SlideShare uma empresa Scribd logo
CONJUNTO DOS NÚMEROS
      INTEIROS
O QUE SÃO NÚMEROS NEGATIVOS?
    São números que representam medidas
 abaixo de zero.
Exemplos:
            -4   -35   -1    -2137

 Os números acima de zero são chamados de
                positivos.

                  E O ZERO?

       O zero não é positivo nem negativo.
PARA QUE SERVEM OS NÚMEROS
        NEGATIVOS?

  Dentre várias utilidades veremos as mais comuns:
 Representar temperaturas abaixo de zero.
 Indicar um saldo negativo de uma conta bancária.
 Efetuar subtrações onde o subtraendo é maior que
  o minuendo. Ex: 7-10
COMO É FORMADO O CONJUNTO
  DOS NÚMEROS INTEIROS?
 É formado pelo conjunto dos números naturais,
mais os números negativos.
Representações:
      Ν = { 0,1,2,3,4,5,...}
      Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...}

                                       Z
                                N
COMO REPRESENTAMOS O
CONJUNTO DOS NÚMEROS INTEIROS
      NA RETA NUMÉRICA?


    -5 -4 -3 -2 -1   0   1   2   3   4   5


                           O conjunto dos
                         números naturais é
                         um subconjunto dos
                          números inteiros.
OBSERVAÇÃO:
   Quanto mais a direita estiver um número,
 maior ele será.

Veja:
         -5 -4 -3 -2 -1   0   1   2   3   4   5


        5>3         -3 > -5           0 > -2

          Macete: quanto mais negativo
          for um número, menor ele será.
TENTE FAZER SOZINHO!
                Responda:

a) Qual é o maior número negativo?

b) Qual é o antecessor de -5?

c) Qual é o sucessor de -10?
SOLUÇÃO

a) O maior número negativo é -1.

b) O antecessor de -5 é -6.

c) O sucessor de -10 é -9.
O QUE SIGNIFICAM OS SÍMBOLOS:
               Ζ ,Ζ ,Ζ ,Ζ e Ζ ?
                  *
                  +    −
                            *
                            +
                                   *
                                    −
 Ζ é o conjunto dos números inteiros sem o zero.
  *

                Ζ* = {...,−3,−2,−1,1,2,3,...}
 Ζ + é o conjunto dos números inteiros não-negativos.
                  Ζ + = { 0,1,2,3,...}
 Ζ − é o conjunto dos números inteiros não-positivos.
                      Ζ − = {...,−3,−2,−1,0}
  Ζ   *
      + é o conjunto dos números inteiros positivos.
                       Ζ* = {1,2,3,...}
                        +

          Ζ   *
              − é o conjunto dos números inteiros negativos.
                       Ζ* = {...,−3,−2,−1}
                        _
O QUE É O MÓDULO DE UM NÚMERO?
   É o valor que representa a distância entre
 esse número e o zero.

Exemplo:

           -4           0             4

             A distância entre o número 4 e o
           zero é a mesma entre o número -4
           e o zero. Logo, o módulo desses de
                     4 e -4 é igual a 4.
COMO INDICAMOS O
   MÓDULO DE UM NÚMERO?

    Colocando esse número entre duas barras
 verticais.
Exemplos:   6 =6        20 = 20
            −6 = 6      − 20 = 20

                      O módulo também
                     pode ser chamado de
                        valor absoluto
VAMOS PRATICAR!

Quais são os possíveis valores para x em
                  x = 2?

Resposta:
 2 e -2, pois qualquer um desses números,
quando colocado no lugar do x tem
resultado igual a 2.
TENTE FAZER SOZINHO!


 Apresente os possíveis valores de
         x na expressão:

            x <4
Solução

  Temos que verificar quais são os números
que o módulo dá um resultado menor que 4.


   Logo, a resposta é {-3,-2,-1,0,1,2,3}
O QUE SÃO NÚMEROS SIMÉTRICOS?
   São números que apresentam o mesmo
 módulo.

Exemplos:
            10 e -10
            8 e -8
            201 e -201

               Os números simétricos
               também são chamados
                    de opostos.
RESOLVENDO PROBLEMAS
Responda:
Qual é o simétrico de 5?
            -5
Qual é o oposto de -10?
            10
Qual é o módulo do oposto de -35?
                 35
TENTE FAZER SOZINHO!

    Apresente o simétrico do
 oposto do módulo de -7.


