SlideShare uma empresa Scribd logo
1 de 116
ANANTOMIA
RADIOLÓGICA
Formação da
Imagem
Radiográfica
A formação da imagem radiográfica é regida pelas leis da
öptica geométrica, ou seja, obedece a uma relação direta das
distâncias relativas entre o foco (emissor de radiação), o objeto
(região do corpo em estudo) e o anteparo (chassi [filme
radiogräfico], tela fluoroscöpica [écran] ou detector digital).
Para uma melhor compreensão do assunto, sera utilizada a
seguinte nomenclatura (Figura 5.1): I Fo: foco (foco emissor de
radiação). I O: objeto (região do corpo em estudo). I A:
anteparo (chassi [filme radiogräfico], tela fluoroscöpica [écran]
ou detector digital).
Para uma melhor compreensão do assunto, será utilizada
a seguinte nomenclatura (Figura 5.1):
I Fo: foco (foco emissor de radiação).
I O: objeto (região do corpo em estudo).
I A: anteparo (chassi [filme radiogräfico], tela
[écran] ou detector digital)
d:distância.
dFoA: distância foco-anteparo.
I dOA: distância objeto-anteparo. I
dFoO: distância foco-objeto
Distância foco-anteparo (dFoA) Corresponde à distância
(d) entre o foco emissor de raios X (Fo) e o anteparo (A)
(chassi [filme radiogräfico], tela fluoroscöpica [écran] ou
detector digital). Para uma mesma distância objeto-
anteparo (dOA), a maior distância foco-anteparo (dFoA)
resultará em uma menor ampliação da imagem
radiogra'fica e menor zona de penumbra. Quanto
menor a distância foco-anteparo (dFoA), maior a
ampliação da imagem radiografica e maior a zona de
penumbra (Figura 5.5).
Para evitar a falta de nitidez geométricaou (flor
geométrico), devemos usar a combinação dos seguintes
parâmetros:a maior distância foco-anteparo (dFoA),
associada a menor distância objeto-anteparo (dOA) e, na
medida do possível, menor foco emissor de radiação.
Assim, teremos uma imagem radiografica mais nítida, de
3 melhor qualidade.
Primeira etapa - Corresponde á emissão do feixe de radiação
pelo foco emissor até o objeto. Nessa etapa, o feixe de raios X
tem uma estrutura razoavelmente homogênea em qualidade e
intensidade.
Segunda etapa -Corresponde à interação do feixe de radiação
com o objeto. Nessa etapa, ira ocorrer a atenuação do feixe de
raios X, que consiste na redução da intensidade (atenuação) do
feixe de radiação incidente
Terceira etapa- Corresponde ã emergência do feixe de radiação
do objeto. Nessa etapa, o feixe de radiação não e' uniforme
nem em número nem na energia dos fótons. Apenas cerca de
50% dos fotons que incidem no objeto emergem sem sofrer
alterações
A absorção fotoelétrica (interação fotoelétrica) é um efeito local
que consiste na deposição de energia no objeto irradiado.
Corresponde à interação de um fÓton de radiação com um
elétron fortemente ligado a um átomo do objeto (elétron em
Órbita próxima ao núcleo do átomo). O fóton incidente, ao
chocar-se com o elétron, transfere toda a sua energia para ele,
deixando de existir a seguir. A energia transferida ao elétron
determinará seu deslocamento para outra Órbita, gerando um
“vazio” nesse lugar. O preenchimento desse “vazio” deixado pela
ejeção do elétron dará origem a um föton característico (raios X
característicos)
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A
imagem radiográfica forma-se através da variação de
absorção de raios X pelo material irradiado. Os raios X têm
origem no choque de elétrons acelerados contra o
obstáculo material (alvo), geralmente de metal (Tungstênio
com pequeno acréscimo de Tório).
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A interação
entre esses elétrons e os átomos do obstáculo resultará na
formação dos raios X e de calor. A liberação dos elétrons ocorre no
catódio (cátodo), em função da energia térmica (aquecimento)
fornecida ao filamento, processo denominado emissão termiônica.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA O filamento
helicoidal do catódio (cátodo) é aquecido até aproximadamente
2.000°C, por intermédio de um transformador especial de
filamento, gerando, assim, os elétrons (nuvem eletrônica ou carga
espacial), que são acumulados em torno do filamento em coletor
eletrônico. Isto evita a dispersão. O ajuste da intensidade do feixe
de elétrons (quantidade de raios X) e dado pela intensidade da
corrente do tubo de raios X (mA)
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Com a
aplicação de uma corrente de alta tensão (kV) no tubo de raios
X, de modo que o polo negativo seja o catódio (cátodo) e o polo
positivo seja o anódio (ânodo) os elétrons (em forma de feixe)
serão, simultaneamente, repelidos do catódio (cátodo) e atraídos
pelo anódio (ânodo).
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
O vácuo no interior do tubo tem as funções de evitar a redução da
velocidade no deslocamento dos elétrons do catódio (cátodo) até
o anódio (ânodo), isolar a alta tensão e evitar a oxidação.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA O circuito
elétrico responsável pela geração dos elétrons (intensidade do
feixe de radiação - mA) é diferente do circuito gerador de alta
tensão (kV). Os elétrons são desacelerados no anódio (no ponto
ou pista focal), e sua energia é convertida em calor e raios X. O
tipo de interação entre o elétron incidente e o alvo (anódio) irá
determinar o tipo de radiação formada
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Vácuo na ampola: Evitar a redução da velocidade do
deslocamento dos elétrons do cátodo para o ânodo. Também
evita a oxidação do tubo. Componentes da ampola: São de
Tungstênio (com pequeno acréscimo de Tório). Possui alto
ponto de fusão e resfriamento rápido (não vaporiza facilmente,
evitando oxidação do tubo).
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Cátodo: É o polo negativo do tubo de raios X. (Composto pelo
Filamento e pela capa focalizadora ou copo de focagem).
Filamento: Fio metálico em forma espiral, feito de tungstênio
(com pequeno acréscimo de Tório) com 2 mm de diâmetro e
comprimento de 1 a 2 cm, envolvido pela capa focalizadora.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Foco Fino: Permite maior resolução da imagem, mas também, tem
baixo poder de penetração, porque sua velocidade é baixa.
Foco Grosso: Permite maior carga (kV) com isso maior poder de
penetração, mas em compensação, tem imagem de menor resolução.
Capa Focalizadora: Envolve o filamento, é carregada negativamente
maneira a manter os elétrons mais unidos (REDUZIR A DISPERSÃO) e
concentrá-los numa área menor do ânodo.
Copo de Focagem é a mesma coisa que Capa Focalizadora.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Ânodo: É o polo positivo do tubo de raios X. Composto pelo
Alvo (Local de interação dos raios X).
Quanto maior o n° atômico do ânodo maior a eficiência de
produção de RX.
Alvo: Pode ser Fixo ou Giratório:
Fixo: Encontrado em aparelhos de raios X portáteis e
odontológicos. Giratório: Tem a função de dispersar o calor e,
assim, causar menor dano ao tubo e permitir a utilização de
energia (kV) mais elevados.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Ponto Focal: É a menor região do alvo em que o feixe de
elétrons incide. É onde origina-se a produção de raios X.
Quanto menor o tamanho do ponto focal, melhor a resolução
da imagem e maior o aquecimento do tubo.
OBSERVAÇÃO: QUANDO SE TRATA DE ÂNODO GIRATÓRIO A
MENOR REGIÃO DO ALVO EM QUE O FEIXE DE ÉLETRONS
INCIDE CHAMA-SE PISTA FOCAL.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
KV: QUILOVOLTAGEM PRINCIPAL FATOR QUE DETERMINA O
CONTRASTE DA IMAGEM.
O contraste é responsável pela imagem preta e branca da
imagem, ou seja, é a diferença de densidade em áreas
adjacentes
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Fórmula para calcular
o KV: KV= (Ex2) + K E:
Espessura da parte (medida pelo espessômetro). K: Constante
(determinada por um conjunto de informações do
equipamento). Valor da Constante do gerador: Monofásico:
30 | Trifásico: 25
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A
qualidade do feixe de radiação é diretamente proporcional a
tensão (kV) aplicada ao tubo.
Quanto maior a tensão (kV) aplicada ao tubo, menor será o
comprimento de onda dos raios X e maiores serão energia de
aceleração dos elétrons, o poder de penetração do feixe de
radiação dos elétrons e, consequentemente, a qualidade desse
feixe
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
mAs: MILIAMPERAGEM POR SEGUNDO PRINCIPAL
FATOR QUE DETERMINAA DENSIDADE DA IMAGEM.
A densidade radiográfica pode ser descrita como o grau
de enegrecimento da radiografia concluída.
Quanto maior o grau de enegrecimento maior a
densidade e menor a quantidade de luz que atravessará
a radiografia quando vista através de um negatoscópio
ou de um foco de luz.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Quanto maior a intensidade da corrente (maior mA), maior
será o número de elétrons disponíveis. Assim, maior será a
quantidade de raios X.
Raios X de Freamento (Bremsstrahlung)
Esse tipo de radiação ocorre com muita frequência na formação
do feixe de raios X e é originado na passagem de um elétron
bem próximo ao núcleo de um átomo do material do alvo
(anódio). A atração entre o elétron carregado negativamente e
o núcleo carregado positivamente faz com que o elétron seja
desviado da sua trajetória original, perdendo parte da sua
energia cinética ou toda ela, que é emitida na forma de raios X.
Esse processo pode gerar raios X com energias diferentes, indo
de valores baixos até a energia máxima, que é igual à energia
total do elétron incidente.
Raios X de Freamento
(Bremsstrahlung)
Raios X Característicos
Esse tipo de radiação é menos frequente na formação do
feixe de raios X. Resulta de uma colisão entre o elétron
incidente e um elétron orbital das camadas mais internas do
átomo do material do alvo (anódio). O elétron incidente
