Termoquimica 1 e 2

4.571 visualizações

Publicada em

Publicada em: Educação, Tecnologia, Negócios
0 comentários
3 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
4.571
No SlideShare
0
A partir de incorporações
0
Número de incorporações
92
Ações
Compartilhamentos
0
Downloads
183
Comentários
0
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Termoquimica 1 e 2

  1. 1. TERMOQUÍMICA A QUÍMICA DOS EFEITOS ENERGÉTICOS. ERLAM UALES NOVAES DE CARVALHO COLÉGIIO EST. POLIVALENTE DR. S. DE ALMEIDA erlamuales@yahoo.com.br www.erlamualesquimica.blogspot.com
  2. 2. OS PRINCÍPIOS FUNDAMENTAIS DO CALOR E DO TRABALHO SE APLICAM, NO ESTUDO DE UMA REAÇÃO QUÍMICA E NAS MUDANÇAS DO ESTADO FÍSICO DE UMA SUBSTÂNCIA.
  3. 3. pilha OBSERVE OS FENÔMENOS
  4. 4. NELES,OCORREM TRANSFORMAÇÕES FÍSICAS E (OU) QUÍMICAS ENVOLVENDO VÁRIOS TIPOS DE ENERGIA, INCLUSIVE ENERGIA TÉRMICA.
  5. 5. CALOR - energia que flui de um sistema com temperatura mais alta para o outro com temperatura mais baixa. SISTEMA - tudo aquilo que se reserva do universo para estudo. ENERGIA QUÍMICA - trabalho realizado por um sistema através de reações químicas. ENERGIA - resultado do movimento e da força gravitacional existentes nas partículas formadoras da matéria. TRABALHO - deslocamento de um corpo contra uma força que se opõe a esse deslocamento. CONCEITOS IMPORTANTES
  6. 6. EM UM SISTEMA ISOLADO A ENERGIA É SEMPRE A MESMA, ELA SE CONSERVA; PODE-SE DIZER ENTÃO QUE A ENERGIA DO UNIVERSO É CONSTANTE.
  7. 7. ENTALPIA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB PRESSÃO CONSTANTE, RESUMIDAMENTE, PODEMOS DIZER QUE É O CONTÉUDO DE CALOR DA SUBSTÂNCIA. ENERGIA INTERNA ENERGIA ACUMULADA POR UMA SUBSTÂNCIA SOB VOLUME CONSTANTE.
  8. 8. O PROCESSO DE MEDIDA DOS CALORES DE REAÇÃO É DENOMINADO CALORIMETRIA. O APARELHO QUE MEDE A ENTALPIA DA REAÇÃO É DENOMINADO CALORÍMETRO.
  9. 9. CALORIA é a quantidade de energia necessária para aumentar de 1ºC a temperatura de 1 g de água. JOULE é a quantidade de energia necessária para deslocar uma massa de 1kg, inicialmente em repouso, fazendo percurso de 1 metro em 1 segundo. 1 cal = 4,18 J 1 kcal = 1000 cal 1 kJ = 1000 J
  10. 10. EFEITOS ENERGETICOS NAS REACõES QUÍMICAS 6CO2 + 6H2O → C6H12O6 + 6O2 LUZ CLOROFILA GLICOSE Na fotossíntese ocorre absorção de calor C2H5OH + 3O2 →2CO2 + 3H2O Na combustão do etanol ocorre liberação de calor ETANOL
  11. 11. A TERMOQUÍMICA ESTUDA AS MUDANÇAS TÉRMICAS ENVOLVIDAS NAS REAÇÕES QUÍMICAS * quando envolve liberação de calor, denomina-se REAÇÃO EXOTÉRMICA. * quando envolve absorção de calor, denomina-se REAÇÃO ENDOTÉRMICA.
  12. 12. EQUAÇÃO TERMOQUÍMICA É a representação de uma reação química em que está especificado:* o estado físico de todas as substâncias. * o balanceamento da equação. * a variação de calor da reação ( ∆H ). * as condições físicas em que ocorre a reação, ou seja, temperatura e pressão. ( 25ºC e 1atm é o comum) * variedade alotrópica quando existir. Segue alguns exemplos...