      SOLUÇÃO

  O módulo de -7 é 7.
  O oposto de 7 é -7.
  O simétrico de -7 é 7.
COMO SOMAMOS E SUBTRAÍMOS
        NÚMEROS INTEIROS?

    Primeiro retiramos os parênteses e depois
efetuamos os cálculos.

Se o sinal antes do parêntese for +, então conservamos
o sinal de todos os números dentro do parêntese.

Se o sinal antes do parêntese for -, então mudamos o
sinal de todos os números dentro do parêntese.

     Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5
                 b) - (-17) + (+3) = + 17 + 3 = + 20
PARA EFETUAR OS CÁLCULOS, USAREMOS A
               SEGUINTE REGRA:

 Se os sinais forem iguais, somamos os valores absolutos e
  conservamos o sinal.

 Se os sinais forem diferentes, subtraímos os valores
  absolutos e conservamos o sinal do maior.

  Exemplos:
                   a) -(+45) + (-5) = - 45 - 5 = - 50

                   b) -(+20) + (+4) = - 20 + 4 = -16
OBSERVAÇÕES IMPORTANTES!

1) Se não existir sinal antes de um parênteses ou
   antes de um número, então dizemos que o
   sinal é +. Ou seja, + (30) = (+30) = + (+30) =
   30.

2) A soma de números simétricos é igual a zero.
   Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
RESOLVENDO EXPRESSÕES
               (-5) + (-9) + (-3) + (+8) + (+2)=

Tirando os parênteses, temos:

                     -5–9–3+8+2=
Juntando os números negativos e os números positivos, temos
                         - 17 + 10 =
Efetuando os cálculos, encontramos:
                              -7
TENTE FAZER SOZINHO!


    Resolva a expressão:

 12 + {- 2 + [- 3 – (- 2 + 11)]} =
SOLUÇÃO

12 + {- 2 + [- 3 – (- 2 + 11)]} =
12 + {- 2 + [- 3 – (+ 9)]} =
12 + {- 2 + [- 3 – 9]} =
12 + {- 2 + [- 12]} =
12 + {- 2 - 12} =
12 + {- 14} =
12 – 14 =
-2
COMO MULTIPLICAMOS E
 DIVIDIMOS NÚMEROS INTEIROS?

    Basta efetuar os cálculos com os valores
absolutos. O sinal deve obedecer a seguinte
regra: se forem iguais, +, se forem diferentes, - .

Exemplos:
                a) (-3) . (-4) = 12
                b) (+8) : (+4) = 2
                c) (-3) . (+4) = - 12
                d) (+8) : (-4) = - 2
TENTE FAZER SOZINHO!


      Resolva a expressão:

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
SOLUÇÃO

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
[-27 + (- 8)] : [1 + (+ 6)]=
[-27 - 8] : [1 + 6]=
[-35] : [7]=
-5
COMO ELEVAMOS UM NÚMEROS
  INTEIRO A UMA POTÊNCIA?
   Basta efetuar o cálculo da potência com os
valores absolutos. Se o expoente for par, o
resultado é sempre positivo. Se o for ímpar,
permanece o sinal inicial.


 Exemplos:
              a) (-5)2 = 25
              b) (+5)2 = 25
              c) (-5)3 = - 125
              d) (+5)3 = 125
REGRAS IMPORTANTES
 Qualquer base elevada a 1 é igual a ela mesma.

                     a1 = a
 Zero elevado a qualquer expoente é igual a
  zero.

                      0b = 0
 Qualquer base elevada a zero é igual a 1.


                       a0 = 1
COMO MULTIPLICAMOS
 POTÊNCIAS COM A MESMA BASE?

Basta conservar a base e somar os expoentes.

Exemplos:

 (6)7 . (6)3 = 67+3 = 610
                             Quando um número não
                              apresenta expoente,
 (-20)4 . (-20) = (-20)5      dizemos que está
                                  elevado a 1.
COMO DIVIDIMOS POTÊNCIAS COM
       A MESMA BASE?

Basta conservar a base e subtrair os expoentes.

   Exemplos:


           (5)7 : (5)3 = (5)7-3 = 54

           (-9)5 : (-9)3 = (-9)5-3 = (-9)2
COMO ELEVAMOS UMA POTÊNCIA
    A OUTRA POTÊNCIA?

     Basta conservar a base e multiplicar os
expoentes.


