SlideShare uma empresa Scribd logo

Estatística

Material para o segundo Bimestre

1 de 16
Baixar para ler offline
1
2º BIMESTRE – MATEMÁTICA
3º ANO DO ENSINO MÉDIO
DOCENTE: IVE PINA
CONTEÚDO: ESTATÍSTICA
INTRODUÇÃO
A Estatística é um conjunto de técnicas e métodos de pesquisa que, entre outros
tópicos, envolve o planejamento do experimento a ser realizado, a coleta qualificada
de dados, a inferência e o processamento e análise das informações.
Grande parte das informações divulgadas pelos meios de comunicação atual provém
de pesquisas e estudos estatísticos.
Utilizando hoje os poderosos meios da Informática, a Estatística tem sido fundamental
para o desenvolvimento da Economia, da Medicina, da Física, da Psicologia, da
Lingüística, etc.
Muitas vezes precisamos fazer a análise dos gráficos junto com outros gráficos. Caso
da escolaridade média deste mesmo grupo, no mesmo período, para que entendamos
o conjunto.
Por meio de análises feitas a partir de dados organizados podemos, em muitos casos,
fazer previsões, determinar tendências, auxiliar na tomada de decisões e, portanto,
elaborar um planejamento com mais precisão.
2
No estudo que faremos aqui veremos como organizar um grupo de dados e tabelas e
como construir gráficos a partir desses dados.
CONCEITOS
População: É o conjunto de objetos, de indivíduos ou de ocorrências na observação
desses grupos, geralmente numerosos.
OBS: A população estatística pode ser finita ou infinita.
Exemplos:
 Conjunto de estudantes do ensino fundamental de uma escola. (finita)
 Conjunto de pessoas que moram num condomínio fechado. (finita)
 A quantidade de estrelas existentes no universo. (infinita)
Amostra: Quando o universo estatístico é infinito, não é possível fazer uma
observação que abranja todos os seus elementos, nesse caso recorre-se a um
subconjunto do universo estudado que chamamos de amostra. E, mesmo quando o
universo é finito, há razões que nos levam à utilização da técnica de amostragem, tais
como:
 Razões econômicas, por ser dispendioso observar grande número de
elementos;
 Razões de tempo, pois uma observação demorada pode levar a resultados
desatualizados.
Variável Estatística: É uma característica ou propriedade da população estudada.
Pode ser classificada como uma variável qualitativa ou quantitativa.
 Qualitativa: se os valores tomados não são numéricos, como: raça, área de
estudos, meio de transporte, etc.
 Quantitativa: se os valores tomados são numéricos, como altura, peso, preço
de um produto, etc.
Frequência absoluta: Frequência absoluta de uma variável é dada pelo número de
vezes que essa variável aparece no conjunto considerado.
A primeira fase de um estudo estatístico consiste em recolher, contar e classificar os
dados pesquisados sobre uma população estatística ou sobre uma amostra dessa
população.
Escolhida uma característica sobre os elementos de uma população, devemos
elaborar uma tabela de dados denominada distribuição estatística. Posteriormente, os
resultados podem ser interpretados por meio de um gráfico. Diversos tipos de gráficos
são usados em Estatística: de barras, de setores, poligonais, etc.
Inicialmente, vamos aprender a construir tabela de distribuição de frequências.
Consideremos o quadro a seguir, que mostra as notas de Matemática dos alunos de
uma classe da 3ª série do Ensino Médio de uma determinada escola.
Disciplina: Matemática Turma: 3ª série
Número 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Nota 5 4 6 8 3 5 7 6 8 4 6 9 7 5 7 5 6 8 7 9 4 6 6 8 7
Nesse caso temos:
 População Estatística: grupo dos 25 alunos da 3ª série.
 Variável estatística: as notas da prova de Matemática.
A partir desses conhecimentos, elaboramos a seguinte tabela:
3
Na coluna “Notas” aparecem os diferentes valores da variável estatística (notas das
provas). Na coluna “Número de alunos” está indicando o número de vezes que se
repete cada valor. Esta última coluna é chamada de coluna de freqüência absoluta.
Assim:
 A freqüência absoluta da nota 5 é 4.
 A freqüência absoluta da nota 6 é 6.
Frequência relativa: É a razão entre a freqüência absoluta e o número total de
elementos do conjunto. A freqüência relativa é dada em porcentagem. O total da
freqüência relativa sempre tem que ser igual a 100%.
Completando a tabela com a frequência absoluta e a frequência relativa, temos:
Notas Número de Alunos = Frequência Absoluta Frequência Relativa
3 1 4%
4 3 12%
5 4 16%
6 6 24%
7 5 20%
8 4 16%
9 2 8%
Total: 25 100%
Frequência absoluta e relativa acumulada: A frequência absoluta acumulada e a
frequência relativa acumulada são obtidas adicionando-se a cada frequência absoluta
ou relativa os valores das frequências anteriores.
Exemplo: A tabela mostra a distribuição das idades dos jogadores de um time de
futebol.
Idade (em anos) Número de jogadores
18 4
20 6
21 3
23 7
24 2
25 8
Completando a tabela com a frequência absoluta, frequência absoluta acumulada, a
frequência relativa e frequência relativa acumulada, temos:
Idade (em anos) FA FAAc FR FRAc
18 4 4 13% 13%
20 6 10 20% 33%
21 3 13 10% 43%
23 7 20 23% 67%
24 2 22 7% 73%
25 8 30 27% 100%
Total: 30 100%
Notas Número de Alunos
3 1
4 3
5 4
6 6
7 5
8 4
9 2
4
Exemplo: (ENEM – 05) Uma cooperativa de rádio tem como meta atender, em no
máximo 15 minutos, a pelo menos 95% das chamadas que recebe. O controle dessa
meta é feito ininterruptamente por um funcionário que utiliza um equipamento de rádio
para monitoramento. A cada 100 chamadas, ele registra o número acumulado de
chamadas que não foram atendidas em 15 minutos. Ao final de um dia, a cooperativa
apresentou o seguinte
desempenho:
Esse desempenho mostra que,
nesse dia, a meta estabelecida
foi atingida
(A) nas primeiras 100 chamadas.
(B) nas primeiras 200 chamadas.
(C) nas primeiras 300 chamadas.
(D) nas primeiras 400 chamadas.
(E) ao final do dia.
EXERCÍCIOS
1) Numa pesquisa de opinião pública
com 800 telespectadores sobre o
programa de televisão de sua
preferência, obteve a seguinte tabela de
frequências absolutas:
Construa um quadro com distribuição
de freqüência absolutas, frequências absolutas acumuladas, frequências relativas e
frequências relativas acumuladas.
2) Os salários mensais, em reais, dos 20 funcionários de uma empresa são:
720 720 800 880 840
720 760 800 920 720
760 800 840 720 680
760 800 720 880 760
Elabore um quadro de distribuição de freqüências absolutas e frequências relativas.
3) Em uma escola, o conceito de cada bimestre é representado por letras: A, B, C, D e
E. Em um determinado bimestre, os conceitos, em Matemática, dos alunos do 3º ano
foram:
Matemática
Número 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Conceito B A C C D C D A A C E D D C B C B C C C
Nessas condições, elabore um quadro de distribuição de frequências absolutas e
frequências relativas.
4) Uma pesquisa sobre atividades
culturais extraclasse foi feita entre 1.000
alunos de uma escola. O resultado está
no quadro seguinte:
Elabore um quadro de distribuição de
frequências relativas.
Programa de TV Número de expectadores
Novelas 360
Esportes 128
Filmes 80
Noticiários 32
Shows 200
ATIVIDADES Nº DE ALUNOS
Visitas a museus 400
Visitas a outras cidades 200
Palestras 250
Exposições 100
Outras 50
5
GRÁFICOS ESTATÍSTICOS
É de grande importância a utilização de gráficos e tabelas estatísticas. Com eles
podemos fazer melhor a interpretação de seus dados.
Veja alguns exemplos:
 uma pesquisa de opinião;
 uma pesquisa de mercado;
 o índice de desemprego nas regiões do país, etc.
Podemos representar graficamente a distribuição de frequências de um levantamento
estatístico.
As representações mais utilizadas são: Gráficos de linha, colunas, barras e setores.
Para montarmos um gráfico é mais fácil de colocarmos os dados em ordem crescente.
Idade (em anos) Freqüência Absoluta Freqüência Relativa
24 2 7%
21 3 10%
18 4 13%
20 6 20%
23 7 23%
25 8 27%
Total: 30 100%
Gráfico de segmentos ou de linha Gráfico de colunas
Gráfico de barras Gráfico de setores
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
0 1 2 3 4 5 6 7 8 9
número de jogadores
idades
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
0 1 2 3 4 5 6 7 8
número de jogadores
idades
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
1
2
3
4
5
6
7
8
nº de
jogadores
idades
6
INTERPRETAÇÃO DE GRÁFICOS E TABELAS
1) (ENEM/99) Para convencer a população local da ineficiência da Companhia
Telefônica Vilatel na expansão da oferta de linhas, um político publicou no jornal local
o gráfico I, abaixo representado. A Companhia Vilatel respondeu publicando dias
depois o gráfico II, onde pretende justificar um grande aumento na oferta de linhas. O
fato é que, no período considerado, foram instaladas, efetivamente, 200 novas linhas
telefônicas. Analisando os gráficos, pode-se concluir que:
(A) o gráfico II representa um crescimento real maior do que o do gráfico I.
(B) o gráfico I apresenta o crescimento real, sendo o II incorreto.
(C) o gráfico II apresenta o crescimento real, sendo o gráfico I incorreto.
(D) a aparente diferença de crescimento nos dois gráficos decorre da escolha das
diferentes escalas.
(E) os dois gráficos são incomparáveis, pois usam escalas diferentes.
2) (ENEM/98) Um estudo sobre o problema do desemprego na Grande São Paulo,
no período 1985-1996, realizado pelo SEADE-DIEESE, apresentou o seguinte gráfico
sobre a taxa de desemprego.
Pela análise do gráfico, é correto afirmar que, no período considerado,
(A) a maior taxa de desemprego foi de 14%.
(B) a taxa desemprego no ano de 1995 foi a menor do período.
(C) a partir de 1992, a taxa de desemprego foi decrescente.
(D) no período 1985-1996, a taxa de desemprego esteve entre 8% e 16%.
(E) A taxa de desemprego foi crescente no período compreendido entre 1988 e
1991.

