SlideShare uma empresa Scribd logo
1 de 44
Baixar para ler offline
UNIVERSIDADE DE SÃO PAULO - USP
ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ - ESALQ
CURSO DE ESPECIALIZAÇÃO EM GERENCIAMENTO AMBIENTAL - CEGEA
JULIANA BASILE NASSIN
Sistema de Osmose Reversa no Pós-Tratamento
de Efluentes Industriais
Piracicaba - 2013
1
JULIANA BASILE NASSIN
Bióloga
Sistema de Osmose Reversa no Pós-Tratamento
de Efluentes Industriais
Monografia elaborada como
requisito para conclusão do
Curso de Especialização em
Gerenciamento Ambiental da
Escola Superior de Agricultura
Luiz de Queiroz – ESALQ/USP.
Orientadora: Msc. Leila Aparecida Figueiredo
Piracicaba - 2013
2
DEDICATÓRIA
Dedico o presente trabalho ao meu pai,
o qual sempre incentivou
e proporcionou a minha carreira,
e à minha mãe,
a qual proporcionou todo o mais.
3
AGRADECIMENTOS
Agradeço à Deus;
À minha família, por todo o incentivo e confiança em minhas atitudes;
Ao Danillo, por estar sempre ao meu lado me ajudando a prosseguir com
dedicação e à sua família pelos conselhos;
À minha orientadora Leila Aparecida Figueiredo, que mesmo em pouco tempo
conseguiu me guiar da melhor e mais exata maneira;
Às minhas, não só colegas de classe, mas amigas Maria Rosa, Luciana, Daniela
e Carolina pelo apoio em todos os momentos que passamos juntas;
Aos Profs. Sergio Arnosti Junior, Alexandre Prado Rocha e Alexandre Vilella pelo
apoio no início do trabalho;
À empresa Fábrica Estrela do grupo M. Dias Branco;
À todos os funcionários e professores do CEGEA/USP.
4
RESUMO
O presente trabalho teve por escopo realizar uma revisão bibliográfica para
apresentar a possibilidade de otimização de um sistema de reuso de efluentes após
passar pelo processo de osmose reversa. Este estudo foi desenvolvido, pois o sistema de
osmose reversa está ganhando mercado. Esse sistema é utilizado para separar as
impurezas do meio líquido filtrando o efluente. Para isso, o sistema utiliza pressão
mecânica superior à pressão osmótica, obrigando o soluto a ir do meio mais concentrado
para o meio mais diluído, portanto, a osmose é feita de forma inversa. Esse sistema é
mais eficaz e garante maior durabilidade e eficiência se utilizado como pós-tratamento,
pois retira do meio líquido partículas que o tratamento primário não consegue eliminar,
garantindo que a água se torne viável para o reuso. A empresa que pratica a proposta do
reuso da água em processos de produção pode implementá-la em projetos de “produção
mais limpa”. Mesmo com todas as vantagens do sistema, comprovou-se que ainda há
barreiras, como a falta de informação e o custo de investimento, que dificultam a
exploração de seu uso pelas empresas.
Palavras-chave: resíduos hídricos; sistemas de membranas; produção mais limpa; reuso
da água
5
ABSTRACT
The scope of this work was to review literature to present the possibility of
optimizing a system for wastewater reuse after going through the process of reverse
osmosis. This study was developed because the reverse osmosis system is gaining
market share. This system is used to separate impurities from the liquid environment by
filtering the effluent. For this purpose, the system uses mechanical pressure stronger than
the osmotic pressure, instigating the solute to go through the more concentrated to the
more dilute environment, so osmosis is performed in reverse. This system is more
efficient and provides greater durability and efficiency if used as post-treatment, because
the liquid environment removes particles that the primary treatment failed to eliminate,
ensuring that the water becomes feasible to reuse. The company that engages in the
proposed water reuse in production processes can implement it in projects of "cleaner
production". Even with all the advantages of the system, it was proven that there still are
barriers, such as lack of information and the cost of investment, which hinder the
exploitation of its use by the companies.
Key-words: wastewater; membrane systems; cleaner production; water reuse
6
LISTA DE FIGURAS
Figura 1. Esquema de funcionamento de um sistema de osmose....................................12
Figura 2. Esquema do funcionamento de um sistema de osmose reversa.......................12
Figura 3. Modelo de sistema de osmose reversa..............................................................14
Figura 4. Representação da capacidade dos processos de separação por membranas em
função da pressão de operação e características da membrana......................................15
Figura 5. Ciclo Fechado de Reuso da Água......................................................................21
Figura 6. Atuação da prática de Produção mais Limpa em uma empresa........................28
Figura 7. Níveis da metodologia da prática de Produção mais Limpa...............................30
7
LISTA DE TABELAS
Tabela 1. Porcentagem de retenção das impurezas pelo sistema de osmose reversa.....16
Tabela 2. Valores máximos permitidos para emissão de efluentes no ambiente..............25
8
SUMÁRIO
1. INTRODUÇÃO.........................................................................................................9
2. OSMOSE REVERSA..............................................................................................11
2.1 MERCADO, APLICAÇÕES E EFICIÊNCIA DA OSMOSE REVERSA............13
3. REUSO DA ÁGUA..................................................................................................20
4. CARACTERIZAÇÃO DOS RESÍDUOS..................................................................24
5. PRODUÇÃO MAIS LIMPA.....................................................................................28
6. CONSIDERAÇÕES FINAIS...................................................................................34
7. CONCLUSÕES......................................................................................................35
ANEXO - ESTUDO DE CASO.....................................................................................36
REFERÊNCIAS BIBLIOGRÁFICAS.............................................................................40
9
1. INTRODUÇÃO
A água é utilizada pelo ser humano para ingestão, preparo de alimentos, nas
atividades cotidianas, além de ser utilizada, em grandes proporções, em lavouras e nos
processos industriais. Atualmente a consciência ambiental está se difundindo e com ela o
senso de preservação do meio ambiente. Sabe-se que a água está se exaurindo e a
necessidade de conservação está se tornando mais concreta para a população e para as
indústrias. Com a necessidade inerente pela água e seu uso descontrolado, tem-se
suscitado a conscientização da população para mudar a situação atual de exaustão.
O racionamento da água vem crescendo e se materializando dentro das empresas
com as novas técnicas para a economia material e financeira desta. A conservação da
água envolve principalmente a racionalização e sua qualidade, pois quanto menor a
quantidade, maior seu valor e quanto mais poluído, mais irá gastar para que sua
qualidade fique satisfatória para seus vários usos. Há várias formas para se manter a
qualidade da água de um corpo hídrico, uma delas é controlar a qualidade de seus
efluentes, no entanto isso não garante também sua racionalização.
Atualmente, na maioria das empresas, os efluentes passam por um tratamento
básico e são descartados no meio ambiente, no corpo d’água mais próximo. A água
utilizada pelas empresas, mesmo depois de passar pelos processos de tratamento, não
se torna própria para o reuso, portanto ela é devolvida ao meio ambiente. Para que a
água possa ser despejada em algum corpo hídrico, precisa estar classificada melhor ou
igual à classificação de seu afluente, portanto existe a necessidade de um sistema de
tratamento dos resíduos hídricos.
A escolha da forma de reutilização da água gerada como efluente pela empresa é
uma medida para garantir sua racionalização e, consequentemente, sua qualidade no
meio ambiente. A reutilização reduz a quantidade de efluente despejado na natureza e as
despesas com captação ou com importação da água de sistemas de tratamento
municipais, garantindo também o benefício financeiro. Dessa maneira, o reuso da água
forma um ciclo fechado onde o efluente é tratado se tornando água útil novamente. Esta,
por sua vez, é utilizada novamente nos processos dentro da empresa, finalizando o ciclo
de uso, tratamento e reuso da água.
Atualmente há várias técnicas para tratar os efluentes e o uso do sistema de
osmose reversa é uma delas. O uso desta tecnologia vem aumentando devido à boa
qualidade da água gerada após o tratamento. Apesar de ser um sistema com custo
elevado, há maneiras de diminuir os gastos com a troca das membranas, realizando um
10
pré-tratamento do efluente utilizando os sistemas básicos de tratamento ou outros tipos
de membrana, como a de ultrafiltração, por exemplo.
Algumas empresas no Brasil já utilizam o sistema de osmose reversa para tratar
seu efluente, como as empresas de galvanoplastia, laboratórios e clínicas de hemodiálise
que necessitam de água extremamente pura, etc. Entretanto, esse sistema é mais
utilizado em áreas de dessalinização da água, retirando o sal da água do mar. Isso ocorre
na maioria dos países, pois o uso em tratamentos de efluentes e seu reuso ainda é uma
novidade no mercado industrial. Assim, há necessidade de aprofundar os estudos dessa
técnica e a implementar como alternativa para outros setores industriais.
Esse sistema está começando a ganhar mercado, mas muitos de seus possíveis
consumidores não conhecem essencialmente como ele funciona e o quanto é eficaz.
Assim, não entendem sua importância para o meio ambiente e para a ampliação dos
lucros da empresa.
As técnicas existentes hoje no mercado para diminuir o consumo das empresas
podem fazer parte de projetos de “produção mais limpa”, onde se desenvolve métodos
para melhorar a produção, reduzindo, por exemplo, o uso de matérias-primas e a geração
de resíduos. Além disso, essas empresas podem praticar o benchmarking, um
instrumento utilizado pela gestão empresarial que induz a competição pelas melhores
práticas estabelecidas entre as empresas, mostrando à população sua preocupação ativa
com o meio ambiente. Esse tipo de investimento gera uma imagem ambiental bem-
sucedida para a empresa, a qual pode até, de acordo com as normas exigidas, vender
seus produtos com selos ambientais.
O presente trabalho tem o objetivo de estudar a viabilidade e uma possível
otimização de processos de tratamento de efluentes industriais com a implementação do
sistema de pós-tratamento com osmose reversa para reuso da água decorrente em
processos dentro da indústria.
11
2. OSMOSE REVERSA
Atualmente os sistemas de separação por membranas estão se tornando mais
acessíveis e mais utilizados para tratamento de água e de efluentes, portanto o número
de pesquisas nesta área também vem crescendo. Assim, as tecnologias se desenvolvem
e despertam o interesse, não só de pesquisadores, mas também de empresas que
querem implantar um sistema que garanta a qualidade de seus efluentes (SCAPINI,
2007).
Os sistemas de membranas semipermeáveis agem como uma barreira que divide
dois meios, onde algumas substâncias conseguem passar por essa membrana, indo de
um meio para o outro, sendo separadas das substâncias que não conseguem passar
pela membrana. Existem vários desses sistemas, os quais podem ser definidos de
acordo com a força motriz utilizada na separação (LAPOLLI et. al., 1998).
As membranas podem ser divididas em duas classes: porosas ou densas. A
primeira possui seus poros de tamanhos variados, os quais serão definidos de acordo
com o processo, enquanto a outra praticamente não possui poros (VARGAS, 2003). As
substâncias são separadas pelas membranas com permeabilidade seletiva dependo de
seu tamanho, forma, difusibilidade, entre outras características. Já no caso das
membranas, as especificações de maior importância são sua espessura, porosidade,
seletividade e permeabilidade (LAPOLLI et. al., 1998).
Os processos de separação por membranas podem ser orientados pela pressão,
pela concentração, pela temperatura e pela eletricidade. No caso da pressão, que será
aprofundada nesta revisão, os processos podem ser: microfiltração (MF), ultrafiltração
(UF), nanofiltração (NF) e osmose reversa (OR) (LAUTENSCHLAGER et.al., 2009).
No processo de osmose há uma diferença de concentração entre os meios,
fazendo o solvente passar do meio menos concentrado em direção ao mais concentrado,
atravessando uma membrana semipermeável, insistindo para que as concentrações das
soluções se igualem. A pressão osmótica ocorre quando o solvente passa para o meio
mais concentrado e o nível desse meio fica mais elevado, ocorrendo uma diferença de
pressão que impede o fluxo do fluído de continuar (FIGURA 1) (SCAPINI, 2007).
12
Figura 1. Esquema de funcionamento de um sistema de osmose (FERRAN, 2013).
O processo da osmose reversa, também conhecido como osmose inversa ou
hiperfiltração, ocorre através de uma membrana polimérica que, quando há uma pressão
mecânica no meio mais concentrado superior a pressão osmótica, obriga o solvente a
passar do meio mais concentrado para o menos concentrado. Este é o processo inverso
da osmose convencional (FIGURA 2) (SENA, 1998; SIMÕES et. al., 2004).
Figura 2. Esquema do funcionamento de um sistema de osmose reversa (FERRAN, 2013).
A eficiência do sistema de osmose reversa tem o bom desempenho garantido
devido ao tamanho dos poros de suas membranas (ECKENFELDER, 1989; OENNING,
2006), assim consegue separar com eficiência o soluto do substrato, pois dificulta a
passagem da substância poluidora para o meio menos concentrado, ocorrendo a
13
separação da água dos materiais poluidores (MANCUSO; SANTOS, 2003; METCALF;
EDDY, 2003; OENNING, 2006).
Na técnica da osmose reversa, a pressão gerada a partir do trabalho deve ser
obrigatoriamente maior que a resistência da membrana, que a resistência da zona de
concentração-polarização e que a resistência interna do sistema, sendo, assim, também
maior que a pressão osmótica. A pressão necessária para que o soluto passe pelas
membranas de osmose reversa deve ser maior que 10 kgf cm-2
ou de 60 bar, podendo
até exceder esse valor (SCAPINI, 2007).
O efluente será separado assim que passar pelo processo da osmose reversa: o
material permeável é filtrado pela membrana e o rejeito fica retido na mesma
(MANCUSO; SANTOS, 2003; OENNING, 2007).
2.1 Mercado, Aplicações e Eficiência da Osmose Reversa
O sistema de osmose reversa é bem aceito pelos Estados Unidos, Arábia Saudita
e Japão, mas ainda não há uso corrente desta tecnologia no Brasil. Entretanto, trata-se
de um mercado em ascensão, pois há menor consumo de produtos químicos com o
emprego desta tecnologia causando, consequentemente, conservação do meio ambiente
(BISTERSO, 2010).
O processo de osmose reversa foi aplicado com sucesso no Chile (mineradora
Minera Escondida), na Austrália (projeto para a cidade de Melbourne), Fernando de
Noronha (processo de dessalinização da água do mar) e há previsão da implantação do
maior sistema de osmose reversa do Brasil na Petrobrás (Caucaia/CE) (BISTERSO,
2010).
Outras aplicações do sistema de osmose reversa, além da purificação de
soluções, são: concentração de solutos - como vinhoto, utilizado como fertilizante
orgânico (SIMÕES et. al., 2004); de metais, que podem voltar a fazer parte de outro
processo dentro da cadeia produtiva da indústria ou mesmo serem vendidos (PEREIRA
et. al., 2008); purificação do plasma sanguíneo e outras soluções termosensíveis
(SCAPINI, 2007).
Atualmente, algumas empresas utilizam da tecnologia osmose reversa para
fabricar equipamentos que purifiquem a água potável, utilizada para consumo humano,
inclusive o de ingestão. Nesses casos as pressões aplicadas ficam entre 6,8 e 10,3 bar e
as substâncias retidas pela membrana são descartadas utilizando uma insignificante
quantidade de água (HTZ, 2010).
Outras aplicações da osmose reversa são: utilização como pré-tratamento para
desionizadores; remoção de bactérias e vírus; purificação da água do mar e de esgotos
14
fabris (FIGURA 3) (SCAPINI, 2007). No Brasil esta tecnologia é mais comumente
utilizada em processos de desmineralização (BISTERSO, 2010), mas no mundo seu uso
ocorre principalmente em empresas que visam a dessalinização da água (VARGAS,
2003).
Figura 3. Modelo de sistema de osmose reversa (FERRAN, 2013).
O tratamento de efluentes utilizando esse processo é um método novo, mas muito
eficaz e pode ser aproveitado na reutilização da água gerada nos processos de produção
da empresa. De acordo com o Ministério da Saúde (2006), os maiores poluentes da água
são matéria orgânica (biodegradável e não biodegradável), sólidos em suspensão,
nutrientes (principalmente o nitrogênio e o fósforo), organismos patogênicos e metais
pesados.
A capacidade de separação da osmose reversa é muito alta, chegando a separar
do efluente valores como 95% de fluoreto e cloreto, 94% de sódio e potássio, 97% de
cálcio e magnésio e 98% de metais pesados (SCAPINI, 2007).
Segundo a EPA (Environmental Protection Agency), a osmose reversa consegue
reter 99% de radionuclídeos, como urânio, rádio, partículas alfa e beta e emissores de
prótons, bem como contaminantes como o arsênico e o nitrato (HTZ, 2010).
O tamanho dos poros das membranas de hiperfiltração pode variar de 0,002 a
10,0 μm, apresentando-se assim altamente eficiente, mas embasando a necessidade de
um pré-tratamento da água antes dessa passar pelo sistema da osmose reversa. Esses
poros têm dimensão tão pequena que são capazes de reter até os sais que se
apresentam dissolvidos na água (FIGURA 4) (SCAPINI, 2007).
15
Figura 4. Representação da capacidade dos processos de separação por membranas em função
da pressão de operação e características da membrana (MIERZWA, 2005).
Há trabalhos que indicam que o sistema de osmose reversa produz um solvente
de altíssima qualidade, com pH neutro e com a eliminação de 100% dos coliformes totais
e fecais, de 98%, 100% e 97% de CT (carbono total), COT (carbono orgânico total) e CI
(carbono inorgânico) respectivamente, remoção de 96% de turbidez, 95% de
condutividade, 98% de DQO (demanda química de oxigênio), 98% de cor e redução de
97,5%, 100% e 97,5% para ST (sólidos totais), SST (sólidos suspensos totais) e SDT
(sólidos dissolvidos totais), respectivamente (TABELA 1) (OENNING; PAWLOWSKY,
2007).
16
Tabela 1. Porcentagem de retenção das impurezas pelo sistema de osmose reversa (FERRAN,
2013, adaptado por NASSIN, J. B., 2013).
TABELA DE REJEIÇÃO DE IMPUREZAS
Íon Rejeição Íon Rejeição
95-99% Cálcio 92-97% Nitrato
94-99% Sódio 85-97% Amônia
95-99% Magnésio 100% Bactérias
94-99% Chumbo 61-92% Borato
97-99% Manganês 67-95% Boro
97-99% Ferro 97-99% Cádmio
97-99% Alumínio 97-99% Cloreto
97-99% Cobre 95-99% Cromato
96-99% Mercúrio 97-99% Níquel
95-99% Radioatividade 92-97% Cianureto
98-99% Pesticidas 97-99% Sílica
95-99% Prata 96-99% Fluoreto
97-99% Fosfato 97-99% Zinco
97-99% Sulfato 98-100% Orgânicos
95-99% Dureza Ca & Mg 87-94% Potássio
96-99% Estrôncio 96-99% Bário
97-98% Cromo 95-99% Bicarbonato
87-94% Brometo 98-99% Ferrocianeto
95-90% Silicato 97-99% Arsênio
As condições de operação da estação de tratamento e a composição dos
efluentes interferem no sistema de osmose reversa (SCAPINI, 2007). O efluente de
entrada necessita ter alta qualidade para passar por esse processo, proporcionando
maior durabilidade e conservação do sistema. Para isso é necessário a utilização de um
pré-tratamento como, por exemplo, um sistema convencional que inclui
coagulação/floculação, decantação e filtração, para que as partículas maiores e/ou mais
pesadas possam ser retiradas do efluente. A necessidade de um pré-tratamento, como
cloração, se dá também para a redução de microrganismos que podem estar presentes
no efluente, dependo de onde coletado e se posteriormente esse efluente for utilizado
como água de reuso (OENNING, 2006).
No sistema de osmose reversa é necessário o controle da temperatura e do pH,
pois estes interferem na otimização do processo, o controle da vazão da alimentação e a
limpeza das membranas, os quais, se não controlados de maneira correta influenciam na
colmatação (fouling) das membranas (VARGAS, 2003). Isso também pode ocorrer
quando há presença de óleos e graxas no efluente, afetando o potencial das membranas
(COSTANZI et. al., 2005).
17
A colmatação acontece quando não há periodicidade na limpeza das membranas,
ocasionando uma incrustação do soluto e formação de uma camada de rejeito,
dificultando a passagem do solvente. Esse dano pode ser controlado com o uso de um
sistema de pré-tratamento do resíduo líquido, com o auxílio de retrolavagem e limpeza
química, quando necessário (OENNING, 2007).
Há relatos de problemas causados por má operação e má manutenção do
sistema, como deixar que sólidos não dissolvidos tentem passar pelas membranas. Estes
descuidos podem fazer com que o sistema seja mal avaliado, como ocorreu na época de
1970, quando a osmose reversa foi desacreditada em virtude de problemas como o
citado. Esses problemas podem ser facilmente resolvidos com um pré-tratamento do
efluente que ajuda prevenir problemas no tratamento posterior (BISTERSO, 2010).
Quando a osmose reversa, apoiada em um pré-tratamento, é utilizada para tratar
água para reutilização, confere-se melhor qualidade da água decorrente, apresentando
níveis acima do esperado e garantindo a possibilidade dessa água ser utilizada
novamente em outros procedimentos na indústria (SCAPINI, 2007).
O pré-tratamento também é utilizado para prolongar a vida útil das membranas
podendo melhorar seu desempenho e até dobrar esse tempo quando utilizados pré-
tratamentos como a ultrafiltração (BISTERSO, 2010)
Quando em operação com água de reuso, as membranas de osmose reversa
chegam a ter um decréscimo em sua capacidade de absorção de 10%/ano. Quando
utilizado a microfiltração anteriormente à osmose reversa, esta consegue reduzir com
eficiência os níveis de turbidez, ST, COT, DQO, bactérias e DBO (demanda bioquímica
de oxigênio), oferecendo uma ação competente como pré-tratamento dos efluentes, no
entanto ainda é necessário o uso posterior da osmose reversa, pois somente a
microfiltração não é capaz de retirar agentes como nitrato, cloro e sulfato (OENNING,
2007).
Em alguns casos, o procedimento de dupla passagem do efluente pelo sistema de
osmose reversa é o mais adequado para produzir água de melhor qualidade
(STEPHENSON et. al., 2000; METCALF; EDDY, 2003; OENNING, 2007).
Para otimizar o tratamento de efluentes com os sistemas que melhor se adequam
à necessidade da empresa deve-se considerar: a área disponível para implantação do
