- dade e/ou sobrecarga renal após a ingestão de aminoácidos. A arginina, por sua vez, induz a síntese endógena de creatina, geran- do uma fonte adicional de creatinina para ser excretada. Com rela- ção a isto, a arginina, junto com glicina e S-adenosilmetionina, é um dos aminoácidos precursores da creatina. O que para nosso estudo poderia ser uma energia adicional para a melhoria da per- formance que de fato não ocorreu. O aumento na síntese de crea- tina requer um processo complexo que inclui a captação da argini- na pelos órgãos sintetizadores de creatina, formar creatina fosfato e desfosforilar a creatina e assim a circulação(53) . Os resultados referentes à glicose não alteraram durante os testes nas diferentes etapas, atribuindo ao não aumento do fluxo mediado pela arginina na formação de NO, pois, diversos autores já mostram um papel fundamental da via de formação do NO no músculo esquelético ao tratar de transporte de glicose(47) . Desta forma, destacamos a ineficiência da suplementação utilizada em nossa pesquisa. Apesar de estudo sugerir que administração oral de 4 a 5g de arginina poderia oferecer benefícios, tais como a redução das con- centrações de lactato, amônia e talvez uma melhoria de desem- penho, nossos resultados sugerem que estudos com outras do- ses e com outros períodos de administração sejam realizados para talvez obter um aumento na tolerância à fadiga(13). Finalmente, este estudo objetivou avaliar o efeito da suplemen- tação aguda de aspartato de arginina em indivíduos sadios treina- dos submetidos a um protocolo de exaustão em um cicloergôme- tro. Porém, mediante os resultados apresentados, podemos concluir que a suplementação aguda de aspartato de arginina, na dose de 4,5g, não foi capaz de aumentar o desempenho físico, o que caracteriza que não auxiliou na tolerância à fadiga muscular. Todos os autores declararam não haver qualquer potencial confli- to de interesses referente a este artigo. REFERÊNCIAS 1. Lucia A, Hoyos J, Pardo J, Chicharro JL. Effects of endurance training on the breathing pattern of professional cyclists. Jpn J Physiol 2001;51:133-41. 2. Hargreaves M, Mckenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 1998;84:1687-91. 3. Bangsbo J, Krustrup P, Alonso JG, Saltin B. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol Endocrinol Metab 2001;280:956-64. 4. Dahlstedt AJ, Westerblad H. Inhibition of creatine kinase reduces the rate of fa- tigue-induced decrease in tetanic [Ca2+ ], in mouse skeletal muscle. J Physiol 2001;533:639-49. 5. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fa- tigue. Exerc Sports Sci Rev 2001;29:109-12. 6. Kirkendal DT. Mechanisms of peripheral fatigue. Med Sci Sports Exerc 1990;22: 444-9. 7. Marquezi ML, Lancha Junior AH. Possível efeito da suplementação de aminoáci- dos de cadeia ramificada, aspartato e asparagina sobre o limiar anaeróbio. Rev Paul Educ Fis 1997;11:90-101. 8. Green HJ. Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 1998;162:201-13. 9. Harmer AR, Mckenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, et al. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 2000;89:1793-803. 10. Danion F, Latash ML, Li ZM, Zatsiorsky VM. The effect of fatigue on multifinger co-ordination in force tasks in humans. J Physiol 2000;523:523-32. 11. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001;81:1725-89. 12. Santos RS. Estudo do efeito da administração oral de l-arginina na resistência muscular em voluntários sadios por meio de dinamometria isocinética 2001; f.62. Dissertação (Mestrado em Engenharia Biomédica) – Instituto de Pesquisa e De- senvolvimento, Universidade do Vale do Paraíba. 13. Schaefer A, Piquard F, Geny B, Doutreleau S, Lampert E, Mettaure B, et al. L- Arginine reduce exercise-induced increase in plasma lactate and ammonia. Int J Sports Med 2002;23:403-7. 14. Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phos- phorylase associated with sarcoplasmatic reticulum: effects of fatiguing activity. J Appl Physiol 2001;91:1638-44. 15. Tsopanakis C, Tsopanakis A. Stress hormonal factors, fatigue, and antioxidant responses to prolonged speed driving. Pharmacol Biochem Behav 1998;60:747- 51. 16. Rassier DE, Macintosh BR. Coexistence of potentiation an fatigue in skeletal muscle. Braz J Med Biol Res 2000;33:499-508. 17. Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL. Effect of aging on fatigue characteristics of elbow flexor muscle during sustained submaximal con- traction. J Appl Physiol 2001;91:2654-64. 18. Favero TG, Zable AC, Colter D, Abramson JJ. Lactate inhibits Ca2+ -activated Ca2+ - channel activity from skeletal muscle sarcoplasmic reticulum. J Appl Physiol 1997;82:447-52. 19. Febbraio MA, Dancey J. Skeletal muscle energy metabolism during prolonged, fatiguing exercise. J Appl Physiol 1999;87:2341-7. 20. Baldwin J, Snow RJ, Gibala MJ, Garnham A, Howarth K, Febbraio MA. