ESTÁTICA DOS CORPOS RÍGIDOS
1. Forças no plano
A Força representa a ação de um corpo sobre o outro e é caracterizada pelo seu
ponto de aplicação, sua intensidade, direção e sentido.
A intensidade de uma força é expressa em Newton (N) no Sistema Internacional de
Unidades (SI).
A direção de uma força é definida por sua linha de ação, ou seja, é a reta ao longo
da qual a força atua, sendo caracterizada pelo ângulo que forma com algum eixo fixo,
como indicado na Figura 1 abaixo.
F
α
F
α
Figura 2.1
O sentido da força é indicado por uma seta (vetor).
Denomina-se Grupo de forças, o conjunto de forças aplicadas em um único ponto
de um corpo.
Sistema de forças é o conjunto de forças aplicadas simultaneamente em pontos
diversos de um mesmo corpo.
2. Equilíbrio de um ponto material
Ponto material é uma pequena porção de matéria que pode ser considerada como se
ocupasse um ponto no espaço.
Quando a resultante de todas as forças que atuam sobre um ponto material é nula,
este ponto está em equilíbrio. Este princípio é conseqüência da primeira lei de Newton: “se
a força resultante que atua sobre um ponto material é zero, este ponto permanece em
repouso (se estava originalmente em repouso) ou move-se ao longo de uma reta com
velocidade constante (se originalmente estava em movimento)”.
Para exprimir algebricamente as condições de equilíbrio de um ponto material,
escreve-se:
0==Σ RF
onde:
F = força
R = resultante das forças
Curso Prático & Objetivo
Direitos Autorais Reservados
01Curso Prático & Objetivo
Direitos Autorais Reservados
A representação gráfica de todas as
forças que atuam em um ponto material
pode ser representada por um diagrama de
corpo livre, como indica a figura ao lado.
F3
F2
A
F4 F1
Figura 2.2
Exemplo: verificar se o sistema de forças indicado está em equilíbrio
As condições necessárias e suficientes
para o equilíbrio são:
0=Σ xF
0º302000º3010001500 =−−=Σ sensenFx
010005001500 =−−=Σ xF ok
0=Σ yF
0866º30cos1000º30cos2000 =−−=Σ yF
08668661732 =−−=Σ yF ok
xA F = 1500N1
F = 1000N3 F = 866N2
30°
y
F = 2000N4
30°
Resposta: O sistema de forças está em equilíbrio
3. Resultante de uma força
Constata-se experimentalmente que duas forças P e Q que atuam sobre um ponto
material podem ser substituídas por uma única força R que tenha o mesmo efeito sobre
esse ponto material. Essa força é chamada de resultante de P e Q. Portanto, a resultante de
um grupo de forças é a força que, atuando sozinha, produz ação idêntica à produzida pelo
grupo ou sistema de forças. A resultante pode ser determinada por soluções gráficas ou
analíticas.
a) Soluções gráficas: quando um ponto material está em equilíbrio sob a ação de mais de
três forças o problema pode ser resolvido graficamente pelo desenho de um polígono de
forças, como indicado nas figuras abaixo.
Regra do paralelogramo
Q
A P A P
Q
R R
Curso Prático & Objetivo
Direitos Autorais Reservados
02Curso Prático & Objetivo
Direitos Autorais Reservados
Regra do Triângulo
A
Q
A
R=P+Q
P
Q
P
R=P+Q
Composição de forças
R=F1+F2-F3
F3
R=F1+F2
F1
F1
R=F1+F2+F3
F2
F3
F3
F2 F3
Decomposição de forças F
Fx
y
x
y
F
b) Soluções analíticas: os métodos analíticos utilizam a trigonometria e as equações de
equilíbrio.
Exemplos
Determinar a Resultante das duas forças P e
Q agem sobre o parafuso A.