sistema; os gastos e a qualificação exigida com a mão de obra; os produtos químicos
necessários; o período de operação; a qualidade do efluente; a vazão da água, sua
utilização, local da captação, entre outros (SCAPINI, 2007).
Uma das principais vantagens do sistema de osmose reversa é o baixo consumo
de energia, pois não há mudança de fase do efluente durante o processo (SIMÕES, et.
18
al., 2004). O capital investido com a implantação de um sistema de osmose reversa pode
chegar a R$ 70.000,00, custos que incluem acessórios, instalação, remessa e as colunas
das membranas. Para esse custo é estimado um sistema por onde passa cerca de 19 mil
galões por dia, ou seja, aproximadamente 72 m³ dia-1
(AQUAPURA, 2003; SIMÕES,
2004). A partir desses dados foi estimado o Valor Presente Líquido, que foi de R$
4.304,13, tendo sua Taxa Interna de Retorno de 11,23%. Portanto, pode-se determinar
que o investimento é reavido em um prazo de 10 anos. A instalação de um sistema de
osmose reversa com capacidade de produção de 3,5 m³ hora-1
tem custo de aquisição de
R$ 86.700,00 (LAPOLLI, 1998).
Os gastos apresentados podem ser explicados de acordo com os chamados
custos diretos, indiretos e de operação (RAY, 1992; SIMÕES, et.al., 2004).
Os custos diretos envolvem a implantação, como a adaptação do local, compra do
equipamento, sistemas elétricos e hidráulicos, engenheiros responsáveis pelo projeto,
instalação, etc. Dependendo do projeto os custos indiretos podem ser considerados
significantes ou não, entre eles: remuneração de empreiteiros e de operários de
construção, equipamentos de construção, etc. Já entre os custos operacionais tem-se a
energia gasta, produtos químicos, remuneração de mão de obra, substituição dos
módulos de membrana, filtros, etc. (SIMÕES, et.al., 2004).
O capital necessário para o investimento da implantação de um sistema de
osmose reversa é demasiado alto, esse custo pode ser maior ou menor de acordo com o
tamanho do poro necessário. Quanto menor o tamanho dos poros, para reter partículas
menores, maior será o capital necessário para a implantação do sistema. Isso pode
tornar esse sistema, muitas vezes, economicamente inviável e o retorno financeiro
dependerá do aproveitamento do resíduo e/ou do soluto, os quais podem gerar uma fonte
de arrecadação econômica (PRADO; PAWLOWSKY, 2003).
Tadeu Justi, presidente da GE Water&Process Technologies (GE & PT), defende
a idéia de que a osmose reversa é viável somente para os processos que necessitam de
água com qualidade elevada, sugerindo que acima de 70 mg L-1
o uso dessa tecnologia é
compensatório. Já para ProMinent seu uso só é viável a partir de 120 mg L-1
de sólidos
totais dissolvidos (BISTERSO, 2010).
O sistema da osmose reversa consegue atingir o domínio do mercado das
membranas devido a sua simplicidade e resistência; aos baixos custos de operação,
instalação e mão-de-obra; baixo consumo de energia, unidos a possibilidade de tratar
baixos a moderados volumes de água; a grande taxa de recuperação do efluente; a
continuidade do processo e a elevada qualidade da água após passar pelo sistema
(AMORIM et. al., 2004; SOARES et. al., 2006).
19
Quando comparado com o processo de troca iônica, por exemplo, a osmose
reversa pode ter o custo de implantação mais alto, mas no final de 5 anos calcula-se que
este sistema tenha um custo 50% menor que o processo de troca iônica. Dentro de um
prazo de 10 meses já é possível começar a ter o dinheiro da instalação revertido em
lucros para a empresa (BISTERSO, 2010).
Atualmente os sistemas de separação por membranas estão sendo aplicados com
maior frequência, tendendo a um crescimento significativo. Esta nova tecnologia pode ser
capaz de retirar do mercado tecnologias convencionais de filtração, uma vez que os
tratamentos convencionais não conseguem filtrar todos os rejeitos do soluto. Além disto,
os valores do sistema de osmose reversa estão consideravelmente mais baixos
atualmente do que quando comparados aos valores do passado (METCALF; EDDY,
2003; OENNING, 2007).
Os processos de separação por membranas são relativamente novos, mas já
estão se tornando consagrados dentro das indústrias por apresentarem um menor gasto
de energia, menor espaço físico utilizado, menor quantidade de efluentes gerados,
facilidade de operação, possibilidade de combinação com outros processos clássicos,
entre outros benefícios, quando comparados com os métodos convencionais (VARGAS,
2003).
Abaixo se observa algumas vantagens e desvantagens do sistema de osmose
reversa:
PRÓS
 Menor gasto com energia;
 Instalação em espaços físicos pequenos;
 Fácil operação;
 Menor quantidade de resíduos gerados;
 Alta eficiência.
CONTRAS
 Limpeza das membranas;
 Controle de pH e temperatura;
 Custo das membranas;
 Colmatação.
20
3. REUSO DA ÁGUA
O termo mais aceitável mundialmente para o reuso da água é “Uso de efluentes
tratados para fins benéficos, tais como irrigação, uso industrial e fins urbanos não
potáveis” (MIERZWA, 2002).
A idéia de reuso da água existe há anos, mas com o desenvolvimento de novas
técnicas - como a filtração por membranas - essa idéia se tornou aplicável (LAPOLLI et.
al., 1998). O aproveitamento de águas provenientes de fontes alternativas de
abastecimento contribui em grande escala para reduzir a escassez da água e também os
custos do consumo de água de fontes tradicionais, mas para que o reuso desse tipo de
sistema seja utilizado, necessita-se saber a qualidade da água decorrente e onde essa
pode ser utilizada (MIERZWA, 2006). O reuso visa garantir a disponibilidade da água
para todas as atividades necessárias, ocasionando uma melhoria na qualidade de vida
(MIERZWA, 2002).
A Companhia de Tecnologia de Saneamento Ambiental (CETESB) alega que com
a reutilização da água dentro das empresas e a consequente substituição em sua
captação, ocorrerá a diminuição da demanda nos corpos d’água. Este fato ocasionará a
conservação e o aumento da capacidade de exploração econômica, tanto pelas
empresas quanto pelos órgãos governamentais.
No geral, a água decorrente de sistemas de tratamento, quando reutilizada, se
enquadra nos processos de lavagem de equipamentos, peças e pisos; descargas;
sistemas de combate a incêndios; sistemas de resfriamento como ar-condicionado e
exaustores. Já a água de reuso decorrente do sistema de tratamento osmose reversa
pode ter aplicações mais específicas, como o uso em caldeiras de alta pressão, além das
aplicações acima citadas (CONSTANZI, et.al., 2005).
O grau de qualidade da água ideal para o uso atualmente pode ser muito diferente
dos níveis indicados no passado ou à serem indicados no futuro, pois podem surgir novas
restrições referentes ao uso e qualidade da água de acordo com o grau de escassez
enfrentado (MIERZWA, 2002).
Atualmente os estudos para aprimoramento das técnicas utilizadas no tratamento
da água de reuso vêm apresentando maior eficiência e menor custo (LAPOLLI et. al.,
1998). Como não há legislação específica para o controle da qualidade da água
destinada a reutilização, ainda que a Agência de Proteção Ambiental Americana (EPA)
tenha provido um guia com sugestões de diretrizes sobre o reuso da água em 2004
(OENNING, 2006), é necessário que a qualidade esteja de acordo com as normas de
utilização para onde a água será destinada. Os sistemas de osmose reversa podem
21
garantir alta eficácia para casos que exigem alta qualidade (CARRARA; BRESAOLA,
2001).
Quando a água de reuso é utilizada em processos onde não há contato com o
produto final sua qualidade pode ser menor, como por exemplo, em processos de
refrigeração e lavagens de instalações. Quando a água é utilizada como matéria-prima,
fluido auxiliar ou quando há contato com o produto final, sua qualidade deve ser maior ou
igual que quando utilizada para consumo humano. Se a água for utilizada para geração
de energia térmica, como para aquecimento, seu grau de qualidade deve ser elevado.
Para lavagens de equipamentos, o nível de qualidade depende da necessidade exigida
pelo setor (MIERZWA, 2002).
As indústrias, como grandes consumidoras de água e geradoras de efluentes, têm
responsabilidade em sua escassez, portanto quando essas empregam métodos de
reutilização da água, ajudam na preservação da mesma (CARRARA; BRESAOLA, 2001),
além de garantir que a geração dos resíduos hídricos também sejam menores
(Figura 5). As novas técnicas existentes para a reutilização da água avançam no
sentido de dar aos esgotos algum valor econômico (LAPOLLI, 1998).
Figura 5. Ciclo fechado de reuso da água (MARKOS, 2006, adaptado por NASSIN, J. B., 2013).
22
Atualmente está havendo um aumento na procura por novas fontes de
abastecimento devido à crescente escassez de água, por isso sua reutilização tem se
mostrando uma alternativa eficiente e vem se consolidando no mercado a cada dia
(CONSTANZI et. al., 2005).
A reutilização da água sem um prévio tratamento não é recomendado para as
indústrias, pois esta pode apresentar concentrações altas de metais pesados e
compostos orgânicos (CARRARA; BRESAOLA, 2001). Dependendo da qualidade do
efluente e do processo em que será reutilizado, deve-se empregar o melhor tratamento
para este (SCAPINI, 2007). Quando há necessidade de remoção de sais, o método de
osmose reversa é bastante utilizado, devido à capacidade de seus polímeros
semipermeáveis realizarem a dessalinização (COSTANZI et.al., 2005). Para a
HaztecAquamec/SP a osmose reversa, quando empregada para o reuso da água, é
economicamente viável para as indústrias (BISTERSO, 2010).
Uma das maiores possibilidades de mercados para as membranas é sua
implementação nas empresas para produção de água de reuso. Essas membranas são
normalmente utilizadas após um pré-tratamento convencional do efluente, o qual envolve:
coagulação/floculação, decantação, filtração e desinfecção com cloro ou luz ultravioleta
(SCHNEIDER, 2001; SCAPINI, 2007).
A CETESB coloca que: “O reuso direto planejado das águas ocorre quando os
efluentes, após tratados, são encaminhados diretamente de seu ponto de descarga até o
local do reuso, não sendo descarregados no meio ambiente. É o caso com maior
ocorrência, destinando-se a uso em indústria ou irrigação”. A Companhia ainda afirma
que a água de reuso pode ser utilizada em: irrigação de campos cultivados, irrigação
paisagística, recargas de aquíferos, usos urbanos não-potáveis (como combate ao fogo,
lavagem de veículos e ruas, descargas, etc.), finalidades ambientais (como aplicação em
pântanos, aumento da vazão de cursos de água, etc.), usos industriais (como
refrigeração, alimentação de caldeiras, água de processamento, etc.) e outros usos
(como controle de poeira, aquicultura, construções, etc.).
Atualmente, mesmo que alguns processos não exijam, acaba-se utilizando níveis
altos de qualidade da água, pois a osmose reversa induz menor aplicação de produtos
químicos no tratamento do resíduo gerado (MIERZWA, 2002).
Abaixo se observa algumas vantagens e desvantagens do reuso da água por
indústrias:
23
PRÓS
 Redução de gastos com captação e/ou uso da água vinda de fontes
distintas;
 Redução da quantidade de resíduos;
 Redução do desperdício de água;
 Imagem ambiental melhorada;
 Fonte de água confiável;
 Planejamento da demanda de água, otimizando seu uso.
CONTRAS
 Custo com a implantação e/ou implementação de sistemas mais eficazes;
 Custo com a manutenção do sistema.
24
4. CARACTERIZAÇÃO DOS RESÍDUOS
As características dos resíduos se diferem de acordo com a linha de atuação da
empresa geradora. No caso dos efluentes esses devem estar de acordo com a resolução
nº 397, de 03 de abril de 2008, do Conselho Nacional do Meio Ambiente (CONAMA)
(Tabela 2).
25
Tabela 2. Valores máximos permitidos para emissão de efluentes no ambiente.
Fonte: CONAMA (2008)
26
Em empresas de galvanoplastia o efluente gerado é rico em metais pesados como
zinco (Zn), cobre (Cu), cromo (Cr), níquel (Ni), alumínio (Al), ferro (Fe), dentre outros,
mas a concentração desses no resíduo varia de acordo com o tamanho da indústria
(PEREIRA NETO et.al., 2008).
Já as indústrias de borracha, colas, adesivos, resinas impregnantes, etc.,
apresentam fenóis em seus efluentes, assim como é comum o uso do benzeno como
solvente em adesivos, removedores de tintas e agentes desengraxantes. Nos processos
de refinamento do petróleo há liberação de resíduos oleosos e benzeno; este último
também é encontrado em indústrias produtoras de tolueno, xileno, fenol, estireno, ácido
maléico, nitrobenzeno e clorados e em indústrias produtoras de calçados. Há casos de
liberação de arsênio (As), nos efluentes das indústrias que produzem tintas e corantes, e
chumbo (Pb), liberado pelas indústrias de acumuladores e fabricantes de baterias. Nas
atividades de extração de bauxita há liberação de bário (Ba) em seus efluentes. Nas
atividades de mineração, encontra-se em seus efluentes compostos como As e Cr, esse
último vindo de processos para a formação da amálgama (união do mercúrio com o ouro)
(PERPETUO, 2008).
Em indústrias de fecularia os efluentes gerados são compostos principalmente por
matéria orgânica, pois sua matéria-prima é de origem vegetal. Já os abatedouros têm
seus efluentes compostos por matéria orgânica devido ao produto ser de origem animal
(PRADO; PAWLOWSKY, 2003).
As indústrias produtoras de óleos comestíveis, laticínios, petroquímicas,
frigoríficos e matadouros apresentam efluentes oleosos. As três últimas também
apresentam efluentes com alta carga orgânica, equiparando-se com empresas
alcooleiras, alimentícias e de produção de bebidas (PERPETUO, 2008).
Em cadeias têxteis, os principais compostos encontrados nos efluentes são:
dextrinas, graxas, ectinas, álcoois, aminas graxas, hidróxido de sódio, carbonato de
sódio, cloreto de sódio, peróxido de hidrogênio, ácido acético, hidrossulfito de sódio,
sulfato de sódio, corantes reativos, corantes a cuba, corantes dispersos e pigmentos.
Esses produtos são gerados em etapas como engomagem, desengomagem, cozimento,
tingimento e acabamento do tecido (FRANCO, 2009).
Nas indústrias fabricantes de inseticidas encontram-se o cádmio (Cd) e o arsênio
(As) em seus efluentes. Nesse mesmo segmento, também apresentam o As indústrias
que produzem herbicidas e fungicidas. Em indústrias de vidros, dependendo do tipo do
material produzido e em indústrias referentes à preservação da madeira, o principal
elemento que compõe o efluente também é o As.
Em indústrias siderúrgicas, nas fases de metal líquido, em processos como
coqueificação e alto-forno, o resfriamento gera efluentes ricos em amônia e outras
27
substâncias tóxicas. Ainda no processo de refrigeração dos gases gerados o efluente se
torna rico em Pb, Zn e outros compostos em menor quantidade (SANTOS, 2010). Já as
indústrias metalúrgicas podem conter ferro (Fe) em seus efluentes, proveniente da
decapagem, por exemplo (PERPETUO, 2008).
Nas indústrias alcooleiras o resíduo gerado, conhecido como vinhoto ou vinhaça,
é rico em matéria orgânica e minerais (SILVA; ORLANDO, 1981; SENA, 1998). Esse
resíduo pode ser utilizado como adubo orgânico (LAUTENSCHLAGER et. al., 2009). Já
em indústrias de papel e celulose são encontrados efluentes com teor de sulfato e
compostos orgânicos; o mesmo ocorre em indústrias químicas e farmacêuticas
(PERPETUO, 2008).
Em indústrias de curtume, onde se processa couro, são gerados efluentes com
níveis elevados de matéria orgânica e inorgânica, os quais são gerados em processos de
remolho, depilação e caleiro, purga, píquel, curtimento e recurtimento (SCAPINI, 2007).
Nos efluentes de curtumes, também pode ser identificado o cromohexavalente. Os
compostos orgânicos também são encontrados em esgotos sanitários, além dos sulfetos
e cloretos (os quais exigem processos de tratamento como a osmose reversa para serem
retirados), nitrogênio (N), fósforo (P), enxofre (S), Fe e outros. Em menores quantidades
encontram-se compostos orgânicos sintéticos: detergentes, pesticidas, fenóis, etc. Até
mesmo as estações de tratamento liberam o Al em suas águas, gerado pelo processo de
floculação/coagulação que utilizam este elemento como base de seu coagulante
(PERPETUO, 2008).
Esses diversos efluentes implicam em diferentes tratamentos, dependendo do
segmento da indústria e qual a destinação de seus resíduos.
28
5. PRODUÇÃO MAIS LIMPA
Com o crescimento demográfico, industrial, econômico e da tecnologia, cresceu
também a degradação do meio ambiente. A partir de pressões governamentais e sociais
criaram-se alguns parâmetros para controlar esse problema, sendo exigido das empresas
adequações às novas condições. Quando a consciência ambiental se tornou mais sólida
na sociedade e no mercado algumas empresas começaram a perceber uma possível
oportunidade de inovar, visando os lucros e a competitividade, além de cuidar do meio
ambiente (MELLO; NASCIMENTO, 2002).
Em 1972, na Conferência de Estocolmo/Suécia, deu-se início à conscientização,
comportamento e atitude ambiental - como ao conceito tecnologia limpa, a qual previa a
redução do descarte no meio ambiente, da geração de resíduos e do consumo de
recursos naturais, em especial os não-renováveis. Porém só em 1991 a UNIDO/UNEP
(United National Industrial Development Organization/United Nation Environmental
Program) criou a Produção Mais Limpa (P+L), com base no programa Produção Limpa do
Greenpeace com intermédio ao programa de minimização de resíduos da Agência de
Proteção Ambiental (EPA) dos Estados Unidos (PIMENTA; GOLVINHAS, 2007),
formando o conceito: “aplicação continuada de uma estratégia ambiental preventiva e
integrada aos processos, produtos e serviços, a fim de aumentar a eficiência e reduzir os
riscos para os homens e o meio ambiente” (UNIDO/UNEP, 1995; LEMOS;
NASCIMENTO, 1999). A partir disto foram realizados vários eventos em diversos países
com ênfase na discussão da P+L. Na Agenda 21 também foram tratados assuntos
relacionados à técnica, como a mudança dos padrões de consumo, de transportes,
energia, a geração de resíduos e a implantação de tecnologias (Figura 6) (HIROSE,
2005).
Figura 6. Atuação da prática de Produção mais Limpa em uma empresa (SILVA; SICSÚ, 2003).
29
Na Produção mais Limpa se considera a redução de materiais tóxicos e um uso
mais eficiente de energia, diferente da Produção Limpa do Greenpeace, que exige
somente materiais atóxicos e o uso de energias renováveis. Logo, percebe-se que a
Produção Limpa é mais restritiva que a Produção mais Limpa, porém esta é de difícil
implantação (PIMENTA; GOUVINHAS, 2007; MELLO; NASCIMENTO, 2005).
As melhorias da P+L podem exigir mudanças dos processos industriais, matérias-
primas, produtos e das boas práticas de fabricação (housekeeping) (HIROSE, 2005). No
caso dos processos produtivos as melhorias podem ser alcanças eliminando a poluição
gerada desnecessariamente durante os processos de produção (PIMENTA;
GOUVINHAS, 2007). Seu princípio é a prevenção, atuando nos serviços, processos e
produtos, ou seja, em toda a empresa. Assim, esse processo costuma aumentar a
produtividade, a performance ambiental e reduzir o impacto ambiental (PIMENTA;
GOUVINHAS, 2007). Na questão ambiental, as melhorias podem ser alcançadas através
das mudanças feitas diretamente nas fontes de poluição para que essas produzam o
mínimo de resíduo possível, diferente das técnicas comuns que trabalham com o
tratamento e a disposição final desses resíduos (HIROSE, 2005).
A matéria-prima, energia e água descartadas como resíduo podem ter um valor de
10 a 30% no custo total da produção, dependendo do produto, eficiência e tecnologia.
Esses valores são considerados fator econômico negativo, sendo a poluição um
desperdício, mas podendo ser utilizada como alerta para problemas de planejamento,
projeto, utilização equivocada dos recursos, entre outros (DIAZ; PIRES, 2005). Mesmo
que a técnica da P+L seja utilizada para melhorar os processos e reduzir a geração de
resíduos, nem sempre se consegue atingir completa eficiência, portanto parte-se para a
reciclagem e/ou a reutilização desses resíduos. Esses processos também podem fazer
parte do programa P+L. Com a reciclagem interna dos resíduos obtêm-se novos
subprodutos, os quais podem ser reutilizados na própria empresa ou vendidos como
matéria-prima (HIROSE, 2005), assim como quando empregado somente o reuso, pois
os novos subprodutos também podem ser reintroduzidos como matéria-prima (SILVA;
SICSÚ, 2003).
Há três níveis na metodologia P+L para se conseguir atingir melhor eficiência do
processo (Figura 7). O primeiro nível tenta evitar a geração de resíduos; no segundo nível
os resíduos que ainda assim foram gerados tentam ser reintegrados ao processo de
produção. Quando isso não é possível, o resíduo é reciclado no terceiro nível (RENSI;
SCHENINI, 2006). O reuso do efluente tratado pode ser considerado uma das ações do
nível 2, pois volta ao processo, diminuindo o volume de resíduo hídrico gerado (SCAPINI,
2007).
30
Figura 7. Níveis da metodologia da prática de Produção mais Limpa (SILVA FILHO et. al., 2007).
O sistema de gestão ambiental (SGA) visa a implantação de estratégias como a
P+L para conseguir obter um potencial competitivo unido à responsabilidade ambiental
(SILVA FILHO, et. al., 2007). Atualmente no Brasil a maioria das empresas infelizmente
ainda não tem a consciência ambiental necessária para serem pró-ativas, tendo reações
ambientais somente devido a necessidade de se cumprir normas e legislações exigidas,
isso faz com que percam audiência internacional e até mesmo da sociedade. As
empresas devem buscar alternativas, principalmente ambientais, para que possam
competir globalmente, pois o meio ambiente se tornou uma nova oportunidade para as
empresas garantirem seu poder competitivo marcando seu lugar no mercado (SILVA;
SICSÚ, 2003).
De acordo com os princípios da P+L, as técnicas de recuperação do soluto e o
reuso do solvente estão progredindo quando o assunto é tratamento de efluentes, e um
dos melhores processos para esse feito é o uso de membranas como a osmose reversa.
Muitas vezes os custos dessas técnicas parecem elevados, inviabilizando o investimento
(PEREIRA NETO et. al., 2008), porém pesquisas indicaram que 53% das pessoas de
diversos países, independente do nível de desenvolvimento, confirmaram que pagariam
um valor a mais para garantir a proteção ambiental. No Brasil, 71% das pessoas
responderam da mesma maneira (LEMOS; NASCIMENTO, 1999). O programa de P+L
pode ser utilizado em empresas de qualquer área (RENSI; SCHENINI, 2006), como
indústria de manufatura, alimentos, agricultura, transporte, turismo, saúde, etc. (MELLO;
NASCIMENTO, 2002).
31
A exigência dos consumidores e do mercado externo por produtos
ambientalmente corretos traz a necessidade das empresas se adequarem, favorecendo a