Recomendados

1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton bruno1ª lista de exercícios 9º ano(potências)ilton bruno
1ª lista de exercícios 9º ano(potências)ilton brunoIlton Bruno
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notávelAlessandra Dias
 
2º lista de exercícios potenciação e radiciação - 9º ano
2º lista de exercícios   potenciação e radiciação - 9º ano2º lista de exercícios   potenciação e radiciação - 9º ano
2º lista de exercícios potenciação e radiciação - 9º anoafpinto
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afimProfessoraIve
 
Doc estatistica _1604733529
Doc estatistica _1604733529Doc estatistica _1604733529
Doc estatistica _1604733529Jennyfer Santos
 

Mais conteúdo relacionado

Mais procurados

Lista de exercícios de geometria volume de prisma
Lista de exercícios de geometria volume de prismaLista de exercícios de geometria volume de prisma
Lista de exercícios de geometria volume de prismaPriscila Lourenço
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
Lista de exercícios conjuntos
Lista de exercícios conjuntosLista de exercícios conjuntos
Lista de exercícios conjuntostiagoz26
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pKamilla Oliveira
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiRodrigo Borges
 
Lista de exercícios 8º ano - 3ª etapa
Lista de exercícios   8º ano - 3ª etapaLista de exercícios   8º ano - 3ª etapa
Lista de exercícios 8º ano - 3ª etapaAlessandra Dias
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLASENAI/FATEC - MT
 
Lista Circulo Circunferencia
Lista Circulo CircunferenciaLista Circulo Circunferencia
Lista Circulo Circunferenciatioheraclito
 
Exercícios teorema pitagoras
Exercícios teorema pitagorasExercícios teorema pitagoras
Exercícios teorema pitagorasMichele Boulanger
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreRafael Marques
 
Relacoes metricas no triangulo retangulo 9 ano
Relacoes metricas no triangulo retangulo 9 anoRelacoes metricas no triangulo retangulo 9 ano
Relacoes metricas no triangulo retangulo 9 anoDiogo Satiro
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOHélio Rocha
 
Exercícios retas paralelas
Exercícios  retas paralelas Exercícios  retas paralelas
Exercícios retas paralelas MarizaPinguelli
 
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
2   4  - exercícios - quadrados perfeitos, raízes , método (1)2   4  - exercícios - quadrados perfeitos, raízes , método (1)
2 4 - exercícios - quadrados perfeitos, raízes , método (1)Kamilla Souza
 
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOS
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOSTEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOS
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOSP Valter De Almeida Gomes
 

Mais procurados (20)

Lista de exercícios de geometria volume de prisma
Lista de exercícios de geometria volume de prismaLista de exercícios de geometria volume de prisma
Lista de exercícios de geometria volume de prisma
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
ATIVIDADE 9 ANO PDF.pdf
ATIVIDADE 9 ANO PDF.pdfATIVIDADE 9 ANO PDF.pdf
ATIVIDADE 9 ANO PDF.pdf
 