  13. 13. REAÇÃO EXOTÉRMICA 2 C(s) + 3 H2(g) → C2H6(g) ∆ H= – 20,2 kcal 2 C(s) + 3 H2(g) → C2H6(g) + 20,2 kcal REAÇÃO ENDOTÉRMICA Fe3O4(s) → 3 Fe(s) + 2 O2(g) H= + 267,0 kcal Fe3O4(s) → 3 Fe(s) + 2 O2(g) −267,0 kcal ∆
  14. 14. REAÇÃO EXOTÉRMICA 2 C(s) + 3 H2(g) → C2H6(g) ∆ H = – 20,2 kcal 2 C(s) + 3 H2(g) → C2H6(g) + 20,2 kcal REAÇÃO ENDOTÉRMICA Fe3O4(s) → 3 Fe(s) + 2 O2(g) H = + 267,0 kcal Fe3O4(s) → 3 Fe(s) + 2 O2(g) − 267,0 kcal ∆ OBSERVE OS SINAIS OBSERVE OS SINAIS
  15. 15. CÁLCULO DA VARIAÇÃO DE ENTALPIA A + B → C + D  HR HP HP ⇒ ENTALPIA PRODUTO HR ⇒ ENTALPIA REAGENTE ∆H ⇒ VARIAÇÃO DE ENTALPIA
  16. 16. A + B → C + D + CALOR REAÇÃO EXOTÉRMICA A + B + CALOR → C + D REAÇÃO ENDOTÉRMICA   HR HR HP HP  
  17. 17. HP ⇒ ENTALPIA PRODUTO HR ⇒ ENTALPIA REAGENTE ∆H ⇒ VARIAÇÃO DE ENTALPIA Não esqueça:
  18. 18. HR HP A + B → C + D + HR HP>ENTÃO HR HP= + REAÇÃO EXOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO
  19. 19. A + B → C + D + CALOR REAÇÃO EXOTÉRMICA A + B + CALOR → C + D REAÇÃO ENDOTÉRMICA
  20. 20. HP HR A + B + → C + D Hp Hr>ENTÃO HrHp = + REAÇÃO ENDOTÉRMICA O SENTIDO DA SETA SERÁ SEMPRE DO REAGENTE PARA O PRODUTO CAMINHO DA REAÇÃO
  21. 21. ∆H = H (PRODUTOS) – H (REAGENTES) Se HR < HP ∆H > 0 Se HR > HP ∆H < 0
  22. 22. ∆H = H (PRODUTOS) – H (REAGENTES) Se HR < HP ∆H > 0 Se HR > HP ∆H < 0 REAÇÃO ENDOTÉRMICA REAÇÃO EXOTÉRMICA
  23. 23. HR HP HR HP>Se ∆H = H (PRODUTOS) – H (REAGENTES) ∆H < 0 CAMINHO DA REAÇÃO
  24. 24. HR HP HR HP>Se ∆H = H (PRODUTOS) – H (REAGENTES) ∆H < 0 REAÇÃO EXOTÉRMICA CAMINHO DA REAÇÃO
  25. 25. HP HR Hp Hr>Se ∆H = H (PRODUTOS) – H (REAGENTES) ∆H > 0 CAMINHO DA REAÇÃO
  26. 26. HP HR Hp Hr>Se ∆H = H (PRODUTOS) – H (REAGENTES) ∆H > 0 REAÇÃO ENDOTÉRMICA CAMINHO DA REAÇÃO
  27. 27. * Convencionou-se entalpia zero para determinadas substâncias simples, em razão de não ser possível medir o valor real da entalpia de uma substância. * Foram escolhidas condições-padrão para estabelecer medidas relativas. * Terá entalpia zero qualquer substância simples que se apresente nos estados físico e alotrópico mais comum, a 25ºC e 1atm de pressão. OBS.:
  28. 28. ENTALPIA ZERO Hº = 0 ENTALPIA MAIOR QUE ZERO Hº >0 H2(g), N2(g) e etc O2(g) C(grafite) S(rômbico) P(vermelho) --- O3(g) C(diamante) S(monoclínico) P(branco)
  29. 29. ENTALPIA ZERO Hº = 0 ENTALPIA MAIOR QUE ZERO Hº >0 H2(g), N2(g) e etc O2(g) C(grafite) S(rômbico) P(vermelho) --- O3(g) C(diamante) S(monoclínico) P(branco) * A forma alotrópica menos estável tem entalpia maior que zero.
