Elegância Profissional ...
Qualquer Engenheiro aprende a notação matemática
segundo a qual a soma de dois números reais, como
por exemplo,

1 +1 = 2
pode ser escrita de maneira muito simples.
Entretanto, esta forma é errada devido à sua
banalidade e demonstra uma falta total de estilo .
Desde as primeiras aulas de Matemática sabemos que ,

1 = ln (e )
e também que,

1 = s in ( p ) + c o s ( p )
2

2

Além disso, todos sabem que,

2 =

∞

∑
n =0

1 
 
2 

n
Portanto a expressão,

1 +1 = 2
pode ser reescrita de uma forma mais elegante como,

l n (e ) + s i n ( p ) + c o s ( p ) =
2

2

∞

∑

n =0

1 
 
2 

n

a qual, como fácilmente podem observar, é muito mais
compreensível e científica.
É sabido que:

1 = co sh (q ) *

1 − ta n h ( q )
2

e que,

1 

e = lim 1 + 
z→ ∞
z 


z
de onde resulta,
l n (e ) + s i n ( p ) + c o s ( p ) =
2

2

∞

∑

n =0

n

1 
 
2 

que ainda pode ser escrita da seguinte forma clara e
transparente,
2

1  

ln  lim 1 +   + s in 2 ( p ) + c o s 2 ( p ) =
 z→ ∞
z  



∞

∑

n =0

1 − ta n h 2 ( q )

co sh (q ) *
2

n
Tendo em conta que

0!= 1
e que a matriz invertida da matriz transposta é igual à
matriz transposta da matriz invertida (com a hipótese
de um espaço unidimensional), conseguimos a
seguinte simplificação (devida ao uso de notação
X vetorial),

(X ) − (X )
T

−1

−1 T

= 0
Se unificarmos as expressões simplificadas,

0!= 1
e

(X ) − (X )
T

−1

−1 T

= 0

será óbvio que obtenhamos,

( ) − (X )


 X


T

−1

−1 T


! = 1

Aplicando as simplificações descritas anteriormente,
resulta que, da equação abaixo…
2

1  

ln  lim 1 +   + s in 2 ( p ) + c o s 2 ( p ) =
 z→ ∞
z  



∞

∑

n =0

c o s h ( q ) * 1 − ta n h 2 ( q )
2n

…obtemos finalmente, de forma totalmente elegante,
legível, sucinta e compensível para qualquer um,
a equação:

( ) − (X )



ln  lim   X
 z→ ∞ 


T

−1

−1 T

2
 1  
2
2
! +   + s i n ( p ) + c o s ( p ) =
 z  


∞

∑

n =0

c o s h ( q ) * 1 − ta n h 2 ( q )
2n

(que, convenhamos, é muito mais profissional que
a vulgaríssima e plebeia equação original )

1 +1 = 2
Envie esta mensagem a alguma pessoa sábia e inteligente.
Envie, também, para os advogados da sua lista para que eles
saibam que não são os únicos que sabem complicar as coisas
simples em proveito próprio.
Envie-a também a seus amigos, que saberão apreciar sua
alma sensível e humilde de Engenheiro(a)…
Envie esta mensagem a alguma pessoa sábia e inteligente.
Envie, também, para os advogados da sua lista para que eles
saibam que não são os únicos que sabem complicar as coisas
simples em proveito próprio.
Envie-a também a seus amigos, que saberão apreciar sua
alma sensível e humilde de Engenheiro(a)…

Simplicidade do engenheiro 1+1=2 (az)1

  • 1.
    Elegância Profissional ... QualquerEngenheiro aprende a notação matemática segundo a qual a soma de dois números reais, como por exemplo, 1 +1 = 2 pode ser escrita de maneira muito simples. Entretanto, esta forma é errada devido à sua banalidade e demonstra uma falta total de estilo .
  • 2.
    Desde as primeirasaulas de Matemática sabemos que , 1 = ln (e ) e também que, 1 = s in ( p ) + c o s ( p ) 2 2 Além disso, todos sabem que, 2 = ∞ ∑ n =0 1    2  n
  • 3.
    Portanto a expressão, 1+1 = 2 pode ser reescrita de uma forma mais elegante como, l n (e ) + s i n ( p ) + c o s ( p ) = 2 2 ∞ ∑ n =0 1    2  n a qual, como fácilmente podem observar, é muito mais compreensível e científica.
  • 4.
    É sabido que: 1= co sh (q ) * 1 − ta n h ( q ) 2 e que, 1   e = lim 1 +  z→ ∞ z   z
  • 5.
    de onde resulta, ln (e ) + s i n ( p ) + c o s ( p ) = 2 2 ∞ ∑ n =0 n 1    2  que ainda pode ser escrita da seguinte forma clara e transparente, 2  1    ln  lim 1 +   + s in 2 ( p ) + c o s 2 ( p ) =  z→ ∞ z     ∞ ∑ n =0 1 − ta n h 2 ( q ) co sh (q ) * 2 n
  • 6.
    Tendo em contaque 0!= 1 e que a matriz invertida da matriz transposta é igual à matriz transposta da matriz invertida (com a hipótese de um espaço unidimensional), conseguimos a seguinte simplificação (devida ao uso de notação X vetorial), (X ) − (X ) T −1 −1 T = 0
  • 7.
    Se unificarmos asexpressões simplificadas, 0!= 1 e (X ) − (X ) T −1 −1 T = 0 será óbvio que obtenhamos, ( ) − (X )   X  T −1 −1 T  ! = 1 
  • 8.
    Aplicando as simplificaçõesdescritas anteriormente, resulta que, da equação abaixo… 2  1    ln  lim 1 +   + s in 2 ( p ) + c o s 2 ( p ) =  z→ ∞ z     ∞ ∑ n =0 c o s h ( q ) * 1 − ta n h 2 ( q ) 2n …obtemos finalmente, de forma totalmente elegante, legível, sucinta e compensível para qualquer um, a equação: ( ) − (X )   ln  lim   X  z→ ∞   T −1 −1 T 2  1   2 2 ! +   + s i n ( p ) + c o s ( p ) =  z    ∞ ∑ n =0 c o s h ( q ) * 1 − ta n h 2 ( q ) 2n (que, convenhamos, é muito mais profissional que a vulgaríssima e plebeia equação original ) 1 +1 = 2
  • 9.
    Envie esta mensagema alguma pessoa sábia e inteligente. Envie, também, para os advogados da sua lista para que eles saibam que não são os únicos que sabem complicar as coisas simples em proveito próprio. Envie-a também a seus amigos, que saberão apreciar sua alma sensível e humilde de Engenheiro(a)…
  • 10.
    Envie esta mensagema alguma pessoa sábia e inteligente. Envie, também, para os advogados da sua lista para que eles saibam que não são os únicos que sabem complicar as coisas simples em proveito próprio. Envie-a também a seus amigos, que saberão apreciar sua alma sensível e humilde de Engenheiro(a)…