criação de práticas que denotem aos componentes verdes, como produtos, economia,
filosofia, etc. (SILVA; SICSÚ, 2003). É importante salientar que a aplicação de técnicas
de P+L não altera a qualidade do produto gerado pela empresa. Essa prática muda, para
melhor, a imagem ambiental da empresa, a saúde e segurança dos trabalhadores, além
de outros benefícios indiretos, a médio ou longo prazo, que garantem significância para a
empresa (HIROSE, 2005) como: mudança da visão do processo do produto (agora visto
como um só); caminho para a sustentabilidade; facilidade de acesso a financiamentos;
melhoria do relacionamento com órgãos ambientais; satisfação de clientes (SILVA
FILHO, et. al., 2007).
As etapas para implantação da P+L consistem em: planejar e organizar; pré-
avaliar e diagnosticar; avaliar; estudar a viabilidade técnica, econômica e ambiental;
implementar e planejar a continuidade (HINZ, et. al., 2006). Portanto a implantação da
P+L é feita primeiramente através de estudos de áreas potenciais para otimização
visando a melhoria dos insumos utilizados no processo (PIMENTA; GOUVINHAS, 2007).
Após esses estudos, são avaliados os custos-benefícios dos investimentos necessários.
Depois de implantada a prática, espera-se a redução dos custos e dos resíduos e o
aumento da eficiência (MELLO; NASCIMENTO, 2002). O sistema garante retorno
financeiro a curto prazo para a empresa, assim a P+L consegue ser sustentada pelas
economias feitas no próprio processo. (HIROSE, 2005).
Com o programa P+L implantado e funcionando a empresa consegue atuar com
responsabilidade e segurança ambiental, o que faz com que os recursos naturais sejam
preservados, aumentando a satisfação da sociedade (HIROSE 2005). Além de propiciar
satisfação e bem-estar para a sociedade; garantir um meio ambiente saudável para as
gerações futuras, também traz para a empresa a satisfação de seu interesse econômico.
Isso incentiva a empresa a se tornar mais competitiva no mercado, o que é uma
necessidade crescente no meio empresarial e induz a companhia a também pensar no
futuro (DIAZ; PIRES, 2005). Essa técnica exige mudança de pensamento e
comportamento (RENSI; SCHENINI, 2006). Como a P+L é uma técnica contínua, se faz
necessário a mudança da cultura da empresa e de seus funcionários (MELLO;
NASCIMENTO, 2002) abrangendo todos os principais ideais necessários dentro de uma
empresa para que possa acontecer a otimização e melhoria contínua dos processos,
viabilizando uma vantagem econômica e competitiva, associados aos benefícios ao meio
ambiente, saúde, planejamento, qualidade, segurança, eficiência, etc. (DIAZ; PIRES,
2005).
32
Há estudos de prevenção à poluição que comprovam que a adesão de novas
tecnologias podem reduzir a poluição em até 60% (SILVA FILHO, et. al., 2007). A
poluição gerada em muitos países, se aplicadas práticas de melhorias nos processos,
poderia ser evitada em aproximadamente 50% (MELLO; NASCIMENTO, 2002).
Para que a P+L cumpra seu objetivo, os aspectos materiais (como matéria-prima,
equipamentos e serviços) e os aspectos tecno-gerenciais (como tecnologia,
gerenciamento e desenvolvimento humano) devem ser envolvidos na prática (DIAZ;
PIRES, 2005), aumentando os produtos e reduzindo os resíduos, os quais sempre são
provenientes dos insumos de algum processo (NASCIMENTO, 2000). O programa P+L,
se bem aplicado, consegue prevenir a geração de resíduos, diminuindo assim a
necessidade de respectivos tratamentos, trazendo a vantagem da adequação às normas
e legislações ambientais (DIAZ; PIRES, 2005).
A P+L empenha-se em atrelar a eficiência econômica com a eficiência ambiental
(chamada de eco-eficiência) a partir das estratégias de gestão ambiental, que envolve
simultaneamente diferentes etapas como: housekeeping; melhoria dos processos, de
matérias-primas, de tecnologias e do design do produto; e reciclagem e/ou reuso. Deve
ser considerado todo o ciclo de vida do produto (DIAZ; PIRES, 2005). O conceito da
eco-eficiência envolve a economia, o meio ambiente e a sociedade, assim as melhorias
devem ser economicamente rentáveis, ambientalmente compatíveis e socialmente justas
(NASCIMENTO, 2000).
A redução da matéria-prima, energia e água, além de reduzir os resíduos gerados,
também resulta em um aumento de produtividade, o que traz mais benefícios para a
empresa praticante da P+L (DIAZ; PIRES, 2005). Esses ganhos econômicos, além de
estarem ligados à diminuição dos resíduos, do uso da água e da energia, também são
atribuídos à economia de possíveis multas ambientais que a empresa está se privando e
a não diminuição das vendas por má publicidade (HINZ et. al., 2006).
Há tecnologias utilizadas nessa prática que podem ser consideradas como
tecnologias limpas, as quais visam reduzir o resíduo diretamente na fonte e a degradação
ambiental, ajudando nos princípios da P+L e da sustentabilidade (MELLO;
NASCIMENTO, 2002; RENSI; SCHENINI, 2006). Essas tecnologias, quando comparadas
a outras, causam menor impacto no meio ambiente (MELLO; NASCIMENTO, 2002).
No mercado são consideradas algumas barreiras para a implementação da P+L
nas empresas. Essas podem ser barreiras técnicas, econômicas e organizacionais, a
falta de políticas nacionais que enfatizem a técnica, a resistência à mudança, etc.
(MELLO; NASCIMENTO, 2002; HINZ et. al., 2006), mas principalmente a falta de
conhecimento sobre a prática (MELLO; NASCIMENTO, 2002; PIMENTA; GOUVINHAS,
2007). Ainda assim a técnica é considerada de fácil implantação (SILVA; SICSÚ, 2003).
33
Abaixo se observa alguns pontos de vantagens e desvantagens do processo de
Produção mais Limpa:
PRÓS:
 Otimização dos processos produtivos;
 Melhoria da imagem ambiental;
 Aumento da produtividade e eficiência;
 Redução dos custos com matérias-primas, energia e água;
 Redução da geração de resíduos;
 Redução dos custos com armazenamento e disposição de resíduos;
 Redução dos custos operacionais;
 Crescimento sustentável;
 Aumento da vantagem competitiva;
 Minimização de impactos ambientais;
 Melhoria no desempenho financeiro;
 Bem-estar populacional.
CONTRAS:
 Custo de investimento para otimização dos processos.
34
6. CONSIDERAÇÕES FINAIS
O sistema de osmose reversa está ganhando mercado, porém,
internacionalmente é mais utilizado na dessalinização, enquanto sua utilidade é muito
mais abrangente. No entanto, no Brasil, mesmo sendo um sistema altamente eficaz,
ainda há barreiras, como a falta de informação e o custo de investimento, que impedem a
exploração de seu uso pelas empresas.
Quando os corpos d’água deixam de receber resíduos hídricos industriais,
aumentando sua qualidade, reflete na economia do município, pois há diminuição dos
produtos químicos utilizados em tratamentos de água, essa economia pode refletir em um
possível desconto em impostos dado pelo município para as empresas que deixaram de
poluir. O investimento para a implantação do sistema de osmose reversa é reavido em
tempo relativamente curto, com esse possível beneficio do governo, esse tempo
diminuiria ainda mais.
A P+L consegue ser uma prática completa, pois traz benefícios econômicos,
ocasionando menor custo para a empresa; ambientais, propiciando menor impacto
negativo; e tecnológico, acarretando em melhores e novas técnicas.
Mesmo as empresas instalando práticas de P+L, são necessários treinamentos de
educação ambiental para mudar a cultura de seus funcionários, assim esses são
reeducados ambientalmente, fazendo sua parte no processo e disseminando esse novo
conhecimento.
A atitude das empresas em se revelarem indiferentes ao estudo de caso realizado
mostra que essas ainda não se preocupam com a imagem que os consumidores possam
fazer delas.
35
7. CONCLUSÕES
A partir da revisão realizada pode-se concluir que a osmose reversa vem sendo
cada vez mais utilizada. Porém a falta de informação das empresas se torna o maior
inimigo da potencialização de seus processos.
O sistema de osmose reversa é mais comumente utilizado para dessalinização,
porém, como seu sistema é capaz de realizar uma purificação altamente eficaz, fazendo
com que seus efluentes saiam com alta qualidade, torna possível sua reutilização na
maioria dos processos industriais.
A empresa que utiliza projetos de reuso mostra sua mentalidade ambiental
evoluída. Os projetos de reuso da água decorrente de processos de osmose reversa,
além de ajudar a prevenir a degradação do meio ambiente, podem aumentar os lucros e
melhorar a imagem ambiental perante os consumidores, inclusive ao mercado
internacional.
36
ANEXO
ESTUDO DE CASO
Quando há um projeto para ser implantado, a empresa precisa avaliar sua
viabilidade. O quesito mais importante é saber se o capital investido será reavido e
quanto tempo será necessário para gerar lucros. Alguns itens que interferem no
investimento são o tempo de vida do sistema, a taxa de retorno anual e seu tempo de
implementação (SIMÕES et al., 2004). Portanto, para o estudo de caso foi enviado o
questionário abaixo para 18 empresas nacionais, nas diferentes regiões do país, e de
diversos segmentos, com a finalidade de realizar um levantamento de dados à respeito
da osmose reversa e do reuso da água, bem como os dados básicos de cada empresa.
1 - Qual o segmento da empresa?
( ) indústria
( ) comércio/serviços
( ) outros. Qual?___________________________________
Se indústria, qual a área?
( ) metalúrgica
( ) agropecuária
( ) siderúrgica
( ) papel e celulose
( ) alimentícia
( ) galvanoplastia
( ) têxtil
( ) ração
( ) outra. Qual? ___________________________________
2 - Qual o tamanho da empresa?
( ) pequeno porte
( ) médio porte
( ) grande porte
3 - Quantos funcionários?
( ) menos que 1000
( ) entre 1000 e 5000
( ) mais que 5000
4 - A empresa tem tratamento de água e efluentes?
( ) Sim
( ) Não
( ) Parcialmente, em alguns setores.
37
5 - Qual o tipo de tratamento de água e efluentes que a empresa utiliza?
( ) convencional (processos físico-químicos)
( ) membranas filtrantes. Qual? _______________________
( ) troca iônica
( ) outro. Qual? _______________________
Quais são seus processos?
( ) cloração
( ) floculação/ coagulação
( ) decantação
( ) filtração
( ) outros. Quais? ___________________________________
6 - Quais os processos de produção que utilizam água?
R.: ____________________________________________________________
7 - A empresa já utiliza ou pretende utilizar água de reuso?
( ) Sim
( ) Não
8 - Há quanto tempo o sistema de reuso está implantado?
( ) menos de 5 anos
( ) 5 a 10 anos
( ) mais de 10 anos
( ) ainda não está implantado
9 - Quais os processos que utilizam/utilizarão água de reuso?
R.: ____________________________________________________________
10 - De onde é/será a captação da água reutilizada?
( ) água de chuva
( ) tratamento de efluentes (processos de produção)
( ) tratamento de esgoto
( ) “água cinza” (vinda de processos de limpeza, torneiras, banho, etc.)
( ) outro. Qual? ___________________________________
11 - Por quais processos de tratamento a água de reuso passa/passará?
( ) convencional (floculação/ decantação/ filtração)
( ) cloração
( ) troca iônica
( ) ultravioleta
( ) osmose reversa
( ) outras membranas filtrantes
38
12 - Que melhorias o sistema de reuso trouxe para a empresa?
( ) aumento do valor agregado ao produto
( ) melhoria na qualidade de vida dos empregados
( ) redução de impostos (como conta de água)
( ) imagem ambiental bem-sucedida
( ) melhorias para o meio ambiente
( ) nenhuma
13 - Os gastos aplicados com o sistema de reuso da água foram reavidos? Em quanto
tempo?
( ) Não
( ) menos que 5 anos
( ) de 5 a 10 anos
( ) mais que 10 anos
Se não, em quanto tempo a empresa espera reavê-los?
( ) menos que 5 anos
( ) de 5 a 10 anos
( ) mais que 10 anos
14 - A empresa considera aplicável a implantação de um sistema de reuso da água?
( ) Sim
( ) Não
( ) Não no atual momento
15 - Há a necessidade de controle de qualidade específico para algum dos processos de
produção? Quais?
R.:____________________________________________________________
16 - A empresa conhece o sistema de osmose reversa?
( ) Sim
( ) Ainda não
( ) Parcialmente
17 - A empresa tem implantado ou pretende implantar o sistema de osmose reversa em
suas dependências?
( ) Sim
( ) Não
( ) Já está implantado
Caso o sistema de osmose reversa esteja instalado na empresa, por favor, responda as
questões abaixo:
1 - Há quanto tempo o sistema de osmose reversa está implantado?
( ) menos de 5 anos
( ) 5 a 10 anos
( ) mais de 10 anos
39
2 - A água proveniente do sistema de osmose reversa é utilizada para que finalidades?
( ) caldeira de alta pressão
( ) irrigação
( ) resfriamento
( ) descargas
( ) assepsia de chão
( ) processos de produção
( ) energia térmica ou mecânica
( ) outras. Quais? ___________________________________
3 - A empresa já teve algum tipo de problema com o sistema de osmose reversa? Quais?
R.: ____________________________________________________________
4 - Que melhorias o sistema de osmose reversa trouxe para a empresa?
( ) aumento da produtividade
( ) aumento do valor do produto, devido ao valor agregado ao mesmo
( ) nenhuma
( ) outras. Quais? ___________________________________
5 - Os gastos aplicados com o sistema da osmose reversa foram reavidos? Em quanto
tempo?
( ) Não
( ) menos de 5 anos
( ) de 5 a 10 anos
( ) mais de 10 anos
Se não, em quanto tempo a empresa espera reavê-los?
( ) menos de 5 anos
( ) de 5 a 10 anos
( ) mais de 10 anos
6 - A empresa considera aplicável a implantação de um sistema de osmose reversa (de
acordo com eficácia, utilização, custos de implantação, manutenção, energia, etc.)?
( ) Sim
( ) Não. Por quê? ___________________________________
Até o fechamento do presente trabalho, apesar do tempo dado para retornar o
contato, somente uma empresa, localizada na região Nordeste, se manifestou, colocando
que, na unidade solicitada não há tratamento por osmose reversa, porém há captação de
águas pluviais e seu reuso nos processos industriais. Quanto aos efluentes há um projeto
piloto para sua utilização como irrigação de jardins.
40
REFERÊNCIAS BIBLIOGRÁFICAS
AQUAPURA (2003) - Tempest Environmental Systems; Disponível em:
<http://www.aquapura.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=22e&P
roduct_Code=TESRO -19000>. Acesso em 20 de janeiro de 2013.
BISTERSO, R. Sistemas de osmose reversa para tratamento de água. Revista Hydro, p.
16-31, jun, 2010.
BRASIL. Ministério do Meio Ambiente. CONAMA. Resolução nº 397, de 07 de abril de
2008. Dispõe sobre a Alteração do inciso II do § 4º e a Tabela X do § 5º do art. 34 da
Resolução CONAMA nº 357/05 e acrescenta os §6º e 7º. Brasília, BR, 2008. PP 68-69.
CARRARA, S.M.C.M.; BRESAOLA Jr.,R. Técnicas de Tratamento para o Reuso de
Águas Residuárias de Processos de Galvanoplastia. In: 21º Congresso Brasileiro de
Engenharia Sanitária e Ambiental, 2001, João Pessoa. Resumos... p.69.
Companhia de Tecnologia de Saneamento Ambiental – CETESB. Reuso de Água.
Disponível em: <http://www.cetesb.sp.gov.br/agua/%C3%81guas-Superficiais/39-Reuso-
de-%C3%81gua#>. Acesso em: 22 de outubro de 2012.
CONSTANZI, R. N.; HESPANHOL, I.; ASSADA, L. N.; MARQUES, A. Tratamento de
Efluente por Reator Biológico Aeróbio com Membrana Visando o Reuso de Água.
Revista Brasileira de Engenharia Agrícola e Ambiental (Suplemento). Campina
Grande – PB. pg. 217 – 220, 2005.
DIAZ, C. A. P. & PIRES, S. R. I. Produção Mais Limpa: Integrando Meio Ambiente e
Produtividade. Revista de Administração CREUPI , Espírito Santo do Pinhal – SP. v. 5.
n.9., 2005.
ECKENFELDER JR, W. W., Industrial water pollution control.2nd. Ed. New York:
McGraw-Hill, 1989.
FERRAN Tratamento de Água. O que é Osmose. Disponível em:
<http://www.osmosereversabrasil.com.br/osmose.html>. Acesso em 03 de janeiro de
2013.
FRANCO, L.C.A.C. A Gestão dos Efluentes das Indústrias Têxteis e os Princípios da
Responsabilidade Social em Sergipe. 2009. 89f. Dissertação (Mestrado em Saúde e
Ambiente) - Universidade de Tiradentes, Aracajú/ SE, 2009.
HINZ, R. T. P.; VALENTINA, L. V. D.; FRACO, A. C. Sustentabilidade Ambiental das
Organizações Através da Produção Mais Limpa ou pela Avaliação do Ciclo de Vida.
Revista Estudos Tecnológicos. v. 2, n 2, pp. 91 – 98, 2006.
41
HIROSE, M. Produção Mais Limpa Garante Sustentabilidade. Revista da Fundação de
Apoio à Tecnologia. ano 2. n. 3, 2005.
HTZ. 2010. Afinal, a Água dos Filtros de Osmose Reversa Faz Mal?.Disponível em:
<http://www.aguahtz.com.br/2012/10/08/afinal-a-agua-dos-filtros-de-osmose-reversa-faz-
bem/>. Acesso em 04 de janeiro de 2013.
LAPOLLI, F.R.; LEON, A.C.; TAVARES, C.R.G.; CAMPOS, J.R. Tratamento de Águas
Residuárias Através de Membranas. In: XXVI Congreso Interamericano de Ingenieria
Sanitária y Ambiental, 1998, Lima – Peru, 1998.
LAUTENSCHLAGER, S.R.; FERREIRA F., S.S.; PEREIRA, O. Modelação Matemática e
Otimização Operacional de Processos de Membrana de Ultrafiltração. Engenharia
Sanitaria e Ambiental. vol.14, n.2, pp. 215 – 222, 2009.
LEMOS, A. D.; NASCIMENTO, L. F. A Produção Mais Limpa como Geradora de Inovação
e Competitividade. Revista de Administração Contemporânea. v. 3, n. 1, pp. 23 – 46,
1999
MANCUSO, P. C. S.; SANTOS, H. F., Reúso de Água. NISAM – USP, Barueri, SP, 579 p,
2003.
MARKOS, Água – Um olhar Integrado. Disponível em: <
http://www.c2o.pro.br/vis_int_agua/index.html>. Acesso em: 30 de março de 2013, 2006.
MELLO, M.C. A.; NASCIMENTO, L F. Produção Mais Limpa: Um Impulso para a
Inovação e a Obtenção de Vantagens Competitivas. In: XXII Encontro Nacional de
Engenharia de Produção, 2002, Curitiba/ PR. Resumos... p.1-8.
METCALF; EDDY. Wastewater Engineering: treatment, disposal and reuse. New York:
McGraw-Hill, 2003. 1334 p.
MIERZWA, J. C. O uso racional e o reúso como ferramenta para o gerenciamento de
águas e efluentes na indústria – estudo de caso da KODAK brasileira.1997. 367f. Tese
(Doutorado em Engenharia) - Universidade de São Paulo, EPUSP, São Paulo, 2002.
MIERZWA, J.C. Perspectivas Tecnológicas para Tratamento de Água e Efluentes.
Revista da Fundação de Apoio à Tecnologia, ano 2, n. 3, 2005.
MIERZWA, J. C.; HESPANHOL, I.; SILVA. M. C. C.da; RODRIGUES, L. DiB. Águas
pluviais: método de cálculo do reservatório e conceitos para um aproveitamento
adequado. XXX Congresso Interamericano de Ingenieria Ambiental – AIDS, Punta del
Leste - UY. 2006.
42
Ministério da Saúde. Vigilância e Controle da Qualidade da Água para Consumo
Humano. Brasília/ DF, 2006. 213p.
NASCIMENTO, C. A. M. Em Busca da Ecoeficiência. Revista Eletrônica de
Administração. ed. 15. vol. 16, n.3, 2000.
OENNING Jr., A. Avaliação de Tecnologias Avançadas para o Reuso de Água em
Indústria Metal-Mecânica. 2006. 224f. Dissertação (Mestrado em Engenharia de
Recursos Hídricos e Ambiental) – Universidade Federal do Paraná, Curitiba/PR, 2006.
OENNING Jr., A.; PAWLOWSKY, U. Avaliação de Tecnologias Avançadas para o Reúso
de Água em Indústria Metal-mecânica. Revista de Engenharia Sanitária e Ambiental.
v.12, n. 3, pp. 305-307, 2007.
PEREIRA Neto, A.; BRETZ, J.S.; MAGALHÃES, F.S.; MANSUR, M B.; ROCHA, S.D.F.
Alternativas para o Tratamento de Efluentes da Indústria Galvânica. Revista de
Engenharia Sanitária Ambiental. vol.13, n.3, pp. 263 – 270, 2008.
PERPETUO, E. A. Parâmetros de Caracterização da Qualidade das Águas e Efluentes
Industriais, 2008. Disponível em: <http://www.cepema.usp.br/wp-
content/uploads/2011/06/8-Par%C3%A2metros-de-caracteriza%C3%A7%C3%A3o-da-
qualidade-das-aguas-e-efluentes-industriais.pdf> Acesso em 24 de janeiro de 2013.
PIMENTA, H.C.D.; GOUVINHAS, R.P. Implementação da Produção Mais Limpa na
Indústrias de Panificação de Natal – RN. In: XXVII Encontro Nacional de Engenharia de
Produção, 2007, Foz do Iguaçu – PR, Resumos.. p.97..
PRADO, M. R.; PAWLOWSKY, U. Alternativas para o Tratamento de Resíduos Líquidos
em Fecularias. Revista Brasil Alimentos. Curitiba – PR. n. 22, out/nov, 2003. 34p.
Ray, R.J. Cost Estimates - Reverse Osmosis. Membrane Handbook. Edited by W.S.
Winston Ho and Kamalesh K. Sirkar, 1992.
RENSI, F.; SCHENINI, P. C. Produção Mais Limpa. Revista de Ciências da
Administração. vol.8. n.16. pp. 1-2, 2006.
SANTOS, A. L. Inventário dos Rejeitos, Efluentes e Sub-Produtos das Indústrias
Siderúrgicas Integradas na Fabricação de Aço Líquido. 2010. 79f. Trabalho de
Graduação (Graduação em Engenharia Metalúrgica) - Universidade Federal do Rio Rio
de Janeiro, UFRJ, Rio de Janeiro – RJ, 2010.
43
SCAPINI, L. Avaliação do desempenho da osmose reversa e da troca iônica para
tratamento de efluente de curtume (Aimoré Couros Ltda – Encantado) visando a
reutilização da água. 2007. 76 f. Dissertação (Mestrado em Sistemas e Processos
Industriais). Curso de Pós-Graduação em Sistemas e Processos Industriais, UNISC,
Santa Cruz do Sul, 2007.
SCHNEIDER, René Peter; TSUTIYA, Milton Tomoyuki. Membranas Filtrantes para o
Tratamento de Água, Esgoto e Águas de Reuso. São Paulo: ABES, 2001. 234 p.
SENA, M.E.R. Aproveitamento do Vinhoto como fertilizante e na geração de biogás
através da combinação de processos com membranas e fermentação anaeróbica. Projeto
submetido à FAPERJ - E26/171.524/98-RJ, 1998.
SILVA FILHO, J.C.G.; CALÁBRIA, F.A.; SILVA, G.C.S.; MEDEIROS, D.D. Aplicação da
Produção mais Limpa em uma Empresa como Ferramenta de Melhoria Contínua.
Revista Produção. vol. 17, n.1, pp. 109 – 128, 2007.
SILVA FILHO, J.C.G.; SICSÚ, A.B. Produção Mais Limpa: Uma Ferramenta da Gestão
Ambiental Aplicada às Empresas Nacionais. In: XXIII Encontro Nacional de Engenharia
de Produção, 2003, Ouro Preto – MG. 2003. Resumos... p. 57.
SILVA, G.M.A.; ORLANDO FILHO, J. Caracterização da composição química dos
diferentes tipos de vinhaça no Brasil, Boletim técnico LANALSUCAR, Piracicaba, v.3,
n.8, 22p. 1981.
SIMÕES, C. L. do N.; SENA de, M. E. R.; CAMPOS de, R. Estudo da viabilidade
econômica da concentração de vinhoto através de osmose inversa. In: XXIV Encontro
Nacional de Engenharia de Produção, 2004, Florianópolis-SC. Resumos... p. 5286.
SOARES, T.M.; SILVA, I.J.O.; DUARTE, S N.; SILVA, Ë.F.F. Destinação de Águas
Residuárias Provenientes de Processo de Dessalinização por Osmose Reversa. Revista
Brasileira de Engenharia Agrícola e Ambiental. vol.10, n.3, pp. 730 – 737, 2006.
STEPHENSON, T.; JUDD, S.; JEFFERSON, B.; BRINDLE, K., Membrane bioreactors for
wastewater treatment. London: IWA Publishing, 2000, citado por: METCALF & EDDY,
INC, Wastewater engineering: treatment and reuse, 4th. ed. – New York: McGraw-Hill,
2003.
UNEP/UNIDO. Cleaner production assesment manual.Part one- introduction to cleaner
production. Draft, 1995.
VARGAS, G.M.R. Investigação de Alguns Parâmetros Operacionais e de
Rejuvenescimento na Performance do Processo de Osmose Reversa. 2003. 141f.
Dissertação (Mestrado em Engenharia Química) - Universidade Federal do Rio
Grande do Sul, UFRS, Porto Alegre – RS, 2003.