transfere energia suficiente ao elétron orbital do átomo do
material do alvo, de maneira que esse último é ejetado de sua
órbita, deixando um “buraco” em seu lugar.
Raios X Característicos
Isso gera uma condição instável no átomo do material do
alvo, que é imediatamente corrigida com a passagem de um
elétron de uma órbita mais externa para este "vazio",
resultando em uma redução da energia potencial do elétron.
O excedente (de energia) é emitido na forma de raios X.
Como os níveis de energia dos elétrons são únicos para
cada elemento (material), os raios X originados nesse
processo também são únicos e, portanto, característicos de
cada elemento (material). Daí o nome de raios X
característicos.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Os raios X que saem pela janela da cúpula (carcaça) são
denominados feixe útil de radiação e correspondem a
apenas cerca de 10% de toda a radiação gerada no tubo
de raios X. Como apenas o feixe útil de radiação tem
importância na formação da imagem radiográfica, toda
referência aos raios X ou feixe de radiação corresponderá
ao feixe útil de radiação.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Lei do Inverso do Quadrado da Distância
A intensidade da radiação decresce proporcionalmente
ao quadrado da distância da fonte emissora.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Efeito Anódico: Fenômeno no qual a intensidade da radiação
emitida da extremidade do cátodo do campo de raios X é
maior do que aquela na extremidade do ânodo. Isso se deve
ao ângulo da face do ânodo, de forma que há maior
atenuação ou absorção dos raios X na extremidade do ânodo.
*A diferença na intensidade do feixe de raios X entre cátodo e
ânodo pode variar em até 45%, dependendo do ângulo do
ânodo.
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Efeito Fotoelétrico (EFE): Ocorre quando o fóton de RX
transfere toda a sua energia ao elétron, que então escapa do
átomo. É mais predominante para materiais de elevado n°
atômico e para baixas energias.
O produto final de um EFE será sempre radiação
característica, um íon negativo e um íon positivo;
O EFE é inversamente proporcional a energia;
O EFE é diretamente proporcional ao número atômico (Z); O
EFE usa o mecanismo de interação com os elétrons da
camada mais interna
FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA
Efeito Compton (EC): É o principal responsável por
quase toda a radiação espalhada em radiodiagnóstico.
Ocorre quando um fóton com alta energia atinge um
elétron livre da última camada, ejetando-o de sua órbita.
A probabilidade de acontecer depende da energia da
radiação e da densidade do absorvedor. O número de
Interação Compton é independente do n° atômico
FÍSICA DE FORMAÇÃO DA IMAGEMRADOGRÁFICA
Colimador: São dispositivos colocados na saída do feixe de raios
X com o objetivo de controlar o tamanho do campo e reduzir as
distorções do feixe primário.
Filtros: São materiais metálicos (usualmente alumínio) colocados
propositalmente diante de um feixe de raios X para que parte de
suas radiações de baixa energia sejam absorvidas, evitando que
os fótons atinjam o paciente
FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA Grade
Antidifusora: Filtro de radiações secundárias, onde o feixe
primário passa livremente, enquanto os raios secundários são
absorvidos pelas lâminas da grade. Atua de forma a aumentar
o contraste e a nitidez da imagem
FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA
Tipos de Grade Antidifusora
Focalizadas: Possui laminas de chumbo com angulação
para convergir o feixe para o mesmo ponto;
Não focalizadas: Possui laminas de chumbo paralelas;
Ortogonal: Possui laminas de chumbo cruzadas;
Estacionárias: Possui as laminas de chumbo fixas; Móvel
(Oscilante): Possui as laminas de chumbo móveis
FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA
Écran – Tela Intensificadora
Tela composta de fósforo que, ao receber os raios x, emite luz.
Sua finalidade é ajudar a sensibilizar os cristais do filme
radiográfico através da luz emitida. A sensibilização dos
cristais é cerca de 20 vezes maior por ação dos écrans do que
pelo feixe de raios x.
O uso do écran reduz a dose de radiação para o paciente, pois
permite a redução do mAs que resulta em períodos de
exposição mais curtos e menos artefatos de movimento
FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA
Processamento Radiográfico
Procedimento que visa transformar a imagem latente em
imagem visível, através da ação de substancias químicas
sobre a emulsão do filme.
Ainda existe o processamento:
Manual e Automático
A anatomia humana é um ramo da Biologia que estuda os
sistemas do corpo humano e o funcionamento dos mesmos. Para
isso, é necessário entender o que é homeostase e a sua
importância. No nosso corpo, existem órgãos e complexos
sistemas que interagem uns com os outros, de forma a garantir
que as funções vitais do organismo estejam em funcionamento.
Homeostase é o equilíbrio que esses sistemas devem ter para a
realização dessas funções.
A fisiologia humana estuda a função de cada parte do corpo e tem
uma grande ligação com a anatomia humana.
Variação Anatômica
Como o objeto de estudo da Anatomia Humana é o corpo
humano, fazem-se necessárias algumas considerações sobre ele.
Nos agrupamentos humanos há evidentes diferenças
morfológicas, denominadas variações anatômicas, que aparecem
em qualquer um dos sistemas do organismo, sem prejuízo
funcional.
A posição anatômica é uma posição de referência e
padronizada. O corpo está numa postura ereta (em pé, posição
ortostática ou bípede) com os membros superiores estendidos ao
lado do tronco e as palmas das mãos voltadas para frente. A
cabeça e pés também estão apontados para frente e o olhar para
o horizonte.
Na figura 1, externamente os indivíduos A e B são diferentes,
mas nenhum apresenta prejuízo do equilíbrio na posição bípede.
Este é um exemplo de variação anatômica sem prejuízo funcional,
embora diferentes, ambos conseguem fazer a mesma função.
A forma dos dois estômagos é diferente. O primeiro é
alongado, com grande eixo vertical e o outro está mais horizontal,
mesmo assim os dois estômagos executam os fenômenos
digestivos normalmente, ou seja, existe uma variação na forma,
sem alterar a função dos órgãos
Outro exemplo pode ser visto, onde em dois organismos
humanos, uma artéria pode se dividir em duas ao nível da fossa
do cotovelo (indivíduo A), em outro ao nível da axila (indivíduo B).
Onde a artéria se bifurca varia, mas a função da artéria de irrigar o
membro superior continua preservada
Quando as variações morfológicas têm perturbação funcional, são
denominadas de anomalia. Por exemplo: o indivíduo que nasce
sem um olho, além de ter variado a forma, ainda perdeu a função
que o olho desempenharia.
Quando as anomalias são muito acentuadas, deformando
profundamente o corpo do indivíduo, a ponto de ser incompatível
com a vida, são chamadas de monstruosidade, como no caso na
anencefalia
Na grande variabilidade morfológica humana há possibilidade de
reconhecer várias formas constitucionais, do tipo médio aos tipos
extremos e mistos. Os tipos são chamados de brevilíneo,
mediolíneo e longilíneo
Os brevilíneos são indivíduos atarracados, em geral baixos, com
pescoço curto, tórax de grande diâmetro ântero-posterior,
membros curtos em relação à altura do tronco.
Os mediolíneos apresentam caracteres intermediários aos tipos
extremos.
Os longilíneos são indivíduos magros, em geral altos, com
pescoço longo, tórax muito achatado ântero-posteriormente, com
membros longos em relação à altura do tronco.
Divisão do Corpo Humano
O corpo humano se divide em: cabeça, pescoço, tronco e
membros. A cabeça está na extremidade superior do corpo, unida
ao tronco pelo pescoço. O tronco se subdivide em tórax e
abdome.
Os membros são órgãos pares e se subdividem em superiores
(torácicos) e inferiores (pélvicos). Os membros possuem uma raiz
(cintura), que se une ao tronco, e uma parte livre. Nos membros
superiores a raiz (cintura escapular) é o ombro e a parte livre se
subdivide em braço, antebraço e mão. Entre o braço e o
antebraço tem-se o cotovelo e entre o antebraço e a mão, o
punho.
Nos membros inferiores a raiz (cintura pélvica) é o quadril e a
parte livre se subdivide em coxa, perna e pé. Entre a coxa e a
perna tem-se o joelho, e entre a perna e o pé, o tornozelo. Na
versão posterior da posição anatômica, temos na parte posterior
do corpo, o pescoço que recebe o nome de nuca, o tronco de
dorso e as nádegas correspondem à região glútea.
Planos de delimitação e secção do corpo
Na Anatomia o corpo é dividido por meio de planos, de
delimitações e secção. Com relação aos planos de delimitação,
temos que em posição anatômica, o corpo se delimita em planos
tangentes à sua superfície, formando um paralelepípedo. As faces
da forma geométrica correspondem aos seguintes planos
Como sabemos existem dois planos verticais, um tangente ao
ventre (plano ventral ou anterior) e outro ao dorso (plano dorsal ou
posterior). Estes e outros planos a eles paralelos são designados
como planos frontais. O plano ventral e dorsal são atribuídos ao
tronco. O plano anterior e posterior se referem aos membros. São
dois os planos verticais tangentes ao lado do corpo, chamados de
planos. Laterais direito e esquerdo.
Os dois planos horizontais tangenciam a cabeça (plano superior
ou cranial) e à planta dos pés (plano inferior ou podálico)
O tronco isolado é limitado, inferiormente, pelo plano horizontal
(plano caudal) que tangencia o vértice do cóccix
Com relação aos planos de secção (corte), temos que em posição
anatômica, o plano que divide o corpo humano verticalmente ao
meio em metade direita e metade esquerda é o plano sagital ou
mediano. Qualquer corte feito paralelamente ao plano mediano é
