SlideShare uma empresa Scribd logo
1 de 273
Baixar para ler offline
APRESENTAÇÃO
   Este PDF contém 919 questões de Física com suas respectivas
resoluções.
   Espero que sejam úteis.


                        Prof. Sady Danyelevcz de Brito Moreira Braga
                        E-Mail: danyelevcz@hotmail.com
                        Blog: http://danyelevcz.blogspot.com/
                        Fone: (67)8129-5566
                        Home Page: http://profsady.vila.bol.com.br




                                           Telefones:

                                           (11) 3064-2862 (comercial)

                                           (11) 3873-7222 (residencial)
                                           (11) 9982-7001 (celular)

                                           e-mail: jrbonjorno@uol.com.br
SUMÁRIO
Cinemática (Questões 1 a 90)...................................................................... 4
Dinâmica (Questões 91 a 236) ................................................................... 18
Estática (Questões 237 a 266) ................................................................... 43
Hidrostática (Questões 267 a 306) ............................................................ 49
Hidrodinâmica (Questões 307 a 314) ........................................................ 55
Termologia (Questões 315 a 439) .............................................................. 56
Óptica Geométrica (Questões 440 a 530) ................................................. 74
Ondulatória (Questões 531 a 609) ............................................................. 87
Eletrostática (Questões 610 a 720) ......................................................... 100
Eletrodinâmica (Questões 721 a 843) ..................................................... 118
Eletromagnetismo (Questões 844 a 919)................................................ 142
Resolução .............................................................................................. 159
Siglas . .................................................................................................... 273
4 (UEL-PR) Um homem caminha com velocida-
 CINEMÁTICA                                             de v H     3,6 km/h, uma ave, com velocidade
                                                        vA    30 m/min, e um inseto, com vI     60 cm/s.
 1 (EFOA-MG) Um aluno, sentado na carteira da sa-       Essas velocidades satisfazem a relação:
la, observa os colegas, também sentados nas res-
                                                        a) vI    vH    vA          d) vA      vH       vI
pectivas carteiras, bem como um mosquito que voa
perseguindo o professor que fiscaliza a prova da        b) vA     vI   vH          e) vH      vI      vA
turma.                                                  c) vH     vA   vI
Das alternativas abaixo, a única que retrata uma
análise correta do aluno é:                              5 (UFPA) Maria saiu de Mosqueiro às 6 horas e 30
                                                        minutos, de um ponto da estrada onde o marco
a) A velocidade de todos os meus colegas é nula
                                                        quilométrico indicava km 60. Ela chegou a Belém às
para todo observador na superfície da Terra.
                                                        7 horas e 15 minutos, onde o marco quilométrico
b) Eu estou em repouso em relação aos meus cole-        da estrada indicava km 0. A velocidade média, em
gas, mas nós estamos em movimento em relação a          quilômetros por hora, do carro de Maria, em sua
todo observador na superfície da Terra.                 viagem de Mosqueiro até Belém, foi de:
c) Como não há repouso absoluto, não há nenhum          a) 45                      d) 80
referencial em relação ao qual nós, estudantes, es-     b) 55                      e) 120
tejamos em repouso.
                                                        c) 60
d) A velocidade do mosquito é a mesma, tanto em
relação ao meus colegas, quanto em relação ao pro-       6 (UFRN) Uma das teorias para explicar o apareci-
fessor.                                                 mento do homem no continente americano propõe
e) Mesmo para o professor, que não pára de andar        que ele, vindo da Ásia, entrou na América pelo Es-
pela sala, seria possível achar um referencial em re-   treito de Bering e foi migrando para o sul até atingir
lação ao qual ele estivesse em repouso.                 a Patagônia, como indicado no mapa.
                                                        Datações arqueológicas sugerem que foram neces-
 2 (Unitau-SP) Um móvel parte do km 50, indo até        sários cerca de 10 000 anos para que essa migração
o km 60, onde, mudando o sentido do movimen-            se realizasse.
to, vai até o km 32. O deslocamento escalar e a         O comprimento AB, mostrado ao lado do mapa, cor-
distância efetivamente percorrida são, respectiva-      responde à distância de 5 000 km nesse mesmo mapa.
mente:
                                                                                                        5 000 km
a) 28 km e 28 km           d)   18 km e 18 km
                                                                                                   A               B
b) 18 km e 38 km           e) 38 km e 18 km             Estreito de
                                                          Bering
c)   18 km e 38 km

 3 (Unisinos-RS) Numa pista atlética retangular de                                         Rota de
lados a     160 m e b      60 m,         b                                                 migração

um atleta corre com velocidade
de módulo constante v 5 m/s,
no sentido horário, conforme
mostrado na figura. Em t 0 s,
                                                 a
o atleta encontra-se no ponto A.
                                                                                            Patagônia
O módulo do deslocamento do
atleta, após 60 s de corrida, em ←
                                 v                      Com base nesses dados, pode-se estimar que a ve-
metros, é:
                                  A
                                                        locidade escalar média de ocupação do continente
                                                        americano pelo homem, ao longo da rota desenha-
a) 100                     d) 10 000                    da, foi de aproximadamente:
b) 220                     e) 18 000                    a) 0,5 km/ano              c) 24 km/ano
c) 300                                                  b) 8,0 km/ano              d) 2,0 km/ano


                           4 SIMULADÃO
7 (Unitau-SP) Um carro mantém uma velocidade            11 (MACK-SP) O Sr. José sai de sua casa caminhan-
escalar constante de 72,0 km/h. Em uma hora e            do com velocidade escalar constante de 3,6 km/h,
dez minutos ele percorre, em quilômetros, a distân-      dirigindo-se para o supermercado que está a 1,5 km.
cia de:                                                  Seu filho Fernão, 5 minutos após, corre ao encontro
a) 79,2                    d) 84,0                       do pai, levando a carteira que ele havia esquecido.
                                                         Sabendo que o rapaz encontra o pai no instante
b) 80,0                    e) 90,0
                                                         em que este chega ao supermercado, podemos afir-
c) 82,4                                                  mar que a velocidade escalar média de Fernão foi
                                                         igual a:
 8 (PUCC-SP) Andrômeda é uma galáxia distante
                                                         a) 5,4 km/h                       d) 4,0 km/h
2,3 106 anos-luz da Via Láctea, a nossa galáxia. A
luz proveniente de Andrômeda, viajando à veloci-         b) 5,0 km/h                       e) 3,8 km/h
dade de 3,0 105 km/s, percorre a distância aproxi-       c) 4,5 km/h
mada até a Terra, em quilômetros, igual a
a) 4 1015                  d) 7 1021
                                                         12 (UEPI) Em sua trajetória, um ônibus interestadual
b) 6 1017                  e) 9 1023
                                                         percorreu 60 km em 80 min, após 10 min de para-
c) 2 1019                                                da, seguiu viagem por mais 90 km à velocidade
                                                         média de 60 km/h e, por fim, após 13 min de para-
 9 (UFRS) No trânsito em ruas e estradas, é aconse-      da, percorreu mais 42 km em 30 min. A afirmativa
lhável os motoristas manterem entre os veículos um       verdadeira sobre o movimento do ônibus, do início
distanciamento de segurança. Esta separação asse-        ao final da viagem, é que ele:
gura, folgadamente, o espaço necessário para que         a) percorreu uma distância total de 160 km
se possa, na maioria dos casos, parar sem risco de
abalroar o veículo que se encontra na frente. Pode-      b) gastou um tempo total igual ao triplo do tempo
se calcular esse distanciamento de segurança medi-       gasto no primeiro trecho de viagem
ante a seguinte regra prática:                           c) desenvolveu uma velocidade média de 60,2 km/h
                                                     2   d) não modificou sua velocidade média em conse-
                          ⎡ velocidade em km / h ⎤
distanciamento (em m)     ⎢                      ⎥       qüência das paradas
                          ⎣          10          ⎦
                                                         e) teria desenvolvido uma velocidade média de
Em comparação com o distanciamento necessário            57,6 km/h, se não tivesse feito paradas
para um automóvel que anda a 70 km/h, o distan-
ciamento de segurança de um automóvel que trafe-
ga a 100 km/h aumenta, aproximadamente,                  13 (UFPE) O gráfico representa a posição de uma
a) 30%                     d) 80%                        partícula em função do tempo. Qual a velocidade
                                                         média da partícula, em metros por segundo, entre
b) 42%                     e) 100%
                                                         os instantes t 2,0 min e t 6,0 min?
c) 50%
                                                                   x (m)

10 (Unimep-SP) A Embraer (Empresa Brasileira
                                                             8,0    102
de Aeronáutica S.A.) está testando seu novo avião,
o EMB-145. Na opinião dos engenheiros da empre-              6,0    102

sa, esse avião é ideal para linhas aéreas ligando ci-        4,0    102
dades de porte médio e para pequenas distâncias.
                                                             2,0    102
Conforme anunciado pelos técnicos, a velocidade
média do avião vale aproximadamente 800 km/h (no                      0        1,5   3,0      4,5   6,0   t (min)
ar). Assim sendo, o tempo gasto num percurso de
1 480 km será:
a) 1 hora e 51 minutos     d) 185 minutos                a) 1,5                            d) 4,5
b) 1 hora e 45 minutos     e) 1 hora e 48 minutos        b) 2,5                            e) 5,5
c) 2 horas e 25 minutos                                  c) 3,5


                                                                           SIMULADÃO 5
14 (FURRN) As funções horárias de dois trens que se    18 (Uniube-MG) Um caminhão, de comprimento
movimentam em linhas paralelas são: s1 k1 40t          igual a 20 m, e um homem percorrem, em movi-
e s2 k2 60t, onde o espaço s está em quilôme-          mento uniforme, um trecho de uma estrada retilínea
tros e o tempo t está em horas. Sabendo que os         no mesmo sentido. Se a velocidade do caminhão é
trens estão lado a lado no instante t 2,0 h, a dife-   5 vezes maior que a do homem, a distância percor-
rença k1 k2, em quilômetros, é igual a:                rida pelo caminhão desde o instante em que alcan-
a) 30                          d) 80                   ça o homem até o momento em que o ultrapassa é,
                                                       em metros, igual a:
b) 40                          e) 100
                                                       a) 20                      d) 32
c) 60
                                                       b) 25                      e) 35
                                                       c) 30
(FEI-SP) O enunciado seguinte refere-se às questões
15 e 16.
Dois móveis A e B, ambos com movimento unifor-         19 (UEL-PR) Um trem de 200 m de comprimento,
me, percorrem uma trajetória retilínea conforme        com velocidade escalar constante de 60 km/h, gas-
mostra a figura. Em t 0, estes se encontram, res-      ta 36 s para atravessar completamente uma ponte.
pectivamente, nos pontos A e B na trajetória. As       A extensão da ponte, em metros, é de:
velocidades dos móveis são vA 50 m/s e vB 30 m/s       a) 200                     d) 600
no mesmo sentido.                                      b) 400                     e) 800
                       150 m                           c) 500
            50 m

                                                       20 (Furg-RS) Dois trens A e B movem-se com veloci-
                                                       dades constantes de 36 km/h, em direções perpen-
        0          A              B
                                                       diculares, aproximando-se do ponto de cruzamento
                                                       das linhas. Em t     0 s, a frente do trem A está a
15 Em qual ponto da trajetória ocorrerá o encontro     uma distância de 2 km do cruzamento. Os compri-
dos móveis?                                            mentos dos trens A e B são, respectivamente, 150 m
                                                       e 100 m. Se o trem B passa depois pelo cruzamento
a) 200 m                       d) 300 m
                                                       e não ocorre colisão, então a distância de sua frente
b) 225 m                       e) 350 m                até o cruzamento, no instante t 0 s, é, necessari-
c) 250 m                                               amente, maior que
                                                       a) 250 m                   d) 2 150 m
16 Em que instante a distância entre os dois móveis    b) 2 000 m                 e) 2 250 m
será 50 m?
                                                       c) 2 050 m
a) 2,0 s                       d) 3,5 s
b) 2,5 s                       e) 4,0 s
                                                       21 (Unifor-CE) Um móvel se desloca, em movimen-
c) 3,0 s                                               to uniforme, sobre o eixo  x (m)
                                                       x durante o intervalo de
17 (Unimep-SP) Um carro A, viajando a uma veloci-      tempo de t0 0 a t 30 s.
dade constante de 80 km/h, é ultrapassado por um                                    20
                                                       O gráfico representa a
carro B. Decorridos 12 minutos, o carro A passa por    posição x, em função do
um posto rodoviário e o seu motorista vê o carro B                                  10
                                                       tempo t, para o intervalo
parado e sendo multado. Decorridos mais 6 minu-        de t 0 a t 5,0 s.
tos, o carro B novamente ultrapassa o carro A. A       O instante em que a po-        0        5   t (s)
distância que o carro A percorreu entre as duas ul-    sição do móvel é 30 m,
trapassagens foi de:                                   em segundos, é
a) 18 km                       d) 24 km                a) 10                      d) 25
b) 10,8 km                     e) 35 km                b) 15                      e) 30
c) 22,5 km                                             c) 20


                               6 SIMULADÃO
22 (Vunesp-SP) O movimento de um corpo ocorre                                                                    c)             V (m)                                    e)         V (m)

sobre um eixo x, de acordo com o gráfico, em que                                                                      10                                                      10

as distâncias são dadas em metros e o tempo, em
                                                                                                                       0                                                       0
segundos. A partir do gráfico, determine:                                                                                          2      4      6   8        t (s)                 2       4   6   8      t (s)

a) a distância percorrida em 1 segundo entre o ins-                                                                   10                                                      10
tante t1 0,5 s e t2 1,5 s;
b) a velocidade média do corpo entre t1                                                          0,0 s e         d)            V (m)
                                                                                                                      10
t2 2,0 s;
c) a velocidade instantânea em t                                             2,0 s.                                    0
                                                                                                                                  2      4    6      8       t (s)
                                                                                                                       5
               x (m)

                   40
                                                                                                                 25 (Fuvest-SP) Os gráficos referem-se a movimen-
                   30                                                                                            tos unidimensionais de um corpo em três situações
                   20
                                                                                                                 diversas, representando a posição como função do
                                                                                                                 tempo. Nas três situações, são iguais
                   10
                                                                                                                 a) as velocidades médias.
                    0            0,5       1,0       1,5       2,0                   t (s)                       b) as velocidades máximas.
                                                                                                                 c) as velocidades iniciais.
23 (UFRN) Um móvel se desloca em MRU, cujo grá-                                                                  d) as velocidades finais.
fico v t está representado no gráfico. Determine o                                                               e) os valores absolutos das velocidades máximas.
valor do deslocamento do móvel entre os instantes                                                                 x                                      x                              x
t 2,0 s e t 3,0 s.                                                                                                a                                      a                              a

               v (m/s)                                                                                            a                                  a                                  a
                                                                                                                  2                                  2                                  2
                   10
                                                                                                                  0        b           b t (s)           0           b    b t (s)       0           b   b t (s)
                                                                                                                           3                                         2                              3

                         0             1           2           3         4            t (s)
                                                                                                                 26 (FEI-SP) No movimento retilíneo uniformemente
a) 0                                                   d) 30 m                                                   variado, com velocidade inicial nula, a distância per-
b) 10 m                                                e) 40 m                                                   corrida é:
c) 20 m                                                                                                          a) diretamente proporcional ao tempo de percurso
                                                                                                                 b) inversamente proporcional ao tempo de percurso
24 (UFLA-MG) O gráfico representa a variação das                                                                 c) diretamente proporcional ao quadrado do tempo
posições de um móvel em função do tempo (s f(t)).                                                                de percurso
     S (m)                                                                                                       d) inversamente proporcional ao quadrado do tem-
          10                                                                                                     po de percurso
                                                                                                                 e) diretamente proporcional à velocidade
           0
                   1         2         3         4         5         6       7        8          t (s)
                                                                                                                 27 (UEPG-PR) Um passageiro anotou, a cada minu-
          10                                                                                                     to, a velocidade indicada pelo velocímetro do táxi
                                                                                                                 em que viajava; o resultado foi 12 km/h, 18 km/h,
O gráfico de v                    t que melhor representa o movi-                                                24 km/h e 30 km/h. Pode-se afirmar que:
mento dado, é:                                                                                                   a) o movimento do carro é uniforme;
a)                                                     b)                                                        b) a aceleração média do carro é de 6 km/h, por mi-
           V (m)                                                         V (m)

     10                                                         10
                                                                                                                 nuto;
     5                                                             5                                             c) o movimento do carro é retardado;
      0
               2   4     6        8        t (s)
                                                                   0
                                                                                 2   4       6   8       t (s)
                                                                                                                 d) a aceleração do carro é 6 km/h2;
      5                                                            5
                                                                                                                 e) a aceleração do carro é 0,1 km/h, por segundo.