Mais conteúdo relacionado

Mais procurados

A produção mais limpa na micro e pequena empresa
A produção mais limpa na micro e pequena empresaA produção mais limpa na micro e pequena empresa
A produção mais limpa na micro e pequena empresaMarco de Oliveira
 
11 transporte de efluentes
11   transporte de efluentes11   transporte de efluentes
11 transporte de efluentesDesentupidoraHP
 
Capitalismo natural e produo mais limpa final
Capitalismo natural e produo mais limpa  finalCapitalismo natural e produo mais limpa  final
Capitalismo natural e produo mais limpa finalUFRGS
 
Biotera - Produção mais Limpa (p+l)
Biotera - Produção mais Limpa (p+l)Biotera - Produção mais Limpa (p+l)
Biotera - Produção mais Limpa (p+l)Biotera
 
Tratamento de efluentes e reúso da água
Tratamento de efluentes e reúso da águaTratamento de efluentes e reúso da água
Tratamento de efluentes e reúso da águaAlanAlflen
 
13 transporte de efluentes
13   transporte de efluentes13   transporte de efluentes
13 transporte de efluentesDesentupidoraHP
 
Trab efa ambiente finalissima
Trab efa ambiente finalissimaTrab efa ambiente finalissima
Trab efa ambiente finalissimaecoescolasebsdla
 
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...Marcelo Forest
 
FTEC - Fórum de Tecnologias para Saneamento Básico e Industrial
FTEC - Fórum de Tecnologias para Saneamento Básico e IndustrialFTEC - Fórum de Tecnologias para Saneamento Básico e Industrial
FTEC - Fórum de Tecnologias para Saneamento Básico e IndustrialFIA Business School
 
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústria
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústriaLavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústria
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústriaSpraying Systems do Brasil
 
PL Produção + Limpa Trab ambiental
PL Produção + Limpa Trab ambientalPL Produção + Limpa Trab ambiental
PL Produção + Limpa Trab ambientalElias Pedro
 
(00) curtumes
(00) curtumes(00) curtumes
(00) curtumesgoden
 

Mais procurados (19)

A produção mais limpa na micro e pequena empresa
A produção mais limpa na micro e pequena empresaA produção mais limpa na micro e pequena empresa
A produção mais limpa na micro e pequena empresa
 
11 transporte de efluentes
11   transporte de efluentes11   transporte de efluentes
11 transporte de efluentes
 
Capitalismo natural e produo mais limpa final
Capitalismo natural e produo mais limpa  finalCapitalismo natural e produo mais limpa  final
Capitalismo natural e produo mais limpa final
 
Biotera - Produção mais Limpa (p+l)
Biotera - Produção mais Limpa (p+l)Biotera - Produção mais Limpa (p+l)
Biotera - Produção mais Limpa (p+l)
 
Destilação / Reciclagem de Solventes
Destilação / Reciclagem de SolventesDestilação / Reciclagem de Solventes
Destilação / Reciclagem de Solventes
 
Tgi texto
Tgi textoTgi texto
Tgi texto
 
Tratamento de efluentes e reúso da água
Tratamento de efluentes e reúso da águaTratamento de efluentes e reúso da água
Tratamento de efluentes e reúso da água
 
REMOSA Dossier Portugal
REMOSA Dossier PortugalREMOSA Dossier Portugal
REMOSA Dossier Portugal
 
13 transporte de efluentes
13   transporte de efluentes13   transporte de efluentes
13 transporte de efluentes
 
Trab efa ambiente finalissima
Trab efa ambiente finalissimaTrab efa ambiente finalissima
Trab efa ambiente finalissima
 
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...
Marcelo Manhães de Amorim - Educação Ambiental voltada a Lava Jatos e Oficina...
 
FTEC - Fórum de Tecnologias para Saneamento Básico e Industrial
FTEC - Fórum de Tecnologias para Saneamento Básico e IndustrialFTEC - Fórum de Tecnologias para Saneamento Básico e Industrial
FTEC - Fórum de Tecnologias para Saneamento Básico e Industrial
 
Teli 2
Teli 2Teli 2
Teli 2
 
Teli 1
Teli 1Teli 1
Teli 1
 
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústria
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústriaLavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústria
Lavadores Pneumáticos poupam tempo e dinheiro e garantem eficiência na indústria
 
Aula 5 sebrae
Aula 5   sebraeAula 5   sebrae
Aula 5 sebrae
 
PL Produção + Limpa Trab ambiental
PL Produção + Limpa Trab ambientalPL Produção + Limpa Trab ambiental
PL Produção + Limpa Trab ambiental
 
Produção sustentável
Produção sustentávelProdução sustentável
Produção sustentável
 
(00) curtumes
(00) curtumes(00) curtumes
(00) curtumes
 

Destaque

Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESP
Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESPAvanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESP
Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESPInstituto Besc
 
Conseg revitalização do parque das flores ii
Conseg  revitalização do parque das flores iiConseg  revitalização do parque das flores ii
Conseg revitalização do parque das flores iieducadorescoordenadores
 
Saneamento: visão panorâmica, oportunidade e perspectivas de mudança
Saneamento: visão panorâmica, oportunidade e perspectivas de mudançaSaneamento: visão panorâmica, oportunidade e perspectivas de mudança
Saneamento: visão panorâmica, oportunidade e perspectivas de mudançaFernando S. Marcato
 
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...Instituto Besc
 
A competência normativa da agência reguladora
A competência normativa da agência reguladoraA competência normativa da agência reguladora
A competência normativa da agência reguladoraClaudio A. Pinho
 
Apresentação Institucional - 03.08.2015
Apresentação Institucional - 03.08.2015Apresentação Institucional - 03.08.2015
Apresentação Institucional - 03.08.2015Fernando S. Marcato
 
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando Bolque
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando BolqueTVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando Bolque
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando BolqueTVJur.com
 
Seminario saneamento básico Lei 11.445/2007
Seminario saneamento básico Lei 11.445/2007Seminario saneamento básico Lei 11.445/2007
Seminario saneamento básico Lei 11.445/2007Nathy Oliveira
 
O desenvolvimento da criança na natureza e na sociedade
O desenvolvimento da criança na natureza e na sociedadeO desenvolvimento da criança na natureza e na sociedade
O desenvolvimento da criança na natureza e na sociedadeejkavaliacao
 
Principios Compositivos
Principios CompositivosPrincipios Compositivos
Principios Compositivosmartaroh
 

Destaque (15)

Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESP
Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESPAvanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESP
Avanços e Novos Programas na SAPESP, por Gesner Oliveira, SAPESP
 
Conseg revitalização do parque das flores ii
Conseg  revitalização do parque das flores iiConseg  revitalização do parque das flores ii
Conseg revitalização do parque das flores ii
 
Saneamento ambiental
Saneamento ambientalSaneamento ambiental
Saneamento ambiental
 
Saneamento: visão panorâmica, oportunidade e perspectivas de mudança
Saneamento: visão panorâmica, oportunidade e perspectivas de mudançaSaneamento: visão panorâmica, oportunidade e perspectivas de mudança
Saneamento: visão panorâmica, oportunidade e perspectivas de mudança
 
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...
Estruturação de uma Agência Reguladora no Saneamento, por Hugo Sérgio Oliveir...
 