Lista de exercícios conjuntos
Lista de exercícios conjuntosLista de exercícios conjuntos
Lista de exercícios conjuntos
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade ii
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos
 
Lista de exercícios 8º ano - 3ª etapa
Lista de exercícios   8º ano - 3ª etapaLista de exercícios   8º ano - 3ª etapa
Lista de exercícios 8º ano - 3ª etapa
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
 
Lista Circulo Circunferencia
Lista Circulo CircunferenciaLista Circulo Circunferencia
Lista Circulo Circunferencia
 
Exercícios teorema pitagoras
Exercícios teorema pitagorasExercícios teorema pitagoras
Exercícios teorema pitagoras
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
 
Relacoes metricas no triangulo retangulo 9 ano
Relacoes metricas no triangulo retangulo 9 anoRelacoes metricas no triangulo retangulo 9 ano
Relacoes metricas no triangulo retangulo 9 ano
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
 
Exercício proposto matemática - 2º ens.médio
Exercício proposto   matemática - 2º ens.médioExercício proposto   matemática - 2º ens.médio
Exercício proposto matemática - 2º ens.médio
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Exercícios retas paralelas
Exercícios  retas paralelas Exercícios  retas paralelas
Exercícios retas paralelas
 
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
2   4  - exercícios - quadrados perfeitos, raízes , método (1)2   4  - exercícios - quadrados perfeitos, raízes , método (1)
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
 
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOS
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOSTEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOS
TEOREMA DE TALES NO FEIXE DE PARALELAS E NOS TRIÂNGULOS
 

Semelhante a Estatística

Ficha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaFicha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaAna Colaco
 
EstatíStica Aula 000
EstatíStica Aula 000EstatíStica Aula 000
EstatíStica Aula 000educacao f
 
Estatistica Atualiz
Estatistica AtualizEstatistica Atualiz
Estatistica Atualizguest61a270
 
1ª apostila de estatística quimica
1ª apostila de estatística  quimica1ª apostila de estatística  quimica
1ª apostila de estatística quimicaMarianne Soares
 
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...RaquelSilva604657
 
Estatística aplicada 06-03.pptx (corrigida) (1).pptx
Estatística aplicada 06-03.pptx (corrigida) (1).pptxEstatística aplicada 06-03.pptx (corrigida) (1).pptx
Estatística aplicada 06-03.pptx (corrigida) (1).pptxNivaldoSil
 
Capítulo ii estatística iniciais
Capítulo ii   estatística  iniciaisCapítulo ii   estatística  iniciais
Capítulo ii estatística iniciaiscon_seguir
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 
Material de apoio estatística 2017 1
Material de apoio estatística 2017 1Material de apoio estatística 2017 1
Material de apoio estatística 2017 1Psicologia_2015
 
Apostila estatística matemática vol 1 2009
Apostila estatística matemática vol 1 2009Apostila estatística matemática vol 1 2009
Apostila estatística matemática vol 1 2009Edson Xavier
 
Estatistica aplicada-2-ano-enfermagem-2-capitulo
Estatistica aplicada-2-ano-enfermagem-2-capituloEstatistica aplicada-2-ano-enfermagem-2-capitulo
Estatistica aplicada-2-ano-enfermagem-2-capituloJacirene Pereira Passarinho
 
Extra de estatistica 28 10 2020
Extra de estatistica 28 10 2020Extra de estatistica 28 10 2020
Extra de estatistica 28 10 2020AfirmaMilitarCurso
 

Semelhante a Estatística (20)

Ficha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaFicha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatistica
 
Estdescr
EstdescrEstdescr
Estdescr
 
Estatistica
EstatisticaEstatistica
Estatistica
 
EstatíStica Aula 000
EstatíStica Aula 000EstatíStica Aula 000
EstatíStica Aula 000
 
estatística
estatísticaestatística
estatística
 
Estatistica Atualiz
Estatistica AtualizEstatistica Atualiz
Estatistica Atualiz
 
1ª apostila de estatística quimica
1ª apostila de estatística  quimica1ª apostila de estatística  quimica
1ª apostila de estatística quimica
 
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
 
23126 estatisticaaplicada manualtecnicoformando
23126 estatisticaaplicada manualtecnicoformando23126 estatisticaaplicada manualtecnicoformando
23126 estatisticaaplicada manualtecnicoformando
 
Estatística aplicada 06-03.pptx (corrigida) (1).pptx
Estatística aplicada 06-03.pptx (corrigida) (1).pptxEstatística aplicada 06-03.pptx (corrigida) (1).pptx
Estatística aplicada 06-03.pptx (corrigida) (1).pptx
 
Capítulo ii estatística iniciais
Capítulo ii   estatística  iniciaisCapítulo ii   estatística  iniciais
Capítulo ii estatística iniciais
 
Estatistica
EstatisticaEstatistica
Estatistica
 
Apos est i_fev04_c1
Apos est i_fev04_c1Apos est i_fev04_c1
Apos est i_fev04_c1
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Estatistica exercicios resolvidos
Estatistica exercicios resolvidosEstatistica exercicios resolvidos
Estatistica exercicios resolvidos
 
Material de apoio estatística 2017 1
Material de apoio estatística 2017 1Material de apoio estatística 2017 1
Material de apoio estatística 2017 1
 
Apostila estatística matemática vol 1 2009
Apostila estatística matemática vol 1 2009Apostila estatística matemática vol 1 2009
Apostila estatística matemática vol 1 2009
 
Estatística 10 Ano
Estatística 10 Ano Estatística 10 Ano
Estatística 10 Ano
 
Estatistica aplicada-2-ano-enfermagem-2-capitulo
Estatistica aplicada-2-ano-enfermagem-2-capituloEstatistica aplicada-2-ano-enfermagem-2-capitulo
Estatistica aplicada-2-ano-enfermagem-2-capitulo
 
Extra de estatistica 28 10 2020
Extra de estatistica 28 10 2020Extra de estatistica 28 10 2020
Extra de estatistica 28 10 2020
 

Mais de ProfessoraIve

Sequencias e mf 2016
Sequencias e mf 2016Sequencias e mf 2016
Sequencias e mf 2016ProfessoraIve
 
Análise combinatória 2016
Análise combinatória 2016Análise combinatória 2016
Análise combinatória 2016ProfessoraIve
 
Função quadrática
Função quadráticaFunção quadrática
Função quadráticaProfessoraIve
 
Grau x radiano sábado
Grau x radiano sábadoGrau x radiano sábado
Grau x radiano sábadoProfessoraIve
 
Função afim problemas
Função afim   problemasFunção afim   problemas
Função afim problemasProfessoraIve
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afimProfessoraIve
 