  30. 30. Observe a reação de formação (síntese ) de um mol de água, a 25ºC e 1 atm de pressão. H2(g) + 1/2O2(g) → H2O(g) Cálculo da entalpia de formação: ∆H = H(produtos) - H(reagentes)
  31. 31. ∆H = H(produtos) – H(reagentes) H2(g) + 1/2 O2(g) → H2O(g ) ∆H = ? ∆H = HºH2O(l) – (Hº H2(g) + 1/2 Hº O2(g)) Hº H2(g )= Hº O2(g) = zero ∆H = HºH2O(l) HºH2O(l)= – 68,4kcal/mol COMO e ENTÃO ∆H = – 68,4kcal/mol
  32. 32. ∆H = H(produtos) – H(reagentes) H2(g) + 1/2 O2(g) → H2O(g ) ∆H = ? ∆H = HºH2O(l) – (Hº H2(g) + 1/2 Hº O2(g)) Hº H2(g )= Hº O2(g) = zero ∆H = HºH2O(l) HºH2O(l)= – 68,4kcal/mol ∆H = – 68,4kcal/mol
  33. 33. ∆H = H(produtos) – H(reagentes) H2(g) + 1/2 O2(g) → H2O(g ) ∆H = –68,4kcal/mol ∆H = HºH2O(l) – (Hº H2(g) + 1/2 Hº O2(g)) Hº H2(g )= Hº O2(g) = zero ∆H = HºH2O(l) HºH2O(l)= – 68,4kcal/mol ∆H = – 68,4kcal/mol
  34. 34. CÁLCULOS DA VARIAÇÃO DE ENTALPIA LEI DE HESS A entalpia de uma reação depende apenas dos estados iniciais e finais da reação, não depende dos estados intermediários, ou seja a reação é a mesma para uma ou mais etapas. Ex. 1 - Cálculo da entalpia da reação de formação do gás carbônico: C(grafite)+ O2(g) → CO2(g) ∆H = ? kcal/mol
  35. 35. OBSERVE AS EQUAÇÕES: C(grafite)+ 1/2O2(g) → CO(g) ∆H = – 26,4kcal/mol CO(g) + 1/2O2(g) → CO2(g) ∆H = – 67,6kcal/mol
  36. 36. EFETUAMOS A SOMA ALGÉBRICA DAS MESMAS. 1ª etapa: C(grafite)+ 1/2O2(g) → CO(g) ∆H1 = – 26,4kcal/mol 2ª etapa: CO(g) + 1/2O2(g) → CO2(g) ∆H2 = – 67,6kcal/mol ∆H = – 94,0kcal/mol CONCLUINDO ∆H = ∆H1 + ∆H2 ∆H = – 94,0kcal/mol Note que os termos semelhantes em membros opostos se anulam. Etapa final: C(grafite)+ O2(g) → CO2(g)
  37. 37. 1ª etapa : C(grafite)+ 1/2O2(g) → CO(g) ∆H1 = -26,4kcal/mol 2ª etapa : CO(g) + 1/2O2(g) → CO2(g) ∆H2 = -67,6kcal/mol Etapa final: C(grafite)+ O2(g) → CO2(g) ∆H = -94,0kcal/mol Observe que o processo é puramente algébrico.
  38. 38. 1ª etapa : C(grafite)+ 1/2O2(g) → CO(g) ∆H1 = -26,4kcal/mol 2ª etapa : CO(g) + 1/2O2(g) → CO2(g) ∆H2 = -67,6kcal/mol Etapa final: C(grafite)+ O2(g) → CO2(g) ∆H = -94,0kcal/mol Observe que o processo é puramente algébrico. ∆H = ∆H1 + ∆H2 = -94,0kcal/mol
  39. 39. Ex 2 - Dadas as equações: C(grafite )+ O2(g) → CO2(g) ∆H1 = – 94,0kcal/mol H2(g) + 1/2 O2(g) → H2O(l) ∆H2 = – 68,4kcal/mol68,4kcal/mol C(grafite)+ 2H2(g) → CH4(g) ∆H3 = – 17,9kcal/mol Calcular a entalpia da reação: CH4(g) + O2(g) → CO2(g)+ H2O(l)
  40. 40. Resolução: As equações dadas deverão ser arrumadas de tal modo que a sua soma resulte na equação-problema. C(grafite )+ O2(g) → CO2(g) ∆H1 = – 94,0kcal/mol H2(g) + 1/2 O2(g) → H2O(l) ∆H2 = – 68,4kcal/mol68,4kcal/mol C(grafite)+ 2H2(g) → CH4(g) ∆H3 = – 17,9kcal/mol Equação-problema: CH4(g) + O2(g) → CO2(g)+ H2O(l) I) II) III) Agora vamos identificá-las com algarismos romanos.