chamado de secção sagital e aos planos resultantes de planos
parasagitais
O plano que divide o corpo humano verticalmente ao meio, em
ventral e dorsal (anterior e posterior), é o plano frontal. Qualquer
corte feito paralelo a este é chamado de secção frontal e aos
planos dar-se a mesma denominação de frontal.
Organização estrutural
O corpo humano apresenta diversos níveis de organização
estrutural. Dentre eles, o menor é o nível químico. Todas as
substâncias químicas necessárias para a manutenção da vida são
compostas por átomos, que são unidos de diversas maneiras para
formar moléculas. Várias substâncias químicas, na forma de
moléculas, são organizadas para compor as células
Células
A célula é a unidade estrutural e funcional básica de todos os
tecidos vivos. Todas as partes do corpo, sejam músculos, ossos,
cartilagem, gordura, nervos, pele ou sangue, são compostas por
células. Tecidos Os tecidos são grupos coesos de células
similares que, com seu material intercelular, realizam uma função
específica. Os quatro tipos básicos de tecido são:
1. Epitelial: Tecido que recobre as superfícies internas e externas
do corpo, fazendo inclusive o revestimento de vasos e órgãos,
como o estômago e os intestinos.
2. Conjuntivo: Tecido de sustentação que une e nutre as diversas
estruturas
3. Muscular: Tecido que forma a maior parte de um músculo 4.
Nervoso: Tecido que compõe a maior parte dos nervos e centros
nervosos
Órgãos
Quando conjuntos complexos de tecidos se unem para a realização de
uma função específica, o resultado é um órgão. Os órgãos geralmente
apresentam formato específico. Exemplos de órgãos do corpo humano
são os rins, o coração, o fígado, os pulmões, o estômago e o cérebro.
Sistema Um sistema é composto por um grupo ou uma associação de
órgãos com função similar ou comum. O sistema urinário, formado
pelos rins, ureteres, bexiga e uretra, é um exemplo de sistema
corpóreo.
O corpo possui 10 sistemas corpóreos. Os 10 sistemas do corpo,
trabalhando juntos, formam o organismo inteiro — um ser vivo
Autoavaliação;
1 Descreva como o corpo humano se encontra quando está em
posição anatômica.
2 Descreva o que significa os termos: medial e lateral.
3 O que são planos anatômicos sagitais
5 O que são Planos de
Delimitação?
6 Assinale na figura o plano ou
secção representado
Esses 10 sistemas são: (1) esquelético, (2) circulatório, (3)
digestório, (4) respiratório, (5) urinário, (6) reprodutivo, (7)
nervoso, (8) muscular, (9) endócrino e (10) tegumentar. Sistema
Esquelético.
É importante que o técnico conheça o sistema esquelético. O
sistema esquelético é composto pelos 206 ossos separados do
corpo e suas cartilagens e articulações associadas. O estudo dos
ossos é denominado osteologia, enquanto o estudo das
articulações é chamado artrologia.
Sistema esquelético.
As quatro funções do sistema esquelético são:
1. Sustentar e proteger os diversos tecidos moles do corpo
2. Permitir o movimento, por meio da interação com os músculos,
formando um sistema de alavancas
3. Produzir as células do sangue 4. Armazenar cálcio
Sistema Circulatório
O sistema circulatório é composto
por:
• Órgãos cardiovasculares —
coração, sangue e vasos
sanguíneos
• Sistema linfático — linfonodos,
vasos linfáticos, tecidos linfoides e
baço
As seis funções do sistema circulatório são:
1. Distribuir oxigênio e nutrientes para as células do corpo.
2. Transportar metabólitos e dióxido de carbono das células.
3. Transportar água, eletrólitos, hormônios e enzimas.
4. Proteger contra doenças.
5. Prevenir hemorragias por meio da formação de coágulos de
sangue.
6. Auxiliar na regulação da temperatura corpórea.
Sistema Digestório
O sistema digestório é formado pelo canal alimentar e
determinados órgãos acessórios.
O canal alimentar é composto por boca, faringe, esôfago,
estômago, intestino delgado, intestino grosso e ânus.
Os órgãos acessórios da digestão são as glândulas salivares, o
fígado, a vesícula biliar e o pâncreas
O sistema digestório tem duas funções:
1. Preparar o alimento para ser absorvido
pelas células por meio de diversos
processos de degradação física e
química
2. Eliminar os dejetos sólidos do corpo
As três funções primárias do
sistema respiratório são:
1. Fornecer oxigênio para o sangue
e, por fim, para as células
2. Eliminar o dióxido de carbono do
sangue
3. Auxiliar na regulação do equilíbrio
acidobásico do sangue
As quatro funções do sistema urinário
são:
1. Regular a composição química do
sangue
2. Eliminar muitos metabólitos
3. Regular o volume de líquido e o
equilíbrio eletrolítico
4. Manter o equilíbrio acidobásico do
corpo
Sistema Reprodutivo
O sistema reprodutivo é formado pelos órgãos que produzem,
transportam e armazenam células germinativas.
Os testículos dos homens e os ovários das mulheres produzem
células germinativas maduras.
Os órgãos de transporte e armazenamento dessas células em
homens são o duto deferente, a próstata e o pênis.
Os órgãos reprodutivos femininos são os ovários, as tubas
uterinas, o útero e a vagina.
Sistema nervoso.
A função do sistema nervoso é a
coordenação das atividades voluntárias e
involuntárias do corpo e a transmissão
dos impulsos elétricos para as diversas
partes do corpo e o cérebro. Sistema
Muscular O sistema muscular, que inclui
todos os tecidos musculares do corpo, é
subdividido em três tipos: (1)
esquelético, (2) liso e (3) cardíaco.
Sistema muscular.
A maior parte da massa muscular do corpo é formada por músculo
esquelético, que é estriado e sob controle voluntário. Os músculos
voluntários atuam junto com o esqueleto para permitir o
movimento do corpo.
Os músculos esqueléticos voluntários ou estriados são
responsáveis por cerca de 43% do peso do corpo humano. Os
músculos lisos, que são involuntários, estão localizados nas
paredes dos órgãos internos ocos, como os vasos sanguíneos, o
estômago e os intestinos.
Esses músculos são chamados involuntários porque sua contração
não está sob controle voluntário ou consciente.
O músculo cardíaco é encontrado apenas nas paredes do coração
e é involuntário, mas estriado. As três funções do tecido muscular
são:
As três funções do tecido muscular são:
1. Permitir o movimento, como a locomoção do corpo ou o
transporte de substâncias pelo canal alimentar.
2. Manter a postura.
3. Produzir o calor corpóreo.
Sistema Endócrino
O sistema endócrino inclui todas as
glândulas sem dutos do corpo. Essas
glândulas são os testículos, os
ovários, o pâncreas, as adrenais, o
timo, a tireoide, a paratireoide, a
pineal e a hipófise. A placenta age
como uma glândula endócrina
temporária.
Sistema endócrino.
Os hormônios, as secreções das glândulas endócrinas, são
liberados diretamente na corrente sanguínea. A função do sistema
endócrino é regular as atividades corpóreas por meio dos diversos
hormônios carreados pelo sistema cardiovascular.
Sistema Tegumentar O décimo e último sistema corpóreo é o
sistema tegumentar, composto pela pele e por todas as estruturas
derivadas da pele.
Essas estruturas derivadas são os pelos, os cabelos, as unhas e
as glândulas sudoríparas e sebáceas.
Sistema tegumentar.
A pele é um órgão essencial para a vida. A pele é o maior órgão
do corpo e reveste uma área superficial de aproximadamente
7.620 cm2 , constituindo 8% da massa corpórea total de um
adulto mediano.
As cinco funções do sistema tegumentar são: 1. Regular a
temperatura corpórea 2. Proteger o corpo, dentro de certos
limites, contra a invasão microbiana e os danos mecânicos,
químicos e da radiação ultravioleta (UV) 3. Eliminar metabólitos
por meio da transpiração 4. Receber determinados estímulos,
como temperatura, pressão e dor 5. Sintetizar algumas vitaminas
e substâncias bioquímicas, como a vitamina D.
Anatomia Esquelética
Como uma grande parte da radiografia diagnóstica geral
envolve o exame dos ossos e das articulações, a osteologia
(o estudo dos ossos) e a artrologia (o estudo das articulações)
são tópicos importantes para o técnico.
Osteologia
O sistema esquelético adulto é composto por 206 ossos
separados, que formam a estrutura de todo o corpo. Algumas
cartilagens, como as localizadas nas extremidades dos ossos
longos, são incluídas no sistema esquelético. Esses ossos e
cartilagens são unidos por ligamentos e formam as superfícies de
inserção dos músculos. Como os músculos e os ossos devem
atuar de maneira conjunta para permitir o movimento corpóreo,
são, às vezes, coletivamente chamados sistema locomotor. O
esqueleto humano adulto é dividido em esqueleto axial e
esqueleto apendicular.
Esqueleto Axial
O esqueleto axial inclui todos os ossos
que repousam no eixo central do
corpo ou em regiões adjacentes. O
esqueleto axial adulto é composto por
80 ossos e inclui o crânio, a coluna
vertebral, as costelas e o esterno (as
regiões escuras do esqueleto corpóreo
mostrado na.
CRÂNIO CRÂNIO 8
OSSOS DA FACE 14
HIOIDE 1
OSSICULOS DA AUDIÇÃO (3 DE CADA ORELHA ) 6
COLUNA VERTEBRAL CERVICAL 7
TORÁCICA 12
LOMBAR 5
SACRAL 1
COXIS 1
TÓRAX EXTERNO 1
COSTELAS 24
Esqueleto Apendicular
A segunda divisão do esqueleto é a porção
apendicular. Essa divisão é formada por todos
os ossos dos membros superiores e inferiores,
do cíngulo do membro superior e do cíngulo
do membro inferior (as regiões escuras da Fig.
1.13). O esqueleto apendicular é unido ao
esqueleto axial. O esqueleto apendicular
adulto é composto por 126 ossos separados
(Tabela 1.2).
Cíngulos do membro superior Clavículas 2
Escápulas 2
Membros superiores Úmeros 2
Ulnas 2
Rádios 2
Carpos 2
Metacarpos 10
Falanges 28
Cíngulos do membro inferior Ossos do quadril (ossos inominados) 2
Fêmures 2
Tíbias 2
Tíbias 2
Patelas 2
Tarsos 2
Metatarsos 10
Falanges 28
Número total de ossos no esqueleto apendicular adulto 126
Número total de ossos separados no esqueleto adulto * 206
Formação Imagem Radiográfica