                                                                                                                                         SIMULADÃO 7
28 (Unimep-SP) Uma partícula parte do repouso e           32 (UFRJ) Numa competição automobilística, um
em 5 segundos percorre 100 metros. Considerando           carro se aproxima de uma curva em grande veloci-
o movimento retilíneo e uniformemente variado,            dade. O piloto, então, pisa o freio durante 4 s e con-
podemos afirmar que a aceleração da partícula é de:       segue reduzir a velocidade do carro para 30 m/s.
a) 8 m/s2                                                 Durante a freada o carro percorre 160 m.
                                                          Supondo que os freios imprimam ao carro uma ace-
b) 4 m/s2
                                                          leração retardadora constante, calcule a velocidade
c) 20 m/s2                                                do carro no instante em que o piloto pisou o freio.
d) 4,5 m/s2
e) Nenhuma das anteriores                                 33 (Unicamp-SP) Um automóvel trafega com veloci-
                                                          dade constante de 12 m/s por uma avenida e se
29 (MACK-SP) Uma partícula em movimento retilí-           aproxima de um cruzamento onde há um semáforo
neo desloca-se de acordo com a equação v        4 t,      com fiscalização eletrônica. Quando o automóvel se
onde v representa a velocidade escalar em m/s e t, o      encontra a uma distância de 30 m do cruzamento,
tempo em segundos, a partir do instante zero. O           o sinal muda de verde para amarelo. O motorista
deslocamento dessa partícula no intervalo (0 s, 8 s) é:   deve decidir entre parar o carro antes de chegar ao
a) 24 m            c) 2 m               e) 8 m            cruzamento ou acelerar o carro e passar pelo cruza-
b) zero            d) 4 m                                 mento antes do sinal mudar para vermelho. Este si-
                                                          nal permanece amarelo por 2,2 s. O tempo de rea-
30 (Uneb-BA) Uma partícula, inicialmente a 2 m/s, é       ção do motorista (tempo decorrido entre o momen-
acelerada uniformemente e, após percorrer 8 m,            to em que o motorista vê a mudança de sinal e o
alcança a velocidade de 6 m/s. Nessas condições, sua      momento em que realiza alguma ação) é 0,5 s.
aceleração, em metros por segundo ao quadrado, é:         a) Determine a mínima aceleração constante que o
a) 1               c) 3                 e) 5              carro deve ter para parar antes de atingir o cruza-
                                                          mento e não ser multado.
b) 2               d) 4
                                                          b) Calcule a menor aceleração constante que o carro
31 (Fafeod-MG) Na tabela estão registrados os ins-        deve ter para passar pelo cruzamento sem ser mul-
tantes em que um automóvel passou pelos seis pri-         tado. Aproxime 1,72 3,0.
meiros marcos de uma estrada.
                                                          34 (UEPI) Uma estrada possui um trecho retilíneo de
                     Posição            Instante          2 000 m, que segue paralelo aos trilhos de uma fer-
       Marco
                      (km)                (min)           rovia também retilínea naquele ponto. No início do
                                                          trecho um motorista espera que na outra extremi-
          1               0                      0
                                                          dade da ferrovia, vindo ao seu encontro, apareça
          2               10                     5        um trem de 480 m de comprimento e com velocida-
                                                          de constante e igual, em módulo, a 79,2 km/h para
          3               20                 10           então acelerar o seu veículo com aceleração cons-
          4               30                 15           tante de 2 m/s2. O final do cruzamento dos dois ocor-
                                                          rerá em um tempo de aproximadamente:
          5               40                 20
                                                          a) 20 s              c) 62 s          e) 40 s
                                                          b) 35 s              d) 28 s
Analisando os dados da tabela, é correto afirmar que
o automóvel estava se deslocando                          35 (UEL-PR) O grá-     V (m/s)
                                                     2    fico representa a
a) com aceleração constante de 2 km/min .
b) em movimento acelerado com velocidade de               velocidade escalar
2 km/min.                                                 de um corpo, em
                                                          função do tempo.
c) com velocidade variável de 2 km/min.                                               0        8            t (s)
                                             2
d) com aceleração variada de 2 km/min .                                               4
e) com velocidade constante de 2 km/min.


                               8 SIMULADÃO
De acordo com o gráfico, o módulo da aceleração                           mente constante, para em seguida diminuir lenta-
desse corpo, em metros por segundo ao quadrado,                           mente. Para simplificar a discussão, suponha que a
é igual a                                                                 velocidade do velocista em função do tempo seja
a) 0,50            c) 8,0                         e) 16,0                 dada pelo gráfico a seguir.
b) 4,0             d) 12,0                                                           v (m/s)

                                                                                         12
36(UEPA) Um motorista, a 50 m de um semáforo,
                                                                                            8
percebe a luz mudar de verde para amarelo. O grá-
fico mostra a variação da velocidade do carro em                                            4
função do tempo a partir desse instante. Com base
nos dados indicados     V (m/s)                                                             0   2      6   10 14 18          v (s)

no gráfico pode-se
                            20
afirmar que o motoris-                                                    Calcule:
ta pára:
                                                                          a) as acelerações nos dois primeiros segundos da pro-
a) 5 m depois do                                                          va e no movimento subseqüente.
semáforo
                                        0   0,5             5,0   t (s)
                                                                          b) a velocidade média nos primeiros 10 s de prova.
b) 10 m antes do
semáforo
                                                                          39 (UFPE) O gráfico mostra a variação da velocidade
c) exatamente sob o semáforo                                              de um automóvel em função do tempo. Supondo-
d) 5 m antes do semáforo                                                  se que o automóvel passe pela origem em t        0,
e) 10 m depois do semáforo                                                calcule o deslocamento total, em metros, depois de
                                                                          transcorridos 25 segundos.
37 (Fuvest-SP) As velocidades de crescimento verti-                       v (m/s)
cal de duas plantas, A e B, de espécies diferentes,                         15,0
variaram, em função do tempo decorrido após o
plantio de suas sementes, como mostra o gráfico.                            10,0


                                                                             5,0
       V
  (cm/semana)
                                                                               0
                               B                                                      5,0       10,0        15,0      20,0           25,0   t (s)

                                                                             5,0

                        A
                                                                            10,0

           0       t0     t1       t2                  t (semana)
                                                                            15,0



É possível afirmar que:                                                   40 (UERJ) A distância entre duas estações de metrô
                                                                          é igual a 2,52 km. Partindo do repouso na primeira
a) A atinge uma altura final maior do que B
                                                                          estação, um trem deve chegar à segunda estação
b) B atinge uma altura final maior do que A                               em um intervalo de tempo de três minutos. O trem
c) A e B atingem a mesma altura final                                     acelera com uma taxa constante até atingir sua ve-
d) A e B atingem a mesma altura no instante t0                            locidade máxima no trajeto, igual a 16 m/s. Perma-
e) A e B mantêm altura constante entre os instantes                       nece com essa velocidade por um certo tempo. Em
t1 e t 2                                                                  seguida, desacelera com a mesma taxa anterior até
                                                                          parar na segunda estação.
38 (UFRJ) Nas provas de atletismo de curta distância                      a) Calcule a velocidade média do trem, em metros
(até 200 m) observa-se um aumento muito rápido                            por segundo.
da velocidade nos primeiros segundos da prova, e                          b) Esboce o gráfico velocidade tempo e calcule o
depois um intervalo de tempo relativamente longo,                         tempo gasto para alcançar a velocidade máxima, em
em que a velocidade do atleta permanece pratica-                          segundos.


                                                                                         SIMULADÃO 9
41 (UFRJ) No livreto fornecido pelo fabricante de um      ras devem ser marcadas com V e as falsas, com F.
automóvel há a informação de que ele vai do re-           Analise as afirmações sobre o movimento, cujo grá-
pouso a 108 km/h (30 m/s) em 10 s e que a sua ve-         fico da posição tempo é representado a seguir.
locidade varia em função do tempo de acordo com                     s
o seguinte gráfico.
         x (m)

             30

                                                                    0         t1       t2            t3         t




              0              10           t (s)


Suponha que você queira fazer esse mesmo carro
                                                          a) O movimento é acelerado de 0 a t1.
passar do repouso a 30 m/s também em 10 s, mas
                                                          b) O movimento é acelerado de t1 a t2.
com aceleração escalar constante.
                                                          c) O movimento é retardado de t2 a t3.
a) Calcule qual deve ser essa aceleração.
b) Compare as distâncias d e d percorridas pelo carro     d) A velocidade é positiva de 0 a t2.
nos dois casos, verificando se a distância d percor-      e) A velocidade é negativa de t1 a t3.
rida com aceleração escalar constante é maior, me-
nor ou igual à distância d percorrida na situação re-     44 O gráfico representa a aceleração de um móvel
presentada pelo gráfico.                                  em função do tempo. A velocidade inicial do móvel
                                                          é de 2 m/s.
42 (Acafe-SC) O gráfico representa a variação da                a (m/s2)
posição, em função do tempo, de um ponto mate-
rial que se encontra em movimento retilíneo unifor-                     4
memente variado.
                                                                        2
     x (m)


      2,5                                                               0          2             4          t
      2,0
      1,5                                                 a) Qual a velocidade do móvel no instante 4 s?
      1,0                                                 b) Construa o gráfico da velocidade do móvel em
      0,5                                                 função do tempo nos 4 s iniciais do movimento.
        0         1   2     3     4               t (s)
                                                          45 (UEPI) Um corpo é abandonado de uma altura
Analisando o gráfico, podemos afirmar que:                de 20 m num local onde a aceleração da gravidade
a) A velocidade inicial é negativa.                       da Terra é dada por g       10 m/s2. Desprezando o
                                                          atrito, o corpo toca o solo com velocidade:
b) A aceleração do ponto material é positiva.
                                                          a) igual a 20 m/s                 d) igual a 20 km/h
c) O ponto material parte da origem das posições.
                                                          b) nula                           e) igual a 15 m/s
d) No instante 2 segundos, a velocidade do ponto
material é nula.                                          c) igual a 10 m/s
e) No instante 4 segundos, o movimento do ponto
                                                          46 (PUC-RJ) Uma bola é lançada de uma torre, para
material é progressivo.
                                                          baixo. A bola não é deixada cair mas, sim, lançada
                                                          com uma certa velocidade inicial para baixo. Sua
43 (UFAL) Cada questão de proposições múltiplas
                                                          aceleração para baixo é (g refere-se à aceleração da
consistirá de 5 (cinco) afirmações, das quais algu-
                                                          gravidade):
mas são verdadeiras, as outras são falsas, podendo
ocorrer que todas as afirmações sejam verdadeiras         a) exatamente igual a g.
ou que todas sejam falsas. As alternativas verdadei-      b) maior do que g.


                           10 SIMULADÃO
c) menor do que g.                                    51 (UFSC) Quanto ao movimento de um corpo lan-
d) inicialmente, maior do que g, mas rapidamente      çado verticalmente para cima e submetido somente
estabilizando em g.                                   à ação da gravidade, é correto afirmar que:

e) inicialmente, menor do que g, mas rapidamente      01. A velocidade do corpo no ponto de altura máxi-
estabilizando em g.                                   ma é zero instantaneamente.
                                                      02. A velocidade do corpo é constante para todo o
47 (FUC-MT) Um corpo é lançado verticalmente para     percurso.
cima com uma velocidade inicial de v0      30 m/s.    04. O tempo necessário para a subida é igual ao
Sendo g      10 m/s2 e desprezando a resistência      tempo de descida, sempre que o corpo é lançado
do ar qual será a velocidade do corpo 2,0 s após o    de um ponto e retorna ao mesmo ponto.
lançamento?                                           08. A aceleração do corpo é maior na descida do
a) 20 m/s                 d) 40 m/s                   que na subida.
b) 10 m/s                 e) 50 m/s                   16. Para um dado ponto na trajetória, a velocidade
c) 30 m/s                                             tem os mesmos valores, em módulo, na subida e na
                                                      descida.
48 (FUC-MT) Em relação ao exercício anterior, qual
é a altura máxima alcançada pelo corpo?               52 (EFEI-MG) A velocidade de um projétil lançado
                                                      verticalmente para cima varia de acordo com o grá-
a) 90 m                   d) 360 m
                                                      fico da figura. Determine a altura máxima atingida
b) 135 m                  e) 45 m                     pelo projétil, considerando que esse lançamento se
c) 270 m                                              dá em um local onde o campo gravitacional é dife-
                                                      rente do da Terra.
49 (UECE) De um corpo que cai livremente desde o            v (m/s)
repouso, em um planeta X,
                                                                20
foram tomadas fotografias de
múltipla exposição à razão de                                                              10
1 200 fotos por minuto. As-                                      0              5                t (s)
sim, entre duas posições vizi-
nhas, decorre um intervalo de
tempo de 1/20 de segundo.                80 cm
A partir das informações                              53 (UERJ) Foi veiculada na televisão uma propagan-
constantes da figura, pode-                           da de uma marca de biscoitos com a seguinte cena:
mos concluir que a acelera-                           um jovem casal está num mirante sobre um rio e
ção da gravidade no planeta                           alguém deixa cair lá de cima um biscoito. Passados
X, expressa em metros por se-                         alguns segundos, o rapaz se atira do mesmo lugar
gundo ao quadrado, é:                                 de onde caiu o biscoito e consegue agarrá-lo no ar.
                                                      Em ambos os casos, a queda é livre, as velocidades
a) 20                  d) 40
                                                      iniciais são nulas, a altura da queda é a mesma e a
b) 50                  e) 10                          resistência do ar é nula.
c) 30                                                 Para Galileu Galilei, a situação física desse comercial
                                                      seria interpretada como:
50 (UFMS) Um corpo em queda livre sujeita-se à ace-   a) impossível, porque a altura da queda não era gran-
leração gravitacional g 10 m/s2. Ele passa por um     de o suficiente
ponto A com velocidade 10 m/s e por um ponto B        b) possível, porque o corpo mais pesado cai com
com velocidade de 50 m/s. A distância entre os pon-   maior velocidade
tos A e B é:
                                                      c) possível, porque o tempo de queda de cada cor-
a) 100 m                  d) 160 m                    po depende de sua forma
b) 120 m                  e) 240 m                    d) impossível, porque a aceleração da gravidade não
c) 140 m                                              depende da massa dos corpos


                                                                      SIMULADÃO 11
54 (Fafi-BH) Um menino lança uma bola verticalmen-         58 (UFRJ) Um pára-quedista radical pretende atingir
te para cima do nível da rua. Uma pessoa que está          a velocidade do som. Para isso, seu plano é saltar
numa sacada a 10 m acima do solo apanha essa bola          de um balão estacionário na alta atmosfera, equi-
quando está a caminho do chão.                             pado com roupas pressurizadas. Como nessa alti-
Sabendo-se que a velocidade inicial da bola é de           tude o ar é muito rarefeito, a força de resistência
15 m/s, pode-se dizer que a velocidade da bola, ao         do ar é desprezível. Suponha que a velocidade ini-
ser apanhada pela pessoa, era de                           cial do pára-quedista em relação ao balão seja nula
                                                           e que a aceleração da gravidade seja igual a 10 m/s2.
                                                           A velocidade do som nessa altitude é 300 m/s.
                                                           Calcule:
                                                           a) em quanto tempo ele atinge a velocidade do som;
                                                           b) a distância percorrida nesse intervalo de tempo.
           10 m
                                                           59 (PUCC-SP) Num bairro, onde todos os quartei-
                                                           rões são quadrados e as ruas paralelas distam 100 m
                                                           uma da outra, um transeunte faz o percurso de P a
                                                           Q pela trajetória representada no esquema.


                                                                        P
a) 15 m/s         b) 10 m/s      c) 5 m/s      d) 0 m/s
                                                                                                     100 m

55 (MACK-SP) Uma equipe de resgate se encontra
num helicóptero, parado em relação ao solo a 305 m
de altura. Um pára-quedista abandona o helicóptero
                                                                                                 Q
e cai livremente durante 1,0 s, quando abre-se o
pára-quedas. A partir desse instante, mantendo cons-
                                                                            100 m
tante seu vetor velocidade, o pára-quedista atingirá
o solo em:                                                 O deslocamento vetorial desse transeunte tem
(Dado: g 10 m/s2)                                          módulo, em metros, igual a
a) 7,8 s     b) 15,6 s c) 28 s       d) 30 s     e) 60 s   a) 700                       d) 350
                                                           b) 500                       e) 300
56 (UERJ) Um malabarista consegue manter cinco
bolas em movimento, arremessando-as para cima,             c) 400
uma de cada vez, a intervalos de tempo regulares,
de modo que todas saem da mão esquerda, alcan-             60 (Unitau-SP) Considere o conjunto de vetores re-
çam uma mesma altura, igual a 2,5 m, e chegam à            presentados na figura. Sendo igual a 1 o módulo
mão direita. Desprezando a distância entre as mãos,        de cada vetor, as operações A    B, A    B    Ce
determine o tempo necessário para uma bola sair            A    B    C    D terão módulos, respectivamente,
de uma das mãos do malabarista e chegar à outra,           iguais a:
                                                                                                 ←
conforme o descrito acima.                                                                       A
                                                           a) 2; 1; 0
(Adote g 10 m/s2.)
                                                           b) 1;    2 ;4
57 (Cefet-BA) Um balão em movimento vertical as-                                    ←                        ←
                                                           c)   2 ; 1; 0            D                        B
cendente à velocidade constante de 10 m/s está a
75 m da Terra, quando dele se desprende um obje-
                                                           d)   2 ;     2 ;1
to. Considerando a aceleração da gravidade igual
a 10 m/s2 e desprezando a resistência do ar, o tem-        e) 2;    2 ;0                         ←
                                                                                                 C
po, em segundos, em que o objeto chegará a
Terra, é:
                                                           61 (UEL-PR) Observando-se os vetores indicados no
a) 50        b) 20       c) 10       d) 8        e) 5      esquema, pode-se concluir que


                                 12 SIMULADÃO
Sendo v1 v2, o módulo da velocidade do passagei-
                           ←
                           X
                                                          ro em relação ao ponto B da rua é:
                                                          a) v1   v2                       d) v1
                                                          b) v1   v2                       e) v2
                                                          c) v2   v1
                               ←
                               b
                                     ←
                                     c                    64 (FURRN) Um barco, em águas paradas, desen-
                                              ←
                                              d           volve uma velocidade de 7 m/s. Esse barco vai cru-
                       ←
                       a                                  zar um rio cuja correnteza tem velocidade 4 m/s,
                                                          paralela às margens. Se o barco cruza o rio perpen-
                                                          dicularmente à correnteza, sua velocidade em rela-
   →       →       →                 →    →       →       ção às margens, em metros por segundo é, aproxi-
a) X       a       b               d) X   b       c       madamente:
   →       →       →                 →    →       →
b) X       a       c               e) X   b       d       a) 11        b) 8         c) 6        d) 5        e) 3
   →       →       →
c) X       a       d
                                                          65 (FM-Itajubá-MG) Um barco atravessa um rio se-
62 Na figura, o retângulo representa a janela de um       guindo a menor distância entre as margens, que são
trem que se move com velocidade constante e não           paralelas. Sabendo que a largura do rio é de 2,0 km,
nula, enquanto a seta indica o sentido de movimen-        a travessia é feita em 15 min e a velocidade da cor-
to do trem em relação ao solo.                            renteza é 6,0 km/h, podemos afirmar que o módulo
                                                          da velocidade do barco em relação à água é:
                                                          a) 2,0 km/h                      d) 10 km/h
                                                          b) 6,0 km/h                      e) 14 km/h
                                                          c) 8,0 km/h

                                                                                                        →
Dentro do trem, um passageiro sentado nota que            66 (UFOP-MG) Os vetores velocidade ( v ) e acelera-
                                                                →
começa a chover. Vistas por um observador em re-          ção ( a ) de uma partícula em movimento circular uni-
pouso em relação ao solo terrestre, as gotas da chu-      forme, no sentido indicado, estão melhor represen-
va caem verticalmente.                                    tados na figura:                            ←
                                                                         ←
                                                                                                                a
Represente vetorialmente a velocidade das gotas de        a)             v                 d)
                                                                                                                    ←
chuva para o passageiro que se encontra sentado.                                                                    v
                                                                        ←
                                                                        a
63 (MACK-SP) Num mesmo plano vertical, perpen-
dicular à rua, temos os segmentos de reta AB e PQ,                          ←
                                                                            v
paralelos entre si. Um ônibus se desloca com veloci-      b)                    ←          e)
                                                                                a                                   ←
dade constante de módulo v1, em relação à rua, ao                                                       ←
                                                                                                                    v
                                                                                                            a
longo de AB , no sentido de A para B, enquanto um
passageiro se desloca no interior do ônibus, com
                                                                        ←
velocidade constante de módulo v2, em relação ao                        a   ←
                                                          c)                v
veículo, ao longo de PQ no sentido de P para Q.