  41. 41. Agora, invertemos a equação III de modo a obter o metano ( CH4 ) como reagente. CH4(g) → C(grafite)+ 2H2(g) ∆H3 = + 17,9kcal/mol Observe a inversão de sinal do ∆H3 Devemos manter a equação I pois dessa forma obteremos gás carbônico como produto. C(grafite )+ O2(g) → CO2(g) ∆H1 = – 94,0kcal/mol 2(H2(g) + 1/2 O2(g) → H2O(l) ∆H2 = – 68,4kcal/mol– 68,4kcal/mol)) Multiplicar por 2 a equação II para que os coeficientes fiquem ajustados. 2 H2(g) + O2(g) → 2 H2O(l) ∆H2 = – 136,8 kcal/mol– 136,8 kcal/mol O ∆H2 também é multiplicado
  42. 42. Finalmente aplica-se a soma algébrica das equações, inclusive das variações de entalpia. CH4(g) → C(grafite)+ 2H2(g) ∆H3 = + 17,9 kcal/mol C(grafite )+ O2(g) → CO2(g) ∆H1 = – 94,0 kcal/mol 2 H2(g) + O2(g) → 2 H2O(l) ∆H2 = – 136,8 kcal/mol– 136,8 kcal/mol _____________________________________________________________
  43. 43. CH4(g) → C(grafite)+ 2H2(g) ∆H3 = + 17,9 kcal/mol C(grafite )+ O2(g) → CO2(g) ∆H1 = – 94,0 kcal/mol 2 H2(g) + O2(g) → 2 H2O(l) ∆H2 = – 136,8 kcal/mol– 136,8 kcal/mol _____________________________________________________________ CH4(g) + 2O2(g) → CO2(g)+ 2H2O(l) ∆H = – 212,9 kcal/mol– 212,9 kcal/mol Observe os cortes: ∆H = ∆H1 + ∆H2 + ∆H3
  44. 44. CALORES PADRÃO DE FORMAÇÃO OU ENTALPIA-PADRÃO DE FORMAÇÃO O índice sobrescrito º significa estado padrão. O índice subscrito f significa formação. . É o calor desenvolvido na formação de um mol de determinado composto, a partir das substâncias simples correspondentes no estado padrão. Representa-se por: ∆Hf º
  45. 45. REAÇÃO DE FORMAÇÃO - é aquela em que um mol de um único composto é formado a partir de substâncias simples no estado padrão. Exs.: C(grafite )+ O2(g) → CO2(g) H2(g) + 1/2 O2(g) → H2O(l) Os valores de ∆H são pré-estabelecidos e encontrados em tabelas, para aqueles compostos que estejam na sua forma mais estável a 1 atm de pressão, ou seja, no estado padrão. 1 mol  1 mol 
  46. 46. SUBSTÂNCIA Hº (kcal/mol) SUBSTÂNCIA Hº (kcal/mol) H2O(v) -57,8 NH3(g) -11,0 H2O(l) -68,4 HF(g) -64,2 H2O(s) -69,8 HCl(g) -22,1 CO(g) -26,4 HBr(g) -8,7 CO2(g) -94,1 HI(g) -6,2 CH4(g) -17,9 HNO3(l) -41,5 H3COH(l) -57,0 C12H22O11(s) -531,5 C2H5OH(l) -66,4 NaCl(s) -98,5
  47. 47. CALOR PADRÃO DE COMBUSTÃO OU ENTALPIA-PADRÃO DE COMBUSTÃO É o calor liberado na combustão total de um mol de uma substância em que os componentes dessa reação estão no estado-padrão. H2(g) + 1/2O2(g) → H2O(l) ∆H=–68,4kcal/mol C2H5OH(l) + 3O2(g) → 2CO2(g) + 3H2O(l) ∆H=–325 kcal/mol COMBUSTÃO - reação de uma substância com o oxigênio (O2) em que ocorre liberação de energia. ( REAÇÃO EXOTÉRMICA )
  48. 48. O PODER CALÓRICO DE ALGUMAS SUBSTÂNCIAS A gasolina possui maior poder clalorífico que o álcool. Para cada litro de gasolina queimado são produzidos aproximadamente 8000 quilocalorias, enquanto para cada litro de álcool queimado, temos a produção de aproximadamente 5000 quilocalorias. Veja a tabela de calorias de alguns alimentos, a seguir.