Mais conteúdo relacionado

Mais procurados

Evolução tecnológica em Tomografia Computadorizada
Evolução tecnológica em Tomografia ComputadorizadaEvolução tecnológica em Tomografia Computadorizada
Evolução tecnológica em Tomografia ComputadorizadaRafael Sciammarella
 
Protocolo Exame de Ressonancia Magnética da Pelve
Protocolo Exame de Ressonancia Magnética da PelveProtocolo Exame de Ressonancia Magnética da Pelve
Protocolo Exame de Ressonancia Magnética da PelveAlex Eduardo Ribeiro
 
Aula 02 física do raio x e bases de exames
Aula 02 física do raio x e bases de examesAula 02 física do raio x e bases de exames
Aula 02 física do raio x e bases de examesRicardo Aguiar
 
Medicina nuclear aula 01
Medicina nuclear aula 01Medicina nuclear aula 01
Medicina nuclear aula 01Walmor Godoi
 
Técnicas de posicionamento para crânio
Técnicas de posicionamento para crânioTécnicas de posicionamento para crânio
Técnicas de posicionamento para crânioSandro Molter
 
Mão - Anatomia Radiológica
Mão - Anatomia RadiológicaMão - Anatomia Radiológica
Mão - Anatomia RadiológicaDanielle Climaco
 
Aula de Imagenologia sobre Tomografia Computadorizada
Aula de Imagenologia sobre Tomografia ComputadorizadaAula de Imagenologia sobre Tomografia Computadorizada
Aula de Imagenologia sobre Tomografia ComputadorizadaJaqueline Almeida
 
Intriducai a Geração e aplicação dos raios x
Intriducai a Geração e aplicação dos raios xIntriducai a Geração e aplicação dos raios x
Intriducai a Geração e aplicação dos raios xMeiry Vieira
 
Artefatos Na Imagem Ressonância Magnética
Artefatos Na Imagem Ressonância MagnéticaArtefatos Na Imagem Ressonância Magnética
Artefatos Na Imagem Ressonância MagnéticaAlex Eduardo Ribeiro
 
Radiologia veterinária aulas 1 e 2
Radiologia veterinária aulas 1 e 2Radiologia veterinária aulas 1 e 2
Radiologia veterinária aulas 1 e 2Helson da Silveira
 
Tipos De Bobinas De Ressonância Magnética
Tipos De Bobinas De Ressonância MagnéticaTipos De Bobinas De Ressonância Magnética
Tipos De Bobinas De Ressonância MagnéticaAlex Eduardo Ribeiro
 
Tomografia computadorizada tecnologia_e_funcionamento_equipamentos
Tomografia computadorizada tecnologia_e_funcionamento_equipamentosTomografia computadorizada tecnologia_e_funcionamento_equipamentos
Tomografia computadorizada tecnologia_e_funcionamento_equipamentoswelberrj
 

Mais procurados (20)

PRINCÍPIO FÍSICO DE RM
PRINCÍPIO FÍSICO DE RMPRINCÍPIO FÍSICO DE RM
PRINCÍPIO FÍSICO DE RM
 
EXAMES DE RESSONÂNCIA MAGNÉTICA
EXAMES DE RESSONÂNCIA MAGNÉTICAEXAMES DE RESSONÂNCIA MAGNÉTICA
EXAMES DE RESSONÂNCIA MAGNÉTICA
 
Evolução tecnológica em Tomografia Computadorizada
Evolução tecnológica em Tomografia ComputadorizadaEvolução tecnológica em Tomografia Computadorizada
Evolução tecnológica em Tomografia Computadorizada
 
Protocolo Exame de Ressonancia Magnética da Pelve
Protocolo Exame de Ressonancia Magnética da PelveProtocolo Exame de Ressonancia Magnética da Pelve
Protocolo Exame de Ressonancia Magnética da Pelve
 
Aula 02 física do raio x e bases de exames
Aula 02 física do raio x e bases de examesAula 02 física do raio x e bases de exames
Aula 02 física do raio x e bases de exames
 
Medicina nuclear aula 01
Medicina nuclear aula 01Medicina nuclear aula 01
Medicina nuclear aula 01
 
Técnicas de posicionamento para crânio
Técnicas de posicionamento para crânioTécnicas de posicionamento para crânio
Técnicas de posicionamento para crânio
 
Mão - Anatomia Radiológica
Mão - Anatomia RadiológicaMão - Anatomia Radiológica
Mão - Anatomia Radiológica
 
Aula de Imagenologia sobre Tomografia Computadorizada
Aula de Imagenologia sobre Tomografia ComputadorizadaAula de Imagenologia sobre Tomografia Computadorizada
Aula de Imagenologia sobre Tomografia Computadorizada
 
Intriducai a Geração e aplicação dos raios x
Intriducai a Geração e aplicação dos raios xIntriducai a Geração e aplicação dos raios x
Intriducai a Geração e aplicação dos raios x
 
Radiologia revisão aula 1
Radiologia revisão aula 1Radiologia revisão aula 1
Radiologia revisão aula 1
 
Artefatos Na Imagem Ressonância Magnética
Artefatos Na Imagem Ressonância MagnéticaArtefatos Na Imagem Ressonância Magnética
Artefatos Na Imagem Ressonância Magnética
 
Radiologia veterinária aulas 1 e 2
Radiologia veterinária aulas 1 e 2Radiologia veterinária aulas 1 e 2
Radiologia veterinária aulas 1 e 2
 
FILMES E ECRÁNS
FILMES E ECRÁNSFILMES E ECRÁNS
FILMES E ECRÁNS
 
Radioterapia
RadioterapiaRadioterapia
Radioterapia
 
Radiobiologia seminario
Radiobiologia seminarioRadiobiologia seminario
Radiobiologia seminario
 
Tipos De Bobinas De Ressonância Magnética
Tipos De Bobinas De Ressonância MagnéticaTipos De Bobinas De Ressonância Magnética
Tipos De Bobinas De Ressonância Magnética
 
Tomografia computadorizada tecnologia_e_funcionamento_equipamentos
Tomografia computadorizada tecnologia_e_funcionamento_equipamentosTomografia computadorizada tecnologia_e_funcionamento_equipamentos
Tomografia computadorizada tecnologia_e_funcionamento_equipamentos
 