Exemplos:
            (42)3 = 42x3 = 46
            (53)6 = 53x6 = 518
COMO EXTRAÍMOS A RAIZ QUADRADA
    DOS NÚMEROS INTEIROS?

  Basta efetuar os cálculos que já conhecemos,
  pois só podemos extrair raiz quadrada de
números não-negativos.

 Exemplos:

             +9 =3
            − 9 não existe no conjunto Ζ.
TENTE FAZER SOZINHO!


      Resolva a expressão:

 ( − 2)   2
                [                    ]
              − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
SOLUÇÃO

( − 2) − [( − 7 ) : 100 + 5.( − 3) ] −
      2
                                         36 =
4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6
4 − [ − 7 + ( − 15) ] − 6 =
4 − [ − 7 − 15] − 6 =
4 − [ − 22] − 6 =
4 + 22 − 6 =
26 − 6 =
20

Mais conteúdo relacionado

Mais procurados

Mat conjuntos numericos 002
Mat conjuntos numericos  002Mat conjuntos numericos  002
Mat conjuntos numericos 002
trigono_metria
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
Thomas Willams
 
6ª SéRie MatemáTica 1º Semestre
6ª SéRie   MatemáTica   1º Semestre6ª SéRie   MatemáTica   1º Semestre
6ª SéRie MatemáTica 1º Semestre
PROFESSOR FABRÍCIO
 
Matematica
MatematicaMatematica
Matematica
Antonio Guimaraes
 
Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4
Thomas Willams
 
Aula de Equações do 1ºgrau
Aula de Equações do 1ºgrauAula de Equações do 1ºgrau
Aula de Equações do 1ºgrau
Darlene Silva
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
andreilson18
 
Aula 1 mat básica
Aula 1 mat básicaAula 1 mat básica
Aula 1 mat básica
Diego Costa
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Marcelo Pinheiro
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
Lucia Silveira
 
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANONÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
Secretaria de Estado de Educação e Qualidade do Ensino
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
Waleska Alencar
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
leilamaluf
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
EnsinoFundamental
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericos
earana
 
www.aulasapoio.com - Matemática - Conjuntos Numéricos
www.aulasapoio.com  - Matemática -  Conjuntos Numéricoswww.aulasapoio.com  - Matemática -  Conjuntos Numéricos
www.aulasapoio.com - Matemática - Conjuntos Numéricos
Aulas Apoio
 
Conjuntos numéricos mari
Conjuntos numéricos mariConjuntos numéricos mari
Conjuntos numéricos mari
eadfae
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta real
Antonio Carlos Luguetti
 

Mais procurados (18)

Mat conjuntos numericos 002
Mat conjuntos numericos  002Mat conjuntos numericos  002
Mat conjuntos numericos 002
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
 
6ª SéRie MatemáTica 1º Semestre
6ª SéRie   MatemáTica   1º Semestre6ª SéRie   MatemáTica   1º Semestre
6ª SéRie MatemáTica 1º Semestre
 
Matematica
MatematicaMatematica
Matematica
 
Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4Apostila CBTU - Matemática - Part#4
Apostila CBTU - Matemática - Part#4
 
Aula de Equações do 1ºgrau
Aula de Equações do 1ºgrauAula de Equações do 1ºgrau
Aula de Equações do 1ºgrau
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Aula 1 mat básica
Aula 1 mat básicaAula 1 mat básica
Aula 1 mat básica
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
 
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANONÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericos
 
www.aulasapoio.com - Matemática - Conjuntos Numéricos
www.aulasapoio.com  - Matemática -  Conjuntos Numéricoswww.aulasapoio.com  - Matemática -  Conjuntos Numéricos
www.aulasapoio.com - Matemática - Conjuntos Numéricos
 
Conjuntos numéricos mari
Conjuntos numéricos mariConjuntos numéricos mari
Conjuntos numéricos mari
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta real
 

Semelhante a www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
Clarice Leclaire
 
Slide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteirosSlide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteiros
RoqueDosSantosJunior
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
educacao f
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
Salomao Severo da Silva
 
03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf
ConcurseiroSilva4
 
Números relativos
Números relativos Números relativos
Números relativos
Helena Borralho
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
educaedil
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
Nome Sobrenome
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
milla_matematica
 
Numeros Inteiros 2
Numeros Inteiros 2Numeros Inteiros 2
Numeros Inteiros 2
Antonio Carneiro
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
gustavoniedermayerwagner
 