Q=60 N
25º
20ºA P=40 N
Curso Prático & Objetivo
Direitos Autorais Reservados
03Curso Prático & Objetivo
Direitos Autorais Reservados
a. Soluções gráficas
35.0°
R=98 N
A 20º
25º
P=40 N
Q=60 N
R=98 N
Q=60 N
A
P=40 N
35.0°
Regra do paralelogramo Regra do triângulo
b. Solução analítica: trigonometria
Cálculo da força resultante:
Lei dos cossenos: BPQQPR cos2222
−+=
º155cos604024060 222
×××−+=R
NR 7,97=
Cálculo do ângulo α
Lei dos senos
R
senB
Q
senA
=
7,97
º155
60
sensenA
=
25,0=senA º15=A
º20+= Aα º35º20º15 =+=α
A
R
Q=60 N
α
P=40 N
B
155°
C
Sabendo-se que o parafuso está fixo, portanto em equilíbrio, existem forças de
reação que equilibram as forças Q e P. Este princípio é explicado pela terceira lei de
Newton: “A toda ação corresponde uma reação, com a mesma intensidade, mesma direção
e sentido contrário”.
Portanto, o parafuso está
reagindo por uma força de
mesma intensidade da resultante
de P e Q, mas em sentido
contrário. A força de reação
pode ser decomposta em duas
forças Fx e Fy, que são suas
projeções sobre os eixos (x e y).
NFx 80º35cos7,97 =×=
NsenFy 56º357,97 =×=
A
R=97,7 N
35°
Fx=80 N 20º
Fy=56 N
R=97,7 N
P=40 N
25º
Q=60 N
35.0°
Curso Prático & Objetivo
Direitos Autorais Reservados
04Curso Prático & Objetivo
Direitos Autorais Reservados
Verificação do equilíbrio do ponto A
Para que o ponto A esteja em equilíbrio é necessário que a somatória de todas as forças que
agem no ponto A sejam nulas, ou seja: 0
1
=∑=
n
i
nF
y
Q=60 N
Fy=56 N
x
25º
20ºA
Fx=80 N P=40 N
∑ = 0xF
∑ =−×+×= 080º20cos40º45cos60xF
00 = ok
∑ = 0yF
∑ =−×+×= 056º2040º4560 sensenFy
00 = ok
Um caso particular da terceira lei de Newton é a lei da gravitação que trata da
atração da Terra sobre um ponto material localizado em sua superfície. A força de atração
exercida pela Terra sobre o ponto material é definida como o seu peso (P). a intensidade do
peso P de um ponto material de massa m é expresso como.
gmP ⋅=
onde g=9,81 m/s2
é a aceleração da gravidade.
2. Determinar as forças
nos cabos.
gmP ⋅=
( )2
/81,9)(75 smkgP ×=
NP 736=
30°50° A
75 kg
C
B
736 N
80°
60°
ACT
40°
TAB
solução gráfica: desenho do polígono de forças.
º80
736
º40º60 sensen
T
sen
T ACAB
==
TAB = 647 N e TAC = 480 N
Curso Prático & Objetivo
Direitos Autorais Reservados
05Curso Prático & Objetivo
Direitos Autorais Reservados
50°
30°
A
736 N
TAB
ACT
solução analítica: equações de equilíbrio.
0=Σ xF
0º50cosº30cos =⋅−⋅ ABAC TT
º30cos
º50cos⋅
= AB
AC
T
T (1)
0=Σ yF
0736º30º50 =−⋅+⋅ senTsenT ACAB
Substituindo TAC pela relação (1), tem-se
736º30
º30cos
º50cos
º50 =⋅
⋅
+⋅ sen
T
senT AB
AB
TAB = 647 N e TAC = 480 N
Exercícios
1. Determinar a força F e o ângulo α.
A
AT =2,5 kN BT = 2,5 kN
F
y
α
x
50°20°
C
20° B50°
α
F
Respostas: F=2,85 kN e α = 74,7º
2. Determinar as forças nos cabos
x
y
60°
20°
AT
TB
P
m=50 kg
A
60°
20°
B
Respostas: TA = 761,3 N e TB = 381 N
3. Determinar a resultante do
sistema de forças indicado e o seu
ângulo de inclinação em relação ao
eixo x.