Tudo sobre Ressonância Magnética (RM)
Tudo sobre Ressonância Magnética (RM)Tudo sobre Ressonância Magnética (RM)
Tudo sobre Ressonância Magnética (RM)
 
Principios da radiologia
Principios da radiologiaPrincipios da radiologia
Principios da radiologia
 

Semelhante a Formação Imagem Radiográfica

Semelhante a Formação Imagem Radiográfica (20)

FÓTONS.PROD.RX.pdf
FÓTONS.PROD.RX.pdfFÓTONS.PROD.RX.pdf
FÓTONS.PROD.RX.pdf
 
Radiologianota10 Elementos
Radiologianota10 ElementosRadiologianota10 Elementos
Radiologianota10 Elementos
 
Ensaio por raio x
Ensaio por raio xEnsaio por raio x
Ensaio por raio x
 
Lista de exercicios.docx
Lista de exercicios.docxLista de exercicios.docx
Lista de exercicios.docx
 
FÍSICA RADIOLÓGICA 2016- GRUPO IRRADIAR
FÍSICA RADIOLÓGICA 2016- GRUPO IRRADIARFÍSICA RADIOLÓGICA 2016- GRUPO IRRADIAR
FÍSICA RADIOLÓGICA 2016- GRUPO IRRADIAR
 
Princípios de física radiológica
Princípios de física radiológicaPrincípios de física radiológica
Princípios de física radiológica
 
Trab.física.raios x
Trab.física.raios xTrab.física.raios x
Trab.física.raios x
 
Aula 1 imaginologia
Aula 1 imaginologiaAula 1 imaginologia
Aula 1 imaginologia
 
Apresentação4.pptxFísica das Radiações 4444
Apresentação4.pptxFísica das Radiações 4444Apresentação4.pptxFísica das Radiações 4444
Apresentação4.pptxFísica das Radiações 4444
 
Aula biofísica da Radioatividade
Aula biofísica da RadioatividadeAula biofísica da Radioatividade
Aula biofísica da Radioatividade
 
FíSica Das RadiaçõEs
FíSica Das RadiaçõEsFíSica Das RadiaçõEs
FíSica Das RadiaçõEs
 
Mecânica quantica (parte 3)
Mecânica quantica  (parte 3)Mecânica quantica  (parte 3)
Mecânica quantica (parte 3)
 
Interação da Radiação com a Matéria I
Interação da Radiação com a Matéria IInteração da Radiação com a Matéria I
Interação da Radiação com a Matéria I
 
FÍSICA DAS RADIAÇÕES
FÍSICA DAS RADIAÇÕESFÍSICA DAS RADIAÇÕES
FÍSICA DAS RADIAÇÕES
 
apre-raio x.ppt
apre-raio x.pptapre-raio x.ppt
apre-raio x.ppt
 
Difracao de raios X
Difracao de raios XDifracao de raios X
Difracao de raios X
 
Aula1
Aula1Aula1
Aula1
 
Fisica basica.pptx
Fisica basica.pptxFisica basica.pptx
Fisica basica.pptx
 
Produção e equipamentos de raios x
Produção e equipamentos de raios    xProdução e equipamentos de raios    x
Produção e equipamentos de raios x
 
Efeito Fotoelétrico
Efeito FotoelétricoEfeito Fotoelétrico
Efeito Fotoelétrico
 

Último

PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADOcarolinacespedes23
 
Noções de Farmacologia - Flávia Soares.pdf
Noções de Farmacologia - Flávia Soares.pdfNoções de Farmacologia - Flávia Soares.pdf
Noções de Farmacologia - Flávia Soares.pdflucassilva721057
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...azulassessoria9
 
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -Aline Santana
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMVanessaCavalcante37
 
historia Europa Medieval_7ºano_slides_aula12.ppt
historia Europa Medieval_7ºano_slides_aula12.ppthistoria Europa Medieval_7ºano_slides_aula12.ppt
historia Europa Medieval_7ºano_slides_aula12.pptErnandesLinhares1
 
A poesia - Definições e Característicass
A poesia - Definições e CaracterísticassA poesia - Definições e Característicass
A poesia - Definições e CaracterísticassAugusto Costa
 
RedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfRedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfAlissonMiranda22
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.silves15
 
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestre
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestreCIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestre
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestreElianeElika
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManuais Formação
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Mary Alvarenga
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...Rosalina Simão Nunes
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãIlda Bicacro
 

Último (20)

PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
activIDADES CUENTO  lobo esta  CUENTO CUARTO GRADOactivIDADES CUENTO  lobo esta  CUENTO CUARTO GRADO
activIDADES CUENTO lobo esta CUENTO CUARTO GRADO
 
Noções de Farmacologia - Flávia Soares.pdf
Noções de Farmacologia - Flávia Soares.pdfNoções de Farmacologia - Flávia Soares.pdf
Noções de Farmacologia - Flávia Soares.pdf
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: LEITURA DE IMAGENS, GRÁFICOS E MA...
 
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -
DESAFIO LITERÁRIO - 2024 - EASB/ÁRVORE -
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEMCOMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
COMPETÊNCIA 1 DA REDAÇÃO DO ENEM - REDAÇÃO ENEM
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
historia Europa Medieval_7ºano_slides_aula12.ppt
historia Europa Medieval_7ºano_slides_aula12.ppthistoria Europa Medieval_7ºano_slides_aula12.ppt
historia Europa Medieval_7ºano_slides_aula12.ppt
 
A poesia - Definições e Característicass
A poesia - Definições e CaracterísticassA poesia - Definições e Característicass
A poesia - Definições e Característicass
 
RedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfRedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdf
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.A horta do Senhor Lobo que protege a sua horta.
A horta do Senhor Lobo que protege a sua horta.
 
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestre
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestreCIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestre
CIÊNCIAS HUMANAS - ENSINO MÉDIO. 2024 2 bimestre
 
Manual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envioManual da CPSA_1_Agir com Autonomia para envio
Manual da CPSA_1_Agir com Autonomia para envio
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
Construção (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! SertãConstrução (C)erta - Nós Propomos! Sertã
Construção (C)erta - Nós Propomos! Sertã
 