622 apostila01 mb
622 apostila01 mb622 apostila01 mb
622 apostila01 mb
Rone carvalho
 
Matemática básica
Matemática básicaMatemática básica
Apostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericosApostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericos
Emerson Carlos
 
Aula 1 mat em
Aula 1   mat emAula 1   mat em
Aula 1 mat em
Walney M.F
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
EdinaldaSalgueiro
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
LourencianneCardoso
 
Aula 1 mat ef
Aula 1   mat efAula 1   mat ef
Aula 1 mat ef
Walney M.F
 
Matematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebraMatematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebra
NataliaMartins69
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
Luciano Pessanha
 

Semelhante a www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos (20)

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Conjunto de Números Inteiros
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Conjunto de Números Inteiros
 
Slide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteirosSlide aula 7º ano sobre o conjunto dos números inteiros
Slide aula 7º ano sobre o conjunto dos números inteiros
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf03_Matematica Banco do Brasil.pdf
03_Matematica Banco do Brasil.pdf
 
Números relativos
Números relativos Números relativos
Números relativos
 
Matematica3ef
Matematica3efMatematica3ef
Matematica3ef
 
Ceesvo (ensino fundamental) apostila 3
Ceesvo (ensino fundamental)   apostila 3Ceesvo (ensino fundamental)   apostila 3
Ceesvo (ensino fundamental) apostila 3
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
 
Numeros Inteiros 2
Numeros Inteiros 2Numeros Inteiros 2
Numeros Inteiros 2
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
 
622 apostila01 mb
622 apostila01 mb622 apostila01 mb
622 apostila01 mb
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Apostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericosApostila matematica-1-02-conjuntos-numericos
Apostila matematica-1-02-conjuntos-numericos
 
Aula 1 mat em
Aula 1   mat emAula 1   mat em
Aula 1 mat em
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
 
Aula 1 mat ef
Aula 1   mat efAula 1   mat ef
Aula 1 mat ef
 
Matematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebraMatematica7 numeros racionais_e_introducao_a_algebra
Matematica7 numeros racionais_e_introducao_a_algebra
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
 

Mais de Clarice Leclaire

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F... www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F...
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
Clarice Leclaire
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Números Complexos
 www.AulasDeMatematicanoRJ.Com.Br  -  Matemática -  Números Complexos www.AulasDeMatematicanoRJ.Com.Br  -  Matemática -  Números Complexos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Números Complexos
Clarice Leclaire
 

Mais de Clarice Leclaire (20)

www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos www.AulasDeMatematicanoRJ.Com,Br - Matemática -  Ângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Ângulos
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F... www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercícios Resolvidos de F...
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercícios Resolvidos de F...
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Radiciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Radiciação
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Produto Notável
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Produto Notável
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Matrizes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Matrizes
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Introdução às Funções
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Introdução às Funções
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas www.AulasDeMatematicanoRJ.Com.Br - Matemática -  Frações Algébricas
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Frações Algébricas
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Análise Combinatória
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Análise Combinatória
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Progressão Aritimética
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Progressão Aritimética
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Problemas com Equações
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Problemas com Equações
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Probabilidade
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Probabilidade
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Prismas e Cilindros
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Potenciação
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Potenciação
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Números Complexos
 www.AulasDeMatematicanoRJ.Com.Br  -  Matemática -  Números Complexos www.AulasDeMatematicanoRJ.Com.Br  -  Matemática -  Números Complexos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Números Complexos
 

Último

Trabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdfTrabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdf
marcos oliveira
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
felipescherner
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
Sandra Pratas
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
AntHropológicas Visual PPGA-UFPE
 
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
Sandra Pratas
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
Falcão Brasil
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Falcão Brasil
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
principeandregalli
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
shirleisousa9166
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
Falcão Brasil
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
Sandra Pratas
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 
quadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdfquadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdf
marcos oliveira
 
Matemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos ConjuntosMatemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos Conjuntos
Instituto Walter Alencar
 

Último (20)

Trabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdfTrabalho Colaborativo na educação especial.pdf
Trabalho Colaborativo na educação especial.pdf
 
reconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docxreconquista sobre a guerra de ibérica.docx
reconquista sobre a guerra de ibérica.docx
 
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
EBOOK_HORA DO CONTO_MARINELA NEVES & PAULA FRANCISCO_22_23
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
 