               Q                              P           67 (Fiube-MG) Na figura está representada a traje-
                                                          tória de um móvel que vai do ponto P ao ponto Q
       A                                              B   em 5 s. O módulo de sua velocidade vetorial média,
                                                          em metros por segundo e nesse intervalo de tempo,
                                                          é igual a:


                                                                        SIMULADÃO 13
a) 1                            P                                      70 (FAAP-SP) Numa competição nos jogos de
                                                                       Winnipeg, no Canadá, um atleta arremessa um dis-
b) 2
                                                          1 m          co com velocidade de 72 km/h, formando um ân-
c) 3                                                      3            gulo de 30º com a horizontal. Desprezando-se os
                                                    1 m
d) 4                                                3                  efeitos do ar, a altura máxima atingida pelo disco é:
                                                                       (g 10 m/s2)
e) 5
                                                                       a) 5,0 m                   d) 25,0 m
                                                                       b) 10,0 m                  e) 64,0 m
                                                            Q
                                                                       c) 15,0 m
68 (PUC-SP) Suponha que em uma partida de fute-
bol, o goleiro, ao bater o tiro de meta, chuta a bola,                 71 (UFSC) Uma jogadora de basquete joga uma bola
                                      ⎯→                               com velocidade de módulo 8,0 m/s, formando
imprimindo-lhe uma velocidade v 0 cujo vetor
forma, com a horizontal, um ângulo . Desprezan-                        um ângulo de 60º com a horizontal, para cima. O
do a resistência do ar, são feitas as seguintes afir-                  arremesso é tão perfeito que a atleta faz a cesta
mações.                                                                sem que a bola toque no aro. Desprezando a resis-
                                                                       tência do ar, assinale a(s) proposição(ões)
                   y                                                   verdadeira(s).
                                                                       01. O tempo gasto pela bola para alcançar o ponto
                         →
                         v0                                            mais alto da sua trajetória é de 0,5 s.
                                                                       02. O módulo da velocidade da bola, no ponto mais
                                                                       alto da sua trajetória, é igual a 4,0 m/s.
                                                                       04. A aceleração da bola é constante em módulo,
                                                                   x
                                                                       direção e sentido desde o lançamento até a bola
                                                                       atingir a cesta.
                                                                       08. A altura que a bola atinge acima do ponto de
                                                                       lançamento é de 1,8 m.
 I – No ponto mais alto da trajetória, a velocidade
vetorial da bola é nula.                                               16. A trajetória descrita pela bola desde o lança-
                                      ⎯
                                      →                                mento até atingir a cesta é uma parábola.
 II – A velocidade inicial v 0 pode ser decomposta
segundo as direções horizontal e vertical.
                                                                       72 Numa partida de futebol, o goleiro bate o tiro de
III – No ponto mais alto da trajetória é nulo o valor                  meta e a bola, de massa 0,5 kg, sai do solo com
da aceleração da gravidade.                                            velocidade de módulo igual a 10 m/s, conforme
IV – No ponto mais alto da trajetória é nulo o valor                   mostra a figura.
 ⎯
 →
 v y da componente vertical da velocidade.
Estão corretas:
a) I, II e III                        d) III e IV
b) I, III e IV                        e) I e II                                                               P

c) II e IV
                                                                             →                                       2m
                                                                              v
69 (UEL-PR) Um corpo é lançado para cima, com
                                                                                  60°
velocidade inicial de 50 m/s, numa direção que for-
ma um ângulo de 60º com a horizontal. Desprezan-
do a resistência do ar, pode-se afirmar que no ponto
mais alto da trajetória a velocidade do corpo, em
                                                                       No ponto P, a 2 metros do solo, um jogador da de-
metros por segundo, será:
                                                                       fesa adversária cabeceia a bola. Considerando
(Dados: sen 60º 0,87; cos 60º 0,50)
                                                                       g    10 m/s2, determine a velocidade da bola no
a) 5             b) 10        c) 25        d) 40           e) 50       ponto P.


                                      14 SIMULADÃO
73 (UFPE) Dois bocais de mangueiras de jardim, A e     A trajetória do motociclista deverá atingir novamente
B, estão fixos ao solo. O bocal A é perpendicular ao   a rampa a uma distância horizontal D(D          H), do
solo e o outro está inclinado 60° em relação à dire-   ponto A, aproximadamente igual a:
ção de A. Correntes de água jorram dos dois bocais     a) 20 m                     d) 7,5 m
com velocidades idênticas. Qual a razão entre as al-
turas máximas de elevação da água?                     b) 15 m                     e) 5 m
                                                       c) 10 m
74 (Unisinos-RS) Suponha três setas A, B e C lan-
çadas, com iguais velocidades, obliquamente acima      77 (Fameca-SP) De um avião descrevendo uma tra-
de um terreno plano e horizontal, segundo os ân-       jetória paralela ao solo, com velocidade v, é aban-
gulos de 30°, 45° e 60°, respectivamente. Desconsi-    donada uma bomba de uma altura de 2 000 m do
derando a resistência do ar, afirma-se que:            solo, exatamente na vertical que passa por um ob-
III – A permanecerá menos tempo no ar.                 servador colocado no solo. O observador ouve o
III – B terá maior alcance horizontal.                 “estouro” da bomba no solo depois de 23 segun-
III – C alcançará maior altura acima da horizontal.    dos do lançamento da mesma.
Das afirmativas acima:                                 São dados: aceleração da gravidade g       10 m/s2;
a) somente I é correta                                 velocidade do som no ar: 340 m/s.
b) somente II é correta                                A velocidade do avião no instante do lançamento
c) somente I e II são corretas                         da bomba era, em quilômetros por hora, um valor
d) somente I e III são corretas                        mais próximo de:
e) I, II e III são corretas                            a) 200                      d) 300
                                                       b) 210                      e) 150
75 (Unitau-SP) Numa competição de motocicletas,
                                                       c) 180
os participantes devem ultrapassar um fosso e, para
tornar possível essa tarefa, foi construída uma ram-
pa conforme mostra a figura.                           78 (Unifor-CE) Considere as afirmações acerca do
                                                       movimento circular uniforme:
               10°         L                           I. Não há aceleração, pois não há variação do vetor
                                                       velocidade.
                                                       II. A aceleração é um vetor de intensidade cons-
                                                       tante.
                                                       III. A direção da aceleração é perpendicular à veloci-
Desprezando as dimensões da moto e considerando
                                                       dade e ao plano da trajetória.
L 7,0 m, cos 10° 0,98 e sen 10° 0,17, deter-
                                                       Dessas afirmações, somente:
mine a mínima velocidade com que as motos de-
vem deixar a rampa a fim de que consigam atraves-      a) I é correta              d) I e II são corretas
sar o fosso. Faça g 10 m/s2.                           b) II é correta             e) II e III são corretas
                                                       c) III é correta
76 (Fuvest-SP) Um motociclista de motocross move-
se com velocidade v 10 m/s, sobre uma superfície
plana, até atingir uma rampa (em A), inclinada 45°     79 (UFU-MG) Em uma certa marca de máquina de
com a horizontal, como indicado na figura.             lavar, as roupas ficam dentro de um cilindro oco que
                                                       possui vários furos em sua parede lateral (veja a
                                                       figura).
               v
                                  g
                     A

                     H
                         45°

                           D




                                                                    SIMULADÃO 15
Depois que as roupas são lavadas, esse cilindro gira   83 (UFOP-MG) I – Os vetores velocidade (v) e acele-
com alta velocidade no sentido indicado, a fim de      ração (a) de uma partícula em movimento circular
que a água seja retirada das roupas. Olhando o ci-     uniforme, no sentido indicado, estão corretamente
lindro de cima, indique a alternativa que possa re-    representados na figura:
presentar a trajetória de uma gota de água que sai     a)              v                d)              a
do furo A:
                                                                       a                                    v
a)                        d)
             A                        A



                                                                       v
                                                       b)                  a            e)
                                                                                                   a        v

b)                        e)
             A                        A



                                                                   a
                                                       c)              v

c)
             A




                                                       III – A partir das definições dos vetores velocidade
80 (FUC-MT) Um ponto material percorre uma             (v) e aceleração (a) justifique a resposta dada no item
circunferência de raio igual a 0,1 m em movimento      anterior.
uniforme de forma, a dar 10 voltas por segundo.        III – Se o raio da circunferência é R 2 m e a fre-
Determine o período do movimento.                      qüência do movimento é f 120 rotações por mi-
a) 10,0 s                 d) 0,1 s                     nuto, calcule os módulos da velocidade e da acele-
                                                       ração.
b) 10,0 Hz                e) 100 s
                                                       Adote           3,14.
c) 0,1 Hz
                                                       84 (Puccamp-SP) Na última fila de poltronas de um
81 (ITE-SP) Uma roda tem 0,4 m de raio e gira com      ônibus, dois passageiros estão distando 2 m entre
velocidade constante, dando 20 voltas por minuto.      si. Se o ônibus faz uma curva fechada, de raio 40 m,
Quanto tempo gasta um ponto de sua periferia para      com velocidade de 36 km/h, a diferença das veloci-
percorrer 200 m:                                       dades dos passageiros é, aproximadamente, em
a) 8 min                  c) 3,98 min                  metros por segundo,
b) 12,5 min               d) n.d.a.                    a) 0,1      b) 0,2      c) 0,5        d) 1,0     e) 1,5

82 Uma pedra se engasta num pneu de automóvel          85 (Unimep-SP) Uma partícula percorre uma traje-
que está com uma velocidade uniforme de 90 km/h.       tória circular de raio 10 m com velocidade constan-
Considerando que o                                     te em módulo, gastando 4,0 s num percurso de
pneu não patina nem                                    80 m. Assim sendo, o período e a aceleração desse
escorrega e que o sen-                                 movimento serão, respectivamente, iguais a:
tido de movimento do
automóvel é o positi-                                  a)       s e zero                d)       s e zero
                                                            2                                3
vo, calcule os valores
máximo e mínimo da                                     b)       s e 40 m/s2             e)   s e 40 m/s2
                                                            3
velocidade da pedra
em relação ao solo.                                    c)   s e 20 m/s2


                          16 SIMULADÃO
(UERJ) Utilize os dados a seguir para resolver as ques-   89(Unirio-RJ) O mecanismo apresentado na figura
tões de números 86 e 87.                                  é utilizado para enrolar mangueiras após terem sido
Uma das atrações típicas do circo é o equilibrista        usadas no combate a incêndios. A mangueira é
sobre monociclo.                                          enrolada sobre si mesma, camada sobre camada,
                                                          formando um carretel cada vez mais espesso. Con-
                                                          siderando ser o diâmetro da polia A maior que o
                                                          diâmetro da polia B, quando giramos a manivela
                                                          M com velocidade constante, verificamos que a po-
                                                          lia B gira              que a polia A, enquanto a
                                                          extremidade P da mangueira sobe com movimento
                                                                      .
                                                          Preenche corretamente as lacunas acima a opção:




O raio da roda do monociclo utilizado é igual a
20 cm, e o movimento do equilibrista é retilíneo. O                                                 M
equilibrista percorre, no início de sua apresentação,
uma distância de 24 metros.
                                                                                  B            A

86 Determine o número de pedaladas, por segun-
do, necessárias para que ele percorra essa distância
em 30 s, considerando o movimento uniforme.

87 Em outro momento, o monociclo começa a se
mover a partir do repouso com aceleração constan-
te de 0,50 m/s2. Calcule a velocidade média do
equilibrista no trajeto percorrido nos primeiros 6,0 s.
                                                                        P

88 (Fuvest-SP) Um disco de raio r gira com velocida-
de angular constante. Na borda do disco, está             a) mais rapidamente – aceleração
presa uma placa fina de material facilmente               b) mais rapidamente – uniforme
perfurável. Um projétil é disparado com velocidade        c) com a mesma velocidade – uniforme
v em direção ao eixo do disco, conforme mostra a
figura, e fura a placa no ponto A. Enquanto o pro-        d) mais lentamente – uniforme
jétil prossegue sua trajetória sobre o disco, a placa     e) mais lentamente – acelerado
gira meia circunferência, de forma que o projétil
atravessa mais uma vez o mesmo orifício que havia         90 (Fuvest-SP) Uma criança montada em um velocí-
perfurado. Considere a velocidade do projétil cons-       pede se desloca em trajetória retilínea, com veloci-
tante e sua trajetória retilínea. O módulo da veloci-     dade constante em relação ao chão. A roda diantei-
dade v do projétil é:                                     ra descreve uma volta completa em um segundo. O
         r                                                raio da roda dianteira vale 24 cm e o das traseiras
a)
                                                          16 cm. Podemos afirmar que as rodas traseiras do
                                                          velocípede completam uma volta em, aproximada-
b) 2 r
                         →
                         v
                                                          mente:
                                                               1                           3
         r                                                a)     s                    d)     s
c)                                  r                          2                           2
     2
                                                               2
d) r                                         w            b)     s                    e) 2 s
                                                               3
e)
       r                                                  c) 1 s


                                                                      SIMULADÃO 17
94 (Unipa-MG) Um objeto de massa m        3,0 kg é
 DINÂMICA                                                   colocado sobre uma superfície sem atrito, no plano
                                                            xy. Sobre esse objeto atuam 3 forças, conforme o
91 (Vunesp-SP) A figura mostra, em escala, duas for-        desenho abaixo.
     →    →
ças a e b , atuando num ponto material P.
                                                                                     y

                                                                                                    ←
                              ←                                                                     F1
                              a


                                                                            ←
                                P                                           F2
                                              ←
                                              b
                       escala
                                                                                                             x
                       1N
                             1N
                                                                                          ←
                                                                                          F3
Reproduza a figura, juntamente com o quadricula-
do, em sua folha de respostas.                                                   →
                                                        →   Sabendo-se que F3      4,0 N e que o objeto adquire
a) Represente na figura reproduzida a força R , re-                                                         →
                    →    →                                  uma aceleração de 2,0 m/s2 no sentido oposto a F3 ,
sultante das forças a e b , e determine o valor de          foram feitas as seguintes afirmações:
seu módulo em newtons.
                                                            III – a força resultante sobre o objeto tem o mesmo
b) Represente, também, na mesma figura, o vetor             sentido e direção da aceleração do objeto;
→                →  →  →   →
c , de tal modo a b c 0 .                                   III – o módulo da força resultante sobre o objeto é
                                                            de 6,0 N;
                                                                                               →   →
92 Duas forças de módulos F1 8 N e F2 9 N for-              III – a resultante das forças F1 e F2 vale 10,0 N e tem
                                                                                →
mam entre si um ângulo de 60º.                              sentido oposto a F3 .
Sendo cos 60º 0,5 e sen 60º 0,87, o módulo da               Pode-se afirmar que:
força resultante, em newtons, é, aproximadamente,           a) Somente I e II são verdadeiras.
a) 8,2                              d) 14,7                 b) Somente I e III são verdadeiras.
b) 9,4                              e) 15,6                 c) Somente II e III são verdadeiras.
c) 11,4                                                     d) Todas são verdadeiras.
                                                            e) Todas são falsas.

93 (Furg-RS) Duas forças de módulo F e uma de mó-
dulo F atuam sobre uma partícula de massa m,                95 (Vunesp-SP) Observando-se o movimento de um
        2                                                   carrinho de 0,4 kg ao longo de uma trajetória
sendo as suas direções e sentidos mostrados na
                                                            retilínea, verificou-se que sua velocidade variou li-
figura.
                                                            nearmente com o tempo de acordo com os dados
                   y
                                                            da tabela.