Formação Imagem Radiográfica

  • 3. A formação da imagem radiográfica é regida pelas leis da öptica geométrica, ou seja, obedece a uma relação direta das distâncias relativas entre o foco (emissor de radiação), o objeto (região do corpo em estudo) e o anteparo (chassi [filme radiogräfico], tela fluoroscöpica [écran] ou detector digital). Para uma melhor compreensão do assunto, sera utilizada a seguinte nomenclatura (Figura 5.1): I Fo: foco (foco emissor de radiação). I O: objeto (região do corpo em estudo). I A: anteparo (chassi [filme radiogräfico], tela fluoroscöpica [écran] ou detector digital).
  • 4. Para uma melhor compreensão do assunto, será utilizada a seguinte nomenclatura (Figura 5.1): I Fo: foco (foco emissor de radiação). I O: objeto (região do corpo em estudo). I A: anteparo (chassi [filme radiogräfico], tela [écran] ou detector digital) d:distância. dFoA: distância foco-anteparo. I dOA: distância objeto-anteparo. I dFoO: distância foco-objeto
  • 5.
  • 6. Distância foco-anteparo (dFoA) Corresponde à distância (d) entre o foco emissor de raios X (Fo) e o anteparo (A) (chassi [filme radiogräfico], tela fluoroscöpica [écran] ou detector digital). Para uma mesma distância objeto- anteparo (dOA), a maior distância foco-anteparo (dFoA) resultará em uma menor ampliação da imagem radiogra'fica e menor zona de penumbra. Quanto menor a distância foco-anteparo (dFoA), maior a ampliação da imagem radiografica e maior a zona de penumbra (Figura 5.5).
  • 7.
  • 8.
  • 9.
  • 10. Para evitar a falta de nitidez geométricaou (flor geométrico), devemos usar a combinação dos seguintes parâmetros:a maior distância foco-anteparo (dFoA), associada a menor distância objeto-anteparo (dOA) e, na medida do possível, menor foco emissor de radiação. Assim, teremos uma imagem radiografica mais nítida, de 3 melhor qualidade.
  • 11. Primeira etapa - Corresponde á emissão do feixe de radiação pelo foco emissor até o objeto. Nessa etapa, o feixe de raios X tem uma estrutura razoavelmente homogênea em qualidade e intensidade. Segunda etapa -Corresponde à interação do feixe de radiação com o objeto. Nessa etapa, ira ocorrer a atenuação do feixe de raios X, que consiste na redução da intensidade (atenuação) do feixe de radiação incidente Terceira etapa- Corresponde ã emergência do feixe de radiação do objeto. Nessa etapa, o feixe de radiação não e' uniforme nem em número nem na energia dos fótons. Apenas cerca de 50% dos fotons que incidem no objeto emergem sem sofrer alterações
  • 12.
  • 13. A absorção fotoelétrica (interação fotoelétrica) é um efeito local que consiste na deposição de energia no objeto irradiado. Corresponde à interação de um fÓton de radiação com um elétron fortemente ligado a um átomo do objeto (elétron em Órbita próxima ao núcleo do átomo). O fóton incidente, ao chocar-se com o elétron, transfere toda a sua energia para ele, deixando de existir a seguir. A energia transferida ao elétron determinará seu deslocamento para outra Órbita, gerando um “vazio” nesse lugar. O preenchimento desse “vazio” deixado pela ejeção do elétron dará origem a um föton característico (raios X característicos)
  • 14.
  • 15. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A imagem radiográfica forma-se através da variação de absorção de raios X pelo material irradiado. Os raios X têm origem no choque de elétrons acelerados contra o obstáculo material (alvo), geralmente de metal (Tungstênio com pequeno acréscimo de Tório).
  • 16. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A interação entre esses elétrons e os átomos do obstáculo resultará na formação dos raios X e de calor. A liberação dos elétrons ocorre no catódio (cátodo), em função da energia térmica (aquecimento) fornecida ao filamento, processo denominado emissão termiônica.
  • 17. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA O filamento helicoidal do catódio (cátodo) é aquecido até aproximadamente 2.000°C, por intermédio de um transformador especial de filamento, gerando, assim, os elétrons (nuvem eletrônica ou carga espacial), que são acumulados em torno do filamento em coletor eletrônico. Isto evita a dispersão. O ajuste da intensidade do feixe de elétrons (quantidade de raios X) e dado pela intensidade da corrente do tubo de raios X (mA)
  • 18.
  • 19. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Com a aplicação de uma corrente de alta tensão (kV) no tubo de raios X, de modo que o polo negativo seja o catódio (cátodo) e o polo positivo seja o anódio (ânodo) os elétrons (em forma de feixe) serão, simultaneamente, repelidos do catódio (cátodo) e atraídos pelo anódio (ânodo).
  • 20. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA O vácuo no interior do tubo tem as funções de evitar a redução da velocidade no deslocamento dos elétrons do catódio (cátodo) até o anódio (ânodo), isolar a alta tensão e evitar a oxidação.
  • 21. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA O circuito elétrico responsável pela geração dos elétrons (intensidade do feixe de radiação - mA) é diferente do circuito gerador de alta tensão (kV). Os elétrons são desacelerados no anódio (no ponto ou pista focal), e sua energia é convertida em calor e raios X. O tipo de interação entre o elétron incidente e o alvo (anódio) irá determinar o tipo de radiação formada
  • 22. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Vácuo na ampola: Evitar a redução da velocidade do deslocamento dos elétrons do cátodo para o ânodo. Também evita a oxidação do tubo. Componentes da ampola: São de Tungstênio (com pequeno acréscimo de Tório). Possui alto ponto de fusão e resfriamento rápido (não vaporiza facilmente, evitando oxidação do tubo).
  • 23. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Cátodo: É o polo negativo do tubo de raios X. (Composto pelo Filamento e pela capa focalizadora ou copo de focagem). Filamento: Fio metálico em forma espiral, feito de tungstênio (com pequeno acréscimo de Tório) com 2 mm de diâmetro e comprimento de 1 a 2 cm, envolvido pela capa focalizadora.
  • 24. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Foco Fino: Permite maior resolução da imagem, mas também, tem baixo poder de penetração, porque sua velocidade é baixa. Foco Grosso: Permite maior carga (kV) com isso maior poder de penetração, mas em compensação, tem imagem de menor resolução. Capa Focalizadora: Envolve o filamento, é carregada negativamente maneira a manter os elétrons mais unidos (REDUZIR A DISPERSÃO) e concentrá-los numa área menor do ânodo. Copo de Focagem é a mesma coisa que Capa Focalizadora.
  • 25. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Ânodo: É o polo positivo do tubo de raios X. Composto pelo Alvo (Local de interação dos raios X). Quanto maior o n° atômico do ânodo maior a eficiência de produção de RX. Alvo: Pode ser Fixo ou Giratório: Fixo: Encontrado em aparelhos de raios X portáteis e odontológicos. Giratório: Tem a função de dispersar o calor e, assim, causar menor dano ao tubo e permitir a utilização de energia (kV) mais elevados.
  • 26. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Ponto Focal: É a menor região do alvo em que o feixe de elétrons incide. É onde origina-se a produção de raios X. Quanto menor o tamanho do ponto focal, melhor a resolução da imagem e maior o aquecimento do tubo. OBSERVAÇÃO: QUANDO SE TRATA DE ÂNODO GIRATÓRIO A MENOR REGIÃO DO ALVO EM QUE O FEIXE DE ÉLETRONS INCIDE CHAMA-SE PISTA FOCAL.
  • 27. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA KV: QUILOVOLTAGEM PRINCIPAL FATOR QUE DETERMINA O CONTRASTE DA IMAGEM. O contraste é responsável pela imagem preta e branca da imagem, ou seja, é a diferença de densidade em áreas adjacentes
  • 28. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Fórmula para calcular o KV: KV= (Ex2) + K E: Espessura da parte (medida pelo espessômetro). K: Constante (determinada por um conjunto de informações do equipamento). Valor da Constante do gerador: Monofásico: 30 | Trifásico: 25
  • 29. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA A qualidade do feixe de radiação é diretamente proporcional a tensão (kV) aplicada ao tubo. Quanto maior a tensão (kV) aplicada ao tubo, menor será o comprimento de onda dos raios X e maiores serão energia de aceleração dos elétrons, o poder de penetração do feixe de radiação dos elétrons e, consequentemente, a qualidade desse feixe
  • 30. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA mAs: MILIAMPERAGEM POR SEGUNDO PRINCIPAL FATOR QUE DETERMINAA DENSIDADE DA IMAGEM. A densidade radiográfica pode ser descrita como o grau de enegrecimento da radiografia concluída. Quanto maior o grau de enegrecimento maior a densidade e menor a quantidade de luz que atravessará a radiografia quando vista através de um negatoscópio ou de um foco de luz.
  • 31. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Quanto maior a intensidade da corrente (maior mA), maior será o número de elétrons disponíveis. Assim, maior será a quantidade de raios X.
  • 32. Raios X de Freamento (Bremsstrahlung) Esse tipo de radiação ocorre com muita frequência na formação do feixe de raios X e é originado na passagem de um elétron bem próximo ao núcleo de um átomo do material do alvo (anódio). A atração entre o elétron carregado negativamente e o núcleo carregado positivamente faz com que o elétron seja desviado da sua trajetória original, perdendo parte da sua energia cinética ou toda ela, que é emitida na forma de raios X. Esse processo pode gerar raios X com energias diferentes, indo de valores baixos até a energia máxima, que é igual à energia total do elétron incidente.
  • 33. Raios X de Freamento (Bremsstrahlung)
  • 34. Raios X Característicos Esse tipo de radiação é menos frequente na formação do feixe de raios X. Resulta de uma colisão entre o elétron incidente e um elétron orbital das camadas mais internas do átomo do material do alvo (anódio). O elétron incidente transfere energia suficiente ao elétron orbital do átomo do material do alvo, de maneira que esse último é ejetado de sua órbita, deixando um “buraco” em seu lugar.