  49. 49. ALIMENTO Kcal/g ALIMENTO kcal/g Cerveja 0,3 Feijão 3,5 Leite 0,7 Arroz 3,6 Peixe carne branca 0,8 Queijo prato 3,7 Batata 1,1 Carne de vaca 3,9 Ovos 1,6 Açúcar 3,9 Sorvete 1,7 Farinha de soja 4,3 Frango 2,3 Chocolate 5,2 Pão branco 2,3 Amendoim 5,6 Bife 2,7 Carne de porco 5,8 Milho 3,4 Manteiga 7,5
  50. 50. CALOR DE DISSOLUÇÃO OU ENTALPIA DE DISSOLUÇÃO É o calor desenvolvido ( liberado ou absorvido) provocado pela dissolução de um mol de substância, numa quantidade de água suficiente para se obter uma solução diluída, no estado padrão. H2SO4(l) + aq → H2SO4(aq) ∆H = – 22,9 kcal/mol– 22,9 kcal/mol KNO3(s) + aq → KNO3(aq) ∆H = + 8,5 kcal/mol,5 kcal/mol
  51. 51. CALOR DE NEUTRALIZAÇÃO OU ENTALPIA DE NEUTRALIZAÇÃO É o calor liberado na neutralização de um equivalente-grama de um ácido por um equivalente-grama de uma base, ambos em soluções aquosas diluídas, no estado padrão. HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l) ∆H = –13,8 kcal/eq-g–13,8 kcal/eq-g HNO3(aq) + LiOH(aq) → LiNO3(aq) + H2O(l) ∆H = –13,8 kcal/eq-g–13,8 kcal/eq-g OBS.: Para ácidos e bases fortes o ∆H será sempre o mesmo.
  52. 52. A variação de entalpia de uma reação pode ser calculada, conhecendo-se apenas as entalpias de formação dos seus reagentes e produtos. ∆H = ∑∆H(produtos) – ∑∆H(reagentes)
  53. 53. C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(g) ∆H = ? – kcal/mol Consultando a tabela de calores de formação: SUBSTÂNCIAS C3H8(g) CO2(g) H2O(g) O2(g) ∆Η -24,8kcal/mol -94,1kcal/mol -57,8kcal/mol zero Observe a equação:
  54. 54. ∆H = ∑∆H(produtos) – ∑∆H(reagentes) ∆H = [ 3(-94,1) + 4(-57,8)] - (-24,8 + zero) ∆H = [3∆HCO2(g)+ 4∆HH2O(g) ] - (∆HC3H8(g)+5∆HO2(g) ) ∆H = - 488,7 kcal/mol
  55. 55. ENERGIA DE LIGAÇÃO É A ENERGIA NECESSÁRIA PARA ROMPER UM MOL DE LIGAÇÃO DE UMA SUBSTÂNCIA NO ESTADO GASOSO. EX. Para romper um de ligação H – O são necessárias 110kcal. Para romper um de ligação H – C são necessárias 100kcal. Para romper um de ligação O = O são necessárias 118kcal. .* esses valores são tabelados
  56. 56. Para romper um mol de água no estado gasoso, teremos: H2O(l) → 2H(g) + O(g) ∆H = ? kcal/mol O H H 110Kcal110kcal H2O(l) → 2H(g) + O(g) ∆H = 220 kcal/mol
  57. 57. Observe a reação em que todos os participantes estão no estado gasoso: H | C— O — H + 3/2O2 → O = C = O + 2H2O | H H— Para romper as ligações intramoleculares do metanol e do oxigênio, serão absorvidos, para: 1 mol de O — H ⇒ +464,0 kj + 464,0 kj 1 mol de C — O ⇒ +330,0 kj + 330,0 kj 3 mols de C — H ⇒ 3 (+413,0 kj) + 1239,0 kj 3/2 mols de O = O ⇒ 3/2 (+493,0 kj) + 739,5 kj TOTAL ABSORVIDO + 2772,5 kj
  58. 58. H | C— O — H + 3/2O2 → O = C = O + 2H2O | H H— Para formar as ligações intramoleculares do CO2 e da água, serão liberadas: 2 mols de C = O ⇒ 2 (-7444,0 kj) -1 488,0 kj 2 mols de H — O ⇒ 2 ( - 464,0 kj) - 928,0 kj TOTAL LIBERADO -2 416,0 kj Cômputo dos produtos:
  59. 59. ∆H = ∆H(reagentes) + ∆H(produtos) O cálculo final será: ∆H = 2 772,5kj + (- 2 416kj) ∆H = 356,5kj CALOR LIBERADO CALOR ABSORVIDO
  60. 60. A quebra de ligação envolve absorção de calor Processo endotérmico A formação de ligação envolve liberação de calor Processo exotérmico H H— H H—

×