Exemplos de função afim
Exemplos de função afimExemplos de função afim
Exemplos de função afimProfessoraIve
 

Mais de ProfessoraIve (11)

Sequencias e mf 2016
Sequencias e mf 2016Sequencias e mf 2016
Sequencias e mf 2016
 
Probabilidade 2016
Probabilidade 2016Probabilidade 2016
Probabilidade 2016
 
Fu log 2016
Fu log 2016Fu log 2016
Fu log 2016
 
Log 2016
Log 2016Log 2016
Log 2016
 
Análise combinatória 2016
Análise combinatória 2016Análise combinatória 2016
Análise combinatória 2016
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Listas resolvidas
Listas resolvidasListas resolvidas
Listas resolvidas
 
Grau x radiano sábado
Grau x radiano sábadoGrau x radiano sábado
Grau x radiano sábado
 
Função afim problemas
Função afim   problemasFunção afim   problemas
Função afim problemas
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
 
Exemplos de função afim
Exemplos de função afimExemplos de função afim
Exemplos de função afim
 

Último

Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...
Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...
Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...azulassessoriaacadem3
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...azulassessoriaacadem3
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...azulassessoriaacadem3
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...azulassessoriaacadem3
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...azulassessoriaacadem3
 
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...azulassessoriaacadem3
 
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024excellenceeducaciona
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...excellenceeducaciona
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...azulassessoriaacadem3
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...azulassessoriaacadem3
 
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...azulassessoriaacadem3
 
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...azulassessoriaacadem3
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...azulassessoriaacadem3
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...azulassessoriaacadem3
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...excellenceeducaciona
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...excellenceeducaciona
 
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...azulassessoriaacadem3
 
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxCRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxJean Carlos Nunes Paixão
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...apoioacademicoead
 

Último (20)

Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...
Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...
Tendo em vista estes aspectos, a proposta dessa atividade é a elaboração de u...
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
 
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
ATIVIDADE PROPOSTA: Considerando o "estudo de caso" apresentado na disciplina...
 
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
2) Descreva os princípios fundamentais para uma prescrição de exercícios físi...
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
 
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...
1. Encontre um Livro Didático de Língua Portuguesa, que seja para o 1º, 2º ou...
 
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024
ATIVIDADE 1 - TEORIAS DA ADMINISTRAÇÃO - 51/2024
 
GABARITO CRUZADINHA PATRIM E FONTES.docx
GABARITO CRUZADINHA PATRIM E FONTES.docxGABARITO CRUZADINHA PATRIM E FONTES.docx
GABARITO CRUZADINHA PATRIM E FONTES.docx
 
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
1. Solicitar ao entrevistado uma breve apresentação da organização, mencionan...
 
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
5. Na sua opinião, em que medida os princípios da ORT de Taylor ainda são rel...
 
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
4. Agora para analisar os resultados obtidos, você irá utilizar a classificaç...
 
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
5. ​Agora suponha que esse mesmo aluno é do sexo feminino, você irá utilizar ...
 
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...
Atividade Proposta: A empresa Lótus Indústria e Comércio de Móveis Ltda., ini...
 
1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...1. Considerando todas as informações que você obteve, descritas acima, calcul...
1. Considerando todas as informações que você obteve, descritas acima, calcul...
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...
 
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...2. Como o entrevistado descreve a gestão e execução dos principais processos ...
2. Como o entrevistado descreve a gestão e execução dos principais processos ...
 
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
Sobre os princípios da teoria burocrática de Max Weber e com base em suas exp...
 
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docxCRUZADINA  E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
CRUZADINA E CAÇA-PALAVRAS SOBRE PATRIMONIO HISTÓRICO.docx
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
 