                                                                 t (s)       0           1          2    3       4

                                                               v (m/s)       10          12        14    16      18


                                                            No intervalo de tempo considerado, a intensidade
                                              x             da força resultante que atuou no carrinho foi, em
                                                            newtons, igual a:
A direção e o sentido do vetor aceleração são mais
bem representados pela figura da alternativa:               a) 0,4                             d) 2,0
                                                            b) 0,8                             e) 5,0
a)            b)        c)              d)         e)       c) 1,0


                                    18 SIMULADÃO
96 (UEPB) Um corpo de 4 kg descreve uma trajetó-                                    100 (UFRJ) O bloco 1, de 4 kg, e o bloco 2, de 1 kg,
ria retilínea que obedece à seguinte equação horá-                                  representados na figura, estão justapostos e apoia-
ria: x 2 2t 4t2, onde x é medido em metros e                                        dos sobre uma superfície plana e horizontal. Eles são
                                                                                                                     →
t em segundos. Conclui-se que a intensidade da for-                                 acelerados pela força horizontal F , de módulo igual
ça resultante do corpo em newtons vale:                                             a 10 N, aplicada ao bloco 1 e passam a deslizar so-
a) 16                                          d) 8                                 bre a superfície com atrito desprezível.
b) 64                                          e) 32
c) 4                                                                                              ←
                                                                                                  F
                                                                                                             1
                                                                                                                     2
97 (UFPE) Um corpo de 3,0 kg está se movendo so-
bre uma superfície horizontal sem atrito com veloci-                                                                                  →
dade v0. Em um determinado instante (t 0) uma                                       a) Determine a direção e o sentido da força       F1, 2
força de 9,0 N é aplicada no sentido contrário ao                                   exercida pelo bloco 1 sobre o bloco 2 e calcule   seu
movimento. Sabendo-se que o corpo atinge o re-                                      módulo.
                                                                                                                                      →
pouso no instante t 9,0 s, qual a velocidade inicial                                b) Determine a direção e o sentido da força       F2, 1
v0, em m/s, do corpo?                                                               exercida pelo bloco 2 sobre o bloco 1 e calcule   seu
                                                                                    módulo.
98 (UFPI) A figura abaixo mostra a força em função
da aceleração para três diferentes corpos 1, 2 e 3.                                 101 (UFPE) Uma locomotiva puxa 3 vagões de carga
Sobre esses corpos é correto afirmar:                                               com uma aceleração de 2,0 m/s2. Cada vagão tem
                                                                                    10 toneladas de massa. Qual a tensão na barra de
       força (N)                                                                    engate entre o primeiro e o segundo vagões, em uni-
                                                                                    dades de 103 N? (Despreze o atrito com os trilhos.)
                        1




              8
                                          o2
                     rpo




                                     rp
                                co
                   co




              6
                                                           o3
              4                                    cor p

              2

              0     2       4    6             8     10         aceleração (m/s2)           3            2       1


a) O corpo 1 tem a menor inércia.
b) O corpo 3 tem a maior inércia.
c) O corpo 2 tem a menor inércia.
                                                                                    102 (MACK-SP) O conjunto abaixo, constituído de
d) O corpo 1 tem a maior inércia.                                                   fio e polia ideais, é abandonado do repouso no ins-
e) O corpo 2 tem a maior inércia.                                                   tante t 0 e a velocidade do corpo A varia em fun-
                                                                                    ção do tempo segundo o
                                                                                                                      B
99 (UFU-MG) Um astronauta leva uma caixa da Ter-                                    diagrama dado. Despre-
ra até a Lua. Podemos dizer que o esforço que ele                                   zando o atrito e admitin-
fará para carregar a caixa na Lua será:                                             do g 10 m/s2, a relação
                                                                                                                                   A
                                                                                    entre as massas de A (mA)
a) maior que na Terra, já que a massa da caixa dimi-
                                                                                    e de B (mB) é:
nuirá e seu peso aumentará.
b) maior que na Terra, já que a massa da caixa per-                                 a) mB       1,5 mA           d) mB   0,5 mB
manecerá constante e seu peso aumentará.                                            b) mA       1,5 mB           e) mA   mB
c) menor que na Terra, já que a massa da caixa di-                                  c) mA       0,5 mB
minuirá e seu peso permanecerá constante.
d) menor que na Terra, já que a massa da caixa au-                                  103 (UFRJ) Um operário usa uma empilhadeira de
mentará e seu peso diminuirá.                                                       massa total igual a uma tonelada para levantar ver-
e) menor que na Terra, já que a massa da caixa per-                                 ticalmente uma caixa de massa igual a meia tonela-
manecerá constante e seu peso diminuirá.                                            da, com uma aceleração inicial de 0,5 m/s2, que se


                                                                                                  SIMULADÃO 19
mantém constante                                           107 (UERJ) Uma balança na portaria de um prédio
durante um curto in-                                       indica que o peso de Chiquinho é de 600 newtons.
tervalo de tempo. Use                                      A seguir, outra pesagem é feita na mesma balança,
g 10 m/s2 e calcule,                                       no interior de um elevador, que sobe com acelera-
neste curto intervalo                                      ção de sentido contrário ao da aceleração da gravi-
de tempo:                                                  dade e módulo a g/10, em que g 10 m/s2.
a) a força que a empi-                                     Nessa nova situação, o ponteiro da balança aponta
lhadeira exerce sobre a                                    para o valor que está indicado corretamente na se-
caixa;                                                     guinte figura:

b) a força que o chão exerce sobre a empilhadeira.         a)                             c)
(Despreze a massa das partes móveis da empilhadeira.)


104 No sistema da figura, mA       4,5 kg, mB      12 kg
e g 10 m/s2. Os fios e                                                            540 N                      630 N
as polias são ideais.
                                                           b)                             d)
a) Qual a aceleração
dos corpos?                         A

b) Qual a tração no
fio ligado ao corpo A?
                                             B
                                                                                  570 N                      660 N

105 (ESFAO) No salvamento de um homem em alto-
                                                           108 (Vunesp-SP) Um plano inclinado faz um ângulo
mar, uma bóia é largada de um helicóptero e leva
                                                           de 30° com a horizontal. Determine a força cons-
2,0 s para atingir a superfície da água.
                                                           tante que, aplicada a um bloco de 50 kg, parale-
Considerando a aceleração da gravidade igual a
                                                           lamente ao plano, faz com que ele deslize
10 m/s2 e desprezando o atrito com o ar, determine:
                                                           (g 10 m/s2):
a) a velocidade da bóia ao atingir a superfície da          I – para cima, com aceleração de 1,2 m/s2;
água;                                                      II – para baixo, com a mesma aceleração de 1,2 m/s2.
b) a tração sobre o cabo usado para içar o homem,          Despreze o atrito do bloco com o plano.
sabendo que a massa deste é igual a 120 kg e que a                     I)                       II)
aceleração do conjunto é 0,5 m/s2.
                                                           a) 310 N para cima             190 N para cima
106 (Vunesp-SP) Uma carga de 10 103 kg é abai-             b) 310 N para cima             310 N para baixo
xada para o porão de um navio atracado. A veloci-          c) 499 N para cima             373 N para cima
dade de descida da carga em função do tempo está           d) 433 N para cima             60 N para cima
representada no gráfico da figura.
                                                           e) 310 N para cima             190 N para baixo
         x (m/s)
              3                                            109 (Vunesp-SP) Dois planos inclinados, unidos por
                                                           um plano horizontal, estão colocados um em frente
                                                           ao outro, como mostra a figura. Se não houvesse
              0           6        12 14   t (s)
                                                           atrito, um corpo que fosse abandonado num dos
                                                           planos inclinados desceria por ele e subiria pelo ou-
a) Esboce um gráfico da aceleração a em função do
                                                           tro até alcançar a altura original H.
tempo t para esse movimento.
                                                                posição inicial                        posição final
b) Considerando g 10 m/s2, determine os módulos
das forças de tração T1, T2 e T3, no cabo que susten-
ta a carga, entre 0 e 6 segundos, entre
                                                                H
6 e 12 segundos e entre 12 e 14 segundos, respec-
tivamente.


                              20 SIMULADÃO
Nestas condições, qual dos gráficos melhor descre-                                   d)             a (m/s2)

ve a velocidade v do corpo em função do tempo t
                                                                                              8,0
nesse trajeto?
                                                                                              4,0

a)   v                                         d) v                                             0              1,5     2,5 3,25   4,25   x (m)



                                                                                     e)             a (m/s2)
                                                                                              8,0
     0                                  t           0                            t
                                                                                                               1,5
b)   v                                         e) v                                             0                      2,5 3,25   4,25   x (m)

                                                                                              8,0



     0                                  t          0                             t
                                                                                     111 (UFRJ) Duas pequenas esferas de aço são aban-
c)   v                                                                               donadas a uma mesma altura h do solo. A esfera (1)
                                                                                     cai verticalmente. A esfera (2) desce uma rampa in-
                                                                                     clinada 30° com a horizontal, como mostra a figura.
     0                                    t
                                                                                                         (1)         (2)

110 (MACK-SP) Uma partícula de massa m desliza
com movimento progressivo ao longo do trilho ilus-                                             h

trado abaixo, desde o ponto A até o ponto E, sem                                                                                  30°
perder contato com o mesmo. Desprezam-se as for-
ças de atrito. Em relação ao trilho, o gráfico que
                                                                                     Considerando os atritos desprezíveis, calcule a razão
melhor representa a aceleração escalar da partícula
                                                                                       t1
em função da distância percorrida é:                                                      entre os tempos gastos pelas esferas (1) e (2),
                                                                                      t2
         A                                                                           respectivamente, para chegarem ao solo.
                                                                                 ←
                                                                                 g
                                                         D      0,9 m        E
 12 m                                                                                112 (UFG) Nas academias de ginástica, usa-se um
                                                             0,6 m                   aparelho chamado pressão com pernas (leg press),
                           B                   C                                     que tem a função de fortalecer a musculatura das
             0,9 m                1,0 m            0,45 m                            pernas. Este aparelho possui uma parte móvel que
                                                                                     desliza sobre um plano inclinado, fazendo um ân-
a)                     a (m/s2)                                                      gulo de 60° com a horizontal. Uma pessoa, usando
             8,0                                                                     o aparelho, empurra a parte móvel de massa igual a
                                              2,5 3,25                               100 kg, e a faz mover ao longo do plano, com velo-
                   0              1,5                         4,25   x (m)           cidade constante, como é mostrado na figura.
             8,0
                                                                                                                →
                                                                                                                v
b)                     a (m/s2)
             8,0

                                              2,5 3,25
                   0              1,5                         4,25   x (m)

             8,0


c)                     a (m/s2)
                                                                                                         60°
             8,0


                   0              1,5         2,5 3,25        4,25   x (m)




                                                                                                    SIMULADÃO 21
Considere o coeficiente de atrito dinâmico entre o                                                x

plano inclinado e a parte móvel 0,10 e a aceleração
gravitacional 10 m/s 2. (Usar sen 60°       0,86 e
cos 60° 0,50)
a) Faça o diagrama das forças que estão atuando                 I – A força para colocar o corpo em movimento é
sobre a parte móvel do aparelho, identificando-as.           maior do que aquela necessária para mantê-lo em
b) Determine a intensidade da força que a pessoa             movimento uniforme;
está aplicando sobre a parte móvel do aparelho.                II – A força de atrito estático que impede o movi-
                                                             mento do corpo é, no caso, 60 N, dirigida para a
                                                             direita;
113 (UENF-RJ) A figura abaixo mostra um corpo de
I de massa mI 2 kg apoiado em um plano inclina-               III – Se nenhuma outra força atuar no corpo ao lon-
do e amarrado a uma corda, que passa por uma                 go do eixo X além da força de atrito, devido a essa
roldana e sustenta um outro corpo II de massa                força o corpo se move para a direita;
mII 3 kg.                                                    IV – A força de atrito estático só vale 60 N quando
                                                             for aplicada uma força externa no corpo e que o
                                                             coloque na iminência de movimento ao longo do
                                  Despreze a massa da cor-   eixo X.
          I
                          II
                                  da e atritos de qualquer
                                                             São corretas as afirmações:
    30°                           natureza.
                                                             a) I e II   b) I e III   c) I e IV   d) II e III   e) II e IV
a) Esboce o diagrama de forças para cada um dos dois
corpos.                                                      116 (UFAL) Um plano perfeitamente liso e horizon-
b) Se o corpo II move-se para baixo com aceleração           tal é continuado por outro áspero. Um corpo de
a 4 m/s2, determine a tração T na corda.                     massa 5,0 kg move-se no plano liso onde percorre
                                                             100 m a cada 10 s e, ao atingir o plano áspero, ele
114 (MACK-SP) Num local onde a aceleração gravi-             percorre 20 m até parar. Determine a intensidade
tacional tem módulo                                          da força de atrito, em newtons, que atua no corpo
10 m/s 2, dispõe-se o                                        quando está no plano áspero.
conjunto abaixo, no
qual o atrito é despre-                                      117 (UFRJ) Um caminhão está se deslocando numa
zível, a polia e o fio são                                   estrada plana, retilínea e horizontal. Ele transporta
                             B              C
ideais. Nestas condi-
                           A                                 uma caixa de 100 kg apoiada sobre o piso horizon-
ções, a intensidade da                                       tal de sua carroceria, como mostra a figura.
força que o bloco A
exerce no bloco B é:

                               Dados
     m (A)      6,0 kg                  cos      0,8
     m (B)      4,0 kg                  sen      0,6
                                                             Num dado instante, o motorista do caminhão pisa o
     m (C)       10 kg
                                                             freio. A figura a seguir representa, em gráfico car-
                                                             tersiano, como a ve-        v (m/s)
a) 20 N       b) 32 N    c) 36 N       d) 72 N   e) 80 N     locidade do caminhão 10
                                                             varia em função do
115 (Unitau-SP) Um corpo de massa 20 kg se encon-            tempo.
tra apoiado sobre uma mesa horizontal. O coefici-                                          0      1,0    2,0    3,0 3,5 t (s)
ente de atrito estático entre o corpo e a mesa é igual       O coeficiente de atrito estático entre a caixa e o piso
a 0,30 e o movimento somente poderá ocorrer ao               da carroceria vale 0,30. Considere g 10 m/s2.
longo do eixo X e no sentido indicado na figura.             Verifique se, durante a freada, a caixa permanece
Considerando-se o valor da aceleração da gravida-            em repouso em relação ao caminhão ou desliza so-
de igual a 10 m/s2, examine as afirmações:                   bre o piso da carroceria. Justifique sua resposta.


                                  22 SIMULADÃO
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)
919 Questões de Física (resolvidas)

Mais conteúdo relacionado

Mais procurados

Física 1º ano prof. pedro ivo - (movimento retilíneo uniforme )
Física 1º ano   prof. pedro ivo - (movimento retilíneo uniforme )Física 1º ano   prof. pedro ivo - (movimento retilíneo uniforme )
Física 1º ano prof. pedro ivo - (movimento retilíneo uniforme )Pedro Ivo Andrade Sousa
 
Movimento uniforme
Movimento uniformeMovimento uniforme
Movimento uniformeBetine Rost
 
Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)Joaquim Cecei
 
Física 1º ano prof. pedro ivo - (movimento uniformemente variado )
Física 1º ano   prof. pedro ivo - (movimento uniformemente variado )Física 1º ano   prof. pedro ivo - (movimento uniformemente variado )
Física 1º ano prof. pedro ivo - (movimento uniformemente variado )Pedro Ivo Andrade Sousa
 
Gabarito calor e temperatura
Gabarito   calor e temperaturaGabarito   calor e temperatura
Gabarito calor e temperaturaprofessoraludmila
 
Noções básicas de cinemática
Noções básicas de cinemáticaNoções básicas de cinemática
Noções básicas de cinemáticaAngélica Brasil
 
Avaliação 1º ano 1º bimestre(física 1º c)
Avaliação 1º ano   1º bimestre(física 1º c)Avaliação 1º ano   1º bimestre(física 1º c)
Avaliação 1º ano 1º bimestre(física 1º c)Vilmar Silva
 
Revisao 9º ano fisica Prova Bimestral e Recuperação
Revisao 9º ano fisica Prova Bimestral e RecuperaçãoRevisao 9º ano fisica Prova Bimestral e Recuperação
Revisao 9º ano fisica Prova Bimestral e RecuperaçãoPaulo Souto
 
Gabarito das atividades para o 2 ano em Espelhos Planos
Gabarito das atividades para o 2 ano em Espelhos PlanosGabarito das atividades para o 2 ano em Espelhos Planos
Gabarito das atividades para o 2 ano em Espelhos PlanosRose Figueiredo
 
Respostas Dos ExercíCios De CinemáTica 1
Respostas Dos ExercíCios De CinemáTica 1Respostas Dos ExercíCios De CinemáTica 1
Respostas Dos ExercíCios De CinemáTica 1Homero Junior
 
Atividades de física 9° A e B ano prof: Waldir Montenegro 2014
Atividades de física 9° A e B ano prof: Waldir  Montenegro 2014Atividades de física 9° A e B ano prof: Waldir  Montenegro 2014
Atividades de física 9° A e B ano prof: Waldir Montenegro 2014Waldir Montenegro
 
Exercícios extras 9ano densidade
Exercícios extras 9ano densidadeExercícios extras 9ano densidade
Exercícios extras 9ano densidadeProfessora Raquel
 
Cinemática (1º Ensino Médio)
Cinemática (1º Ensino Médio)Cinemática (1º Ensino Médio)
Cinemática (1º Ensino Médio)Gabriel Lacerda
 

Mais procurados (20)

Cinemática introdução
Cinemática introduçãoCinemática introdução
Cinemática introdução
 
Física 1º ano prof. pedro ivo - (movimento retilíneo uniforme )
Física 1º ano   prof. pedro ivo - (movimento retilíneo uniforme )Física 1º ano   prof. pedro ivo - (movimento retilíneo uniforme )
Física 1º ano prof. pedro ivo - (movimento retilíneo uniforme )
 
Movimento uniforme
Movimento uniformeMovimento uniforme
Movimento uniforme
 
Gabarito física
Gabarito físicaGabarito física
Gabarito física
 
Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)Lista 01- 8º Série (Transformação de Unidades)
Lista 01- 8º Série (Transformação de Unidades)
 
Alavancas arquimedes
Alavancas arquimedesAlavancas arquimedes
Alavancas arquimedes
 
Aula 1 velocidade média
Aula 1  velocidade médiaAula 1  velocidade média
Aula 1 velocidade média
 
Física 1º ano prof. pedro ivo - (movimento uniformemente variado )
Física 1º ano   prof. pedro ivo - (movimento uniformemente variado )Física 1º ano   prof. pedro ivo - (movimento uniformemente variado )
Física 1º ano prof. pedro ivo - (movimento uniformemente variado )
 