70°
F = 15 N3
F = 10 N1
x50°
F = 20 N2
Curso Prático & Objetivo
Direitos Autorais Reservados
06Curso Prático & Objetivo
Direitos Autorais Reservados
Roteiro:
a. Determinar inicialmente a resultante entre as forças F1 e F2 e seu respectivo ângulo (α12)
em relação ao eixo x. Chamar a resultante de R12;
b. Em seguida, determinar a resultante de todo o sistema, chamando-a de R123 (R123 é a
resultante entre R12 e F3);
c. Finalmente, determinar o ângulo (α123) de R123 em relação ao eixo x.
Respostas: R123 = 32,19 N e α123 = 61,46º
4. Determinar o valor da força F.
a)
y
x
159,65 N
300 N
20°
60°
F
b)
x
F
60°
346,41 N
30°
200 N y
Resp. F = 314,41 N Resp. F = 400 N
c)
F
y
x
45°
45°
141,42 N
141,42 N
d)
y
x
F30°
60°
45°
250 N
120 N
91,9 N
Resp. F = 200 N Resp. F = 255,45 N
e)
329,36 N
100 N
100 N
F
60°
70°
45°
x
y
f)
65°
61 kg
45°
F
450 N
Resp. F = 321,74 N Resp. F=268,95 N
Curso Prático & Objetivo
Direitos Autorais Reservados
07Curso Prático & Objetivo
Direitos Autorais Reservados
4. Momento de uma força
Define-se Momento como a tendência de uma força F fazer girar um corpo rígido
em torno de um eixo fixo. O Momento depende do módulo de F e da distância de F em ao
eixo fixo.
Considere-se uma força F que atua em um
corpo rígido fixo no ponto 0, como indicado na
figura.
A força F é representada por um vetor que
define seu módulo, direção e sentido. O vetor d é a
distância perpendicular de 0 à linha de ação de F.
0
A
d
M0
F
Define-se o momento escalar do vetor F em relação a 0, como sendo
dFM ×=0
onde: M0= momento escalar do vetor F em relação ao ponto 0
0 = pólo ou centro de momento
d= distância perpendicular de 0 à linha de ação de F, também chamada de braço de
alavanca
O momento M0 é sempre perpendicular ao plano que contém o ponto 0. O sentido
de M0 é definido pelo sentido de rotação imposto pelo vetor F.
Convenciona-se momento positivo
se a força F tender a girar o corpo no
sentido anti-horário e negativo, se tender a
girar o corpo no sentido horário.
M-M+
No SI, onde a força é expressa em newtons (N) e a distância em metros (m).
Portanto, o momento é expresso em newtons × metros (N × m).
4.1. Momento de um sistema de forças coplanares
Chama-se Momento de um sistema de forças coplanares S={(F1,A1),....,(Fn,An)} em
relação ao ponto 0, à soma algébrica dos Momentos de cada força em relação ao mesmo
ponto 0.
0
A
A
F F
3
1
1 2
A2
b1 b2
b3
F3
∑=
=
n
i
FS i
MM
1
0,0,
4.2. Teorema de Varignon
Seja R a resultante do sistema de forças S. “O
Momento da resultante de um sistema de forças em relação a
um ponto é igual ao momento do sistema ou seja, a soma
algébrica dos Momentos de todas as forças componentes em
relação ao mesmo ponto O”.
∑=
==
n
i
FSR i
MMM
1
0,0,0,
Curso Prático & Objetivo
Direitos Autorais Reservados
08Curso Prático & Objetivo
Direitos Autorais Reservados
4.3. Momento de um binário
Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e
sentidos opostos formam um binário. A soma das componentes das duas forças em
qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um
dado ponto não é zero. Apesar de as duas forças não transladarem o corpo no qual atuam,
tendem a fazê-lo girar.
b
1-F
2A
A1 F1
Exemplos
1. Uma força de 450 N é aplicada no ponto A como ilustrado na figura. Determinar:
a) o momento da força em relação a D;
b) a menor força aplicada em D que ocasiona
o mesmo momento em relação a D;
c) o módulo e o sentido da força vertical que,
aplicada em C, produz o mesmo momento em
relação a D;
d) a menor força que, aplicada em C,
ocasiona o mesmo momento em relação a D.