A competência normativa da agência reguladora
A competência normativa da agência reguladoraA competência normativa da agência reguladora
A competência normativa da agência reguladora
 
Apresentação Institucional - 03.08.2015
Apresentação Institucional - 03.08.2015Apresentação Institucional - 03.08.2015
Apresentação Institucional - 03.08.2015
 
Tarifas saneamento
Tarifas saneamentoTarifas saneamento
Tarifas saneamento
 
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando Bolque
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando BolqueTVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando Bolque
TVJur.com - Aulas de Direito Ambiental - Saneamento básico - Fenando Bolque
 
VITOR SANTOS - Presidente da ERSE – Entidade Reguladora dos Serviços Energéticos
VITOR SANTOS - Presidente da ERSE – Entidade Reguladora dos Serviços EnergéticosVITOR SANTOS - Presidente da ERSE – Entidade Reguladora dos Serviços Energéticos
VITOR SANTOS - Presidente da ERSE – Entidade Reguladora dos Serviços Energéticos
 
Regulação dos serviços públicos de saneamento básico e o papel da Agersa
Regulação dos serviços públicos de saneamento básico e o papel da AgersaRegulação dos serviços públicos de saneamento básico e o papel da Agersa
Regulação dos serviços públicos de saneamento básico e o papel da Agersa
 
Seminario saneamento básico Lei 11.445/2007
Seminario saneamento básico Lei 11.445/2007Seminario saneamento básico Lei 11.445/2007
Seminario saneamento básico Lei 11.445/2007
 
Manual do Saneamento Básico
Manual do Saneamento BásicoManual do Saneamento Básico
Manual do Saneamento Básico
 
O desenvolvimento da criança na natureza e na sociedade
O desenvolvimento da criança na natureza e na sociedadeO desenvolvimento da criança na natureza e na sociedade
O desenvolvimento da criança na natureza e na sociedade
 
Principios Compositivos
Principios CompositivosPrincipios Compositivos
Principios Compositivos
 

Semelhante a Sistema de OR no tratamento de efluentes industriais

FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIAL
FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIALFORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIAL
FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIALGabriela Silva
 
Luiz eduardo-mendes
Luiz eduardo-mendesLuiz eduardo-mendes
Luiz eduardo-mendesBRUNO SAHARA
 
Procedimento poupa quase 90% de água em refinaria
Procedimento poupa quase 90% de água em refinariaProcedimento poupa quase 90% de água em refinaria
Procedimento poupa quase 90% de água em refinariaFrau Soares
 
Angela machado 3systems (2)
Angela machado   3systems (2)Angela machado   3systems (2)
Angela machado 3systems (2)Tacio Rafael
 
recursos hídricos, geografia
recursos hídricos, geografiarecursos hídricos, geografia
recursos hídricos, geografiaNilton Goulart
 
Guia boas praticas ambientais gov.sp
Guia boas praticas ambientais gov.spGuia boas praticas ambientais gov.sp
Guia boas praticas ambientais gov.spMurilo Cesar
 
Consumo de agua em descargas
Consumo de agua em descargasConsumo de agua em descargas
Consumo de agua em descargasmjmcreatore
 
Você já pensou se a água acabar hoje?
Você já pensou se a água acabar hoje?Você já pensou se a água acabar hoje?
Você já pensou se a água acabar hoje?David Arty
 
Aguas de abastecimento
Aguas de abastecimentoAguas de abastecimento
Aguas de abastecimentogbruck53
 
Relatório visita ete ibirité
Relatório visita ete ibiritéRelatório visita ete ibirité
Relatório visita ete ibiritéBruno Oliveira
 
OEE Efetividade Global de Equipamentos TCC
OEE Efetividade Global de Equipamentos TCCOEE Efetividade Global de Equipamentos TCC
OEE Efetividade Global de Equipamentos TCCMarcos Valle
 
Volume 2 slides lec izabela l.
Volume 2 slides lec izabela l.Volume 2 slides lec izabela l.
Volume 2 slides lec izabela l.Izabela637
 
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...sparksupernova
 

Semelhante a Sistema de OR no tratamento de efluentes industriais (20)

FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIAL
FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIALFORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIAL
FORUM DE TECNOLOGIAS PARA SANEAMENTO BASICO E INDUSTRIAL
 
Luiz eduardo-mendes
Luiz eduardo-mendesLuiz eduardo-mendes
Luiz eduardo-mendes
 
Procedimento poupa quase 90% de água em refinaria
Procedimento poupa quase 90% de água em refinariaProcedimento poupa quase 90% de água em refinaria
Procedimento poupa quase 90% de água em refinaria
 
Angela machado 3systems (2)
Angela machado   3systems (2)Angela machado   3systems (2)
Angela machado 3systems (2)
 
recursos hídricos, geografia
recursos hídricos, geografiarecursos hídricos, geografia
recursos hídricos, geografia
 
PT23_AguasEfluentes.pdf
PT23_AguasEfluentes.pdfPT23_AguasEfluentes.pdf
PT23_AguasEfluentes.pdf
 
Sisnate200705
Sisnate200705Sisnate200705
Sisnate200705
 
Guia boas praticas ambientais gov.sp
Guia boas praticas ambientais gov.spGuia boas praticas ambientais gov.sp
Guia boas praticas ambientais gov.sp
 
Consumo de agua em descargas
Consumo de agua em descargasConsumo de agua em descargas
Consumo de agua em descargas
 
Dis jose a_oliveira
Dis jose a_oliveiraDis jose a_oliveira
Dis jose a_oliveira
 
Você já pensou se a água acabar hoje?
Você já pensou se a água acabar hoje?Você já pensou se a água acabar hoje?
Você já pensou se a água acabar hoje?
 
Aguas de abastecimento
Aguas de abastecimentoAguas de abastecimento
Aguas de abastecimento
 
A área administrativa no enfrentamento das mudanças climáticas
A área administrativa no enfrentamento das mudanças climáticasA área administrativa no enfrentamento das mudanças climáticas
A área administrativa no enfrentamento das mudanças climáticas
 
Artigo 05 (1)
Artigo 05 (1)Artigo 05 (1)
Artigo 05 (1)
 
025
025025
025
 
Relatório visita ete ibirité
Relatório visita ete ibiritéRelatório visita ete ibirité
Relatório visita ete ibirité
 
OEE Efetividade Global de Equipamentos TCC
OEE Efetividade Global de Equipamentos TCCOEE Efetividade Global de Equipamentos TCC
OEE Efetividade Global de Equipamentos TCC
 
Volume 2 slides lec izabela l.
Volume 2 slides lec izabela l.Volume 2 slides lec izabela l.
Volume 2 slides lec izabela l.
 
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...
Gestão Estratégica da Biomimética nos PlásticosBiomimetic in plastic 2014 spa...
 