Física mru
Física  mruFísica  mru
Física mru
 
Gabarito calor e temperatura
Gabarito   calor e temperaturaGabarito   calor e temperatura
Gabarito calor e temperatura
 
Noções básicas de cinemática
Noções básicas de cinemáticaNoções básicas de cinemática
Noções básicas de cinemática
 
Avaliação 1º ano 1º bimestre(física 1º c)
Avaliação 1º ano   1º bimestre(física 1º c)Avaliação 1º ano   1º bimestre(física 1º c)
Avaliação 1º ano 1º bimestre(física 1º c)
 
Revisao 9º ano fisica Prova Bimestral e Recuperação
Revisao 9º ano fisica Prova Bimestral e RecuperaçãoRevisao 9º ano fisica Prova Bimestral e Recuperação
Revisao 9º ano fisica Prova Bimestral e Recuperação
 
Gabarito das atividades para o 2 ano em Espelhos Planos
Gabarito das atividades para o 2 ano em Espelhos PlanosGabarito das atividades para o 2 ano em Espelhos Planos
Gabarito das atividades para o 2 ano em Espelhos Planos
 
Planejamento de física 1° ano 1° bimestre 2012
Planejamento de física 1° ano   1° bimestre 2012Planejamento de física 1° ano   1° bimestre 2012
Planejamento de física 1° ano 1° bimestre 2012
 
Respostas Dos ExercíCios De CinemáTica 1
Respostas Dos ExercíCios De CinemáTica 1Respostas Dos ExercíCios De CinemáTica 1
Respostas Dos ExercíCios De CinemáTica 1
 
9 ano cinemática_aula
9 ano cinemática_aula9 ano cinemática_aula
9 ano cinemática_aula
 
Atividades de física 9° A e B ano prof: Waldir Montenegro 2014
Atividades de física 9° A e B ano prof: Waldir  Montenegro 2014Atividades de física 9° A e B ano prof: Waldir  Montenegro 2014
Atividades de física 9° A e B ano prof: Waldir Montenegro 2014
 
Exercícios extras 9ano densidade
Exercícios extras 9ano densidadeExercícios extras 9ano densidade
Exercícios extras 9ano densidade
 
Cinemática (1º Ensino Médio)
Cinemática (1º Ensino Médio)Cinemática (1º Ensino Médio)
Cinemática (1º Ensino Médio)
 

Destaque

Fisica resolucao exercicios gabarito cinematica 2011 1_serie
Fisica resolucao exercicios gabarito cinematica 2011 1_serieFisica resolucao exercicios gabarito cinematica 2011 1_serie
Fisica resolucao exercicios gabarito cinematica 2011 1_seriecomentada
 
919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidasThommas Kevin
 
Fichário fenômenos de transporte ii alunos final
Fichário fenômenos de transporte ii   alunos finalFichário fenômenos de transporte ii   alunos final
Fichário fenômenos de transporte ii alunos finalMARCOS BRUNO MENDES
 
Leis de newton exercícios resolvidos
Leis de newton exercícios resolvidosLeis de newton exercícios resolvidos
Leis de newton exercícios resolvidosAdrianne Mendonça
 
Exercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonExercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonBrenda Carvalho
 
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...Rodrigo Penna
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-iitwolipa
 
Questões Corrigidas, em Word: Leis de Newton - Conteúdo vinculado ao blog ...
Questões Corrigidas, em Word:  Leis de Newton - Conteúdo vinculado ao blog   ...Questões Corrigidas, em Word:  Leis de Newton - Conteúdo vinculado ao blog   ...
Questões Corrigidas, em Word: Leis de Newton - Conteúdo vinculado ao blog ...Rodrigo Penna
 

Destaque (10)

Fisica resolucao exercicios gabarito cinematica 2011 1_serie
Fisica resolucao exercicios gabarito cinematica 2011 1_serieFisica resolucao exercicios gabarito cinematica 2011 1_serie
Fisica resolucao exercicios gabarito cinematica 2011 1_serie
 
Respostas beer cap 11
Respostas beer cap 11Respostas beer cap 11
Respostas beer cap 11
 
919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas
 
Fichário fenômenos de transporte ii alunos final
Fichário fenômenos de transporte ii   alunos finalFichário fenômenos de transporte ii   alunos final
Fichário fenômenos de transporte ii alunos final
 
Leis de newton exercícios resolvidos
Leis de newton exercícios resolvidosLeis de newton exercícios resolvidos
Leis de newton exercícios resolvidos
 
Exercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newtonExercícios sobre as aplicações das leis de newton
Exercícios sobre as aplicações das leis de newton
 
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...
Questões Corrigidas, em Word: Cinemática Escalar - Conteúdo vinculado ao blog...
 
111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii111272491 exercicios-resolvidos-termo-ii
111272491 exercicios-resolvidos-termo-ii
 
Questões Corrigidas, em Word: Leis de Newton - Conteúdo vinculado ao blog ...
Questões Corrigidas, em Word:  Leis de Newton - Conteúdo vinculado ao blog   ...Questões Corrigidas, em Word:  Leis de Newton - Conteúdo vinculado ao blog   ...
Questões Corrigidas, em Word: Leis de Newton - Conteúdo vinculado ao blog ...
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 

Semelhante a 919 Questões de Física (resolvidas)

919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidasEdlas Junior
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02Luiz Roberto Prado
 
919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidascvsantos
 
88487293 fisica-919-questoes-de-fisica-resolvidas
88487293 fisica-919-questoes-de-fisica-resolvidas88487293 fisica-919-questoes-de-fisica-resolvidas
88487293 fisica-919-questoes-de-fisica-resolvidasAirton Coelho
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02Dinoel Costa
 
Bonjorno questc3b5es
Bonjorno questc3b5esBonjorno questc3b5es
Bonjorno questc3b5esPaulo Souto
 
Fisica bonjorno
Fisica   bonjornoFisica   bonjorno
Fisica bonjornoJose Costa
 
919_questoes_de_fisica_resolvidas_110913.pdf
919_questoes_de_fisica_resolvidas_110913.pdf919_questoes_de_fisica_resolvidas_110913.pdf
919_questoes_de_fisica_resolvidas_110913.pdfssuser823aef
 
Banco de questões fisica bonjorno ftd
Banco de questões fisica   bonjorno ftdBanco de questões fisica   bonjorno ftd
Banco de questões fisica bonjorno ftdNHOPTU
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02Pc Campos
 
Quase 1000 - problemas de física - resolvidos
Quase  1000 - problemas de física - resolvidosQuase  1000 - problemas de física - resolvidos
Quase 1000 - problemas de física - resolvidospatrick bandeira
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosPaulo Escobar
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosleodadao
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosValdimiro Bazo
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosDanilo_San_Al
 

Semelhante a 919 Questões de Física (resolvidas) (20)

919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas
 
Simuladão
SimuladãoSimuladão
Simuladão
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02-120416141955-phpapp02
 
919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas919 questoes-de-fisica-resolvidas
919 questoes-de-fisica-resolvidas
 
88487293 fisica-919-questoes-de-fisica-resolvidas
88487293 fisica-919-questoes-de-fisica-resolvidas88487293 fisica-919-questoes-de-fisica-resolvidas
88487293 fisica-919-questoes-de-fisica-resolvidas
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
 
Bonjorno questc3b5es
Bonjorno questc3b5esBonjorno questc3b5es
Bonjorno questc3b5es
 
Fisica bonjorno
Fisica   bonjornoFisica   bonjorno
Fisica bonjorno
 
Fisica bonjorno
Fisica   bonjornoFisica   bonjorno
Fisica bonjorno
 
Fisica bonjorno
Fisica   bonjornoFisica   bonjorno
Fisica bonjorno
 
919_questoes_de_fisica_resolvidas_110913.pdf
919_questoes_de_fisica_resolvidas_110913.pdf919_questoes_de_fisica_resolvidas_110913.pdf
919_questoes_de_fisica_resolvidas_110913.pdf
 
Banco de questões fisica bonjorno ftd
Banco de questões fisica   bonjorno ftdBanco de questões fisica   bonjorno ftd
Banco de questões fisica bonjorno ftd
 
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02919 questoes-de-fisica-resolvidas-110913111602-phpapp02
919 questoes-de-fisica-resolvidas-110913111602-phpapp02
 
Quase 1000 problemas resolvidos com resolução engenharia
Quase 1000 problemas resolvidos com resolução engenhariaQuase 1000 problemas resolvidos com resolução engenharia
Quase 1000 problemas resolvidos com resolução engenharia
 
APOSTILA DE FISICA 2
APOSTILA DE FISICA 2 APOSTILA DE FISICA 2
APOSTILA DE FISICA 2
 
Quase 1000 - problemas de física - resolvidos
Quase  1000 - problemas de física - resolvidosQuase  1000 - problemas de física - resolvidos
Quase 1000 - problemas de física - resolvidos
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidos
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidos
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidos
 
Quase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidosQuase 1000-problemas-resolvidos
Quase 1000-problemas-resolvidos
 

Mais de Adriano Capilupe (20)

Aplicações sobre o teorema de pitagoras
Aplicações sobre o teorema de pitagorasAplicações sobre o teorema de pitagoras
Aplicações sobre o teorema de pitagoras
 
Pitágoras e os pitagóricos
Pitágoras e os pitagóricosPitágoras e os pitagóricos
Pitágoras e os pitagóricos
 
Apresentação de matemática
Apresentação de matemáticaApresentação de matemática
Apresentação de matemática
 
Aplicações do teorema de pitágoras
Aplicações do teorema de pitágorasAplicações do teorema de pitágoras
Aplicações do teorema de pitágoras
 
Algumas maneiras de demonstrar o teorema de pitágoras
Algumas maneiras de demonstrar o teorema de pitágorasAlgumas maneiras de demonstrar o teorema de pitágoras
Algumas maneiras de demonstrar o teorema de pitágoras
 
Números primos (1)
Números primos (1)Números primos (1)
Números primos (1)
 
Numeros primos
Numeros primosNumeros primos
Numeros primos
 
Número primo
Número primoNúmero primo
Número primo
 
Grupo
GrupoGrupo
Grupo
 
Números primos
Números primosNúmeros primos
Números primos
 
Tangente
TangenteTangente
Tangente
 
Relações trigonométricas
Relações trigonométricasRelações trigonométricas
Relações trigonométricas
 
âNgulos notáveis
âNgulos notáveisâNgulos notáveis
âNgulos notáveis
 
Cosseno
CossenoCosseno
Cosseno
 
Grupo 4
Grupo 4Grupo 4
Grupo 4
 
Grupo 3
Grupo 3Grupo 3
Grupo 3
 
Grupo 2
Grupo 2Grupo 2
Grupo 2
 
Grupo 5
Grupo 5Grupo 5
Grupo 5
 
Grupo 1
Grupo 1Grupo 1
Grupo 1
 
Trabalho artes (carina)
Trabalho artes (carina)Trabalho artes (carina)
Trabalho artes (carina)
 

Último

UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfUFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfManuais Formação
 
Aspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptxAspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptxprofbrunogeo95
 
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdfaulasgege
 
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...Eró Cunha
 
Química-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptxQuímica-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptxKeslleyAFerreira
 
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptxSlides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Maio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentesMaio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentesMary Alvarenga
 
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na ÁfricaPeriodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na Áfricajuekfuek
 
História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfGisellySobral
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)Centro Jacques Delors
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfAndersonW5
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Centro Jacques Delors
 
São Damião, missionário entre os leprosos de Molokai, Havaí.pptx
São Damião, missionário entre os leprosos de Molokai, Havaí.pptxSão Damião, missionário entre os leprosos de Molokai, Havaí.pptx
São Damião, missionário entre os leprosos de Molokai, Havaí.pptxMartin M Flynn
 
Histogramas.pptx...............................
Histogramas.pptx...............................Histogramas.pptx...............................
Histogramas.pptx...............................mariagrave
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...azulassessoria9
 
Religiosidade de Assaré - Prof. Francisco Leite
Religiosidade de Assaré - Prof. Francisco LeiteReligiosidade de Assaré - Prof. Francisco Leite
Religiosidade de Assaré - Prof. Francisco Leiteprofesfrancleite
 
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...LuizHenriquedeAlmeid6
 
Sequência didática Carona 1º Encontro.pptx
Sequência didática Carona 1º Encontro.pptxSequência didática Carona 1º Encontro.pptx
Sequência didática Carona 1º Encontro.pptxCarolineWaitman
 
FUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialFUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialDouglasVasconcelosMa
 
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...WelitaDiaz1
 

Último (20)

UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfUFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
 
Aspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptxAspectos históricos da educação dos surdos.pptx
Aspectos históricos da educação dos surdos.pptx
 
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
1. Aula de sociologia - 1º Ano - Émile Durkheim.pdf
 
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
 
Química-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptxQuímica-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptx
 
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptxSlides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
Slides Lição 06, Central Gospel, O Anticristo, 1Tr24.pptx
 
Maio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentesMaio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentes
 
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na ÁfricaPeriodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
 
História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdf
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdf
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
São Damião, missionário entre os leprosos de Molokai, Havaí.pptx
São Damião, missionário entre os leprosos de Molokai, Havaí.pptxSão Damião, missionário entre os leprosos de Molokai, Havaí.pptx
São Damião, missionário entre os leprosos de Molokai, Havaí.pptx
 
Histogramas.pptx...............................
Histogramas.pptx...............................Histogramas.pptx...............................
Histogramas.pptx...............................
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Religiosidade de Assaré - Prof. Francisco Leite
Religiosidade de Assaré - Prof. Francisco LeiteReligiosidade de Assaré - Prof. Francisco Leite
Religiosidade de Assaré - Prof. Francisco Leite
 
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
Slides Lição 7, Betel, Ordenança para uma vida de fidelidade e lealdade, 2Tr2...
 
Sequência didática Carona 1º Encontro.pptx
Sequência didática Carona 1º Encontro.pptxSequência didática Carona 1º Encontro.pptx
Sequência didática Carona 1º Encontro.pptx
 
FUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialFUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - material
 
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...
atividade para 3ª serie do ensino medi sobrw biotecnologia( transgenicos, clo...
 