B
30°
A
D
225mm
225mm C
125mm
300mm
450 N
30°
B
197.3mm
225mm
C225mm
52.6°
D
125mm
300mm
37.4°325
30°
22.6°
A
450 N
Solução
a) braço de alavanca 197,3 mm
Momento M=F×b
M=450×197,3= 88785 N.mm ou
M= 88,8 N.m
B
30°
A
225mm
375 mm
225mm C
53.1°
36.9°
125mm
D
300mm
450 N b) Para se obter a menor força aplicada
em B que ocasiona o mesmo momento
em relação a D, deve-se utilizar o
maior braço de alavanca, ou seja:
375300225 22
=+=b mm
b
M
F = 8,236
375,0
8,88
==F N
c)
b
M
F = 7,394
225,0
8,88
==F N
Curso Prático & Objetivo
Direitos Autorais Reservados
09Curso Prático & Objetivo
Direitos Autorais Reservados
d) A menor força que, aplicada em C,
ocasiona o mesmo momento em relação a D é
aquela cujo braço de alavanca é o maior
possível, ou seja:
2,318225225 22
=+=b mm
b
M
F = 279
3182,0
8,88
==F N
30°
318,2
m
m
225mm
C225mm
D
125mm
300mm
B
A
450 N
2. A figura abaixo representa uma junta rebitada, composta por dois rebites de mesmo
diâmetro. Determinar as forças horizontais e verticais atuantes nos rebites.
Como os rebites são iguais, as cargas e as reações verticais em cada rebite também
são iguais: RAV= RBV= 3000÷2= 1500 N.
O rebite A está sendo “puxado” para a direita, portanto, possuirá uma reação
horizontal para a esquerda;
O rebite B está sendo
“empurrado” para a esquerda,
portanto, possuirá uma reação
horizontal para a direita.
Determinação dos esforços
horizontais:
∑ = 0AM
RBH×200=3000×600 = 9000 N
RAH= RBH=9000 N
B
RBV
ARAH
RAV
RBH
200mm
600mm
3000 N
3. Determinar o Momento em A devido ao
binário de forças ilustrado na figura
MA= F×b
MA= 500×0,12 = 60 N.m
300mm
120mm
F1=500 N
F2=500 N
A
30°
B
Curso Prático & Objetivo
Direitos Autorais Reservados
10Curso Prático & Objetivo
Direitos Autorais Reservados
4. Substituir o binário da figura por uma
força F vertical aplicada no ponto B.
F1=F2= 500 N
MA= F×b
b
M
F = 400
15,0
60
==F N
300mm
150mm
A
M =60N.m
120mm
A
30°
F=400 N
B
5. Substituir o binário e a força F ilustrados
na figura por uma única força F=400 N,
aplicada no ponto C da alavanca.
Determinar a distância do eixo ao ponto de
aplicação desta força.
MA= (400×0,15) + (200×0,12) = 84 N.m
F
M
d = 21,0
400
84
==d m = 210 mm
420
º60cos
210
==AC mm
300mm
120mm
A
M
200 N
200 N
d=210mm
150mm
A
30°
F=400 N
AC
B
C
5. Determinar a intensidade da força F para que
atue no parafuso o torque (momento) de 40 N.m.
217
º23cos
200
==a mm = 0,217 m
MA= F×b
b
M
F = 1,184
217,0
40
==F N
6. Um grifo é utilizado para rosquear um tubo de φ 20 mm a uma luva, como mostra a
figura. Determinar a intensidade da força F exercida pelo grifo no tubo, quando a força
aplicada no aperto for 40 N.