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
EBOOK_HORA DO CONTO_O MONSTRO DAS CORES_ANGELINA & MÓNICA_22_23
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
apresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacionalapresentação metodologia terapia ocupacional
apresentação metodologia terapia ocupacional
 
TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 
quadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdfquadro de rotina semanal da coord.docx.pdf
quadro de rotina semanal da coord.docx.pdf
 
Matemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos ConjuntosMatemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos Conjuntos
 

www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos

  • 2. O QUE SÃO NÚMEROS NEGATIVOS? São números que representam medidas abaixo de zero. Exemplos: -4 -35 -1 -2137 Os números acima de zero são chamados de positivos. E O ZERO? O zero não é positivo nem negativo.
  • 3. PARA QUE SERVEM OS NÚMEROS NEGATIVOS? Dentre várias utilidades veremos as mais comuns:  Representar temperaturas abaixo de zero.  Indicar um saldo negativo de uma conta bancária.  Efetuar subtrações onde o subtraendo é maior que o minuendo. Ex: 7-10
  • 4. COMO É FORMADO O CONJUNTO DOS NÚMEROS INTEIROS? É formado pelo conjunto dos números naturais, mais os números negativos. Representações: Ν = { 0,1,2,3,4,5,...} Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...} Z N
  • 5. COMO REPRESENTAMOS O CONJUNTO DOS NÚMEROS INTEIROS NA RETA NUMÉRICA? -5 -4 -3 -2 -1 0 1 2 3 4 5 O conjunto dos números naturais é um subconjunto dos números inteiros.
  • 6. OBSERVAÇÃO: Quanto mais a direita estiver um número, maior ele será. Veja: -5 -4 -3 -2 -1 0 1 2 3 4 5 5>3 -3 > -5 0 > -2 Macete: quanto mais negativo for um número, menor ele será.
  • 7. TENTE FAZER SOZINHO! Responda: a) Qual é o maior número negativo? b) Qual é o antecessor de -5? c) Qual é o sucessor de -10?
  • 8. SOLUÇÃO a) O maior número negativo é -1. b) O antecessor de -5 é -6. c) O sucessor de -10 é -9.
  • 9. O QUE SIGNIFICAM OS SÍMBOLOS: Ζ ,Ζ ,Ζ ,Ζ e Ζ ? * + − * + * − Ζ é o conjunto dos números inteiros sem o zero. * Ζ* = {...,−3,−2,−1,1,2,3,...} Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ − é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ* = {...,−3,−2,−1} _
  • 10. O QUE É O MÓDULO DE UM NÚMERO? É o valor que representa a distância entre esse número e o zero. Exemplo: -4 0 4 A distância entre o número 4 e o zero é a mesma entre o número -4 e o zero. Logo, o módulo desses de 4 e -4 é igual a 4.
  • 11. COMO INDICAMOS O MÓDULO DE UM NÚMERO? Colocando esse número entre duas barras verticais. Exemplos: 6 =6 20 = 20 −6 = 6 − 20 = 20 O módulo também pode ser chamado de valor absoluto
  • 12. VAMOS PRATICAR! Quais são os possíveis valores para x em x = 2? Resposta: 2 e -2, pois qualquer um desses números, quando colocado no lugar do x tem resultado igual a 2.
  • 13. TENTE FAZER SOZINHO! Apresente os possíveis valores de x na expressão: x <4
  • 14. Solução Temos que verificar quais são os números que o módulo dá um resultado menor que 4. Logo, a resposta é {-3,-2,-1,0,1,2,3}
  • 15. O QUE SÃO NÚMEROS SIMÉTRICOS? São números que apresentam o mesmo módulo. Exemplos: 10 e -10 8 e -8 201 e -201 Os números simétricos também são chamados de opostos.
  • 16. RESOLVENDO PROBLEMAS Responda: Qual é o simétrico de 5? -5 Qual é o oposto de -10? 10 Qual é o módulo do oposto de -35? 35
  • 17. TENTE FAZER SOZINHO! Apresente o simétrico do oposto do módulo de -7. SOLUÇÃO O módulo de -7 é 7. O oposto de 7 é -7. O simétrico de -7 é 7.