919 Questões de Física (resolvidas)

  • 1. APRESENTAÇÃO Este PDF contém 919 questões de Física com suas respectivas resoluções. Espero que sejam úteis. Prof. Sady Danyelevcz de Brito Moreira Braga E-Mail: danyelevcz@hotmail.com Blog: http://danyelevcz.blogspot.com/ Fone: (67)8129-5566 Home Page: http://profsady.vila.bol.com.br Telefones: (11) 3064-2862 (comercial) (11) 3873-7222 (residencial) (11) 9982-7001 (celular) e-mail: jrbonjorno@uol.com.br
  • 2. SUMÁRIO Cinemática (Questões 1 a 90)...................................................................... 4 Dinâmica (Questões 91 a 236) ................................................................... 18 Estática (Questões 237 a 266) ................................................................... 43 Hidrostática (Questões 267 a 306) ............................................................ 49 Hidrodinâmica (Questões 307 a 314) ........................................................ 55 Termologia (Questões 315 a 439) .............................................................. 56 Óptica Geométrica (Questões 440 a 530) ................................................. 74 Ondulatória (Questões 531 a 609) ............................................................. 87 Eletrostática (Questões 610 a 720) ......................................................... 100 Eletrodinâmica (Questões 721 a 843) ..................................................... 118 Eletromagnetismo (Questões 844 a 919)................................................ 142 Resolução .............................................................................................. 159 Siglas . .................................................................................................... 273
  • 3. 4 (UEL-PR) Um homem caminha com velocida- CINEMÁTICA de v H 3,6 km/h, uma ave, com velocidade vA 30 m/min, e um inseto, com vI 60 cm/s. 1 (EFOA-MG) Um aluno, sentado na carteira da sa- Essas velocidades satisfazem a relação: la, observa os colegas, também sentados nas res- a) vI vH vA d) vA vH vI pectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da b) vA vI vH e) vH vI vA turma. c) vH vA vI Das alternativas abaixo, a única que retrata uma análise correta do aluno é: 5 (UFPA) Maria saiu de Mosqueiro às 6 horas e 30 minutos, de um ponto da estrada onde o marco a) A velocidade de todos os meus colegas é nula quilométrico indicava km 60. Ela chegou a Belém às para todo observador na superfície da Terra. 7 horas e 15 minutos, onde o marco quilométrico b) Eu estou em repouso em relação aos meus cole- da estrada indicava km 0. A velocidade média, em gas, mas nós estamos em movimento em relação a quilômetros por hora, do carro de Maria, em sua todo observador na superfície da Terra. viagem de Mosqueiro até Belém, foi de: c) Como não há repouso absoluto, não há nenhum a) 45 d) 80 referencial em relação ao qual nós, estudantes, es- b) 55 e) 120 tejamos em repouso. c) 60 d) A velocidade do mosquito é a mesma, tanto em relação ao meus colegas, quanto em relação ao pro- 6 (UFRN) Uma das teorias para explicar o apareci- fessor. mento do homem no continente americano propõe e) Mesmo para o professor, que não pára de andar que ele, vindo da Ásia, entrou na América pelo Es- pela sala, seria possível achar um referencial em re- treito de Bering e foi migrando para o sul até atingir lação ao qual ele estivesse em repouso. a Patagônia, como indicado no mapa. Datações arqueológicas sugerem que foram neces- 2 (Unitau-SP) Um móvel parte do km 50, indo até sários cerca de 10 000 anos para que essa migração o km 60, onde, mudando o sentido do movimen- se realizasse. to, vai até o km 32. O deslocamento escalar e a O comprimento AB, mostrado ao lado do mapa, cor- distância efetivamente percorrida são, respectiva- responde à distância de 5 000 km nesse mesmo mapa. mente: 5 000 km a) 28 km e 28 km d) 18 km e 18 km A B b) 18 km e 38 km e) 38 km e 18 km Estreito de Bering c) 18 km e 38 km 3 (Unisinos-RS) Numa pista atlética retangular de Rota de lados a 160 m e b 60 m, b migração um atleta corre com velocidade de módulo constante v 5 m/s, no sentido horário, conforme mostrado na figura. Em t 0 s, a o atleta encontra-se no ponto A. Patagônia O módulo do deslocamento do atleta, após 60 s de corrida, em ← v Com base nesses dados, pode-se estimar que a ve- metros, é: A locidade escalar média de ocupação do continente americano pelo homem, ao longo da rota desenha- a) 100 d) 10 000 da, foi de aproximadamente: b) 220 e) 18 000 a) 0,5 km/ano c) 24 km/ano c) 300 b) 8,0 km/ano d) 2,0 km/ano 4 SIMULADÃO
  • 4. 7 (Unitau-SP) Um carro mantém uma velocidade 11 (MACK-SP) O Sr. José sai de sua casa caminhan- escalar constante de 72,0 km/h. Em uma hora e do com velocidade escalar constante de 3,6 km/h, dez minutos ele percorre, em quilômetros, a distân- dirigindo-se para o supermercado que está a 1,5 km. cia de: Seu filho Fernão, 5 minutos após, corre ao encontro a) 79,2 d) 84,0 do pai, levando a carteira que ele havia esquecido. Sabendo que o rapaz encontra o pai no instante b) 80,0 e) 90,0 em que este chega ao supermercado, podemos afir- c) 82,4 mar que a velocidade escalar média de Fernão foi igual a: 8 (PUCC-SP) Andrômeda é uma galáxia distante a) 5,4 km/h d) 4,0 km/h 2,3 106 anos-luz da Via Láctea, a nossa galáxia. A luz proveniente de Andrômeda, viajando à veloci- b) 5,0 km/h e) 3,8 km/h dade de 3,0 105 km/s, percorre a distância aproxi- c) 4,5 km/h mada até a Terra, em quilômetros, igual a a) 4 1015 d) 7 1021 12 (UEPI) Em sua trajetória, um ônibus interestadual b) 6 1017 e) 9 1023 percorreu 60 km em 80 min, após 10 min de para- c) 2 1019 da, seguiu viagem por mais 90 km à velocidade média de 60 km/h e, por fim, após 13 min de para- 9 (UFRS) No trânsito em ruas e estradas, é aconse- da, percorreu mais 42 km em 30 min. A afirmativa lhável os motoristas manterem entre os veículos um verdadeira sobre o movimento do ônibus, do início distanciamento de segurança. Esta separação asse- ao final da viagem, é que ele: gura, folgadamente, o espaço necessário para que a) percorreu uma distância total de 160 km se possa, na maioria dos casos, parar sem risco de abalroar o veículo que se encontra na frente. Pode- b) gastou um tempo total igual ao triplo do tempo se calcular esse distanciamento de segurança medi- gasto no primeiro trecho de viagem ante a seguinte regra prática: c) desenvolveu uma velocidade média de 60,2 km/h 2 d) não modificou sua velocidade média em conse- ⎡ velocidade em km / h ⎤ distanciamento (em m) ⎢ ⎥ qüência das paradas ⎣ 10 ⎦ e) teria desenvolvido uma velocidade média de Em comparação com o distanciamento necessário 57,6 km/h, se não tivesse feito paradas para um automóvel que anda a 70 km/h, o distan- ciamento de segurança de um automóvel que trafe- ga a 100 km/h aumenta, aproximadamente, 13 (UFPE) O gráfico representa a posição de uma a) 30% d) 80% partícula em função do tempo. Qual a velocidade média da partícula, em metros por segundo, entre b) 42% e) 100% os instantes t 2,0 min e t 6,0 min? c) 50% x (m) 10 (Unimep-SP) A Embraer (Empresa Brasileira 8,0 102 de Aeronáutica S.A.) está testando seu novo avião, o EMB-145. Na opinião dos engenheiros da empre- 6,0 102 sa, esse avião é ideal para linhas aéreas ligando ci- 4,0 102 dades de porte médio e para pequenas distâncias. 2,0 102 Conforme anunciado pelos técnicos, a velocidade média do avião vale aproximadamente 800 km/h (no 0 1,5 3,0 4,5 6,0 t (min) ar). Assim sendo, o tempo gasto num percurso de 1 480 km será: a) 1 hora e 51 minutos d) 185 minutos a) 1,5 d) 4,5 b) 1 hora e 45 minutos e) 1 hora e 48 minutos b) 2,5 e) 5,5 c) 2 horas e 25 minutos c) 3,5 SIMULADÃO 5
  • 5. 14 (FURRN) As funções horárias de dois trens que se 18 (Uniube-MG) Um caminhão, de comprimento movimentam em linhas paralelas são: s1 k1 40t igual a 20 m, e um homem percorrem, em movi- e s2 k2 60t, onde o espaço s está em quilôme- mento uniforme, um trecho de uma estrada retilínea tros e o tempo t está em horas. Sabendo que os no mesmo sentido. Se a velocidade do caminhão é trens estão lado a lado no instante t 2,0 h, a dife- 5 vezes maior que a do homem, a distância percor- rença k1 k2, em quilômetros, é igual a: rida pelo caminhão desde o instante em que alcan- a) 30 d) 80 ça o homem até o momento em que o ultrapassa é, em metros, igual a: b) 40 e) 100 a) 20 d) 32 c) 60 b) 25 e) 35 c) 30 (FEI-SP) O enunciado seguinte refere-se às questões 15 e 16. Dois móveis A e B, ambos com movimento unifor- 19 (UEL-PR) Um trem de 200 m de comprimento, me, percorrem uma trajetória retilínea conforme com velocidade escalar constante de 60 km/h, gas- mostra a figura. Em t 0, estes se encontram, res- ta 36 s para atravessar completamente uma ponte. pectivamente, nos pontos A e B na trajetória. As A extensão da ponte, em metros, é de: velocidades dos móveis são vA 50 m/s e vB 30 m/s a) 200 d) 600 no mesmo sentido. b) 400 e) 800 150 m c) 500 50 m 20 (Furg-RS) Dois trens A e B movem-se com veloci- dades constantes de 36 km/h, em direções perpen- 0 A B diculares, aproximando-se do ponto de cruzamento das linhas. Em t 0 s, a frente do trem A está a 15 Em qual ponto da trajetória ocorrerá o encontro uma distância de 2 km do cruzamento. Os compri- dos móveis? mentos dos trens A e B são, respectivamente, 150 m e 100 m. Se o trem B passa depois pelo cruzamento a) 200 m d) 300 m e não ocorre colisão, então a distância de sua frente b) 225 m e) 350 m até o cruzamento, no instante t 0 s, é, necessari- c) 250 m amente, maior que a) 250 m d) 2 150 m 16 Em que instante a distância entre os dois móveis b) 2 000 m e) 2 250 m será 50 m? c) 2 050 m a) 2,0 s d) 3,5 s b) 2,5 s e) 4,0 s 21 (Unifor-CE) Um móvel se desloca, em movimen- c) 3,0 s to uniforme, sobre o eixo x (m) x durante o intervalo de 17 (Unimep-SP) Um carro A, viajando a uma veloci- tempo de t0 0 a t 30 s. dade constante de 80 km/h, é ultrapassado por um 20 O gráfico representa a carro B. Decorridos 12 minutos, o carro A passa por posição x, em função do um posto rodoviário e o seu motorista vê o carro B 10 tempo t, para o intervalo parado e sendo multado. Decorridos mais 6 minu- de t 0 a t 5,0 s. tos, o carro B novamente ultrapassa o carro A. A O instante em que a po- 0 5 t (s) distância que o carro A percorreu entre as duas ul- sição do móvel é 30 m, trapassagens foi de: em segundos, é a) 18 km d) 24 km a) 10 d) 25 b) 10,8 km e) 35 km b) 15 e) 30 c) 22,5 km c) 20 6 SIMULADÃO
  • 6. 22 (Vunesp-SP) O movimento de um corpo ocorre c) V (m) e) V (m) sobre um eixo x, de acordo com o gráfico, em que 10 10 as distâncias são dadas em metros e o tempo, em 0 0 segundos. A partir do gráfico, determine: 2 4 6 8 t (s) 2 4 6 8 t (s) a) a distância percorrida em 1 segundo entre o ins- 10 10 tante t1 0,5 s e t2 1,5 s; b) a velocidade média do corpo entre t1 0,0 s e d) V (m) 10 t2 2,0 s; c) a velocidade instantânea em t 2,0 s. 0 2 4 6 8 t (s) 5 x (m) 40 25 (Fuvest-SP) Os gráficos referem-se a movimen- 30 tos unidimensionais de um corpo em três situações 20 diversas, representando a posição como função do tempo. Nas três situações, são iguais 10 a) as velocidades médias. 0 0,5 1,0 1,5 2,0 t (s) b) as velocidades máximas. c) as velocidades iniciais. 23 (UFRN) Um móvel se desloca em MRU, cujo grá- d) as velocidades finais. fico v t está representado no gráfico. Determine o e) os valores absolutos das velocidades máximas. valor do deslocamento do móvel entre os instantes x x x t 2,0 s e t 3,0 s. a a a v (m/s) a a a 2 2 2 10 0 b b t (s) 0 b b t (s) 0 b b t (s) 3 2 3 0 1 2 3 4 t (s) 26 (FEI-SP) No movimento retilíneo uniformemente a) 0 d) 30 m variado, com velocidade inicial nula, a distância per- b) 10 m e) 40 m corrida é: c) 20 m a) diretamente proporcional ao tempo de percurso b) inversamente proporcional ao tempo de percurso 24 (UFLA-MG) O gráfico representa a variação das c) diretamente proporcional ao quadrado do tempo posições de um móvel em função do tempo (s f(t)). de percurso S (m) d) inversamente proporcional ao quadrado do tem- 10 po de percurso e) diretamente proporcional à velocidade 0 1 2 3 4 5 6 7 8 t (s) 27 (UEPG-PR) Um passageiro anotou, a cada minu- 10 to, a velocidade indicada pelo velocímetro do táxi em que viajava; o resultado foi 12 km/h, 18 km/h, O gráfico de v t que melhor representa o movi- 24 km/h e 30 km/h. Pode-se afirmar que: mento dado, é: a) o movimento do carro é uniforme; a) b) b) a aceleração média do carro é de 6 km/h, por mi- V (m) V (m) 10 10 nuto; 5 5 c) o movimento do carro é retardado; 0 2 4 6 8 t (s) 0 2 4 6 8 t (s) d) a aceleração do carro é 6 km/h2; 5 5 e) a aceleração do carro é 0,1 km/h, por segundo. SIMULADÃO 7
  • 7. 28 (Unimep-SP) Uma partícula parte do repouso e 32 (UFRJ) Numa competição automobilística, um em 5 segundos percorre 100 metros. Considerando carro se aproxima de uma curva em grande veloci- o movimento retilíneo e uniformemente variado, dade. O piloto, então, pisa o freio durante 4 s e con- podemos afirmar que a aceleração da partícula é de: segue reduzir a velocidade do carro para 30 m/s. a) 8 m/s2 Durante a freada o carro percorre 160 m. Supondo que os freios imprimam ao carro uma ace- b) 4 m/s2 leração retardadora constante, calcule a velocidade c) 20 m/s2 do carro no instante em que o piloto pisou o freio. d) 4,5 m/s2 e) Nenhuma das anteriores 33 (Unicamp-SP) Um automóvel trafega com veloci- dade constante de 12 m/s por uma avenida e se 29 (MACK-SP) Uma partícula em movimento retilí- aproxima de um cruzamento onde há um semáforo neo desloca-se de acordo com a equação v 4 t, com fiscalização eletrônica. Quando o automóvel se onde v representa a velocidade escalar em m/s e t, o encontra a uma distância de 30 m do cruzamento, tempo em segundos, a partir do instante zero. O o sinal muda de verde para amarelo. O motorista deslocamento dessa partícula no intervalo (0 s, 8 s) é: deve decidir entre parar o carro antes de chegar ao a) 24 m c) 2 m e) 8 m cruzamento ou acelerar o carro e passar pelo cruza- b) zero d) 4 m mento antes do sinal mudar para vermelho. Este si- nal permanece amarelo por 2,2 s. O tempo de rea- 30 (Uneb-BA) Uma partícula, inicialmente a 2 m/s, é ção do motorista (tempo decorrido entre o momen- acelerada uniformemente e, após percorrer 8 m, to em que o motorista vê a mudança de sinal e o alcança a velocidade de 6 m/s. Nessas condições, sua momento em que realiza alguma ação) é 0,5 s. aceleração, em metros por segundo ao quadrado, é: a) Determine a mínima aceleração constante que o a) 1 c) 3 e) 5 carro deve ter para parar antes de atingir o cruza- mento e não ser multado. b) 2 d) 4 b) Calcule a menor aceleração constante que o carro 31 (Fafeod-MG) Na tabela estão registrados os ins- deve ter para passar pelo cruzamento sem ser mul- tantes em que um automóvel passou pelos seis pri- tado. Aproxime 1,72 3,0. meiros marcos de uma estrada. 34 (UEPI) Uma estrada possui um trecho retilíneo de Posição Instante 2 000 m, que segue paralelo aos trilhos de uma fer- Marco (km) (min) rovia também retilínea naquele ponto. No início do trecho um motorista espera que na outra extremi- 1 0 0 dade da ferrovia, vindo ao seu encontro, apareça 2 10 5 um trem de 480 m de comprimento e com velocida- de constante e igual, em módulo, a 79,2 km/h para 3 20 10 então acelerar o seu veículo com aceleração cons- 4 30 15 tante de 2 m/s2. O final do cruzamento dos dois ocor- rerá em um tempo de aproximadamente: 5 40 20 a) 20 s c) 62 s e) 40 s b) 35 s d) 28 s Analisando os dados da tabela, é correto afirmar que o automóvel estava se deslocando 35 (UEL-PR) O grá- V (m/s) 2 fico representa a a) com aceleração constante de 2 km/min . b) em movimento acelerado com velocidade de velocidade escalar 2 km/min. de um corpo, em função do tempo. c) com velocidade variável de 2 km/min. 0 8 t (s) 2 d) com aceleração variada de 2 km/min . 4 e) com velocidade constante de 2 km/min. 8 SIMULADÃO