Estatística

  • 1. 1 2º BIMESTRE – MATEMÁTICA 3º ANO DO ENSINO MÉDIO DOCENTE: IVE PINA CONTEÚDO: ESTATÍSTICA INTRODUÇÃO A Estatística é um conjunto de técnicas e métodos de pesquisa que, entre outros tópicos, envolve o planejamento do experimento a ser realizado, a coleta qualificada de dados, a inferência e o processamento e análise das informações. Grande parte das informações divulgadas pelos meios de comunicação atual provém de pesquisas e estudos estatísticos. Utilizando hoje os poderosos meios da Informática, a Estatística tem sido fundamental para o desenvolvimento da Economia, da Medicina, da Física, da Psicologia, da Lingüística, etc. Muitas vezes precisamos fazer a análise dos gráficos junto com outros gráficos. Caso da escolaridade média deste mesmo grupo, no mesmo período, para que entendamos o conjunto. Por meio de análises feitas a partir de dados organizados podemos, em muitos casos, fazer previsões, determinar tendências, auxiliar na tomada de decisões e, portanto, elaborar um planejamento com mais precisão.
  • 2. 2 No estudo que faremos aqui veremos como organizar um grupo de dados e tabelas e como construir gráficos a partir desses dados. CONCEITOS População: É o conjunto de objetos, de indivíduos ou de ocorrências na observação desses grupos, geralmente numerosos. OBS: A população estatística pode ser finita ou infinita. Exemplos:  Conjunto de estudantes do ensino fundamental de uma escola. (finita)  Conjunto de pessoas que moram num condomínio fechado. (finita)  A quantidade de estrelas existentes no universo. (infinita) Amostra: Quando o universo estatístico é infinito, não é possível fazer uma observação que abranja todos os seus elementos, nesse caso recorre-se a um subconjunto do universo estudado que chamamos de amostra. E, mesmo quando o universo é finito, há razões que nos levam à utilização da técnica de amostragem, tais como:  Razões econômicas, por ser dispendioso observar grande número de elementos;  Razões de tempo, pois uma observação demorada pode levar a resultados desatualizados. Variável Estatística: É uma característica ou propriedade da população estudada. Pode ser classificada como uma variável qualitativa ou quantitativa.  Qualitativa: se os valores tomados não são numéricos, como: raça, área de estudos, meio de transporte, etc.  Quantitativa: se os valores tomados são numéricos, como altura, peso, preço de um produto, etc. Frequência absoluta: Frequência absoluta de uma variável é dada pelo número de vezes que essa variável aparece no conjunto considerado. A primeira fase de um estudo estatístico consiste em recolher, contar e classificar os dados pesquisados sobre uma população estatística ou sobre uma amostra dessa população. Escolhida uma característica sobre os elementos de uma população, devemos elaborar uma tabela de dados denominada distribuição estatística. Posteriormente, os resultados podem ser interpretados por meio de um gráfico. Diversos tipos de gráficos são usados em Estatística: de barras, de setores, poligonais, etc. Inicialmente, vamos aprender a construir tabela de distribuição de frequências. Consideremos o quadro a seguir, que mostra as notas de Matemática dos alunos de uma classe da 3ª série do Ensino Médio de uma determinada escola. Disciplina: Matemática Turma: 3ª série Número 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Nota 5 4 6 8 3 5 7 6 8 4 6 9 7 5 7 5 6 8 7 9 4 6 6 8 7 Nesse caso temos:  População Estatística: grupo dos 25 alunos da 3ª série.  Variável estatística: as notas da prova de Matemática. A partir desses conhecimentos, elaboramos a seguinte tabela:
  • 3. 3 Na coluna “Notas” aparecem os diferentes valores da variável estatística (notas das provas). Na coluna “Número de alunos” está indicando o número de vezes que se repete cada valor. Esta última coluna é chamada de coluna de freqüência absoluta. Assim:  A freqüência absoluta da nota 5 é 4.  A freqüência absoluta da nota 6 é 6. Frequência relativa: É a razão entre a freqüência absoluta e o número total de elementos do conjunto. A freqüência relativa é dada em porcentagem. O total da freqüência relativa sempre tem que ser igual a 100%. Completando a tabela com a frequência absoluta e a frequência relativa, temos: Notas Número de Alunos = Frequência Absoluta Frequência Relativa 3 1 4% 4 3 12% 5 4 16% 6 6 24% 7 5 20% 8 4 16% 9 2 8% Total: 25 100% Frequência absoluta e relativa acumulada: A frequência absoluta acumulada e a frequência relativa acumulada são obtidas adicionando-se a cada frequência absoluta ou relativa os valores das frequências anteriores. Exemplo: A tabela mostra a distribuição das idades dos jogadores de um time de futebol. Idade (em anos) Número de jogadores 18 4 20 6 21 3 23 7 24 2 25 8 Completando a tabela com a frequência absoluta, frequência absoluta acumulada, a frequência relativa e frequência relativa acumulada, temos: Idade (em anos) FA FAAc FR FRAc 18 4 4 13% 13% 20 6 10 20% 33% 21 3 13 10% 43% 23 7 20 23% 67% 24 2 22 7% 73% 25 8 30 27% 100% Total: 30 100% Notas Número de Alunos 3 1 4 3 5 4 6 6 7 5 8 4 9 2
  • 4. 4 Exemplo: (ENEM – 05) Uma cooperativa de rádio tem como meta atender, em no máximo 15 minutos, a pelo menos 95% das chamadas que recebe. O controle dessa meta é feito ininterruptamente por um funcionário que utiliza um equipamento de rádio para monitoramento. A cada 100 chamadas, ele registra o número acumulado de chamadas que não foram atendidas em 15 minutos. Ao final de um dia, a cooperativa apresentou o seguinte desempenho: Esse desempenho mostra que, nesse dia, a meta estabelecida foi atingida (A) nas primeiras 100 chamadas. (B) nas primeiras 200 chamadas. (C) nas primeiras 300 chamadas. (D) nas primeiras 400 chamadas. (E) ao final do dia. EXERCÍCIOS 1) Numa pesquisa de opinião pública com 800 telespectadores sobre o programa de televisão de sua preferência, obteve a seguinte tabela de frequências absolutas: Construa um quadro com distribuição de freqüência absolutas, frequências absolutas acumuladas, frequências relativas e frequências relativas acumuladas. 2) Os salários mensais, em reais, dos 20 funcionários de uma empresa são: 720 720 800 880 840 720 760 800 920 720 760 800 840 720 680 760 800 720 880 760 Elabore um quadro de distribuição de freqüências absolutas e frequências relativas. 3) Em uma escola, o conceito de cada bimestre é representado por letras: A, B, C, D e E. Em um determinado bimestre, os conceitos, em Matemática, dos alunos do 3º ano foram: Matemática Número 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Conceito B A C C D C D A A C E D D C B C B C C C Nessas condições, elabore um quadro de distribuição de frequências absolutas e frequências relativas. 4) Uma pesquisa sobre atividades culturais extraclasse foi feita entre 1.000 alunos de uma escola. O resultado está no quadro seguinte: Elabore um quadro de distribuição de frequências relativas. Programa de TV Número de expectadores Novelas 360 Esportes 128 Filmes 80 Noticiários 32 Shows 200 ATIVIDADES Nº DE ALUNOS Visitas a museus 400 Visitas a outras cidades 200 Palestras 250 Exposições 100 Outras 50