Economia CIRCULAR -
Economia CIRCULAR -Economia CIRCULAR -
Economia CIRCULAR -
 

Sistema de OR no tratamento de efluentes industriais

  • 1. UNIVERSIDADE DE SÃO PAULO - USP ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ - ESALQ CURSO DE ESPECIALIZAÇÃO EM GERENCIAMENTO AMBIENTAL - CEGEA JULIANA BASILE NASSIN Sistema de Osmose Reversa no Pós-Tratamento de Efluentes Industriais Piracicaba - 2013
  • 2. 1 JULIANA BASILE NASSIN Bióloga Sistema de Osmose Reversa no Pós-Tratamento de Efluentes Industriais Monografia elaborada como requisito para conclusão do Curso de Especialização em Gerenciamento Ambiental da Escola Superior de Agricultura Luiz de Queiroz – ESALQ/USP. Orientadora: Msc. Leila Aparecida Figueiredo Piracicaba - 2013
  • 3. 2 DEDICATÓRIA Dedico o presente trabalho ao meu pai, o qual sempre incentivou e proporcionou a minha carreira, e à minha mãe, a qual proporcionou todo o mais.
  • 4. 3 AGRADECIMENTOS Agradeço à Deus; À minha família, por todo o incentivo e confiança em minhas atitudes; Ao Danillo, por estar sempre ao meu lado me ajudando a prosseguir com dedicação e à sua família pelos conselhos; À minha orientadora Leila Aparecida Figueiredo, que mesmo em pouco tempo conseguiu me guiar da melhor e mais exata maneira; Às minhas, não só colegas de classe, mas amigas Maria Rosa, Luciana, Daniela e Carolina pelo apoio em todos os momentos que passamos juntas; Aos Profs. Sergio Arnosti Junior, Alexandre Prado Rocha e Alexandre Vilella pelo apoio no início do trabalho; À empresa Fábrica Estrela do grupo M. Dias Branco; À todos os funcionários e professores do CEGEA/USP.
  • 5. 4 RESUMO O presente trabalho teve por escopo realizar uma revisão bibliográfica para apresentar a possibilidade de otimização de um sistema de reuso de efluentes após passar pelo processo de osmose reversa. Este estudo foi desenvolvido, pois o sistema de osmose reversa está ganhando mercado. Esse sistema é utilizado para separar as impurezas do meio líquido filtrando o efluente. Para isso, o sistema utiliza pressão mecânica superior à pressão osmótica, obrigando o soluto a ir do meio mais concentrado para o meio mais diluído, portanto, a osmose é feita de forma inversa. Esse sistema é mais eficaz e garante maior durabilidade e eficiência se utilizado como pós-tratamento, pois retira do meio líquido partículas que o tratamento primário não consegue eliminar, garantindo que a água se torne viável para o reuso. A empresa que pratica a proposta do reuso da água em processos de produção pode implementá-la em projetos de “produção mais limpa”. Mesmo com todas as vantagens do sistema, comprovou-se que ainda há barreiras, como a falta de informação e o custo de investimento, que dificultam a exploração de seu uso pelas empresas. Palavras-chave: resíduos hídricos; sistemas de membranas; produção mais limpa; reuso da água
  • 6. 5 ABSTRACT The scope of this work was to review literature to present the possibility of optimizing a system for wastewater reuse after going through the process of reverse osmosis. This study was developed because the reverse osmosis system is gaining market share. This system is used to separate impurities from the liquid environment by filtering the effluent. For this purpose, the system uses mechanical pressure stronger than the osmotic pressure, instigating the solute to go through the more concentrated to the more dilute environment, so osmosis is performed in reverse. This system is more efficient and provides greater durability and efficiency if used as post-treatment, because the liquid environment removes particles that the primary treatment failed to eliminate, ensuring that the water becomes feasible to reuse. The company that engages in the proposed water reuse in production processes can implement it in projects of "cleaner production". Even with all the advantages of the system, it was proven that there still are barriers, such as lack of information and the cost of investment, which hinder the exploitation of its use by the companies. Key-words: wastewater; membrane systems; cleaner production; water reuse
  • 7. 6 LISTA DE FIGURAS Figura 1. Esquema de funcionamento de um sistema de osmose....................................12 Figura 2. Esquema do funcionamento de um sistema de osmose reversa.......................12 Figura 3. Modelo de sistema de osmose reversa..............................................................14 Figura 4. Representação da capacidade dos processos de separação por membranas em função da pressão de operação e características da membrana......................................15 Figura 5. Ciclo Fechado de Reuso da Água......................................................................21 Figura 6. Atuação da prática de Produção mais Limpa em uma empresa........................28 Figura 7. Níveis da metodologia da prática de Produção mais Limpa...............................30
  • 8. 7 LISTA DE TABELAS Tabela 1. Porcentagem de retenção das impurezas pelo sistema de osmose reversa.....16 Tabela 2. Valores máximos permitidos para emissão de efluentes no ambiente..............25
  • 9. 8 SUMÁRIO 1. INTRODUÇÃO.........................................................................................................9 2. OSMOSE REVERSA..............................................................................................11 2.1 MERCADO, APLICAÇÕES E EFICIÊNCIA DA OSMOSE REVERSA............13 3. REUSO DA ÁGUA..................................................................................................20 4. CARACTERIZAÇÃO DOS RESÍDUOS..................................................................24 5. PRODUÇÃO MAIS LIMPA.....................................................................................28 6. CONSIDERAÇÕES FINAIS...................................................................................34 7. CONCLUSÕES......................................................................................................35 ANEXO - ESTUDO DE CASO.....................................................................................36 REFERÊNCIAS BIBLIOGRÁFICAS.............................................................................40
  • 10. 9 1. INTRODUÇÃO A água é utilizada pelo ser humano para ingestão, preparo de alimentos, nas atividades cotidianas, além de ser utilizada, em grandes proporções, em lavouras e nos processos industriais. Atualmente a consciência ambiental está se difundindo e com ela o senso de preservação do meio ambiente. Sabe-se que a água está se exaurindo e a necessidade de conservação está se tornando mais concreta para a população e para as indústrias. Com a necessidade inerente pela água e seu uso descontrolado, tem-se suscitado a conscientização da população para mudar a situação atual de exaustão. O racionamento da água vem crescendo e se materializando dentro das empresas com as novas técnicas para a economia material e financeira desta. A conservação da água envolve principalmente a racionalização e sua qualidade, pois quanto menor a quantidade, maior seu valor e quanto mais poluído, mais irá gastar para que sua qualidade fique satisfatória para seus vários usos. Há várias formas para se manter a qualidade da água de um corpo hídrico, uma delas é controlar a qualidade de seus efluentes, no entanto isso não garante também sua racionalização. Atualmente, na maioria das empresas, os efluentes passam por um tratamento básico e são descartados no meio ambiente, no corpo d’água mais próximo. A água utilizada pelas empresas, mesmo depois de passar pelos processos de tratamento, não se torna própria para o reuso, portanto ela é devolvida ao meio ambiente. Para que a água possa ser despejada em algum corpo hídrico, precisa estar classificada melhor ou igual à classificação de seu afluente, portanto existe a necessidade de um sistema de tratamento dos resíduos hídricos. A escolha da forma de reutilização da água gerada como efluente pela empresa é uma medida para garantir sua racionalização e, consequentemente, sua qualidade no meio ambiente. A reutilização reduz a quantidade de efluente despejado na natureza e as despesas com captação ou com importação da água de sistemas de tratamento municipais, garantindo também o benefício financeiro. Dessa maneira, o reuso da água forma um ciclo fechado onde o efluente é tratado se tornando água útil novamente. Esta, por sua vez, é utilizada novamente nos processos dentro da empresa, finalizando o ciclo de uso, tratamento e reuso da água. Atualmente há várias técnicas para tratar os efluentes e o uso do sistema de osmose reversa é uma delas. O uso desta tecnologia vem aumentando devido à boa qualidade da água gerada após o tratamento. Apesar de ser um sistema com custo elevado, há maneiras de diminuir os gastos com a troca das membranas, realizando um
  • 11. 10 pré-tratamento do efluente utilizando os sistemas básicos de tratamento ou outros tipos de membrana, como a de ultrafiltração, por exemplo. Algumas empresas no Brasil já utilizam o sistema de osmose reversa para tratar seu efluente, como as empresas de galvanoplastia, laboratórios e clínicas de hemodiálise que necessitam de água extremamente pura, etc. Entretanto, esse sistema é mais utilizado em áreas de dessalinização da água, retirando o sal da água do mar. Isso ocorre na maioria dos países, pois o uso em tratamentos de efluentes e seu reuso ainda é uma novidade no mercado industrial. Assim, há necessidade de aprofundar os estudos dessa técnica e a implementar como alternativa para outros setores industriais. Esse sistema está começando a ganhar mercado, mas muitos de seus possíveis consumidores não conhecem essencialmente como ele funciona e o quanto é eficaz. Assim, não entendem sua importância para o meio ambiente e para a ampliação dos lucros da empresa. As técnicas existentes hoje no mercado para diminuir o consumo das empresas podem fazer parte de projetos de “produção mais limpa”, onde se desenvolve métodos para melhorar a produção, reduzindo, por exemplo, o uso de matérias-primas e a geração de resíduos. Além disso, essas empresas podem praticar o benchmarking, um instrumento utilizado pela gestão empresarial que induz a competição pelas melhores práticas estabelecidas entre as empresas, mostrando à população sua preocupação ativa com o meio ambiente. Esse tipo de investimento gera uma imagem ambiental bem- sucedida para a empresa, a qual pode até, de acordo com as normas exigidas, vender seus produtos com selos ambientais. O presente trabalho tem o objetivo de estudar a viabilidade e uma possível otimização de processos de tratamento de efluentes industriais com a implementação do sistema de pós-tratamento com osmose reversa para reuso da água decorrente em processos dentro da indústria.
  • 12. 11 2. OSMOSE REVERSA Atualmente os sistemas de separação por membranas estão se tornando mais acessíveis e mais utilizados para tratamento de água e de efluentes, portanto o número de pesquisas nesta área também vem crescendo. Assim, as tecnologias se desenvolvem e despertam o interesse, não só de pesquisadores, mas também de empresas que querem implantar um sistema que garanta a qualidade de seus efluentes (SCAPINI, 2007). Os sistemas de membranas semipermeáveis agem como uma barreira que divide dois meios, onde algumas substâncias conseguem passar por essa membrana, indo de um meio para o outro, sendo separadas das substâncias que não conseguem passar pela membrana. Existem vários desses sistemas, os quais podem ser definidos de acordo com a força motriz utilizada na separação (LAPOLLI et. al., 1998). As membranas podem ser divididas em duas classes: porosas ou densas. A primeira possui seus poros de tamanhos variados, os quais serão definidos de acordo com o processo, enquanto a outra praticamente não possui poros (VARGAS, 2003). As substâncias são separadas pelas membranas com permeabilidade seletiva dependo de seu tamanho, forma, difusibilidade, entre outras características. Já no caso das membranas, as especificações de maior importância são sua espessura, porosidade, seletividade e permeabilidade (LAPOLLI et. al., 1998). Os processos de separação por membranas podem ser orientados pela pressão, pela concentração, pela temperatura e pela eletricidade. No caso da pressão, que será aprofundada nesta revisão, os processos podem ser: microfiltração (MF), ultrafiltração (UF), nanofiltração (NF) e osmose reversa (OR) (LAUTENSCHLAGER et.al., 2009). No processo de osmose há uma diferença de concentração entre os meios, fazendo o solvente passar do meio menos concentrado em direção ao mais concentrado, atravessando uma membrana semipermeável, insistindo para que as concentrações das soluções se igualem. A pressão osmótica ocorre quando o solvente passa para o meio mais concentrado e o nível desse meio fica mais elevado, ocorrendo uma diferença de pressão que impede o fluxo do fluído de continuar (FIGURA 1) (SCAPINI, 2007).
  • 13. 12 Figura 1. Esquema de funcionamento de um sistema de osmose (FERRAN, 2013). O processo da osmose reversa, também conhecido como osmose inversa ou hiperfiltração, ocorre através de uma membrana polimérica que, quando há uma pressão mecânica no meio mais concentrado superior a pressão osmótica, obriga o solvente a passar do meio mais concentrado para o menos concentrado. Este é o processo inverso da osmose convencional (FIGURA 2) (SENA, 1998; SIMÕES et. al., 2004). Figura 2. Esquema do funcionamento de um sistema de osmose reversa (FERRAN, 2013). A eficiência do sistema de osmose reversa tem o bom desempenho garantido devido ao tamanho dos poros de suas membranas (ECKENFELDER, 1989; OENNING, 2006), assim consegue separar com eficiência o soluto do substrato, pois dificulta a passagem da substância poluidora para o meio menos concentrado, ocorrendo a
  • 14. 13 separação da água dos materiais poluidores (MANCUSO; SANTOS, 2003; METCALF; EDDY, 2003; OENNING, 2006). Na técnica da osmose reversa, a pressão gerada a partir do trabalho deve ser obrigatoriamente maior que a resistência da membrana, que a resistência da zona de concentração-polarização e que a resistência interna do sistema, sendo, assim, também maior que a pressão osmótica. A pressão necessária para que o soluto passe pelas membranas de osmose reversa deve ser maior que 10 kgf cm-2 ou de 60 bar, podendo até exceder esse valor (SCAPINI, 2007). O efluente será separado assim que passar pelo processo da osmose reversa: o material permeável é filtrado pela membrana e o rejeito fica retido na mesma (MANCUSO; SANTOS, 2003; OENNING, 2007). 2.1 Mercado, Aplicações e Eficiência da Osmose Reversa O sistema de osmose reversa é bem aceito pelos Estados Unidos, Arábia Saudita e Japão, mas ainda não há uso corrente desta tecnologia no Brasil. Entretanto, trata-se de um mercado em ascensão, pois há menor consumo de produtos químicos com o emprego desta tecnologia causando, consequentemente, conservação do meio ambiente (BISTERSO, 2010). O processo de osmose reversa foi aplicado com sucesso no Chile (mineradora Minera Escondida), na Austrália (projeto para a cidade de Melbourne), Fernando de Noronha (processo de dessalinização da água do mar) e há previsão da implantação do maior sistema de osmose reversa do Brasil na Petrobrás (Caucaia/CE) (BISTERSO, 2010). Outras aplicações do sistema de osmose reversa, além da purificação de soluções, são: concentração de solutos - como vinhoto, utilizado como fertilizante orgânico (SIMÕES et. al., 2004); de metais, que podem voltar a fazer parte de outro processo dentro da cadeia produtiva da indústria ou mesmo serem vendidos (PEREIRA et. al., 2008); purificação do plasma sanguíneo e outras soluções termosensíveis (SCAPINI, 2007). Atualmente, algumas empresas utilizam da tecnologia osmose reversa para fabricar equipamentos que purifiquem a água potável, utilizada para consumo humano, inclusive o de ingestão. Nesses casos as pressões aplicadas ficam entre 6,8 e 10,3 bar e as substâncias retidas pela membrana são descartadas utilizando uma insignificante quantidade de água (HTZ, 2010). Outras aplicações da osmose reversa são: utilização como pré-tratamento para desionizadores; remoção de bactérias e vírus; purificação da água do mar e de esgotos
  • 15. 14 fabris (FIGURA 3) (SCAPINI, 2007). No Brasil esta tecnologia é mais comumente utilizada em processos de desmineralização (BISTERSO, 2010), mas no mundo seu uso ocorre principalmente em empresas que visam a dessalinização da água (VARGAS, 2003). Figura 3. Modelo de sistema de osmose reversa (FERRAN, 2013). O tratamento de efluentes utilizando esse processo é um método novo, mas muito eficaz e pode ser aproveitado na reutilização da água gerada nos processos de produção da empresa. De acordo com o Ministério da Saúde (2006), os maiores poluentes da água são matéria orgânica (biodegradável e não biodegradável), sólidos em suspensão, nutrientes (principalmente o nitrogênio e o fósforo), organismos patogênicos e metais pesados. A capacidade de separação da osmose reversa é muito alta, chegando a separar do efluente valores como 95% de fluoreto e cloreto, 94% de sódio e potássio, 97% de cálcio e magnésio e 98% de metais pesados (SCAPINI, 2007). Segundo a EPA (Environmental Protection Agency), a osmose reversa consegue reter 99% de radionuclídeos, como urânio, rádio, partículas alfa e beta e emissores de prótons, bem como contaminantes como o arsênico e o nitrato (HTZ, 2010). O tamanho dos poros das membranas de hiperfiltração pode variar de 0,002 a 10,0 μm, apresentando-se assim altamente eficiente, mas embasando a necessidade de um pré-tratamento da água antes dessa passar pelo sistema da osmose reversa. Esses poros têm dimensão tão pequena que são capazes de reter até os sais que se apresentam dissolvidos na água (FIGURA 4) (SCAPINI, 2007).
  • 16. 15 Figura 4. Representação da capacidade dos processos de separação por membranas em função da pressão de operação e características da membrana (MIERZWA, 2005). Há trabalhos que indicam que o sistema de osmose reversa produz um solvente de altíssima qualidade, com pH neutro e com a eliminação de 100% dos coliformes totais e fecais, de 98%, 100% e 97% de CT (carbono total), COT (carbono orgânico total) e CI (carbono inorgânico) respectivamente, remoção de 96% de turbidez, 95% de condutividade, 98% de DQO (demanda química de oxigênio), 98% de cor e redução de 97,5%, 100% e 97,5% para ST (sólidos totais), SST (sólidos suspensos totais) e SDT (sólidos dissolvidos totais), respectivamente (TABELA 1) (OENNING; PAWLOWSKY, 2007).
  • 17. 16 Tabela 1. Porcentagem de retenção das impurezas pelo sistema de osmose reversa (FERRAN, 2013, adaptado por NASSIN, J. B., 2013). TABELA DE REJEIÇÃO DE IMPUREZAS Íon Rejeição Íon Rejeição 95-99% Cálcio 92-97% Nitrato 94-99% Sódio 85-97% Amônia 95-99% Magnésio 100% Bactérias 94-99% Chumbo 61-92% Borato 97-99% Manganês 67-95% Boro 97-99% Ferro 97-99% Cádmio 97-99% Alumínio 97-99% Cloreto 97-99% Cobre 95-99% Cromato 96-99% Mercúrio 97-99% Níquel 95-99% Radioatividade 92-97% Cianureto 98-99% Pesticidas 97-99% Sílica 95-99% Prata 96-99% Fluoreto 97-99% Fosfato 97-99% Zinco 97-99% Sulfato 98-100% Orgânicos 95-99% Dureza Ca & Mg 87-94% Potássio 96-99% Estrôncio 96-99% Bário 97-98% Cromo 95-99% Bicarbonato 87-94% Brometo 98-99% Ferrocianeto 95-90% Silicato 97-99% Arsênio As condições de operação da estação de tratamento e a composição dos efluentes interferem no sistema de osmose reversa (SCAPINI, 2007). O efluente de entrada necessita ter alta qualidade para passar por esse processo, proporcionando maior durabilidade e conservação do sistema. Para isso é necessário a utilização de um pré-tratamento como, por exemplo, um sistema convencional que inclui coagulação/floculação, decantação e filtração, para que as partículas maiores e/ou mais pesadas possam ser retiradas do efluente. A necessidade de um pré-tratamento, como cloração, se dá também para a redução de microrganismos que podem estar presentes no efluente, dependo de onde coletado e se posteriormente esse efluente for utilizado como água de reuso (OENNING, 2006). No sistema de osmose reversa é necessário o controle da temperatura e do pH, pois estes interferem na otimização do processo, o controle da vazão da alimentação e a limpeza das membranas, os quais, se não controlados de maneira correta influenciam na colmatação (fouling) das membranas (VARGAS, 2003). Isso também pode ocorrer quando há presença de óleos e graxas no efluente, afetando o potencial das membranas (COSTANZI et. al., 2005).
  • 18. 17 A colmatação acontece quando não há periodicidade na limpeza das membranas, ocasionando uma incrustação do soluto e formação de uma camada de rejeito, dificultando a passagem do solvente. Esse dano pode ser controlado com o uso de um sistema de pré-tratamento do resíduo líquido, com o auxílio de retrolavagem e limpeza química, quando necessário (OENNING, 2007). Há relatos de problemas causados por má operação e má manutenção do sistema, como deixar que sólidos não dissolvidos tentem passar pelas membranas. Estes descuidos podem fazer com que o sistema seja mal avaliado, como ocorreu na época de 1970, quando a osmose reversa foi desacreditada em virtude de problemas como o citado. Esses problemas podem ser facilmente resolvidos com um pré-tratamento do efluente que ajuda prevenir problemas no tratamento posterior (BISTERSO, 2010). Quando a osmose reversa, apoiada em um pré-tratamento, é utilizada para tratar água para reutilização, confere-se melhor qualidade da água decorrente, apresentando níveis acima do esperado e garantindo a possibilidade dessa água ser utilizada novamente em outros procedimentos na indústria (SCAPINI, 2007). O pré-tratamento também é utilizado para prolongar a vida útil das membranas podendo melhorar seu desempenho e até dobrar esse tempo quando utilizados pré- tratamentos como a ultrafiltração (BISTERSO, 2010) Quando em operação com água de reuso, as membranas de osmose reversa chegam a ter um decréscimo em sua capacidade de absorção de 10%/ano. Quando utilizado a microfiltração anteriormente à osmose reversa, esta consegue reduzir com eficiência os níveis de turbidez, ST, COT, DQO, bactérias e DBO (demanda bioquímica de oxigênio), oferecendo uma ação competente como pré-tratamento dos efluentes, no entanto ainda é necessário o uso posterior da osmose reversa, pois somente a microfiltração não é capaz de retirar agentes como nitrato, cloro e sulfato (OENNING, 2007). Em alguns casos, o procedimento de dupla passagem do efluente pelo sistema de osmose reversa é o mais adequado para produzir água de melhor qualidade (STEPHENSON et. al., 2000; METCALF; EDDY, 2003; OENNING, 2007). Para otimizar o tratamento de efluentes com os sistemas que melhor se adequam à necessidade da empresa deve-se considerar: a área disponível para implantação do sistema; os gastos e a qualificação exigida com a mão de obra; os produtos químicos necessários; o período de operação; a qualidade do efluente; a vazão da água, sua utilização, local da captação, entre outros (SCAPINI, 2007). Uma das principais vantagens do sistema de osmose reversa é o baixo consumo de energia, pois não há mudança de fase do efluente durante o processo (SIMÕES, et.