  • 8. De acordo com o gráfico, o módulo da aceleração mente constante, para em seguida diminuir lenta- desse corpo, em metros por segundo ao quadrado, mente. Para simplificar a discussão, suponha que a é igual a velocidade do velocista em função do tempo seja a) 0,50 c) 8,0 e) 16,0 dada pelo gráfico a seguir. b) 4,0 d) 12,0 v (m/s) 12 36(UEPA) Um motorista, a 50 m de um semáforo, 8 percebe a luz mudar de verde para amarelo. O grá- fico mostra a variação da velocidade do carro em 4 função do tempo a partir desse instante. Com base nos dados indicados V (m/s) 0 2 6 10 14 18 v (s) no gráfico pode-se 20 afirmar que o motoris- Calcule: ta pára: a) as acelerações nos dois primeiros segundos da pro- a) 5 m depois do va e no movimento subseqüente. semáforo 0 0,5 5,0 t (s) b) a velocidade média nos primeiros 10 s de prova. b) 10 m antes do semáforo 39 (UFPE) O gráfico mostra a variação da velocidade c) exatamente sob o semáforo de um automóvel em função do tempo. Supondo- d) 5 m antes do semáforo se que o automóvel passe pela origem em t 0, e) 10 m depois do semáforo calcule o deslocamento total, em metros, depois de transcorridos 25 segundos. 37 (Fuvest-SP) As velocidades de crescimento verti- v (m/s) cal de duas plantas, A e B, de espécies diferentes, 15,0 variaram, em função do tempo decorrido após o plantio de suas sementes, como mostra o gráfico. 10,0 5,0 V (cm/semana) 0 B 5,0 10,0 15,0 20,0 25,0 t (s) 5,0 A 10,0 0 t0 t1 t2 t (semana) 15,0 É possível afirmar que: 40 (UERJ) A distância entre duas estações de metrô é igual a 2,52 km. Partindo do repouso na primeira a) A atinge uma altura final maior do que B estação, um trem deve chegar à segunda estação b) B atinge uma altura final maior do que A em um intervalo de tempo de três minutos. O trem c) A e B atingem a mesma altura final acelera com uma taxa constante até atingir sua ve- d) A e B atingem a mesma altura no instante t0 locidade máxima no trajeto, igual a 16 m/s. Perma- e) A e B mantêm altura constante entre os instantes nece com essa velocidade por um certo tempo. Em t1 e t 2 seguida, desacelera com a mesma taxa anterior até parar na segunda estação. 38 (UFRJ) Nas provas de atletismo de curta distância a) Calcule a velocidade média do trem, em metros (até 200 m) observa-se um aumento muito rápido por segundo. da velocidade nos primeiros segundos da prova, e b) Esboce o gráfico velocidade tempo e calcule o depois um intervalo de tempo relativamente longo, tempo gasto para alcançar a velocidade máxima, em em que a velocidade do atleta permanece pratica- segundos. SIMULADÃO 9
  • 9. 41 (UFRJ) No livreto fornecido pelo fabricante de um ras devem ser marcadas com V e as falsas, com F. automóvel há a informação de que ele vai do re- Analise as afirmações sobre o movimento, cujo grá- pouso a 108 km/h (30 m/s) em 10 s e que a sua ve- fico da posição tempo é representado a seguir. locidade varia em função do tempo de acordo com s o seguinte gráfico. x (m) 30 0 t1 t2 t3 t 0 10 t (s) Suponha que você queira fazer esse mesmo carro a) O movimento é acelerado de 0 a t1. passar do repouso a 30 m/s também em 10 s, mas b) O movimento é acelerado de t1 a t2. com aceleração escalar constante. c) O movimento é retardado de t2 a t3. a) Calcule qual deve ser essa aceleração. b) Compare as distâncias d e d percorridas pelo carro d) A velocidade é positiva de 0 a t2. nos dois casos, verificando se a distância d percor- e) A velocidade é negativa de t1 a t3. rida com aceleração escalar constante é maior, me- nor ou igual à distância d percorrida na situação re- 44 O gráfico representa a aceleração de um móvel presentada pelo gráfico. em função do tempo. A velocidade inicial do móvel é de 2 m/s. 42 (Acafe-SC) O gráfico representa a variação da a (m/s2) posição, em função do tempo, de um ponto mate- rial que se encontra em movimento retilíneo unifor- 4 memente variado. 2 x (m) 2,5 0 2 4 t 2,0 1,5 a) Qual a velocidade do móvel no instante 4 s? 1,0 b) Construa o gráfico da velocidade do móvel em 0,5 função do tempo nos 4 s iniciais do movimento. 0 1 2 3 4 t (s) 45 (UEPI) Um corpo é abandonado de uma altura Analisando o gráfico, podemos afirmar que: de 20 m num local onde a aceleração da gravidade a) A velocidade inicial é negativa. da Terra é dada por g 10 m/s2. Desprezando o atrito, o corpo toca o solo com velocidade: b) A aceleração do ponto material é positiva. a) igual a 20 m/s d) igual a 20 km/h c) O ponto material parte da origem das posições. b) nula e) igual a 15 m/s d) No instante 2 segundos, a velocidade do ponto material é nula. c) igual a 10 m/s e) No instante 4 segundos, o movimento do ponto 46 (PUC-RJ) Uma bola é lançada de uma torre, para material é progressivo. baixo. A bola não é deixada cair mas, sim, lançada com uma certa velocidade inicial para baixo. Sua 43 (UFAL) Cada questão de proposições múltiplas aceleração para baixo é (g refere-se à aceleração da consistirá de 5 (cinco) afirmações, das quais algu- gravidade): mas são verdadeiras, as outras são falsas, podendo ocorrer que todas as afirmações sejam verdadeiras a) exatamente igual a g. ou que todas sejam falsas. As alternativas verdadei- b) maior do que g. 10 SIMULADÃO
  • 10. c) menor do que g. 51 (UFSC) Quanto ao movimento de um corpo lan- d) inicialmente, maior do que g, mas rapidamente çado verticalmente para cima e submetido somente estabilizando em g. à ação da gravidade, é correto afirmar que: e) inicialmente, menor do que g, mas rapidamente 01. A velocidade do corpo no ponto de altura máxi- estabilizando em g. ma é zero instantaneamente. 02. A velocidade do corpo é constante para todo o 47 (FUC-MT) Um corpo é lançado verticalmente para percurso. cima com uma velocidade inicial de v0 30 m/s. 04. O tempo necessário para a subida é igual ao Sendo g 10 m/s2 e desprezando a resistência tempo de descida, sempre que o corpo é lançado do ar qual será a velocidade do corpo 2,0 s após o de um ponto e retorna ao mesmo ponto. lançamento? 08. A aceleração do corpo é maior na descida do a) 20 m/s d) 40 m/s que na subida. b) 10 m/s e) 50 m/s 16. Para um dado ponto na trajetória, a velocidade c) 30 m/s tem os mesmos valores, em módulo, na subida e na descida. 48 (FUC-MT) Em relação ao exercício anterior, qual é a altura máxima alcançada pelo corpo? 52 (EFEI-MG) A velocidade de um projétil lançado verticalmente para cima varia de acordo com o grá- a) 90 m d) 360 m fico da figura. Determine a altura máxima atingida b) 135 m e) 45 m pelo projétil, considerando que esse lançamento se c) 270 m dá em um local onde o campo gravitacional é dife- rente do da Terra. 49 (UECE) De um corpo que cai livremente desde o v (m/s) repouso, em um planeta X, 20 foram tomadas fotografias de múltipla exposição à razão de 10 1 200 fotos por minuto. As- 0 5 t (s) sim, entre duas posições vizi- nhas, decorre um intervalo de tempo de 1/20 de segundo. 80 cm A partir das informações 53 (UERJ) Foi veiculada na televisão uma propagan- constantes da figura, pode- da de uma marca de biscoitos com a seguinte cena: mos concluir que a acelera- um jovem casal está num mirante sobre um rio e ção da gravidade no planeta alguém deixa cair lá de cima um biscoito. Passados X, expressa em metros por se- alguns segundos, o rapaz se atira do mesmo lugar gundo ao quadrado, é: de onde caiu o biscoito e consegue agarrá-lo no ar. Em ambos os casos, a queda é livre, as velocidades a) 20 d) 40 iniciais são nulas, a altura da queda é a mesma e a b) 50 e) 10 resistência do ar é nula. c) 30 Para Galileu Galilei, a situação física desse comercial seria interpretada como: 50 (UFMS) Um corpo em queda livre sujeita-se à ace- a) impossível, porque a altura da queda não era gran- leração gravitacional g 10 m/s2. Ele passa por um de o suficiente ponto A com velocidade 10 m/s e por um ponto B b) possível, porque o corpo mais pesado cai com com velocidade de 50 m/s. A distância entre os pon- maior velocidade tos A e B é: c) possível, porque o tempo de queda de cada cor- a) 100 m d) 160 m po depende de sua forma b) 120 m e) 240 m d) impossível, porque a aceleração da gravidade não c) 140 m depende da massa dos corpos SIMULADÃO 11
  • 11. 54 (Fafi-BH) Um menino lança uma bola verticalmen- 58 (UFRJ) Um pára-quedista radical pretende atingir te para cima do nível da rua. Uma pessoa que está a velocidade do som. Para isso, seu plano é saltar numa sacada a 10 m acima do solo apanha essa bola de um balão estacionário na alta atmosfera, equi- quando está a caminho do chão. pado com roupas pressurizadas. Como nessa alti- Sabendo-se que a velocidade inicial da bola é de tude o ar é muito rarefeito, a força de resistência 15 m/s, pode-se dizer que a velocidade da bola, ao do ar é desprezível. Suponha que a velocidade ini- ser apanhada pela pessoa, era de cial do pára-quedista em relação ao balão seja nula e que a aceleração da gravidade seja igual a 10 m/s2. A velocidade do som nessa altitude é 300 m/s. Calcule: a) em quanto tempo ele atinge a velocidade do som; b) a distância percorrida nesse intervalo de tempo. 10 m 59 (PUCC-SP) Num bairro, onde todos os quartei- rões são quadrados e as ruas paralelas distam 100 m uma da outra, um transeunte faz o percurso de P a Q pela trajetória representada no esquema. P a) 15 m/s b) 10 m/s c) 5 m/s d) 0 m/s 100 m 55 (MACK-SP) Uma equipe de resgate se encontra num helicóptero, parado em relação ao solo a 305 m de altura. Um pára-quedista abandona o helicóptero Q e cai livremente durante 1,0 s, quando abre-se o pára-quedas. A partir desse instante, mantendo cons- 100 m tante seu vetor velocidade, o pára-quedista atingirá o solo em: O deslocamento vetorial desse transeunte tem (Dado: g 10 m/s2) módulo, em metros, igual a a) 7,8 s b) 15,6 s c) 28 s d) 30 s e) 60 s a) 700 d) 350 b) 500 e) 300 56 (UERJ) Um malabarista consegue manter cinco bolas em movimento, arremessando-as para cima, c) 400 uma de cada vez, a intervalos de tempo regulares, de modo que todas saem da mão esquerda, alcan- 60 (Unitau-SP) Considere o conjunto de vetores re- çam uma mesma altura, igual a 2,5 m, e chegam à presentados na figura. Sendo igual a 1 o módulo mão direita. Desprezando a distância entre as mãos, de cada vetor, as operações A B, A B Ce determine o tempo necessário para uma bola sair A B C D terão módulos, respectivamente, de uma das mãos do malabarista e chegar à outra, iguais a: ← conforme o descrito acima. A a) 2; 1; 0 (Adote g 10 m/s2.) b) 1; 2 ;4 57 (Cefet-BA) Um balão em movimento vertical as- ← ← c) 2 ; 1; 0 D B cendente à velocidade constante de 10 m/s está a 75 m da Terra, quando dele se desprende um obje- d) 2 ; 2 ;1 to. Considerando a aceleração da gravidade igual a 10 m/s2 e desprezando a resistência do ar, o tem- e) 2; 2 ;0 ← C po, em segundos, em que o objeto chegará a Terra, é: 61 (UEL-PR) Observando-se os vetores indicados no a) 50 b) 20 c) 10 d) 8 e) 5 esquema, pode-se concluir que 12 SIMULADÃO
  • 12. Sendo v1 v2, o módulo da velocidade do passagei- ← X ro em relação ao ponto B da rua é: a) v1 v2 d) v1 b) v1 v2 e) v2 c) v2 v1 ← b ← c 64 (FURRN) Um barco, em águas paradas, desen- ← d volve uma velocidade de 7 m/s. Esse barco vai cru- ← a zar um rio cuja correnteza tem velocidade 4 m/s, paralela às margens. Se o barco cruza o rio perpen- dicularmente à correnteza, sua velocidade em rela- → → → → → → ção às margens, em metros por segundo é, aproxi- a) X a b d) X b c madamente: → → → → → → b) X a c e) X b d a) 11 b) 8 c) 6 d) 5 e) 3 → → → c) X a d 65 (FM-Itajubá-MG) Um barco atravessa um rio se- 62 Na figura, o retângulo representa a janela de um guindo a menor distância entre as margens, que são trem que se move com velocidade constante e não paralelas. Sabendo que a largura do rio é de 2,0 km, nula, enquanto a seta indica o sentido de movimen- a travessia é feita em 15 min e a velocidade da cor- to do trem em relação ao solo. renteza é 6,0 km/h, podemos afirmar que o módulo da velocidade do barco em relação à água é: a) 2,0 km/h d) 10 km/h b) 6,0 km/h e) 14 km/h c) 8,0 km/h → Dentro do trem, um passageiro sentado nota que 66 (UFOP-MG) Os vetores velocidade ( v ) e acelera- → começa a chover. Vistas por um observador em re- ção ( a ) de uma partícula em movimento circular uni- pouso em relação ao solo terrestre, as gotas da chu- forme, no sentido indicado, estão melhor represen- va caem verticalmente. tados na figura: ← ← a Represente vetorialmente a velocidade das gotas de a) v d) ← chuva para o passageiro que se encontra sentado. v ← a 63 (MACK-SP) Num mesmo plano vertical, perpen- dicular à rua, temos os segmentos de reta AB e PQ, ← v paralelos entre si. Um ônibus se desloca com veloci- b) ← e) a ← dade constante de módulo v1, em relação à rua, ao ← v a longo de AB , no sentido de A para B, enquanto um passageiro se desloca no interior do ônibus, com ← velocidade constante de módulo v2, em relação ao a ← c) v veículo, ao longo de PQ no sentido de P para Q. Q P 67 (Fiube-MG) Na figura está representada a traje- tória de um móvel que vai do ponto P ao ponto Q A B em 5 s. O módulo de sua velocidade vetorial média, em metros por segundo e nesse intervalo de tempo, é igual a: SIMULADÃO 13
  • 13. a) 1 P 70 (FAAP-SP) Numa competição nos jogos de Winnipeg, no Canadá, um atleta arremessa um dis- b) 2 1 m co com velocidade de 72 km/h, formando um ân- c) 3 3 gulo de 30º com a horizontal. Desprezando-se os 1 m d) 4 3 efeitos do ar, a altura máxima atingida pelo disco é: (g 10 m/s2) e) 5 a) 5,0 m d) 25,0 m b) 10,0 m e) 64,0 m Q c) 15,0 m 68 (PUC-SP) Suponha que em uma partida de fute- bol, o goleiro, ao bater o tiro de meta, chuta a bola, 71 (UFSC) Uma jogadora de basquete joga uma bola ⎯→ com velocidade de módulo 8,0 m/s, formando imprimindo-lhe uma velocidade v 0 cujo vetor forma, com a horizontal, um ângulo . Desprezan- um ângulo de 60º com a horizontal, para cima. O do a resistência do ar, são feitas as seguintes afir- arremesso é tão perfeito que a atleta faz a cesta mações. sem que a bola toque no aro. Desprezando a resis- tência do ar, assinale a(s) proposição(ões) y verdadeira(s). 01. O tempo gasto pela bola para alcançar o ponto → v0 mais alto da sua trajetória é de 0,5 s. 02. O módulo da velocidade da bola, no ponto mais alto da sua trajetória, é igual a 4,0 m/s. 04. A aceleração da bola é constante em módulo, x direção e sentido desde o lançamento até a bola atingir a cesta. 08. A altura que a bola atinge acima do ponto de lançamento é de 1,8 m. I – No ponto mais alto da trajetória, a velocidade vetorial da bola é nula. 16. A trajetória descrita pela bola desde o lança- ⎯ → mento até atingir a cesta é uma parábola. II – A velocidade inicial v 0 pode ser decomposta segundo as direções horizontal e vertical. 72 Numa partida de futebol, o goleiro bate o tiro de III – No ponto mais alto da trajetória é nulo o valor meta e a bola, de massa 0,5 kg, sai do solo com da aceleração da gravidade. velocidade de módulo igual a 10 m/s, conforme IV – No ponto mais alto da trajetória é nulo o valor mostra a figura. ⎯ → v y da componente vertical da velocidade. Estão corretas: a) I, II e III d) III e IV b) I, III e IV e) I e II P c) II e IV → 2m v 69 (UEL-PR) Um corpo é lançado para cima, com 60° velocidade inicial de 50 m/s, numa direção que for- ma um ângulo de 60º com a horizontal. Desprezan- do a resistência do ar, pode-se afirmar que no ponto mais alto da trajetória a velocidade do corpo, em No ponto P, a 2 metros do solo, um jogador da de- metros por segundo, será: fesa adversária cabeceia a bola. Considerando (Dados: sen 60º 0,87; cos 60º 0,50) g 10 m/s2, determine a velocidade da bola no a) 5 b) 10 c) 25 d) 40 e) 50 ponto P. 14 SIMULADÃO
  • 14. 73 (UFPE) Dois bocais de mangueiras de jardim, A e A trajetória do motociclista deverá atingir novamente B, estão fixos ao solo. O bocal A é perpendicular ao a rampa a uma distância horizontal D(D H), do solo e o outro está inclinado 60° em relação à dire- ponto A, aproximadamente igual a: ção de A. Correntes de água jorram dos dois bocais a) 20 m d) 7,5 m com velocidades idênticas. Qual a razão entre as al- turas máximas de elevação da água? b) 15 m e) 5 m c) 10 m 74 (Unisinos-RS) Suponha três setas A, B e C lan- çadas, com iguais velocidades, obliquamente acima 77 (Fameca-SP) De um avião descrevendo uma tra- de um terreno plano e horizontal, segundo os ân- jetória paralela ao solo, com velocidade v, é aban- gulos de 30°, 45° e 60°, respectivamente. Desconsi- donada uma bomba de uma altura de 2 000 m do derando a resistência do ar, afirma-se que: solo, exatamente na vertical que passa por um ob- III – A permanecerá menos tempo no ar. servador colocado no solo. O observador ouve o III – B terá maior alcance horizontal. “estouro” da bomba no solo depois de 23 segun- III – C alcançará maior altura acima da horizontal. dos do lançamento da mesma. Das afirmativas acima: São dados: aceleração da gravidade g 10 m/s2; a) somente I é correta velocidade do som no ar: 340 m/s. b) somente II é correta A velocidade do avião no instante do lançamento c) somente I e II são corretas da bomba era, em quilômetros por hora, um valor d) somente I e III são corretas mais próximo de: e) I, II e III são corretas a) 200 d) 300 b) 210 e) 150 75 (Unitau-SP) Numa competição de motocicletas, c) 180 os participantes devem ultrapassar um fosso e, para tornar possível essa tarefa, foi construída uma ram- pa conforme mostra a figura. 78 (Unifor-CE) Considere as afirmações acerca do movimento circular uniforme: 10° L I. Não há aceleração, pois não há variação do vetor velocidade. II. A aceleração é um vetor de intensidade cons- tante. III. A direção da aceleração é perpendicular à veloci- Desprezando as dimensões da moto e considerando dade e ao plano da trajetória. L 7,0 m, cos 10° 0,98 e sen 10° 0,17, deter- Dessas afirmações, somente: mine a mínima velocidade com que as motos de- vem deixar a rampa a fim de que consigam atraves- a) I é correta d) I e II são corretas sar o fosso. Faça g 10 m/s2. b) II é correta e) II e III são corretas c) III é correta 76 (Fuvest-SP) Um motociclista de motocross move- se com velocidade v 10 m/s, sobre uma superfície plana, até atingir uma rampa (em A), inclinada 45° 79 (UFU-MG) Em uma certa marca de máquina de com a horizontal, como indicado na figura. lavar, as roupas ficam dentro de um cilindro oco que possui vários furos em sua parede lateral (veja a figura). v g A H 45° D SIMULADÃO 15