  • 5. 5 GRÁFICOS ESTATÍSTICOS É de grande importância a utilização de gráficos e tabelas estatísticas. Com eles podemos fazer melhor a interpretação de seus dados. Veja alguns exemplos:  uma pesquisa de opinião;  uma pesquisa de mercado;  o índice de desemprego nas regiões do país, etc. Podemos representar graficamente a distribuição de frequências de um levantamento estatístico. As representações mais utilizadas são: Gráficos de linha, colunas, barras e setores. Para montarmos um gráfico é mais fácil de colocarmos os dados em ordem crescente. Idade (em anos) Freqüência Absoluta Freqüência Relativa 24 2 7% 21 3 10% 18 4 13% 20 6 20% 23 7 23% 25 8 27% Total: 30 100% Gráfico de segmentos ou de linha Gráfico de colunas Gráfico de barras Gráfico de setores 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 1 2 3 4 5 6 7 8 9 número de jogadores idades 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 0 1 2 3 4 5 6 7 8 número de jogadores idades 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 1 2 3 4 5 6 7 8 nº de jogadores idades
  • 6. 6 INTERPRETAÇÃO DE GRÁFICOS E TABELAS 1) (ENEM/99) Para convencer a população local da ineficiência da Companhia Telefônica Vilatel na expansão da oferta de linhas, um político publicou no jornal local o gráfico I, abaixo representado. A Companhia Vilatel respondeu publicando dias depois o gráfico II, onde pretende justificar um grande aumento na oferta de linhas. O fato é que, no período considerado, foram instaladas, efetivamente, 200 novas linhas telefônicas. Analisando os gráficos, pode-se concluir que: (A) o gráfico II representa um crescimento real maior do que o do gráfico I. (B) o gráfico I apresenta o crescimento real, sendo o II incorreto. (C) o gráfico II apresenta o crescimento real, sendo o gráfico I incorreto. (D) a aparente diferença de crescimento nos dois gráficos decorre da escolha das diferentes escalas. (E) os dois gráficos são incomparáveis, pois usam escalas diferentes. 2) (ENEM/98) Um estudo sobre o problema do desemprego na Grande São Paulo, no período 1985-1996, realizado pelo SEADE-DIEESE, apresentou o seguinte gráfico sobre a taxa de desemprego. Pela análise do gráfico, é correto afirmar que, no período considerado, (A) a maior taxa de desemprego foi de 14%. (B) a taxa desemprego no ano de 1995 foi a menor do período. (C) a partir de 1992, a taxa de desemprego foi decrescente. (D) no período 1985-1996, a taxa de desemprego esteve entre 8% e 16%. (E) A taxa de desemprego foi crescente no período compreendido entre 1988 e 1991.
  • 7. 7 3) (ENEM/05) Moradores de três cidades, aqui chamadas de X, Y e Z, foram indagados quanto aos tipos de poluição que mais afligiam as suas áreas urbanas. Nos gráficos abaixo estão representadas as porcentagens de reclamações sobre cada tipo de poluição ambiental. Considerando a queixa principal dos cidadãos de cada cidade, a primeira medida de combate à poluição em cada uma delas seria, respectivamente: 4) (ENEM/02) No gráfico estão representados os gols marcados e os gols sofridos por uma equipe de futebol nas dez primeiras partidas de um determinado campeonato. Considerando que, neste campeonato, as equipes ganham 3 pontos para cada vitória, 1 ponto por empate e 0 ponto em caso de derrota, a equipe em questão, ao final da décima partida, terá acumulado um número de pontos igual a (A) 15 (B) 17 (C) 18 (D) 20 (E) 24 5) Veja os principais motivos alegados por 30.000 devedores, pesquisados em uma região metropolitana, ao justificarem atrasos do crediário ou cheques sem fundo. Com base nessa pesquisa, responda: a) Qual a freqüência relativa das pessoas que apresentam outra justificativas? 18 + 17 + 12 + 12 + 8 + 5 = 72% Outra justificativa: 100 – 72 = 28% b) Quais as frequências absolutas para cada tipo de devedor? 1) 30000 . 18/100 = 5400 2) 30000 . 17/100 = 5100 3 e 4) 30000 .12/100 = 3600 5) 30000 . 8/100 = 2400 6) 30000 . 5/100 = 1500 7) 30000 . 28/100 = 8400
  • 8. 8 EXERCÍCIOS 1) (SAERJ-2014) Observe na tabela abaixo a quantidade de municípios de cada estado da região norte brasileira. Em qual dos gráficos abaixo estão representados os dados dessa tabela? 2) (SAERJ-2014) Observe na tabela abaixo o valor do IPVA (Imposto sobre a Propriedade de Veículos Automotores) de alguns veículos nos anos de 2012 e 2013. A maior redução percentual no valor do IPVA, entre os veículos listados, equivale a uma diminuição de A) R$ 106,08 B) R$ 129,00 C) R$ 203,84 D) R$ 705,67 E) R$ 898,92
  • 9. 9 3) (SAERJ-2014) Observe no gráfico de barras abaixo a quantidade de títulos de cada um dos campeões das copas do mundo de futebol de todas as edições até o ano 2010. Qual das tabelas abaixo apresenta as mesmas informações representadas nesse gráfico? 4) (SAERJ-2015) Na tabela abaixo, estão representados os quantitativos de medalhas de ouro, prata e bronze conquistadas pelos alunos das escolas públicas do estado do Rio de Janeiro na edição de 2014 da Olimpíada Brasileira de Matemática das Escolas Públicas – OBMEP. De acordo com essa tabela, qual foi o total de medalhas de ouro conquistadas na edição de 2014 da OBMEP no Rio de Janeiro? A) 14 B) 43 C) 112 D) 120 E) 180
  • 10. 10 5) (SAERJ-2014) Observe no gráfico de setores abaixo o percentual da população residente no rio de janeiro em cada grupo de idade de acordo com os dados do censo demográfico 2010. De acordo com os dados desse gráfico, quantos por cento da população do rio de janeiro possui mais de 39 anos de idade? A) 24,3% B) 25,5% C) 38,5% D) 61,6% E) 62,8% 6) (SAERJ-2014) Observe no gráfico abaixo a projeção da população do Estado do Rio de Janeiro estimada pelo Instituto Brasileiro de Geografia e Estatística (IBGE) nos anos 2015, 2020, 2025 e 2030. De acordo com a projeção apresentada nesse gráfico, quantos habitantes no ano de 2030 existirão a mais do que no ano de 2015 no estado do Rio de Janeiro? A) 193 952 B) 890 996 C) 33 991 044 D) 34 193 609 E) 68 184 653 MEDIDAS DE TENDÊNCIA CENTRAL OU DE POSIÇÃO Chamamos de média, mediana e moda as medidas de tendência central. Média aritmética: Média aritmética de um conjunto de números é a soma desses números divididos pela quantidade de números desse conjunto.