  • 18. COMO SOMAMOS E SUBTRAÍMOS NÚMEROS INTEIROS? Primeiro retiramos os parênteses e depois efetuamos os cálculos. Se o sinal antes do parêntese for +, então conservamos o sinal de todos os números dentro do parêntese. Se o sinal antes do parêntese for -, então mudamos o sinal de todos os números dentro do parêntese. Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5 b) - (-17) + (+3) = + 17 + 3 = + 20
  • 19. PARA EFETUAR OS CÁLCULOS, USAREMOS A SEGUINTE REGRA:  Se os sinais forem iguais, somamos os valores absolutos e conservamos o sinal.  Se os sinais forem diferentes, subtraímos os valores absolutos e conservamos o sinal do maior. Exemplos: a) -(+45) + (-5) = - 45 - 5 = - 50 b) -(+20) + (+4) = - 20 + 4 = -16
  • 20. OBSERVAÇÕES IMPORTANTES! 1) Se não existir sinal antes de um parênteses ou antes de um número, então dizemos que o sinal é +. Ou seja, + (30) = (+30) = + (+30) = 30. 2) A soma de números simétricos é igual a zero. Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
  • 21. RESOLVENDO EXPRESSÕES (-5) + (-9) + (-3) + (+8) + (+2)= Tirando os parênteses, temos: -5–9–3+8+2= Juntando os números negativos e os números positivos, temos - 17 + 10 = Efetuando os cálculos, encontramos: -7
  • 22. TENTE FAZER SOZINHO! Resolva a expressão: 12 + {- 2 + [- 3 – (- 2 + 11)]} =
  • 23. SOLUÇÃO 12 + {- 2 + [- 3 – (- 2 + 11)]} = 12 + {- 2 + [- 3 – (+ 9)]} = 12 + {- 2 + [- 3 – 9]} = 12 + {- 2 + [- 12]} = 12 + {- 2 - 12} = 12 + {- 14} = 12 – 14 = -2
  • 24. COMO MULTIPLICAMOS E DIVIDIMOS NÚMEROS INTEIROS? Basta efetuar os cálculos com os valores absolutos. O sinal deve obedecer a seguinte regra: se forem iguais, +, se forem diferentes, - . Exemplos: a) (-3) . (-4) = 12 b) (+8) : (+4) = 2 c) (-3) . (+4) = - 12 d) (+8) : (-4) = - 2
  • 25. TENTE FAZER SOZINHO! Resolva a expressão: [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
  • 26. SOLUÇÃO [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]= [-27 + (- 8)] : [1 + (+ 6)]= [-27 - 8] : [1 + 6]= [-35] : [7]= -5
  • 27. COMO ELEVAMOS UM NÚMEROS INTEIRO A UMA POTÊNCIA? Basta efetuar o cálculo da potência com os valores absolutos. Se o expoente for par, o resultado é sempre positivo. Se o for ímpar, permanece o sinal inicial. Exemplos: a) (-5)2 = 25 b) (+5)2 = 25 c) (-5)3 = - 125 d) (+5)3 = 125
  • 28. REGRAS IMPORTANTES  Qualquer base elevada a 1 é igual a ela mesma. a1 = a  Zero elevado a qualquer expoente é igual a zero. 0b = 0  Qualquer base elevada a zero é igual a 1. a0 = 1
  • 29. COMO MULTIPLICAMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e somar os expoentes. Exemplos:  (6)7 . (6)3 = 67+3 = 610 Quando um número não apresenta expoente,  (-20)4 . (-20) = (-20)5 dizemos que está elevado a 1.
  • 30. COMO DIVIDIMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e subtrair os expoentes. Exemplos:  (5)7 : (5)3 = (5)7-3 = 54  (-9)5 : (-9)3 = (-9)5-3 = (-9)2
  • 31. COMO ELEVAMOS UMA POTÊNCIA A OUTRA POTÊNCIA? Basta conservar a base e multiplicar os expoentes. Exemplos: (42)3 = 42x3 = 46 (53)6 = 53x6 = 518
  • 32. COMO EXTRAÍMOS A RAIZ QUADRADA DOS NÚMEROS INTEIROS? Basta efetuar os cálculos que já conhecemos, pois só podemos extrair raiz quadrada de números não-negativos. Exemplos: +9 =3 − 9 não existe no conjunto Ζ.
  • 33. TENTE FAZER SOZINHO! Resolva a expressão: ( − 2) 2 [ ] − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
  • 34. SOLUÇÃO ( − 2) − [( − 7 ) : 100 + 5.( − 3) ] − 2 36 = 4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6 4 − [ − 7 + ( − 15) ] − 6 = 4 − [ − 7 − 15] − 6 = 4 − [ − 22] − 6 = 4 + 22 − 6 = 26 − 6 = 20