  • 35. Raios X Característicos Isso gera uma condição instável no átomo do material do alvo, que é imediatamente corrigida com a passagem de um elétron de uma órbita mais externa para este "vazio", resultando em uma redução da energia potencial do elétron. O excedente (de energia) é emitido na forma de raios X. Como os níveis de energia dos elétrons são únicos para cada elemento (material), os raios X originados nesse processo também são únicos e, portanto, característicos de cada elemento (material). Daí o nome de raios X característicos.
  • 36.
  • 37. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Os raios X que saem pela janela da cúpula (carcaça) são denominados feixe útil de radiação e correspondem a apenas cerca de 10% de toda a radiação gerada no tubo de raios X. Como apenas o feixe útil de radiação tem importância na formação da imagem radiográfica, toda referência aos raios X ou feixe de radiação corresponderá ao feixe útil de radiação.
  • 38. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Lei do Inverso do Quadrado da Distância A intensidade da radiação decresce proporcionalmente ao quadrado da distância da fonte emissora.
  • 39.
  • 40. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Efeito Anódico: Fenômeno no qual a intensidade da radiação emitida da extremidade do cátodo do campo de raios X é maior do que aquela na extremidade do ânodo. Isso se deve ao ângulo da face do ânodo, de forma que há maior atenuação ou absorção dos raios X na extremidade do ânodo. *A diferença na intensidade do feixe de raios X entre cátodo e ânodo pode variar em até 45%, dependendo do ângulo do ânodo.
  • 41.
  • 42. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Efeito Fotoelétrico (EFE): Ocorre quando o fóton de RX transfere toda a sua energia ao elétron, que então escapa do átomo. É mais predominante para materiais de elevado n° atômico e para baixas energias. O produto final de um EFE será sempre radiação característica, um íon negativo e um íon positivo; O EFE é inversamente proporcional a energia; O EFE é diretamente proporcional ao número atômico (Z); O EFE usa o mecanismo de interação com os elétrons da camada mais interna
  • 43. FÍSICA DE FORMAÇÃO DA IMAGEM RADIOGRÁFICA Efeito Compton (EC): É o principal responsável por quase toda a radiação espalhada em radiodiagnóstico. Ocorre quando um fóton com alta energia atinge um elétron livre da última camada, ejetando-o de sua órbita. A probabilidade de acontecer depende da energia da radiação e da densidade do absorvedor. O número de Interação Compton é independente do n° atômico
  • 44. FÍSICA DE FORMAÇÃO DA IMAGEMRADOGRÁFICA Colimador: São dispositivos colocados na saída do feixe de raios X com o objetivo de controlar o tamanho do campo e reduzir as distorções do feixe primário. Filtros: São materiais metálicos (usualmente alumínio) colocados propositalmente diante de um feixe de raios X para que parte de suas radiações de baixa energia sejam absorvidas, evitando que os fótons atinjam o paciente
  • 45. FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA Grade Antidifusora: Filtro de radiações secundárias, onde o feixe primário passa livremente, enquanto os raios secundários são absorvidos pelas lâminas da grade. Atua de forma a aumentar o contraste e a nitidez da imagem
  • 46. FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA Tipos de Grade Antidifusora Focalizadas: Possui laminas de chumbo com angulação para convergir o feixe para o mesmo ponto; Não focalizadas: Possui laminas de chumbo paralelas; Ortogonal: Possui laminas de chumbo cruzadas; Estacionárias: Possui as laminas de chumbo fixas; Móvel (Oscilante): Possui as laminas de chumbo móveis
  • 47.
  • 48.
  • 49.
  • 50.
  • 51. FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA Écran – Tela Intensificadora Tela composta de fósforo que, ao receber os raios x, emite luz. Sua finalidade é ajudar a sensibilizar os cristais do filme radiográfico através da luz emitida. A sensibilização dos cristais é cerca de 20 vezes maior por ação dos écrans do que pelo feixe de raios x. O uso do écran reduz a dose de radiação para o paciente, pois permite a redução do mAs que resulta em períodos de exposição mais curtos e menos artefatos de movimento
  • 52. FÍSICA DE FORMAÇÃO DA IMAGEM RADOGRÁFICA Processamento Radiográfico Procedimento que visa transformar a imagem latente em imagem visível, através da ação de substancias químicas sobre a emulsão do filme. Ainda existe o processamento: Manual e Automático
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66. A anatomia humana é um ramo da Biologia que estuda os sistemas do corpo humano e o funcionamento dos mesmos. Para isso, é necessário entender o que é homeostase e a sua importância. No nosso corpo, existem órgãos e complexos sistemas que interagem uns com os outros, de forma a garantir que as funções vitais do organismo estejam em funcionamento. Homeostase é o equilíbrio que esses sistemas devem ter para a realização dessas funções. A fisiologia humana estuda a função de cada parte do corpo e tem uma grande ligação com a anatomia humana.
  • 67. Variação Anatômica Como o objeto de estudo da Anatomia Humana é o corpo humano, fazem-se necessárias algumas considerações sobre ele. Nos agrupamentos humanos há evidentes diferenças morfológicas, denominadas variações anatômicas, que aparecem em qualquer um dos sistemas do organismo, sem prejuízo funcional.
  • 68.
  • 69. A posição anatômica é uma posição de referência e padronizada. O corpo está numa postura ereta (em pé, posição ortostática ou bípede) com os membros superiores estendidos ao lado do tronco e as palmas das mãos voltadas para frente. A cabeça e pés também estão apontados para frente e o olhar para o horizonte. Na figura 1, externamente os indivíduos A e B são diferentes, mas nenhum apresenta prejuízo do equilíbrio na posição bípede. Este é um exemplo de variação anatômica sem prejuízo funcional, embora diferentes, ambos conseguem fazer a mesma função.
  • 70. A forma dos dois estômagos é diferente. O primeiro é alongado, com grande eixo vertical e o outro está mais horizontal, mesmo assim os dois estômagos executam os fenômenos digestivos normalmente, ou seja, existe uma variação na forma, sem alterar a função dos órgãos
  • 71. Outro exemplo pode ser visto, onde em dois organismos humanos, uma artéria pode se dividir em duas ao nível da fossa do cotovelo (indivíduo A), em outro ao nível da axila (indivíduo B). Onde a artéria se bifurca varia, mas a função da artéria de irrigar o membro superior continua preservada
  • 72. Quando as variações morfológicas têm perturbação funcional, são denominadas de anomalia. Por exemplo: o indivíduo que nasce sem um olho, além de ter variado a forma, ainda perdeu a função que o olho desempenharia. Quando as anomalias são muito acentuadas, deformando profundamente o corpo do indivíduo, a ponto de ser incompatível com a vida, são chamadas de monstruosidade, como no caso na anencefalia
  • 73. Na grande variabilidade morfológica humana há possibilidade de reconhecer várias formas constitucionais, do tipo médio aos tipos extremos e mistos. Os tipos são chamados de brevilíneo, mediolíneo e longilíneo
  • 74. Os brevilíneos são indivíduos atarracados, em geral baixos, com pescoço curto, tórax de grande diâmetro ântero-posterior, membros curtos em relação à altura do tronco. Os mediolíneos apresentam caracteres intermediários aos tipos extremos. Os longilíneos são indivíduos magros, em geral altos, com pescoço longo, tórax muito achatado ântero-posteriormente, com membros longos em relação à altura do tronco.
  • 75.
  • 76. Divisão do Corpo Humano O corpo humano se divide em: cabeça, pescoço, tronco e membros. A cabeça está na extremidade superior do corpo, unida ao tronco pelo pescoço. O tronco se subdivide em tórax e abdome. Os membros são órgãos pares e se subdividem em superiores (torácicos) e inferiores (pélvicos). Os membros possuem uma raiz (cintura), que se une ao tronco, e uma parte livre. Nos membros superiores a raiz (cintura escapular) é o ombro e a parte livre se subdivide em braço, antebraço e mão. Entre o braço e o antebraço tem-se o cotovelo e entre o antebraço e a mão, o punho.
  • 77. Nos membros inferiores a raiz (cintura pélvica) é o quadril e a parte livre se subdivide em coxa, perna e pé. Entre a coxa e a perna tem-se o joelho, e entre a perna e o pé, o tornozelo. Na versão posterior da posição anatômica, temos na parte posterior do corpo, o pescoço que recebe o nome de nuca, o tronco de dorso e as nádegas correspondem à região glútea.
  • 78.
  • 79. Planos de delimitação e secção do corpo Na Anatomia o corpo é dividido por meio de planos, de delimitações e secção. Com relação aos planos de delimitação, temos que em posição anatômica, o corpo se delimita em planos tangentes à sua superfície, formando um paralelepípedo. As faces da forma geométrica correspondem aos seguintes planos
  • 80.
  • 81. Como sabemos existem dois planos verticais, um tangente ao ventre (plano ventral ou anterior) e outro ao dorso (plano dorsal ou posterior). Estes e outros planos a eles paralelos são designados como planos frontais. O plano ventral e dorsal são atribuídos ao tronco. O plano anterior e posterior se referem aos membros. São dois os planos verticais tangentes ao lado do corpo, chamados de planos. Laterais direito e esquerdo. Os dois planos horizontais tangenciam a cabeça (plano superior ou cranial) e à planta dos pés (plano inferior ou podálico)
  • 82. O tronco isolado é limitado, inferiormente, pelo plano horizontal (plano caudal) que tangencia o vértice do cóccix
  • 83. Com relação aos planos de secção (corte), temos que em posição anatômica, o plano que divide o corpo humano verticalmente ao meio em metade direita e metade esquerda é o plano sagital ou mediano. Qualquer corte feito paralelamente ao plano mediano é chamado de secção sagital e aos planos resultantes de planos parasagitais