  • 19. 18 al., 2004). O capital investido com a implantação de um sistema de osmose reversa pode chegar a R$ 70.000,00, custos que incluem acessórios, instalação, remessa e as colunas das membranas. Para esse custo é estimado um sistema por onde passa cerca de 19 mil galões por dia, ou seja, aproximadamente 72 m³ dia-1 (AQUAPURA, 2003; SIMÕES, 2004). A partir desses dados foi estimado o Valor Presente Líquido, que foi de R$ 4.304,13, tendo sua Taxa Interna de Retorno de 11,23%. Portanto, pode-se determinar que o investimento é reavido em um prazo de 10 anos. A instalação de um sistema de osmose reversa com capacidade de produção de 3,5 m³ hora-1 tem custo de aquisição de R$ 86.700,00 (LAPOLLI, 1998). Os gastos apresentados podem ser explicados de acordo com os chamados custos diretos, indiretos e de operação (RAY, 1992; SIMÕES, et.al., 2004). Os custos diretos envolvem a implantação, como a adaptação do local, compra do equipamento, sistemas elétricos e hidráulicos, engenheiros responsáveis pelo projeto, instalação, etc. Dependendo do projeto os custos indiretos podem ser considerados significantes ou não, entre eles: remuneração de empreiteiros e de operários de construção, equipamentos de construção, etc. Já entre os custos operacionais tem-se a energia gasta, produtos químicos, remuneração de mão de obra, substituição dos módulos de membrana, filtros, etc. (SIMÕES, et.al., 2004). O capital necessário para o investimento da implantação de um sistema de osmose reversa é demasiado alto, esse custo pode ser maior ou menor de acordo com o tamanho do poro necessário. Quanto menor o tamanho dos poros, para reter partículas menores, maior será o capital necessário para a implantação do sistema. Isso pode tornar esse sistema, muitas vezes, economicamente inviável e o retorno financeiro dependerá do aproveitamento do resíduo e/ou do soluto, os quais podem gerar uma fonte de arrecadação econômica (PRADO; PAWLOWSKY, 2003). Tadeu Justi, presidente da GE Water&Process Technologies (GE & PT), defende a idéia de que a osmose reversa é viável somente para os processos que necessitam de água com qualidade elevada, sugerindo que acima de 70 mg L-1 o uso dessa tecnologia é compensatório. Já para ProMinent seu uso só é viável a partir de 120 mg L-1 de sólidos totais dissolvidos (BISTERSO, 2010). O sistema da osmose reversa consegue atingir o domínio do mercado das membranas devido a sua simplicidade e resistência; aos baixos custos de operação, instalação e mão-de-obra; baixo consumo de energia, unidos a possibilidade de tratar baixos a moderados volumes de água; a grande taxa de recuperação do efluente; a continuidade do processo e a elevada qualidade da água após passar pelo sistema (AMORIM et. al., 2004; SOARES et. al., 2006).
  • 20. 19 Quando comparado com o processo de troca iônica, por exemplo, a osmose reversa pode ter o custo de implantação mais alto, mas no final de 5 anos calcula-se que este sistema tenha um custo 50% menor que o processo de troca iônica. Dentro de um prazo de 10 meses já é possível começar a ter o dinheiro da instalação revertido em lucros para a empresa (BISTERSO, 2010). Atualmente os sistemas de separação por membranas estão sendo aplicados com maior frequência, tendendo a um crescimento significativo. Esta nova tecnologia pode ser capaz de retirar do mercado tecnologias convencionais de filtração, uma vez que os tratamentos convencionais não conseguem filtrar todos os rejeitos do soluto. Além disto, os valores do sistema de osmose reversa estão consideravelmente mais baixos atualmente do que quando comparados aos valores do passado (METCALF; EDDY, 2003; OENNING, 2007). Os processos de separação por membranas são relativamente novos, mas já estão se tornando consagrados dentro das indústrias por apresentarem um menor gasto de energia, menor espaço físico utilizado, menor quantidade de efluentes gerados, facilidade de operação, possibilidade de combinação com outros processos clássicos, entre outros benefícios, quando comparados com os métodos convencionais (VARGAS, 2003). Abaixo se observa algumas vantagens e desvantagens do sistema de osmose reversa: PRÓS  Menor gasto com energia;  Instalação em espaços físicos pequenos;  Fácil operação;  Menor quantidade de resíduos gerados;  Alta eficiência. CONTRAS  Limpeza das membranas;  Controle de pH e temperatura;  Custo das membranas;  Colmatação.
  • 21. 20 3. REUSO DA ÁGUA O termo mais aceitável mundialmente para o reuso da água é “Uso de efluentes tratados para fins benéficos, tais como irrigação, uso industrial e fins urbanos não potáveis” (MIERZWA, 2002). A idéia de reuso da água existe há anos, mas com o desenvolvimento de novas técnicas - como a filtração por membranas - essa idéia se tornou aplicável (LAPOLLI et. al., 1998). O aproveitamento de águas provenientes de fontes alternativas de abastecimento contribui em grande escala para reduzir a escassez da água e também os custos do consumo de água de fontes tradicionais, mas para que o reuso desse tipo de sistema seja utilizado, necessita-se saber a qualidade da água decorrente e onde essa pode ser utilizada (MIERZWA, 2006). O reuso visa garantir a disponibilidade da água para todas as atividades necessárias, ocasionando uma melhoria na qualidade de vida (MIERZWA, 2002). A Companhia de Tecnologia de Saneamento Ambiental (CETESB) alega que com a reutilização da água dentro das empresas e a consequente substituição em sua captação, ocorrerá a diminuição da demanda nos corpos d’água. Este fato ocasionará a conservação e o aumento da capacidade de exploração econômica, tanto pelas empresas quanto pelos órgãos governamentais. No geral, a água decorrente de sistemas de tratamento, quando reutilizada, se enquadra nos processos de lavagem de equipamentos, peças e pisos; descargas; sistemas de combate a incêndios; sistemas de resfriamento como ar-condicionado e exaustores. Já a água de reuso decorrente do sistema de tratamento osmose reversa pode ter aplicações mais específicas, como o uso em caldeiras de alta pressão, além das aplicações acima citadas (CONSTANZI, et.al., 2005). O grau de qualidade da água ideal para o uso atualmente pode ser muito diferente dos níveis indicados no passado ou à serem indicados no futuro, pois podem surgir novas restrições referentes ao uso e qualidade da água de acordo com o grau de escassez enfrentado (MIERZWA, 2002). Atualmente os estudos para aprimoramento das técnicas utilizadas no tratamento da água de reuso vêm apresentando maior eficiência e menor custo (LAPOLLI et. al., 1998). Como não há legislação específica para o controle da qualidade da água destinada a reutilização, ainda que a Agência de Proteção Ambiental Americana (EPA) tenha provido um guia com sugestões de diretrizes sobre o reuso da água em 2004 (OENNING, 2006), é necessário que a qualidade esteja de acordo com as normas de utilização para onde a água será destinada. Os sistemas de osmose reversa podem
  • 22. 21 garantir alta eficácia para casos que exigem alta qualidade (CARRARA; BRESAOLA, 2001). Quando a água de reuso é utilizada em processos onde não há contato com o produto final sua qualidade pode ser menor, como por exemplo, em processos de refrigeração e lavagens de instalações. Quando a água é utilizada como matéria-prima, fluido auxiliar ou quando há contato com o produto final, sua qualidade deve ser maior ou igual que quando utilizada para consumo humano. Se a água for utilizada para geração de energia térmica, como para aquecimento, seu grau de qualidade deve ser elevado. Para lavagens de equipamentos, o nível de qualidade depende da necessidade exigida pelo setor (MIERZWA, 2002). As indústrias, como grandes consumidoras de água e geradoras de efluentes, têm responsabilidade em sua escassez, portanto quando essas empregam métodos de reutilização da água, ajudam na preservação da mesma (CARRARA; BRESAOLA, 2001), além de garantir que a geração dos resíduos hídricos também sejam menores (Figura 5). As novas técnicas existentes para a reutilização da água avançam no sentido de dar aos esgotos algum valor econômico (LAPOLLI, 1998). Figura 5. Ciclo fechado de reuso da água (MARKOS, 2006, adaptado por NASSIN, J. B., 2013).
  • 23. 22 Atualmente está havendo um aumento na procura por novas fontes de abastecimento devido à crescente escassez de água, por isso sua reutilização tem se mostrando uma alternativa eficiente e vem se consolidando no mercado a cada dia (CONSTANZI et. al., 2005). A reutilização da água sem um prévio tratamento não é recomendado para as indústrias, pois esta pode apresentar concentrações altas de metais pesados e compostos orgânicos (CARRARA; BRESAOLA, 2001). Dependendo da qualidade do efluente e do processo em que será reutilizado, deve-se empregar o melhor tratamento para este (SCAPINI, 2007). Quando há necessidade de remoção de sais, o método de osmose reversa é bastante utilizado, devido à capacidade de seus polímeros semipermeáveis realizarem a dessalinização (COSTANZI et.al., 2005). Para a HaztecAquamec/SP a osmose reversa, quando empregada para o reuso da água, é economicamente viável para as indústrias (BISTERSO, 2010). Uma das maiores possibilidades de mercados para as membranas é sua implementação nas empresas para produção de água de reuso. Essas membranas são normalmente utilizadas após um pré-tratamento convencional do efluente, o qual envolve: coagulação/floculação, decantação, filtração e desinfecção com cloro ou luz ultravioleta (SCHNEIDER, 2001; SCAPINI, 2007). A CETESB coloca que: “O reuso direto planejado das águas ocorre quando os efluentes, após tratados, são encaminhados diretamente de seu ponto de descarga até o local do reuso, não sendo descarregados no meio ambiente. É o caso com maior ocorrência, destinando-se a uso em indústria ou irrigação”. A Companhia ainda afirma que a água de reuso pode ser utilizada em: irrigação de campos cultivados, irrigação paisagística, recargas de aquíferos, usos urbanos não-potáveis (como combate ao fogo, lavagem de veículos e ruas, descargas, etc.), finalidades ambientais (como aplicação em pântanos, aumento da vazão de cursos de água, etc.), usos industriais (como refrigeração, alimentação de caldeiras, água de processamento, etc.) e outros usos (como controle de poeira, aquicultura, construções, etc.). Atualmente, mesmo que alguns processos não exijam, acaba-se utilizando níveis altos de qualidade da água, pois a osmose reversa induz menor aplicação de produtos químicos no tratamento do resíduo gerado (MIERZWA, 2002). Abaixo se observa algumas vantagens e desvantagens do reuso da água por indústrias:
  • 24. 23 PRÓS  Redução de gastos com captação e/ou uso da água vinda de fontes distintas;  Redução da quantidade de resíduos;  Redução do desperdício de água;  Imagem ambiental melhorada;  Fonte de água confiável;  Planejamento da demanda de água, otimizando seu uso. CONTRAS  Custo com a implantação e/ou implementação de sistemas mais eficazes;  Custo com a manutenção do sistema.
  • 25. 24 4. CARACTERIZAÇÃO DOS RESÍDUOS As características dos resíduos se diferem de acordo com a linha de atuação da empresa geradora. No caso dos efluentes esses devem estar de acordo com a resolução nº 397, de 03 de abril de 2008, do Conselho Nacional do Meio Ambiente (CONAMA) (Tabela 2).
  • 26. 25 Tabela 2. Valores máximos permitidos para emissão de efluentes no ambiente. Fonte: CONAMA (2008)
  • 27. 26 Em empresas de galvanoplastia o efluente gerado é rico em metais pesados como zinco (Zn), cobre (Cu), cromo (Cr), níquel (Ni), alumínio (Al), ferro (Fe), dentre outros, mas a concentração desses no resíduo varia de acordo com o tamanho da indústria (PEREIRA NETO et.al., 2008). Já as indústrias de borracha, colas, adesivos, resinas impregnantes, etc., apresentam fenóis em seus efluentes, assim como é comum o uso do benzeno como solvente em adesivos, removedores de tintas e agentes desengraxantes. Nos processos de refinamento do petróleo há liberação de resíduos oleosos e benzeno; este último também é encontrado em indústrias produtoras de tolueno, xileno, fenol, estireno, ácido maléico, nitrobenzeno e clorados e em indústrias produtoras de calçados. Há casos de liberação de arsênio (As), nos efluentes das indústrias que produzem tintas e corantes, e chumbo (Pb), liberado pelas indústrias de acumuladores e fabricantes de baterias. Nas atividades de extração de bauxita há liberação de bário (Ba) em seus efluentes. Nas atividades de mineração, encontra-se em seus efluentes compostos como As e Cr, esse último vindo de processos para a formação da amálgama (união do mercúrio com o ouro) (PERPETUO, 2008). Em indústrias de fecularia os efluentes gerados são compostos principalmente por matéria orgânica, pois sua matéria-prima é de origem vegetal. Já os abatedouros têm seus efluentes compostos por matéria orgânica devido ao produto ser de origem animal (PRADO; PAWLOWSKY, 2003). As indústrias produtoras de óleos comestíveis, laticínios, petroquímicas, frigoríficos e matadouros apresentam efluentes oleosos. As três últimas também apresentam efluentes com alta carga orgânica, equiparando-se com empresas alcooleiras, alimentícias e de produção de bebidas (PERPETUO, 2008). Em cadeias têxteis, os principais compostos encontrados nos efluentes são: dextrinas, graxas, ectinas, álcoois, aminas graxas, hidróxido de sódio, carbonato de sódio, cloreto de sódio, peróxido de hidrogênio, ácido acético, hidrossulfito de sódio, sulfato de sódio, corantes reativos, corantes a cuba, corantes dispersos e pigmentos. Esses produtos são gerados em etapas como engomagem, desengomagem, cozimento, tingimento e acabamento do tecido (FRANCO, 2009). Nas indústrias fabricantes de inseticidas encontram-se o cádmio (Cd) e o arsênio (As) em seus efluentes. Nesse mesmo segmento, também apresentam o As indústrias que produzem herbicidas e fungicidas. Em indústrias de vidros, dependendo do tipo do material produzido e em indústrias referentes à preservação da madeira, o principal elemento que compõe o efluente também é o As. Em indústrias siderúrgicas, nas fases de metal líquido, em processos como coqueificação e alto-forno, o resfriamento gera efluentes ricos em amônia e outras
  • 28. 27 substâncias tóxicas. Ainda no processo de refrigeração dos gases gerados o efluente se torna rico em Pb, Zn e outros compostos em menor quantidade (SANTOS, 2010). Já as indústrias metalúrgicas podem conter ferro (Fe) em seus efluentes, proveniente da decapagem, por exemplo (PERPETUO, 2008). Nas indústrias alcooleiras o resíduo gerado, conhecido como vinhoto ou vinhaça, é rico em matéria orgânica e minerais (SILVA; ORLANDO, 1981; SENA, 1998). Esse resíduo pode ser utilizado como adubo orgânico (LAUTENSCHLAGER et. al., 2009). Já em indústrias de papel e celulose são encontrados efluentes com teor de sulfato e compostos orgânicos; o mesmo ocorre em indústrias químicas e farmacêuticas (PERPETUO, 2008). Em indústrias de curtume, onde se processa couro, são gerados efluentes com níveis elevados de matéria orgânica e inorgânica, os quais são gerados em processos de remolho, depilação e caleiro, purga, píquel, curtimento e recurtimento (SCAPINI, 2007). Nos efluentes de curtumes, também pode ser identificado o cromohexavalente. Os compostos orgânicos também são encontrados em esgotos sanitários, além dos sulfetos e cloretos (os quais exigem processos de tratamento como a osmose reversa para serem retirados), nitrogênio (N), fósforo (P), enxofre (S), Fe e outros. Em menores quantidades encontram-se compostos orgânicos sintéticos: detergentes, pesticidas, fenóis, etc. Até mesmo as estações de tratamento liberam o Al em suas águas, gerado pelo processo de floculação/coagulação que utilizam este elemento como base de seu coagulante (PERPETUO, 2008). Esses diversos efluentes implicam em diferentes tratamentos, dependendo do segmento da indústria e qual a destinação de seus resíduos.
  • 29. 28 5. PRODUÇÃO MAIS LIMPA Com o crescimento demográfico, industrial, econômico e da tecnologia, cresceu também a degradação do meio ambiente. A partir de pressões governamentais e sociais criaram-se alguns parâmetros para controlar esse problema, sendo exigido das empresas adequações às novas condições. Quando a consciência ambiental se tornou mais sólida na sociedade e no mercado algumas empresas começaram a perceber uma possível oportunidade de inovar, visando os lucros e a competitividade, além de cuidar do meio ambiente (MELLO; NASCIMENTO, 2002). Em 1972, na Conferência de Estocolmo/Suécia, deu-se início à conscientização, comportamento e atitude ambiental - como ao conceito tecnologia limpa, a qual previa a redução do descarte no meio ambiente, da geração de resíduos e do consumo de recursos naturais, em especial os não-renováveis. Porém só em 1991 a UNIDO/UNEP (United National Industrial Development Organization/United Nation Environmental Program) criou a Produção Mais Limpa (P+L), com base no programa Produção Limpa do Greenpeace com intermédio ao programa de minimização de resíduos da Agência de Proteção Ambiental (EPA) dos Estados Unidos (PIMENTA; GOLVINHAS, 2007), formando o conceito: “aplicação continuada de uma estratégia ambiental preventiva e integrada aos processos, produtos e serviços, a fim de aumentar a eficiência e reduzir os riscos para os homens e o meio ambiente” (UNIDO/UNEP, 1995; LEMOS; NASCIMENTO, 1999). A partir disto foram realizados vários eventos em diversos países com ênfase na discussão da P+L. Na Agenda 21 também foram tratados assuntos relacionados à técnica, como a mudança dos padrões de consumo, de transportes, energia, a geração de resíduos e a implantação de tecnologias (Figura 6) (HIROSE, 2005). Figura 6. Atuação da prática de Produção mais Limpa em uma empresa (SILVA; SICSÚ, 2003).
  • 30. 29 Na Produção mais Limpa se considera a redução de materiais tóxicos e um uso mais eficiente de energia, diferente da Produção Limpa do Greenpeace, que exige somente materiais atóxicos e o uso de energias renováveis. Logo, percebe-se que a Produção Limpa é mais restritiva que a Produção mais Limpa, porém esta é de difícil implantação (PIMENTA; GOUVINHAS, 2007; MELLO; NASCIMENTO, 2005). As melhorias da P+L podem exigir mudanças dos processos industriais, matérias- primas, produtos e das boas práticas de fabricação (housekeeping) (HIROSE, 2005). No caso dos processos produtivos as melhorias podem ser alcanças eliminando a poluição gerada desnecessariamente durante os processos de produção (PIMENTA; GOUVINHAS, 2007). Seu princípio é a prevenção, atuando nos serviços, processos e produtos, ou seja, em toda a empresa. Assim, esse processo costuma aumentar a produtividade, a performance ambiental e reduzir o impacto ambiental (PIMENTA; GOUVINHAS, 2007). Na questão ambiental, as melhorias podem ser alcançadas através das mudanças feitas diretamente nas fontes de poluição para que essas produzam o mínimo de resíduo possível, diferente das técnicas comuns que trabalham com o tratamento e a disposição final desses resíduos (HIROSE, 2005). A matéria-prima, energia e água descartadas como resíduo podem ter um valor de 10 a 30% no custo total da produção, dependendo do produto, eficiência e tecnologia. Esses valores são considerados fator econômico negativo, sendo a poluição um desperdício, mas podendo ser utilizada como alerta para problemas de planejamento, projeto, utilização equivocada dos recursos, entre outros (DIAZ; PIRES, 2005). Mesmo que a técnica da P+L seja utilizada para melhorar os processos e reduzir a geração de resíduos, nem sempre se consegue atingir completa eficiência, portanto parte-se para a reciclagem e/ou a reutilização desses resíduos. Esses processos também podem fazer parte do programa P+L. Com a reciclagem interna dos resíduos obtêm-se novos subprodutos, os quais podem ser reutilizados na própria empresa ou vendidos como matéria-prima (HIROSE, 2005), assim como quando empregado somente o reuso, pois os novos subprodutos também podem ser reintroduzidos como matéria-prima (SILVA; SICSÚ, 2003). Há três níveis na metodologia P+L para se conseguir atingir melhor eficiência do processo (Figura 7). O primeiro nível tenta evitar a geração de resíduos; no segundo nível os resíduos que ainda assim foram gerados tentam ser reintegrados ao processo de produção. Quando isso não é possível, o resíduo é reciclado no terceiro nível (RENSI; SCHENINI, 2006). O reuso do efluente tratado pode ser considerado uma das ações do nível 2, pois volta ao processo, diminuindo o volume de resíduo hídrico gerado (SCAPINI, 2007).
  • 31. 30 Figura 7. Níveis da metodologia da prática de Produção mais Limpa (SILVA FILHO et. al., 2007). O sistema de gestão ambiental (SGA) visa a implantação de estratégias como a P+L para conseguir obter um potencial competitivo unido à responsabilidade ambiental (SILVA FILHO, et. al., 2007). Atualmente no Brasil a maioria das empresas infelizmente ainda não tem a consciência ambiental necessária para serem pró-ativas, tendo reações ambientais somente devido a necessidade de se cumprir normas e legislações exigidas, isso faz com que percam audiência internacional e até mesmo da sociedade. As empresas devem buscar alternativas, principalmente ambientais, para que possam competir globalmente, pois o meio ambiente se tornou uma nova oportunidade para as empresas garantirem seu poder competitivo marcando seu lugar no mercado (SILVA; SICSÚ, 2003). De acordo com os princípios da P+L, as técnicas de recuperação do soluto e o reuso do solvente estão progredindo quando o assunto é tratamento de efluentes, e um dos melhores processos para esse feito é o uso de membranas como a osmose reversa. Muitas vezes os custos dessas técnicas parecem elevados, inviabilizando o investimento (PEREIRA NETO et. al., 2008), porém pesquisas indicaram que 53% das pessoas de diversos países, independente do nível de desenvolvimento, confirmaram que pagariam um valor a mais para garantir a proteção ambiental. No Brasil, 71% das pessoas responderam da mesma maneira (LEMOS; NASCIMENTO, 1999). O programa de P+L pode ser utilizado em empresas de qualquer área (RENSI; SCHENINI, 2006), como indústria de manufatura, alimentos, agricultura, transporte, turismo, saúde, etc. (MELLO; NASCIMENTO, 2002).