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatigu- ing exercise. J Appl Physiol 2003;94:2181-7. 21. Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumu- lation and muscle deoxygenation during incremental exercise. J Appl Physiol 1999;87:348-55. 22. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondri- al lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA 1999;96:1129-34. 23. Von Grumbckow L, Elsner P, Hellsten Y, Quistorff B, Juel C. Kinetics of lactate and pyruvate transport in cultured rat myotubes. Biochim Biophys Acta 1999;1417: 267-75. 24. Ferrington DA, Reijneveld JC, Bar PR, Bigelow DJ. Activation of the sarcoplasmic reticulum Ca2+-ATPase induced by exercise. Biochim Biophys Acta 1996;1279: 203-13. 25. Favero TG. Sarcoplasmic reticulum Ca2+ release and muscle fatigue. J Appl Phys- iol 1999;87:471-83. 26. Kabbara AA, Allen DG. The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. J Physiol 1999;519:169-76. 27. Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 2000;512:523- 32. 28. Modin A, Björne H, Herulf M, Aluin K, Weitzbeg E, Lundberg JON. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand 2001;171:9-16. 29. Jacob TL, Segal SS. Attenuation of vasodilatation with skeletal muscle fatigue in hamster retractor..... J Physiol 2000;524:929-41. 30. Barros Neto TL. A controvérsia dos agentes ergogênicos: estamos subestiman- do os efeitos naturais da atividade física? Arq Bras Endocrinol Metab 2001;45: 121-2. 31. Ohtani M, Maruyama K, Sugita M, Kobayashi K. Amino acid supplementation affects hematological and biochemical parameters in elite rugby players. Biosci Biotechnol Biochem 2001;65:1970-6. 32. Lemon PWR. Protein and exercise: update 1987. Med Sci Sports Exerc 1987; 19:179-90. 33. Rossi L, Tirapegui J. Aspectos atuais sobre exercício físico, fadiga e nutrição. Rev Paul Educ Fís 1999;13:67-82.
  • 5. Rev Bras Med Esporte _ Vol. 11, Nº 6 – Nov/Dez, 2005 351 34. Stevens BR, Godfrey MD, Kaminski TW, Brainth RW. High-intensity dynamic human muscle performance enhanced by metabolic intervention. Med Sci Sports Exerc 2000;32:2102-8. 35. Lawrence ME, Kirby DF. Nutrition and sports supplements. J Clin Gastroenterol 2002;35:299-306. 36. Tricarico D, Casini G, Conte Camerino D. Effects of high energy phosphates and L-arginine on the electrical parameters of ischemic-reperfused rat skeletal mus- cle fibers. Eur J Pharmacol 1995;287:17-25. 37. Marin J, Rodriguez-Martinez A. Role of vascular nitric oxide in physiological and pathological conditions. Pharmacol Ther 1997;75:111-34. 38. Newsholme E, Hardy G. Supplementation of diets with nutritional pharmaceuti- cals. Nutrition 1997;13:837-9. 39. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;100:2153-7. 40. Hiroaki K. Nitric oxide and hemoglobin interactions in the vasculature. Biochim Biophys Acta 1999;1411:370-7. 41. Marareli MRT. Oxido nítrico: un gás contaminante con propiedades biológicas: su importancia en fisiopatologia cardiovascular. Rev Sanid Mil 2000;54:164-75. 42. Abdelhamed AI, Reis SE, Sane DC, Brosnihan KB, Preli RB, Herrington DM. No effect of an l-arginine-enriched medical food (HeartBars) on endothelial function and platelet aggregation in subjects with hypercholesterolemia. Am Heart J 2003; 145:e15. 43. Field CJ, Johnson I, Partt VC. Glutamine and arginine: immunonutrients for im- proved health. Med Sci Sports Exerc 2000;32:5377-88. 44. Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Educ Heart 2001;85:342-50. 45. Koller-Strametz J. Role of nitric oxide in exercise-induced vasodilation in man. Life Sci 1998;62:1035-42. 46. Reid MB. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Med Sci Sports Exerc 2001;33:371-6. 47. Kingwell BA. Nitric oxide-mediated metabolic regulation during exercise: effects of training in health and cardiovascular disease. FASEB J 2000;14:1685-96. 48. Racké K, Hey C, Mösner J, Hammermann R, Stichnote C, Wessler I. Activation of l-arginine transpot by protein kinase C in rabbit, rat and mouse alveolar macroph- ages. J Physiol 1998;511:813-25. 49. Maxwell AJ, Ho HV, Le CQ, Lin PS, Bernstein D, Cooke JP. L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. J Appl Physiol 2001;90:933-8. 50. Eto B, Peres G, Le Moel G. Effects of an ingested glutamate arginine salt on ammonemia during and after long lasting cycling. Arch Int Physiol Biochim Bio- phys 1994;102:161-2. 51. Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lac- tate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 2003;33:407-26. 52. Roecker K, Mayer F, Striegel H, Dickhuth HH. Increase characteristics of the cu- mulated excess-CO2 and the lactate concentration during exercise. Int J Sports Med 2000;21:419-23. 53. Bello E, Caramelo C. Increase of tubular secretion of creatinine by l-arginine: mechanism of practical significance in the assessment of renal function based on creatinine clearance. Nefrologia 2000;20:517-22.