  • 11. 11 Exemplo: Calcule a média aritmética dos números 4, 5, 6, 8, 7. Solução: 6 5 30 5 78654   aM O cálculo da média é freqüente no nosso dia-a-dia. É comum determinarmos a velocidade média, o salário médio de uma empresa, a estatura média das pessoas, o consumo médio de gasolina. Exemplos: 1) Uma livraria vende a seguinte quantidade de livros de literatura durante uma certa semana: 2ª feira 3ª feira 4ª feira 5ª feira 6ª feira sábado 28 23 22 27 25 13 Qual foi a média diária de livros de literatura durante uma certa semana? 23 6 138 6 132527222328   aM 2) O gráfico abaixo mostra o número de gols por temporada marcados pelo atacante brasileiro Ronaldo “fenômeno”, até o final de maio de 2005. a) Qual a média de gols marcados por Ronaldo de 1993 a 2005? 2546,25 13 331 13 143045183018295422384020   aM b) Se não considerarmos os anos 2000 e 2001, em que o jogador esteve em tratamento de uma séria lesão e cirurgia no joelho e praticamente não jogou, qual seria a média de gols de 1993 e 2005? 3082,29 11 328 11 1430451818295422384020   aM 3) O quadro mostra a avaliação anual de um aluno em Matemática: Qual a média anual que o aluno conseguiu? 7 10 70 10 3221125 4321 4.83.72.61.5      pM 4) A tabela a seguir mostra a distribuição dos salários de uma empresa. Qual a média salarial dos funcionários dessa empresa? 1650 38 62700 38 3600010800600027007200 865712 8.45006.18005.12007.90012.600       pM Bimestre Nota Peso 1º 5 1 2º 6 2 3º 7 3 4º 8 4 Salário (em reais) Número de funcionários 600,00 12 900,00 7 1200,00 5 1800,00 6 4500,00 8 Total 38
  • 12. 12 Exercícios: 1) (SAERJ-2014) Em uma agência bancária, o atendimento aos últimos 9 clientes durou, respectivamente, 3 min, 6 min, 2 min, 5 min, 11 min, 4 min, 9 min, 10 min, e 4 min. Qual foi a média de tempo gasto no atendimento desses clientes? A) 4 min B) 5 min C) 6 min D) 11 min E) 27 min 2) (SAERJ-2014) Seguindo uma recomendação médica, Joaquim reduziu a quantidade de alimentos ingeridos em suas refeições, além de optar por alimentos mais saudáveis. Dessa forma, a pesagem do almoço de Joaquim na segunda-feira foi de 390 g, na terça-feira, 420 g; na quarta-feira, 370 g; 430 g na quinta-feira e na sexta- feira, a pesagem foi de 370 gramas. Qual foi a média da pesagem do almoço de Joaquim durante esses dias? A) 370 B) 380 C) 390 D) 396 E) 990 3) (SAERJ–2012) Josiane anotou o tempo que dormiu de segunda a sábado em uma determinada semana. Ela registrou que dormiu 7 horas na segunda-feira; 8,5 horas na terça-feira; 6,5 horas na quarta-feira; 6 horas na quinta-feira; 5 horas na sexta-feira e 6 horas no sábado. Em média, quantas horas Josiane dormiu diariamente, nesses dias registrados por ela? A) 6,50 B) 6,25 C) 6,00 D) 5,50 E) 4,50 4) (SAERJ–2012) Lucas fez uma viagem e anotou o quanto gastou com alimentação em cada dia. Observe abaixo as anotações que ele fez. 1º dia: R$ 98,50 2º dia: R$ 54,50 3º dia: R$ 54,50 4º dia: R$ 14,50 5º dia: R$ 113,00 Em média, quanto Lucas gastou com alimentação nesses 5 dias de viagem? A) R$ 54,50 B) R$ 55,50 C) R$ 63,75 D) R$ 67,00 E) R$ 335,00 5) (SAERJ–2011) Na tabela abaixo está indicado o número de camisas confeccionadas por uma empresa alguns meses de 2010. A média de blusas produzidas por essa empresa é A) 8166 B) 4400,5 C) 3071,5 D) 2722 E) 2330,5 6) (SAERJ–2011) Nos meses de janeiro, fevereiro e março, o consumo médio de água de uma certa família foi de 36 m³ e, no mês de abril, o consumo foi de 28 m³. Nessa residência, o consumo médio de água nesses quatro meses foi de A) 16 m³ B) 30 m³ C) 32 m³ D) 34 m³ E) 48 m³ 7) (SAERJ-2013) Um dos cinco jogadores de um time de basquete se machucou e terá que ser substituído no próximo jogo. A altura dos outros quatro jogadores que estão aptos para jogar é, 1,95 m, 1,99 m, 1,99 m e 2,04 m. Qual deve ser a altura do jogador que entrará substituindo o atleta machucado de forma que a média de altura dos jogadores desse time seja de 2 metros? A) 1,99 B) 2,00 C) 2,03 D) 2,05 E) 2,13 8) (SAERJ-2013) A tabela abaixo mostra o número de pessoas que participaram de um curso de capacitação, com duração de uma semana, oferecido por uma empresa de 2ª feira a sábado.
  • 13. 13 Quantos homens e mulheres, em média, participaram desse nivelamento por dia? A) 45 homens e 32 mulheres. B) 45 homens e 30 mulheres. C) 44 homens e 31 mulheres. D) 43 homens e 31 mulheres. E) 42 homens e 31 mulheres. 9) (UFMG) Um carro, que pode utilizar como combustível álcool e gasolina misturados em qualquer proporção, é abastecido com 20 litros de gasolina e 10 litros de álcool. Sabe-se que o preço do litro de gasolina e o preço do litro de álcool são, respectivamente, R$ 1,80 e R$ 1,20. Nessa situação, o preço médio do litro do combustível que foi utilizado é de (a) R$ 1,50 (b) R$ 1,55 (c) R$ 1,60 (d) R$ 1,40 10) (Fuvest-SP) A distribuição das idades dos alunos de uma classe é dada pelo gráfico ao lado. Qual das alternativas representa melhor a média das idades dos alunos? a) 16 anos e 10 meses b) 17 anos e 1 mês c) 17 anos e 5 meses d) 18 anos e 6 meses e) 19 anos e 2 meses 11) (FGV) Em uma classe com 20 rapazes e 30 moças, foi realizada uma prova. A média dos rapazes foi 8 e das moças 7. A média da classe foi: (a) 7,5 (b) 7,4 (c) 7,6 (d) 7,55 (e) 7,45 12) (BNDES – 2004 – Técnico Administrativo) A tabela a seguir mostra o número de gols marcados pela equipe X nas partidas do último torneio que disputou. Qual foi o número médio de gols, por partida, marcados por essa equipe? (A) 1 (B) 1,25 (C) 1,5 (D) 1,75 (E) 2 13) (FGV) A tabela abaixo apresenta a distribuição de salários de trabalhadores de uma cidade. Se todos passassem a ter o mesmo salário (mantendo o total de salários dado pela tabela), cada pessoa receberá: A) R$ 3.000,00 B) R$ 2.000,00 C) R$ 1.600,00 D) R$ 1.200,00 E) R$ 1.119,00 Salário (em reais) Número de pessoas 1.000,00 700 2.000,00 200 5.000,00 100