  • 15. Depois que as roupas são lavadas, esse cilindro gira 83 (UFOP-MG) I – Os vetores velocidade (v) e acele- com alta velocidade no sentido indicado, a fim de ração (a) de uma partícula em movimento circular que a água seja retirada das roupas. Olhando o ci- uniforme, no sentido indicado, estão corretamente lindro de cima, indique a alternativa que possa re- representados na figura: presentar a trajetória de uma gota de água que sai a) v d) a do furo A: a v a) d) A A v b) a e) a v b) e) A A a c) v c) A III – A partir das definições dos vetores velocidade 80 (FUC-MT) Um ponto material percorre uma (v) e aceleração (a) justifique a resposta dada no item circunferência de raio igual a 0,1 m em movimento anterior. uniforme de forma, a dar 10 voltas por segundo. III – Se o raio da circunferência é R 2 m e a fre- Determine o período do movimento. qüência do movimento é f 120 rotações por mi- a) 10,0 s d) 0,1 s nuto, calcule os módulos da velocidade e da acele- ração. b) 10,0 Hz e) 100 s Adote 3,14. c) 0,1 Hz 84 (Puccamp-SP) Na última fila de poltronas de um 81 (ITE-SP) Uma roda tem 0,4 m de raio e gira com ônibus, dois passageiros estão distando 2 m entre velocidade constante, dando 20 voltas por minuto. si. Se o ônibus faz uma curva fechada, de raio 40 m, Quanto tempo gasta um ponto de sua periferia para com velocidade de 36 km/h, a diferença das veloci- percorrer 200 m: dades dos passageiros é, aproximadamente, em a) 8 min c) 3,98 min metros por segundo, b) 12,5 min d) n.d.a. a) 0,1 b) 0,2 c) 0,5 d) 1,0 e) 1,5 82 Uma pedra se engasta num pneu de automóvel 85 (Unimep-SP) Uma partícula percorre uma traje- que está com uma velocidade uniforme de 90 km/h. tória circular de raio 10 m com velocidade constan- Considerando que o te em módulo, gastando 4,0 s num percurso de pneu não patina nem 80 m. Assim sendo, o período e a aceleração desse escorrega e que o sen- movimento serão, respectivamente, iguais a: tido de movimento do automóvel é o positi- a) s e zero d) s e zero 2 3 vo, calcule os valores máximo e mínimo da b) s e 40 m/s2 e) s e 40 m/s2 3 velocidade da pedra em relação ao solo. c) s e 20 m/s2 16 SIMULADÃO
  • 16. (UERJ) Utilize os dados a seguir para resolver as ques- 89(Unirio-RJ) O mecanismo apresentado na figura tões de números 86 e 87. é utilizado para enrolar mangueiras após terem sido Uma das atrações típicas do circo é o equilibrista usadas no combate a incêndios. A mangueira é sobre monociclo. enrolada sobre si mesma, camada sobre camada, formando um carretel cada vez mais espesso. Con- siderando ser o diâmetro da polia A maior que o diâmetro da polia B, quando giramos a manivela M com velocidade constante, verificamos que a po- lia B gira que a polia A, enquanto a extremidade P da mangueira sobe com movimento . Preenche corretamente as lacunas acima a opção: O raio da roda do monociclo utilizado é igual a 20 cm, e o movimento do equilibrista é retilíneo. O M equilibrista percorre, no início de sua apresentação, uma distância de 24 metros. B A 86 Determine o número de pedaladas, por segun- do, necessárias para que ele percorra essa distância em 30 s, considerando o movimento uniforme. 87 Em outro momento, o monociclo começa a se mover a partir do repouso com aceleração constan- te de 0,50 m/s2. Calcule a velocidade média do equilibrista no trajeto percorrido nos primeiros 6,0 s. P 88 (Fuvest-SP) Um disco de raio r gira com velocida- de angular constante. Na borda do disco, está a) mais rapidamente – aceleração presa uma placa fina de material facilmente b) mais rapidamente – uniforme perfurável. Um projétil é disparado com velocidade c) com a mesma velocidade – uniforme v em direção ao eixo do disco, conforme mostra a figura, e fura a placa no ponto A. Enquanto o pro- d) mais lentamente – uniforme jétil prossegue sua trajetória sobre o disco, a placa e) mais lentamente – acelerado gira meia circunferência, de forma que o projétil atravessa mais uma vez o mesmo orifício que havia 90 (Fuvest-SP) Uma criança montada em um velocí- perfurado. Considere a velocidade do projétil cons- pede se desloca em trajetória retilínea, com veloci- tante e sua trajetória retilínea. O módulo da veloci- dade constante em relação ao chão. A roda diantei- dade v do projétil é: ra descreve uma volta completa em um segundo. O r raio da roda dianteira vale 24 cm e o das traseiras a) 16 cm. Podemos afirmar que as rodas traseiras do velocípede completam uma volta em, aproximada- b) 2 r → v mente: 1 3 r a) s d) s c) r 2 2 2 2 d) r w b) s e) 2 s 3 e) r c) 1 s SIMULADÃO 17
  • 17. 94 (Unipa-MG) Um objeto de massa m 3,0 kg é DINÂMICA colocado sobre uma superfície sem atrito, no plano xy. Sobre esse objeto atuam 3 forças, conforme o 91 (Vunesp-SP) A figura mostra, em escala, duas for- desenho abaixo. → → ças a e b , atuando num ponto material P. y ← ← F1 a ← P F2 ← b escala x 1N 1N ← F3 Reproduza a figura, juntamente com o quadricula- do, em sua folha de respostas. → → Sabendo-se que F3 4,0 N e que o objeto adquire a) Represente na figura reproduzida a força R , re- → → → uma aceleração de 2,0 m/s2 no sentido oposto a F3 , sultante das forças a e b , e determine o valor de foram feitas as seguintes afirmações: seu módulo em newtons. III – a força resultante sobre o objeto tem o mesmo b) Represente, também, na mesma figura, o vetor sentido e direção da aceleração do objeto; → → → → → c , de tal modo a b c 0 . III – o módulo da força resultante sobre o objeto é de 6,0 N; → → 92 Duas forças de módulos F1 8 N e F2 9 N for- III – a resultante das forças F1 e F2 vale 10,0 N e tem → mam entre si um ângulo de 60º. sentido oposto a F3 . Sendo cos 60º 0,5 e sen 60º 0,87, o módulo da Pode-se afirmar que: força resultante, em newtons, é, aproximadamente, a) Somente I e II são verdadeiras. a) 8,2 d) 14,7 b) Somente I e III são verdadeiras. b) 9,4 e) 15,6 c) Somente II e III são verdadeiras. c) 11,4 d) Todas são verdadeiras. e) Todas são falsas. 93 (Furg-RS) Duas forças de módulo F e uma de mó- dulo F atuam sobre uma partícula de massa m, 95 (Vunesp-SP) Observando-se o movimento de um 2 carrinho de 0,4 kg ao longo de uma trajetória sendo as suas direções e sentidos mostrados na retilínea, verificou-se que sua velocidade variou li- figura. nearmente com o tempo de acordo com os dados y da tabela. t (s) 0 1 2 3 4 v (m/s) 10 12 14 16 18 No intervalo de tempo considerado, a intensidade x da força resultante que atuou no carrinho foi, em newtons, igual a: A direção e o sentido do vetor aceleração são mais bem representados pela figura da alternativa: a) 0,4 d) 2,0 b) 0,8 e) 5,0 a) b) c) d) e) c) 1,0 18 SIMULADÃO
  • 18. 96 (UEPB) Um corpo de 4 kg descreve uma trajetó- 100 (UFRJ) O bloco 1, de 4 kg, e o bloco 2, de 1 kg, ria retilínea que obedece à seguinte equação horá- representados na figura, estão justapostos e apoia- ria: x 2 2t 4t2, onde x é medido em metros e dos sobre uma superfície plana e horizontal. Eles são → t em segundos. Conclui-se que a intensidade da for- acelerados pela força horizontal F , de módulo igual ça resultante do corpo em newtons vale: a 10 N, aplicada ao bloco 1 e passam a deslizar so- a) 16 d) 8 bre a superfície com atrito desprezível. b) 64 e) 32 c) 4 ← F 1 2 97 (UFPE) Um corpo de 3,0 kg está se movendo so- bre uma superfície horizontal sem atrito com veloci- → dade v0. Em um determinado instante (t 0) uma a) Determine a direção e o sentido da força F1, 2 força de 9,0 N é aplicada no sentido contrário ao exercida pelo bloco 1 sobre o bloco 2 e calcule seu movimento. Sabendo-se que o corpo atinge o re- módulo. → pouso no instante t 9,0 s, qual a velocidade inicial b) Determine a direção e o sentido da força F2, 1 v0, em m/s, do corpo? exercida pelo bloco 2 sobre o bloco 1 e calcule seu módulo. 98 (UFPI) A figura abaixo mostra a força em função da aceleração para três diferentes corpos 1, 2 e 3. 101 (UFPE) Uma locomotiva puxa 3 vagões de carga Sobre esses corpos é correto afirmar: com uma aceleração de 2,0 m/s2. Cada vagão tem 10 toneladas de massa. Qual a tensão na barra de força (N) engate entre o primeiro e o segundo vagões, em uni- dades de 103 N? (Despreze o atrito com os trilhos.) 1 8 o2 rpo rp co co 6 o3 4 cor p 2 0 2 4 6 8 10 aceleração (m/s2) 3 2 1 a) O corpo 1 tem a menor inércia. b) O corpo 3 tem a maior inércia. c) O corpo 2 tem a menor inércia. 102 (MACK-SP) O conjunto abaixo, constituído de d) O corpo 1 tem a maior inércia. fio e polia ideais, é abandonado do repouso no ins- e) O corpo 2 tem a maior inércia. tante t 0 e a velocidade do corpo A varia em fun- ção do tempo segundo o B 99 (UFU-MG) Um astronauta leva uma caixa da Ter- diagrama dado. Despre- ra até a Lua. Podemos dizer que o esforço que ele zando o atrito e admitin- fará para carregar a caixa na Lua será: do g 10 m/s2, a relação A entre as massas de A (mA) a) maior que na Terra, já que a massa da caixa dimi- e de B (mB) é: nuirá e seu peso aumentará. b) maior que na Terra, já que a massa da caixa per- a) mB 1,5 mA d) mB 0,5 mB manecerá constante e seu peso aumentará. b) mA 1,5 mB e) mA mB c) menor que na Terra, já que a massa da caixa di- c) mA 0,5 mB minuirá e seu peso permanecerá constante. d) menor que na Terra, já que a massa da caixa au- 103 (UFRJ) Um operário usa uma empilhadeira de mentará e seu peso diminuirá. massa total igual a uma tonelada para levantar ver- e) menor que na Terra, já que a massa da caixa per- ticalmente uma caixa de massa igual a meia tonela- manecerá constante e seu peso diminuirá. da, com uma aceleração inicial de 0,5 m/s2, que se SIMULADÃO 19
  • 19. mantém constante 107 (UERJ) Uma balança na portaria de um prédio durante um curto in- indica que o peso de Chiquinho é de 600 newtons. tervalo de tempo. Use A seguir, outra pesagem é feita na mesma balança, g 10 m/s2 e calcule, no interior de um elevador, que sobe com acelera- neste curto intervalo ção de sentido contrário ao da aceleração da gravi- de tempo: dade e módulo a g/10, em que g 10 m/s2. a) a força que a empi- Nessa nova situação, o ponteiro da balança aponta lhadeira exerce sobre a para o valor que está indicado corretamente na se- caixa; guinte figura: b) a força que o chão exerce sobre a empilhadeira. a) c) (Despreze a massa das partes móveis da empilhadeira.) 104 No sistema da figura, mA 4,5 kg, mB 12 kg e g 10 m/s2. Os fios e 540 N 630 N as polias são ideais. b) d) a) Qual a aceleração dos corpos? A b) Qual a tração no fio ligado ao corpo A? B 570 N 660 N 105 (ESFAO) No salvamento de um homem em alto- 108 (Vunesp-SP) Um plano inclinado faz um ângulo mar, uma bóia é largada de um helicóptero e leva de 30° com a horizontal. Determine a força cons- 2,0 s para atingir a superfície da água. tante que, aplicada a um bloco de 50 kg, parale- Considerando a aceleração da gravidade igual a lamente ao plano, faz com que ele deslize 10 m/s2 e desprezando o atrito com o ar, determine: (g 10 m/s2): a) a velocidade da bóia ao atingir a superfície da I – para cima, com aceleração de 1,2 m/s2; água; II – para baixo, com a mesma aceleração de 1,2 m/s2. b) a tração sobre o cabo usado para içar o homem, Despreze o atrito do bloco com o plano. sabendo que a massa deste é igual a 120 kg e que a I) II) aceleração do conjunto é 0,5 m/s2. a) 310 N para cima 190 N para cima 106 (Vunesp-SP) Uma carga de 10 103 kg é abai- b) 310 N para cima 310 N para baixo xada para o porão de um navio atracado. A veloci- c) 499 N para cima 373 N para cima dade de descida da carga em função do tempo está d) 433 N para cima 60 N para cima representada no gráfico da figura. e) 310 N para cima 190 N para baixo x (m/s) 3 109 (Vunesp-SP) Dois planos inclinados, unidos por um plano horizontal, estão colocados um em frente ao outro, como mostra a figura. Se não houvesse 0 6 12 14 t (s) atrito, um corpo que fosse abandonado num dos planos inclinados desceria por ele e subiria pelo ou- a) Esboce um gráfico da aceleração a em função do tro até alcançar a altura original H. tempo t para esse movimento. posição inicial posição final b) Considerando g 10 m/s2, determine os módulos das forças de tração T1, T2 e T3, no cabo que susten- ta a carga, entre 0 e 6 segundos, entre H 6 e 12 segundos e entre 12 e 14 segundos, respec- tivamente. 20 SIMULADÃO
  • 20. Nestas condições, qual dos gráficos melhor descre- d) a (m/s2) ve a velocidade v do corpo em função do tempo t 8,0 nesse trajeto? 4,0 a) v d) v 0 1,5 2,5 3,25 4,25 x (m) e) a (m/s2) 8,0 0 t 0 t 1,5 b) v e) v 0 2,5 3,25 4,25 x (m) 8,0 0 t 0 t 111 (UFRJ) Duas pequenas esferas de aço são aban- c) v donadas a uma mesma altura h do solo. A esfera (1) cai verticalmente. A esfera (2) desce uma rampa in- clinada 30° com a horizontal, como mostra a figura. 0 t (1) (2) 110 (MACK-SP) Uma partícula de massa m desliza com movimento progressivo ao longo do trilho ilus- h trado abaixo, desde o ponto A até o ponto E, sem 30° perder contato com o mesmo. Desprezam-se as for- ças de atrito. Em relação ao trilho, o gráfico que Considerando os atritos desprezíveis, calcule a razão melhor representa a aceleração escalar da partícula t1 em função da distância percorrida é: entre os tempos gastos pelas esferas (1) e (2), t2 A respectivamente, para chegarem ao solo. ← g D 0,9 m E 12 m 112 (UFG) Nas academias de ginástica, usa-se um 0,6 m aparelho chamado pressão com pernas (leg press), B C que tem a função de fortalecer a musculatura das 0,9 m 1,0 m 0,45 m pernas. Este aparelho possui uma parte móvel que desliza sobre um plano inclinado, fazendo um ân- a) a (m/s2) gulo de 60° com a horizontal. Uma pessoa, usando 8,0 o aparelho, empurra a parte móvel de massa igual a 2,5 3,25 100 kg, e a faz mover ao longo do plano, com velo- 0 1,5 4,25 x (m) cidade constante, como é mostrado na figura. 8,0 → v b) a (m/s2) 8,0 2,5 3,25 0 1,5 4,25 x (m) 8,0 c) a (m/s2) 60° 8,0 0 1,5 2,5 3,25 4,25 x (m) SIMULADÃO 21
  • 21. Considere o coeficiente de atrito dinâmico entre o x plano inclinado e a parte móvel 0,10 e a aceleração gravitacional 10 m/s 2. (Usar sen 60° 0,86 e cos 60° 0,50) a) Faça o diagrama das forças que estão atuando I – A força para colocar o corpo em movimento é sobre a parte móvel do aparelho, identificando-as. maior do que aquela necessária para mantê-lo em b) Determine a intensidade da força que a pessoa movimento uniforme; está aplicando sobre a parte móvel do aparelho. II – A força de atrito estático que impede o movi- mento do corpo é, no caso, 60 N, dirigida para a direita; 113 (UENF-RJ) A figura abaixo mostra um corpo de I de massa mI 2 kg apoiado em um plano inclina- III – Se nenhuma outra força atuar no corpo ao lon- do e amarrado a uma corda, que passa por uma go do eixo X além da força de atrito, devido a essa roldana e sustenta um outro corpo II de massa força o corpo se move para a direita; mII 3 kg. IV – A força de atrito estático só vale 60 N quando for aplicada uma força externa no corpo e que o coloque na iminência de movimento ao longo do Despreze a massa da cor- eixo X. I II da e atritos de qualquer São corretas as afirmações: 30° natureza. a) I e II b) I e III c) I e IV d) II e III e) II e IV a) Esboce o diagrama de forças para cada um dos dois corpos. 116 (UFAL) Um plano perfeitamente liso e horizon- b) Se o corpo II move-se para baixo com aceleração tal é continuado por outro áspero. Um corpo de a 4 m/s2, determine a tração T na corda. massa 5,0 kg move-se no plano liso onde percorre 100 m a cada 10 s e, ao atingir o plano áspero, ele 114 (MACK-SP) Num local onde a aceleração gravi- percorre 20 m até parar. Determine a intensidade tacional tem módulo da força de atrito, em newtons, que atua no corpo 10 m/s 2, dispõe-se o quando está no plano áspero. conjunto abaixo, no qual o atrito é despre- 117 (UFRJ) Um caminhão está se deslocando numa zível, a polia e o fio são estrada plana, retilínea e horizontal. Ele transporta B C ideais. Nestas condi- A uma caixa de 100 kg apoiada sobre o piso horizon- ções, a intensidade da tal de sua carroceria, como mostra a figura. força que o bloco A exerce no bloco B é: Dados m (A) 6,0 kg cos 0,8 m (B) 4,0 kg sen 0,6 Num dado instante, o motorista do caminhão pisa o m (C) 10 kg freio. A figura a seguir representa, em gráfico car- tersiano, como a ve- v (m/s) a) 20 N b) 32 N c) 36 N d) 72 N e) 80 N locidade do caminhão 10 varia em função do 115 (Unitau-SP) Um corpo de massa 20 kg se encon- tempo. tra apoiado sobre uma mesa horizontal. O coefici- 0 1,0 2,0 3,0 3,5 t (s) ente de atrito estático entre o corpo e a mesa é igual O coeficiente de atrito estático entre a caixa e o piso a 0,30 e o movimento somente poderá ocorrer ao da carroceria vale 0,30. Considere g 10 m/s2. longo do eixo X e no sentido indicado na figura. Verifique se, durante a freada, a caixa permanece Considerando-se o valor da aceleração da gravida- em repouso em relação ao caminhão ou desliza so- de igual a 10 m/s2, examine as afirmações: bre o piso da carroceria. Justifique sua resposta. 22 SIMULADÃO