  • 84. O plano que divide o corpo humano verticalmente ao meio, em ventral e dorsal (anterior e posterior), é o plano frontal. Qualquer corte feito paralelo a este é chamado de secção frontal e aos planos dar-se a mesma denominação de frontal.
  • 85.
  • 86. Organização estrutural O corpo humano apresenta diversos níveis de organização estrutural. Dentre eles, o menor é o nível químico. Todas as substâncias químicas necessárias para a manutenção da vida são compostas por átomos, que são unidos de diversas maneiras para formar moléculas. Várias substâncias químicas, na forma de moléculas, são organizadas para compor as células
  • 87. Células A célula é a unidade estrutural e funcional básica de todos os tecidos vivos. Todas as partes do corpo, sejam músculos, ossos, cartilagem, gordura, nervos, pele ou sangue, são compostas por células. Tecidos Os tecidos são grupos coesos de células similares que, com seu material intercelular, realizam uma função específica. Os quatro tipos básicos de tecido são:
  • 88. 1. Epitelial: Tecido que recobre as superfícies internas e externas do corpo, fazendo inclusive o revestimento de vasos e órgãos, como o estômago e os intestinos. 2. Conjuntivo: Tecido de sustentação que une e nutre as diversas estruturas 3. Muscular: Tecido que forma a maior parte de um músculo 4. Nervoso: Tecido que compõe a maior parte dos nervos e centros nervosos
  • 89. Órgãos Quando conjuntos complexos de tecidos se unem para a realização de uma função específica, o resultado é um órgão. Os órgãos geralmente apresentam formato específico. Exemplos de órgãos do corpo humano são os rins, o coração, o fígado, os pulmões, o estômago e o cérebro. Sistema Um sistema é composto por um grupo ou uma associação de órgãos com função similar ou comum. O sistema urinário, formado pelos rins, ureteres, bexiga e uretra, é um exemplo de sistema corpóreo. O corpo possui 10 sistemas corpóreos. Os 10 sistemas do corpo, trabalhando juntos, formam o organismo inteiro — um ser vivo
  • 90. Autoavaliação; 1 Descreva como o corpo humano se encontra quando está em posição anatômica. 2 Descreva o que significa os termos: medial e lateral. 3 O que são planos anatômicos sagitais
  • 91. 5 O que são Planos de Delimitação? 6 Assinale na figura o plano ou secção representado
  • 92.
  • 93.
  • 94. Esses 10 sistemas são: (1) esquelético, (2) circulatório, (3) digestório, (4) respiratório, (5) urinário, (6) reprodutivo, (7) nervoso, (8) muscular, (9) endócrino e (10) tegumentar. Sistema Esquelético. É importante que o técnico conheça o sistema esquelético. O sistema esquelético é composto pelos 206 ossos separados do corpo e suas cartilagens e articulações associadas. O estudo dos ossos é denominado osteologia, enquanto o estudo das articulações é chamado artrologia.
  • 95.
  • 96. Sistema esquelético. As quatro funções do sistema esquelético são: 1. Sustentar e proteger os diversos tecidos moles do corpo 2. Permitir o movimento, por meio da interação com os músculos, formando um sistema de alavancas 3. Produzir as células do sangue 4. Armazenar cálcio
  • 97. Sistema Circulatório O sistema circulatório é composto por: • Órgãos cardiovasculares — coração, sangue e vasos sanguíneos • Sistema linfático — linfonodos, vasos linfáticos, tecidos linfoides e baço
  • 98. As seis funções do sistema circulatório são: 1. Distribuir oxigênio e nutrientes para as células do corpo. 2. Transportar metabólitos e dióxido de carbono das células. 3. Transportar água, eletrólitos, hormônios e enzimas. 4. Proteger contra doenças. 5. Prevenir hemorragias por meio da formação de coágulos de sangue. 6. Auxiliar na regulação da temperatura corpórea.
  • 99. Sistema Digestório O sistema digestório é formado pelo canal alimentar e determinados órgãos acessórios. O canal alimentar é composto por boca, faringe, esôfago, estômago, intestino delgado, intestino grosso e ânus. Os órgãos acessórios da digestão são as glândulas salivares, o fígado, a vesícula biliar e o pâncreas
  • 100. O sistema digestório tem duas funções: 1. Preparar o alimento para ser absorvido pelas células por meio de diversos processos de degradação física e química 2. Eliminar os dejetos sólidos do corpo
  • 101. As três funções primárias do sistema respiratório são: 1. Fornecer oxigênio para o sangue e, por fim, para as células 2. Eliminar o dióxido de carbono do sangue 3. Auxiliar na regulação do equilíbrio acidobásico do sangue
  • 102. As quatro funções do sistema urinário são: 1. Regular a composição química do sangue 2. Eliminar muitos metabólitos 3. Regular o volume de líquido e o equilíbrio eletrolítico 4. Manter o equilíbrio acidobásico do corpo
  • 103. Sistema Reprodutivo O sistema reprodutivo é formado pelos órgãos que produzem, transportam e armazenam células germinativas. Os testículos dos homens e os ovários das mulheres produzem células germinativas maduras. Os órgãos de transporte e armazenamento dessas células em homens são o duto deferente, a próstata e o pênis. Os órgãos reprodutivos femininos são os ovários, as tubas uterinas, o útero e a vagina.
  • 104. Sistema nervoso. A função do sistema nervoso é a coordenação das atividades voluntárias e involuntárias do corpo e a transmissão dos impulsos elétricos para as diversas partes do corpo e o cérebro. Sistema Muscular O sistema muscular, que inclui todos os tecidos musculares do corpo, é subdividido em três tipos: (1) esquelético, (2) liso e (3) cardíaco.
  • 105. Sistema muscular. A maior parte da massa muscular do corpo é formada por músculo esquelético, que é estriado e sob controle voluntário. Os músculos voluntários atuam junto com o esqueleto para permitir o movimento do corpo. Os músculos esqueléticos voluntários ou estriados são responsáveis por cerca de 43% do peso do corpo humano. Os músculos lisos, que são involuntários, estão localizados nas paredes dos órgãos internos ocos, como os vasos sanguíneos, o estômago e os intestinos.
  • 106. Esses músculos são chamados involuntários porque sua contração não está sob controle voluntário ou consciente. O músculo cardíaco é encontrado apenas nas paredes do coração e é involuntário, mas estriado. As três funções do tecido muscular são: As três funções do tecido muscular são: 1. Permitir o movimento, como a locomoção do corpo ou o transporte de substâncias pelo canal alimentar. 2. Manter a postura. 3. Produzir o calor corpóreo.
  • 107. Sistema Endócrino O sistema endócrino inclui todas as glândulas sem dutos do corpo. Essas glândulas são os testículos, os ovários, o pâncreas, as adrenais, o timo, a tireoide, a paratireoide, a pineal e a hipófise. A placenta age como uma glândula endócrina temporária.
  • 108. Sistema endócrino. Os hormônios, as secreções das glândulas endócrinas, são liberados diretamente na corrente sanguínea. A função do sistema endócrino é regular as atividades corpóreas por meio dos diversos hormônios carreados pelo sistema cardiovascular. Sistema Tegumentar O décimo e último sistema corpóreo é o sistema tegumentar, composto pela pele e por todas as estruturas derivadas da pele. Essas estruturas derivadas são os pelos, os cabelos, as unhas e as glândulas sudoríparas e sebáceas.
  • 109. Sistema tegumentar. A pele é um órgão essencial para a vida. A pele é o maior órgão do corpo e reveste uma área superficial de aproximadamente 7.620 cm2 , constituindo 8% da massa corpórea total de um adulto mediano. As cinco funções do sistema tegumentar são: 1. Regular a temperatura corpórea 2. Proteger o corpo, dentro de certos limites, contra a invasão microbiana e os danos mecânicos, químicos e da radiação ultravioleta (UV) 3. Eliminar metabólitos por meio da transpiração 4. Receber determinados estímulos, como temperatura, pressão e dor 5. Sintetizar algumas vitaminas e substâncias bioquímicas, como a vitamina D.
  • 110. Anatomia Esquelética Como uma grande parte da radiografia diagnóstica geral envolve o exame dos ossos e das articulações, a osteologia (o estudo dos ossos) e a artrologia (o estudo das articulações) são tópicos importantes para o técnico.
  • 111. Osteologia O sistema esquelético adulto é composto por 206 ossos separados, que formam a estrutura de todo o corpo. Algumas cartilagens, como as localizadas nas extremidades dos ossos longos, são incluídas no sistema esquelético. Esses ossos e cartilagens são unidos por ligamentos e formam as superfícies de inserção dos músculos. Como os músculos e os ossos devem atuar de maneira conjunta para permitir o movimento corpóreo, são, às vezes, coletivamente chamados sistema locomotor. O esqueleto humano adulto é dividido em esqueleto axial e esqueleto apendicular.
  • 112. Esqueleto Axial O esqueleto axial inclui todos os ossos que repousam no eixo central do corpo ou em regiões adjacentes. O esqueleto axial adulto é composto por 80 ossos e inclui o crânio, a coluna vertebral, as costelas e o esterno (as regiões escuras do esqueleto corpóreo mostrado na.
  • 113. CRÂNIO CRÂNIO 8 OSSOS DA FACE 14 HIOIDE 1 OSSICULOS DA AUDIÇÃO (3 DE CADA ORELHA ) 6 COLUNA VERTEBRAL CERVICAL 7 TORÁCICA 12 LOMBAR 5 SACRAL 1 COXIS 1 TÓRAX EXTERNO 1 COSTELAS 24
  • 114. Esqueleto Apendicular A segunda divisão do esqueleto é a porção apendicular. Essa divisão é formada por todos os ossos dos membros superiores e inferiores, do cíngulo do membro superior e do cíngulo do membro inferior (as regiões escuras da Fig. 1.13). O esqueleto apendicular é unido ao esqueleto axial. O esqueleto apendicular adulto é composto por 126 ossos separados (Tabela 1.2).
  • 115. Cíngulos do membro superior Clavículas 2 Escápulas 2 Membros superiores Úmeros 2 Ulnas 2 Rádios 2 Carpos 2 Metacarpos 10 Falanges 28 Cíngulos do membro inferior Ossos do quadril (ossos inominados) 2 Fêmures 2 Tíbias 2 Tíbias 2 Patelas 2 Tarsos 2 Metatarsos 10 Falanges 28 Número total de ossos no esqueleto apendicular adulto 126 Número total de ossos separados no esqueleto adulto * 206