  • 14. 14 14) (SAERJ-2014) um sistema de radar registrou durante 2 horas a passagem de 200 veículos por um trecho de uma rodovia. Desse total de veículos, 70 passaram por esse trecho a uma velocidade média de 45 km/h; 30 a uma velocidade de 50 km/h; 40 veículos trafegaram a 35 km/h e os outros 60 veículos a uma Velocidade Média de 55 km/h. Qual foi a média da velocidade desses veículos nesse trecho fiscalizado pelo sistema de radar? A) 50 km/h B) 46,75 km/h C) 46,25 km/h D) 45 km/h E) 42,50 km/h Mediana: Dado um conjunto de números, ordenando seus elementos em ordem crescente, a mediana é o elemento que ocupa o termo central. Exemplo: As nove classes de 3º ano do Ensino Médio de uma escola têm, respectivamente: 37, 28, 40, 41, 45, 37, 37, 41 e 44 alunos. Qual a mediana dessas classes? Solução: Colocando em ordem crescente => 28, 37, 37, 37, 40, 41, 41, 44, 45 Logo, o termo central é 40. Então, Md = 40. Se a distribuição tiver um número par de dados, não existe um valor central, mas dois valores centrais. Nesse caso, a mediana é a média aritmética dos dois valores centrais. Exemplo: 25, 27, 28, 30, 32, 34, 38, 40 Solução:Termos centrais: 30 e 32 Md = 31 2 62 2 3230   Assim, como podemos observar nos exemplos acima, a mediana pode ou não fazer parte da distribuição. A mediana 40 faz parte da 1ª distribuição, mas a mediana 31 não faz parte da segunda. Moda: É o valor que aparece mais vezes (maior freqüência) em um conjunto. Exemplos: a) 3, 4, 3, 2, 3, 5, 6, 3 => A moda é 3. Mo = 3 b) 2, 6, 7, 2, 5, 6, 8 => As modas são 2 e 6. Mo = 2 e Mo = 6 c) 1, 3, 5, 8, 9 => Não existe moda. É amodal. Exemplos: 1) Em uma casa de repouso, as pessoas internadas têm as seguintes idades: Calcule a mediana e a moda dessa distribuição. Md = 74 + 75 = 149 = 74,5 2 2 Mo = 75 2) Os dados a seguir representam as massas, em quilogramas, dos atletas de uma equipe juvenil de natação: 46, 44, 49, 45, 44, 48, 50, 42. Determine a mediana e a moda dessa distribuição. 42, 44, 44, 45, 46, 48, 49, 50 Md = 45 + 46 = 45,5 Mo = 44 2 67 68 74 67 68 84 75 80 75 84 75 73 67 74 78 77 75 80 74 77 85 85 68 74 72 73 71 73 71 85 68 84 80 77 78 75 71 72 73 84 67 67 67 68 68 68 68 71 71 71 72 72 73 73 73 73 74 74 74 74 75 75 75 75 75 77 77 77 78 78 80 80 80 84 84 84 84 85 85 85
  • 15. 15 3) (BNDES – 2004 – Técnico Administrativo) A tabela abaixo mostra o preço médio, em reais, do litro de gasolina na região metropolitana do Rio de Janeiro, nos meses de julho a dezembro de 2003. Qual foi, aproximadamente, a mediana dos preços, em reais, do litro de gasolina nesse período? (A) 1,991 (B) 1,994 (C) 1,998 (D) 2,002 (E) 2,005 Md = 2,005 + 1,983 = 3,988 = 1,994 2 2 Resposta: D 4) Considerando os conjuntos de dados, calcule a média, a mediana e a moda: a) 3, 5, 2, 6, 5, 9, 5, 2, 8, 6 2 2 3 5 5 5 6 6 8 9 Ma = 2.2 + 3 + 5.3 + 6.2 + 8 + 9 = 10 = 4 + 3 + 15 + 12 + 8 + 9 = 61 = 6,1 10 10 Md = Mo = 5 b) 20, 9, 7, 2, 12, 7, 2, 15, 7 2 2 7 7 7 9 12 15 20 Ma = 2.2 + 7.3 + 9 + 12 + 15 + 20 = 9 = 4 + 21 + 9 + 12 +15 + 20 = 81 = 9 9 9 Md = Mo = 7 c) 51,6; 48,7; 50,3; 49,5; 48,9 48,7 48,9 49,5 50,3 51,6 Ma = 48,7 + 48,9 + 49,5 + 50,3 + 51,6 = 5 = 249 = 49,8 5 Md = 49,5 Mo => amodal d) 15, 18, 20, 13, 10, 16, 14 10 13 14 15 16 18 20 Ma = 10+ 13 + 14 + 15 + 16 + 18 + 20= 7 = 106 = 15,14 7 Md = 15 Mo => amodal EXERCÍCIOS: 1) (SAERJ–2012) No quadro abaixo está registrado a distribuição do número de pessoas presentes em cada uma das 15 apresentações de uma peça de teatro. Qual é a mediana dessa distribuição? A) 18 B) 25 C) 27 D) 30 E) 55 2) (SAERJ–2012) Uma empresa fez uma pesquisa para saber o número de filhos de cada um de seus 15 funcionários. Observe no quadro abaixo as respostas dadas por esses funcionários. Qual é a moda das respostas apresentadas por esses funcionários? A) 0 B) 1 C) 2 D) 4 E) 5 3) (SAERJ-2014) Uma determinada empresa disponibilizou nos meses de janeiro a outubro de 2013, respectivamente, o seguinte número de vagas para emprego formal: 27, 14, 19, 14, 11, 23, 17, 34, 28 e 13. Nesse período, a mediana das vagas para emprego formal oferecidas por essa empresa foi de A) 14 B) 17 C) 18 D) 19 E) 20
  • 16. 16 4) (SAERJ-2014) Um grupo de atletas participou de uma competição de ciclismo no último final de semana, cujo percurso total era de 45 km. Do total de atletas, 20 percorreram 30 km da prova, 10 correram um trecho de 40 km, 25 percorrem um total de 20 km, 15 percorreram 25 km e apenas 5 atletas completaram a prova. A moda referente à distância percorrida por esses atletas é de A) 20 km B) 29 km C) 32 km D) 35 km E) 80 km 5) (SAERJ-2014) Ao preparar a sua viagem para os Estados Unidos, Pedro resolveu acompanhar a cotação do dólar nos dias que antecederam sua viagem marcada para o final de agosto. Qual é a mediana dos valores apresentados nas cotações desses dias? A) R$ 2,33 B) R$ 2,34 C) R$ 2,35 D) R$ 2,36 E) R$ 2,39 6) (SAERJ-2014) As contas de água de uma companhia de abastecimento vêm com a descrição do consumo mensal de água, em litros, dos últimos 6 meses, como representado abaixo. Qual é a moda da quantidade de litros consumidos nesses 6 meses? A) 730 B) 735 C) 740 D) 755 E) 4 440 7) (SAERJ-2013) O edital de um concurso realizado em duas etapas, determina que, para participar da segunda etapa, o candidato deve ter a nota na primeira etapa maior do que a mediana das notas dessa etapa. Na primeira etapa, as notas dos 20 candidatos que participaram desse concurso são 56, 68, 80, 75, 92, 88, 75, 68, 70, 63, 91, 68, 80, 77, 68, 70, 75, 77, 82 e 80. Quantos desses candidatos estão habilitados a participar da segunda etapa desse concurso? A) 8 B) 9 C) 10 D) 14 E) 15 8) A administradora de uma estrada instalou um radar no trecho mais perigoso do percurso. O quadro abaixo mostra a velocidade média dos 30 primeiros carros que passaram por esse radar no seu primeiro dia de funcionamento. Para determinar a velocidade limite desse trecho, a administradora calculou a mediana dessas velocidades. Qual foi a velocidade limite determinada para esse trecho? A) 100 km B) 81 km C) 60 km D) 71 km E) 70 km 9) (SAERJ-2013) Renato está participando de um projeto para ajudar a prevenir a pressão alta de seus colegas de trabalho. Para isso, ele anota todos os meses a medida da massa corporal de cada um deles. Observe abaixo a última anotação que ele fez. De acordo essas anotações, qual é a mediana da massa corporal dessas pessoas? A) 95 B) 96 C) 97 D) 98 E) 99