  • 32. 31 A exigência dos consumidores e do mercado externo por produtos ambientalmente corretos traz a necessidade das empresas se adequarem, favorecendo a criação de práticas que denotem aos componentes verdes, como produtos, economia, filosofia, etc. (SILVA; SICSÚ, 2003). É importante salientar que a aplicação de técnicas de P+L não altera a qualidade do produto gerado pela empresa. Essa prática muda, para melhor, a imagem ambiental da empresa, a saúde e segurança dos trabalhadores, além de outros benefícios indiretos, a médio ou longo prazo, que garantem significância para a empresa (HIROSE, 2005) como: mudança da visão do processo do produto (agora visto como um só); caminho para a sustentabilidade; facilidade de acesso a financiamentos; melhoria do relacionamento com órgãos ambientais; satisfação de clientes (SILVA FILHO, et. al., 2007). As etapas para implantação da P+L consistem em: planejar e organizar; pré- avaliar e diagnosticar; avaliar; estudar a viabilidade técnica, econômica e ambiental; implementar e planejar a continuidade (HINZ, et. al., 2006). Portanto a implantação da P+L é feita primeiramente através de estudos de áreas potenciais para otimização visando a melhoria dos insumos utilizados no processo (PIMENTA; GOUVINHAS, 2007). Após esses estudos, são avaliados os custos-benefícios dos investimentos necessários. Depois de implantada a prática, espera-se a redução dos custos e dos resíduos e o aumento da eficiência (MELLO; NASCIMENTO, 2002). O sistema garante retorno financeiro a curto prazo para a empresa, assim a P+L consegue ser sustentada pelas economias feitas no próprio processo. (HIROSE, 2005). Com o programa P+L implantado e funcionando a empresa consegue atuar com responsabilidade e segurança ambiental, o que faz com que os recursos naturais sejam preservados, aumentando a satisfação da sociedade (HIROSE 2005). Além de propiciar satisfação e bem-estar para a sociedade; garantir um meio ambiente saudável para as gerações futuras, também traz para a empresa a satisfação de seu interesse econômico. Isso incentiva a empresa a se tornar mais competitiva no mercado, o que é uma necessidade crescente no meio empresarial e induz a companhia a também pensar no futuro (DIAZ; PIRES, 2005). Essa técnica exige mudança de pensamento e comportamento (RENSI; SCHENINI, 2006). Como a P+L é uma técnica contínua, se faz necessário a mudança da cultura da empresa e de seus funcionários (MELLO; NASCIMENTO, 2002) abrangendo todos os principais ideais necessários dentro de uma empresa para que possa acontecer a otimização e melhoria contínua dos processos, viabilizando uma vantagem econômica e competitiva, associados aos benefícios ao meio ambiente, saúde, planejamento, qualidade, segurança, eficiência, etc. (DIAZ; PIRES, 2005).
  • 33. 32 Há estudos de prevenção à poluição que comprovam que a adesão de novas tecnologias podem reduzir a poluição em até 60% (SILVA FILHO, et. al., 2007). A poluição gerada em muitos países, se aplicadas práticas de melhorias nos processos, poderia ser evitada em aproximadamente 50% (MELLO; NASCIMENTO, 2002). Para que a P+L cumpra seu objetivo, os aspectos materiais (como matéria-prima, equipamentos e serviços) e os aspectos tecno-gerenciais (como tecnologia, gerenciamento e desenvolvimento humano) devem ser envolvidos na prática (DIAZ; PIRES, 2005), aumentando os produtos e reduzindo os resíduos, os quais sempre são provenientes dos insumos de algum processo (NASCIMENTO, 2000). O programa P+L, se bem aplicado, consegue prevenir a geração de resíduos, diminuindo assim a necessidade de respectivos tratamentos, trazendo a vantagem da adequação às normas e legislações ambientais (DIAZ; PIRES, 2005). A P+L empenha-se em atrelar a eficiência econômica com a eficiência ambiental (chamada de eco-eficiência) a partir das estratégias de gestão ambiental, que envolve simultaneamente diferentes etapas como: housekeeping; melhoria dos processos, de matérias-primas, de tecnologias e do design do produto; e reciclagem e/ou reuso. Deve ser considerado todo o ciclo de vida do produto (DIAZ; PIRES, 2005). O conceito da eco-eficiência envolve a economia, o meio ambiente e a sociedade, assim as melhorias devem ser economicamente rentáveis, ambientalmente compatíveis e socialmente justas (NASCIMENTO, 2000). A redução da matéria-prima, energia e água, além de reduzir os resíduos gerados, também resulta em um aumento de produtividade, o que traz mais benefícios para a empresa praticante da P+L (DIAZ; PIRES, 2005). Esses ganhos econômicos, além de estarem ligados à diminuição dos resíduos, do uso da água e da energia, também são atribuídos à economia de possíveis multas ambientais que a empresa está se privando e a não diminuição das vendas por má publicidade (HINZ et. al., 2006). Há tecnologias utilizadas nessa prática que podem ser consideradas como tecnologias limpas, as quais visam reduzir o resíduo diretamente na fonte e a degradação ambiental, ajudando nos princípios da P+L e da sustentabilidade (MELLO; NASCIMENTO, 2002; RENSI; SCHENINI, 2006). Essas tecnologias, quando comparadas a outras, causam menor impacto no meio ambiente (MELLO; NASCIMENTO, 2002). No mercado são consideradas algumas barreiras para a implementação da P+L nas empresas. Essas podem ser barreiras técnicas, econômicas e organizacionais, a falta de políticas nacionais que enfatizem a técnica, a resistência à mudança, etc. (MELLO; NASCIMENTO, 2002; HINZ et. al., 2006), mas principalmente a falta de conhecimento sobre a prática (MELLO; NASCIMENTO, 2002; PIMENTA; GOUVINHAS, 2007). Ainda assim a técnica é considerada de fácil implantação (SILVA; SICSÚ, 2003).
  • 34. 33 Abaixo se observa alguns pontos de vantagens e desvantagens do processo de Produção mais Limpa: PRÓS:  Otimização dos processos produtivos;  Melhoria da imagem ambiental;  Aumento da produtividade e eficiência;  Redução dos custos com matérias-primas, energia e água;  Redução da geração de resíduos;  Redução dos custos com armazenamento e disposição de resíduos;  Redução dos custos operacionais;  Crescimento sustentável;  Aumento da vantagem competitiva;  Minimização de impactos ambientais;  Melhoria no desempenho financeiro;  Bem-estar populacional. CONTRAS:  Custo de investimento para otimização dos processos.
  • 35. 34 6. CONSIDERAÇÕES FINAIS O sistema de osmose reversa está ganhando mercado, porém, internacionalmente é mais utilizado na dessalinização, enquanto sua utilidade é muito mais abrangente. No entanto, no Brasil, mesmo sendo um sistema altamente eficaz, ainda há barreiras, como a falta de informação e o custo de investimento, que impedem a exploração de seu uso pelas empresas. Quando os corpos d’água deixam de receber resíduos hídricos industriais, aumentando sua qualidade, reflete na economia do município, pois há diminuição dos produtos químicos utilizados em tratamentos de água, essa economia pode refletir em um possível desconto em impostos dado pelo município para as empresas que deixaram de poluir. O investimento para a implantação do sistema de osmose reversa é reavido em tempo relativamente curto, com esse possível beneficio do governo, esse tempo diminuiria ainda mais. A P+L consegue ser uma prática completa, pois traz benefícios econômicos, ocasionando menor custo para a empresa; ambientais, propiciando menor impacto negativo; e tecnológico, acarretando em melhores e novas técnicas. Mesmo as empresas instalando práticas de P+L, são necessários treinamentos de educação ambiental para mudar a cultura de seus funcionários, assim esses são reeducados ambientalmente, fazendo sua parte no processo e disseminando esse novo conhecimento. A atitude das empresas em se revelarem indiferentes ao estudo de caso realizado mostra que essas ainda não se preocupam com a imagem que os consumidores possam fazer delas.
  • 36. 35 7. CONCLUSÕES A partir da revisão realizada pode-se concluir que a osmose reversa vem sendo cada vez mais utilizada. Porém a falta de informação das empresas se torna o maior inimigo da potencialização de seus processos. O sistema de osmose reversa é mais comumente utilizado para dessalinização, porém, como seu sistema é capaz de realizar uma purificação altamente eficaz, fazendo com que seus efluentes saiam com alta qualidade, torna possível sua reutilização na maioria dos processos industriais. A empresa que utiliza projetos de reuso mostra sua mentalidade ambiental evoluída. Os projetos de reuso da água decorrente de processos de osmose reversa, além de ajudar a prevenir a degradação do meio ambiente, podem aumentar os lucros e melhorar a imagem ambiental perante os consumidores, inclusive ao mercado internacional.
  • 37. 36 ANEXO ESTUDO DE CASO Quando há um projeto para ser implantado, a empresa precisa avaliar sua viabilidade. O quesito mais importante é saber se o capital investido será reavido e quanto tempo será necessário para gerar lucros. Alguns itens que interferem no investimento são o tempo de vida do sistema, a taxa de retorno anual e seu tempo de implementação (SIMÕES et al., 2004). Portanto, para o estudo de caso foi enviado o questionário abaixo para 18 empresas nacionais, nas diferentes regiões do país, e de diversos segmentos, com a finalidade de realizar um levantamento de dados à respeito da osmose reversa e do reuso da água, bem como os dados básicos de cada empresa. 1 - Qual o segmento da empresa? ( ) indústria ( ) comércio/serviços ( ) outros. Qual?___________________________________ Se indústria, qual a área? ( ) metalúrgica ( ) agropecuária ( ) siderúrgica ( ) papel e celulose ( ) alimentícia ( ) galvanoplastia ( ) têxtil ( ) ração ( ) outra. Qual? ___________________________________ 2 - Qual o tamanho da empresa? ( ) pequeno porte ( ) médio porte ( ) grande porte 3 - Quantos funcionários? ( ) menos que 1000 ( ) entre 1000 e 5000 ( ) mais que 5000 4 - A empresa tem tratamento de água e efluentes? ( ) Sim ( ) Não ( ) Parcialmente, em alguns setores.
  • 38. 37 5 - Qual o tipo de tratamento de água e efluentes que a empresa utiliza? ( ) convencional (processos físico-químicos) ( ) membranas filtrantes. Qual? _______________________ ( ) troca iônica ( ) outro. Qual? _______________________ Quais são seus processos? ( ) cloração ( ) floculação/ coagulação ( ) decantação ( ) filtração ( ) outros. Quais? ___________________________________ 6 - Quais os processos de produção que utilizam água? R.: ____________________________________________________________ 7 - A empresa já utiliza ou pretende utilizar água de reuso? ( ) Sim ( ) Não 8 - Há quanto tempo o sistema de reuso está implantado? ( ) menos de 5 anos ( ) 5 a 10 anos ( ) mais de 10 anos ( ) ainda não está implantado 9 - Quais os processos que utilizam/utilizarão água de reuso? R.: ____________________________________________________________ 10 - De onde é/será a captação da água reutilizada? ( ) água de chuva ( ) tratamento de efluentes (processos de produção) ( ) tratamento de esgoto ( ) “água cinza” (vinda de processos de limpeza, torneiras, banho, etc.) ( ) outro. Qual? ___________________________________ 11 - Por quais processos de tratamento a água de reuso passa/passará? ( ) convencional (floculação/ decantação/ filtração) ( ) cloração ( ) troca iônica ( ) ultravioleta ( ) osmose reversa ( ) outras membranas filtrantes
  • 39. 38 12 - Que melhorias o sistema de reuso trouxe para a empresa? ( ) aumento do valor agregado ao produto ( ) melhoria na qualidade de vida dos empregados ( ) redução de impostos (como conta de água) ( ) imagem ambiental bem-sucedida ( ) melhorias para o meio ambiente ( ) nenhuma 13 - Os gastos aplicados com o sistema de reuso da água foram reavidos? Em quanto tempo? ( ) Não ( ) menos que 5 anos ( ) de 5 a 10 anos ( ) mais que 10 anos Se não, em quanto tempo a empresa espera reavê-los? ( ) menos que 5 anos ( ) de 5 a 10 anos ( ) mais que 10 anos 14 - A empresa considera aplicável a implantação de um sistema de reuso da água? ( ) Sim ( ) Não ( ) Não no atual momento 15 - Há a necessidade de controle de qualidade específico para algum dos processos de produção? Quais? R.:____________________________________________________________ 16 - A empresa conhece o sistema de osmose reversa? ( ) Sim ( ) Ainda não ( ) Parcialmente 17 - A empresa tem implantado ou pretende implantar o sistema de osmose reversa em suas dependências? ( ) Sim ( ) Não ( ) Já está implantado Caso o sistema de osmose reversa esteja instalado na empresa, por favor, responda as questões abaixo: 1 - Há quanto tempo o sistema de osmose reversa está implantado? ( ) menos de 5 anos ( ) 5 a 10 anos ( ) mais de 10 anos
  • 40. 39 2 - A água proveniente do sistema de osmose reversa é utilizada para que finalidades? ( ) caldeira de alta pressão ( ) irrigação ( ) resfriamento ( ) descargas ( ) assepsia de chão ( ) processos de produção ( ) energia térmica ou mecânica ( ) outras. Quais? ___________________________________ 3 - A empresa já teve algum tipo de problema com o sistema de osmose reversa? Quais? R.: ____________________________________________________________ 4 - Que melhorias o sistema de osmose reversa trouxe para a empresa? ( ) aumento da produtividade ( ) aumento do valor do produto, devido ao valor agregado ao mesmo ( ) nenhuma ( ) outras. Quais? ___________________________________ 5 - Os gastos aplicados com o sistema da osmose reversa foram reavidos? Em quanto tempo? ( ) Não ( ) menos de 5 anos ( ) de 5 a 10 anos ( ) mais de 10 anos Se não, em quanto tempo a empresa espera reavê-los? ( ) menos de 5 anos ( ) de 5 a 10 anos ( ) mais de 10 anos 6 - A empresa considera aplicável a implantação de um sistema de osmose reversa (de acordo com eficácia, utilização, custos de implantação, manutenção, energia, etc.)? ( ) Sim ( ) Não. Por quê? ___________________________________ Até o fechamento do presente trabalho, apesar do tempo dado para retornar o contato, somente uma empresa, localizada na região Nordeste, se manifestou, colocando que, na unidade solicitada não há tratamento por osmose reversa, porém há captação de águas pluviais e seu reuso nos processos industriais. Quanto aos efluentes há um projeto piloto para sua utilização como irrigação de jardins.
  • 41. 40 REFERÊNCIAS BIBLIOGRÁFICAS AQUAPURA (2003) - Tempest Environmental Systems; Disponível em: <http://www.aquapura.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=22e&P roduct_Code=TESRO -19000>. Acesso em 20 de janeiro de 2013. BISTERSO, R. Sistemas de osmose reversa para tratamento de água. Revista Hydro, p. 16-31, jun, 2010. BRASIL. Ministério do Meio Ambiente. CONAMA. Resolução nº 397, de 07 de abril de 2008. Dispõe sobre a Alteração do inciso II do § 4º e a Tabela X do § 5º do art. 34 da Resolução CONAMA nº 357/05 e acrescenta os §6º e 7º. Brasília, BR, 2008. PP 68-69. CARRARA, S.M.C.M.; BRESAOLA Jr.,R. Técnicas de Tratamento para o Reuso de Águas Residuárias de Processos de Galvanoplastia. In: 21º Congresso Brasileiro de Engenharia Sanitária e Ambiental, 2001, João Pessoa. Resumos... p.69. Companhia de Tecnologia de Saneamento Ambiental – CETESB. Reuso de Água. Disponível em: <http://www.cetesb.sp.gov.br/agua/%C3%81guas-Superficiais/39-Reuso- de-%C3%81gua#>. Acesso em: 22 de outubro de 2012. CONSTANZI, R. N.; HESPANHOL, I.; ASSADA, L. N.; MARQUES, A. Tratamento de Efluente por Reator Biológico Aeróbio com Membrana Visando o Reuso de Água. Revista Brasileira de Engenharia Agrícola e Ambiental (Suplemento). Campina Grande – PB. pg. 217 – 220, 2005. DIAZ, C. A. P. & PIRES, S. R. I. Produção Mais Limpa: Integrando Meio Ambiente e Produtividade. Revista de Administração CREUPI , Espírito Santo do Pinhal – SP. v. 5. n.9., 2005. ECKENFELDER JR, W. W., Industrial water pollution control.2nd. Ed. New York: McGraw-Hill, 1989. FERRAN Tratamento de Água. O que é Osmose. Disponível em: <http://www.osmosereversabrasil.com.br/osmose.html>. Acesso em 03 de janeiro de 2013. FRANCO, L.C.A.C. A Gestão dos Efluentes das Indústrias Têxteis e os Princípios da Responsabilidade Social em Sergipe. 2009. 89f. Dissertação (Mestrado em Saúde e Ambiente) - Universidade de Tiradentes, Aracajú/ SE, 2009. HINZ, R. T. P.; VALENTINA, L. V. D.; FRACO, A. C. Sustentabilidade Ambiental das Organizações Através da Produção Mais Limpa ou pela Avaliação do Ciclo de Vida. Revista Estudos Tecnológicos. v. 2, n 2, pp. 91 – 98, 2006.
  • 42. 41 HIROSE, M. Produção Mais Limpa Garante Sustentabilidade. Revista da Fundação de Apoio à Tecnologia. ano 2. n. 3, 2005. HTZ. 2010. Afinal, a Água dos Filtros de Osmose Reversa Faz Mal?.Disponível em: <http://www.aguahtz.com.br/2012/10/08/afinal-a-agua-dos-filtros-de-osmose-reversa-faz- bem/>. Acesso em 04 de janeiro de 2013. LAPOLLI, F.R.; LEON, A.C.; TAVARES, C.R.G.; CAMPOS, J.R. Tratamento de Águas Residuárias Através de Membranas. In: XXVI Congreso Interamericano de Ingenieria Sanitária y Ambiental, 1998, Lima – Peru, 1998. LAUTENSCHLAGER, S.R.; FERREIRA F., S.S.; PEREIRA, O. Modelação Matemática e Otimização Operacional de Processos de Membrana de Ultrafiltração. Engenharia Sanitaria e Ambiental. vol.14, n.2, pp. 215 – 222, 2009. LEMOS, A. D.; NASCIMENTO, L. F. A Produção Mais Limpa como Geradora de Inovação e Competitividade. Revista de Administração Contemporânea. v. 3, n. 1, pp. 23 – 46, 1999 MANCUSO, P. C. S.; SANTOS, H. F., Reúso de Água. NISAM – USP, Barueri, SP, 579 p, 2003. MARKOS, Água – Um olhar Integrado. Disponível em: < http://www.c2o.pro.br/vis_int_agua/index.html>. Acesso em: 30 de março de 2013, 2006. MELLO, M.C. A.; NASCIMENTO, L F. Produção Mais Limpa: Um Impulso para a Inovação e a Obtenção de Vantagens Competitivas. In: XXII Encontro Nacional de Engenharia de Produção, 2002, Curitiba/ PR. Resumos... p.1-8. METCALF; EDDY. Wastewater Engineering: treatment, disposal and reuse. New York: McGraw-Hill, 2003. 1334 p. MIERZWA, J. C. O uso racional e o reúso como ferramenta para o gerenciamento de águas e efluentes na indústria – estudo de caso da KODAK brasileira.1997. 367f. Tese (Doutorado em Engenharia) - Universidade de São Paulo, EPUSP, São Paulo, 2002. MIERZWA, J.C. Perspectivas Tecnológicas para Tratamento de Água e Efluentes. Revista da Fundação de Apoio à Tecnologia, ano 2, n. 3, 2005. MIERZWA, J. C.; HESPANHOL, I.; SILVA. M. C. C.da; RODRIGUES, L. DiB. Águas pluviais: método de cálculo do reservatório e conceitos para um aproveitamento adequado. XXX Congresso Interamericano de Ingenieria Ambiental – AIDS, Punta del Leste - UY. 2006.
  • 43. 42 Ministério da Saúde. Vigilância e Controle da Qualidade da Água para Consumo Humano. Brasília/ DF, 2006. 213p. NASCIMENTO, C. A. M. Em Busca da Ecoeficiência. Revista Eletrônica de Administração. ed. 15. vol. 16, n.3, 2000. OENNING Jr., A. Avaliação de Tecnologias Avançadas para o Reuso de Água em Indústria Metal-Mecânica. 2006. 224f. Dissertação (Mestrado em Engenharia de Recursos Hídricos e Ambiental) – Universidade Federal do Paraná, Curitiba/PR, 2006. OENNING Jr., A.; PAWLOWSKY, U. Avaliação de Tecnologias Avançadas para o Reúso de Água em Indústria Metal-mecânica. Revista de Engenharia Sanitária e Ambiental. v.12, n. 3, pp. 305-307, 2007. PEREIRA Neto, A.; BRETZ, J.S.; MAGALHÃES, F.S.; MANSUR, M B.; ROCHA, S.D.F. Alternativas para o Tratamento de Efluentes da Indústria Galvânica. Revista de Engenharia Sanitária Ambiental. vol.13, n.3, pp. 263 – 270, 2008. PERPETUO, E. A. Parâmetros de Caracterização da Qualidade das Águas e Efluentes Industriais, 2008. Disponível em: <http://www.cepema.usp.br/wp- content/uploads/2011/06/8-Par%C3%A2metros-de-caracteriza%C3%A7%C3%A3o-da- qualidade-das-aguas-e-efluentes-industriais.pdf> Acesso em 24 de janeiro de 2013. PIMENTA, H.C.D.; GOUVINHAS, R.P. Implementação da Produção Mais Limpa na Indústrias de Panificação de Natal – RN. In: XXVII Encontro Nacional de Engenharia de Produção, 2007, Foz do Iguaçu – PR, Resumos.. p.97.. PRADO, M. R.; PAWLOWSKY, U. Alternativas para o Tratamento de Resíduos Líquidos em Fecularias. Revista Brasil Alimentos. Curitiba – PR. n. 22, out/nov, 2003. 34p. Ray, R.J. Cost Estimates - Reverse Osmosis. Membrane Handbook. Edited by W.S. Winston Ho and Kamalesh K. Sirkar, 1992. RENSI, F.; SCHENINI, P. C. Produção Mais Limpa. Revista de Ciências da Administração. vol.8. n.16. pp. 1-2, 2006. SANTOS, A. L. Inventário dos Rejeitos, Efluentes e Sub-Produtos das Indústrias Siderúrgicas Integradas na Fabricação de Aço Líquido. 2010. 79f. Trabalho de Graduação (Graduação em Engenharia Metalúrgica) - Universidade Federal do Rio Rio de Janeiro, UFRJ, Rio de Janeiro – RJ, 2010.
  • 44. 43 SCAPINI, L. Avaliação do desempenho da osmose reversa e da troca iônica para tratamento de efluente de curtume (Aimoré Couros Ltda – Encantado) visando a reutilização da água. 2007. 76 f. Dissertação (Mestrado em Sistemas e Processos Industriais). Curso de Pós-Graduação em Sistemas e Processos Industriais, UNISC, Santa Cruz do Sul, 2007. SCHNEIDER, René Peter; TSUTIYA, Milton Tomoyuki. Membranas Filtrantes para o Tratamento de Água, Esgoto e Águas de Reuso. São Paulo: ABES, 2001. 234 p. SENA, M.E.R. Aproveitamento do Vinhoto como fertilizante e na geração de biogás através da combinação de processos com membranas e fermentação anaeróbica. Projeto submetido à FAPERJ - E26/171.524/98-RJ, 1998. SILVA FILHO, J.C.G.; CALÁBRIA, F.A.; SILVA, G.C.S.; MEDEIROS, D.D. Aplicação da Produção mais Limpa em uma Empresa como Ferramenta de Melhoria Contínua. Revista Produção. vol. 17, n.1, pp. 109 – 128, 2007. SILVA FILHO, J.C.G.; SICSÚ, A.B. Produção Mais Limpa: Uma Ferramenta da Gestão Ambiental Aplicada às Empresas Nacionais. In: XXIII Encontro Nacional de Engenharia de Produção, 2003, Ouro Preto – MG. 2003. Resumos... p. 57. SILVA, G.M.A.; ORLANDO FILHO, J. Caracterização da composição química dos diferentes tipos de vinhaça no Brasil, Boletim técnico LANALSUCAR, Piracicaba, v.3, n.8, 22p. 1981. SIMÕES, C. L. do N.; SENA de, M. E. R.; CAMPOS de, R. Estudo da viabilidade econômica da concentração de vinhoto através de osmose inversa. In: XXIV Encontro Nacional de Engenharia de Produção, 2004, Florianópolis-SC. Resumos... p. 5286. SOARES, T.M.; SILVA, I.J.O.; DUARTE, S N.; SILVA, Ë.F.F. Destinação de Águas Residuárias Provenientes de Processo de Dessalinização por Osmose Reversa. Revista Brasileira de Engenharia Agrícola e Ambiental. vol.10, n.3, pp. 730 – 737, 2006. STEPHENSON, T.; JUDD, S.; JEFFERSON, B.; BRINDLE, K., Membrane bioreactors for wastewater treatment. London: IWA Publishing, 2000, citado por: METCALF & EDDY, INC, Wastewater engineering: treatment and reuse, 4th. ed. – New York: McGraw-Hill, 2003. UNEP/UNIDO. Cleaner production assesment manual.Part one- introduction to cleaner production. Draft, 1995. VARGAS, G.M.R. Investigação de Alguns Parâmetros Operacionais e de Rejuvenescimento na Performance do Processo de Osmose Reversa. 2003. 141f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal do Rio Grande do Sul, UFRS, Porto Alegre – RS, 2003.