∑ = 0AM
40 × 180 = F × 30
240
30
18040
=
×
=F N
Curso Prático & Objetivo
Direitos Autorais Reservados
11Curso Prático & Objetivo
Direitos Autorais Reservados
4.4. Equilíbrio de corpos rígidos
Um corpo rígido está em equilíbrio quando todas as forças externas que atuam
sobre ele formam um sistema de forças equivalente a zero, isto é, quando todas as forças
externas podem ser reduzidas a uma força nula e a um binário nulo.
0=ΣF 00=ΣM
As expressões acima definem as equações fundamentais de Estática.
Decompondo cada força e cada momento em suas componentes cartesianas,
encontram-se as condições necessárias e suficientes para o equilíbrio de um corpo rígido
no espaço:
x
0
y
z
0=Σ xF 0=Σ yF 0=Σ zF
0=Σ xM 0=Σ yM 0=Σ zM
Equilíbrio ou em duas dimensões
As condições de equilíbrio de um corpo rígido simplificam-se consideravelmente
no caso de uma estrutura bidimensional. Escolhendo os eixos x e y no plano da estrutura,
tem-se:
x
0
y
0=zF 0== yx MM 0MM z=
para cada uma das forças aplicadas ao corpo rígido, então as seis equações de equilíbrio no
espaço reduzem-se a:
0=Σ xF 0=Σ yF 0=Σ AM
onde A é um ponto qualquer no plano da estrutura. Estas três equações podem ser
resolvidas para um máximo de três incógnitas.
O equilíbrio em duas dimensões é também conhecido como equilíbrio no plano.
Curso Prático & Objetivo
Direitos Autorais Reservados
12Curso Prático & Objetivo
Direitos Autorais Reservados
5. Apoios
Para o estudo do equilíbrio dos corpos rígidos não bastam conhecer somente as
forças externas que agem sobre ele, mas também é necessário conhecer como este corpo
rígido está apoiado.
Apoios ou vínculos são elementos que restringem os movimentos das estruturas e
recebem a seguinte classificação:
Apoio móvel
ou
• Impede movimento na direção normal (perpendicular) ao
plano do apoio;
• Permite movimento na direção paralela ao plano do
apoio;
• Permite rotação.
Apoio fixo
• Impede movimento na direção normal ao plano do apoio;
• Impede movimento na direção paralela ao plano do
apoio;
• Permite rotação.
Engastamento
• Impede movimento na direção normal ao plano do apoio;
• Impede movimento na direção paralela ao plano do
apoio;
• Impede rotação.
Curso Prático & Objetivo
Direitos Autorais Reservados
13Curso Prático & Objetivo
Direitos Autorais Reservados
14
6. Tipos de Estruturas
As estruturas são classificadas em função do número de reações de apoio ou
vínculos que possuem. Cada reação constitui uma incógnita a ser determinada.
Para as estruturas planas, a Estática fornece três equações fundamentais:
0=Σ xF 0=Σ yF 0=Σ AM
6.1. Estruturas hipostáticas
Estruturas hipostáticas são aquelas cujo número de reações de apoio ou vínculos é
inferior ao número de equações fornecidas pelas condições de equilíbrio da Estática.
A figura ao lado ilustra um tipo de estrutura
hipostática. As incógnitas são duas: RA e RB. Esta
estrutura não possui restrição a movimentos
horizontais. L
P
A RB
B
R
A
6.2. Estruturas isostáticas
Estruturas isostáticas são aquelas cujo número de reações de apoio ou vínculos é
igual ao número de equações fornecidas pelas condições de equilíbrio da Estática.
No exemplo da estrutura da figura, as
incógnitas são três: RA, RB e HA. Esta estrutura está
fixa; suas incógnitas podem ser resolvidas somente
pelas equações fundamentais da Estática.
RA
A
HA
L
P
RB
B
6.3. Estruturas hiperestáticas
Estruturas hiperestáticas são aquelas cujo número de reações de apoio ou vínculos é
superior ao número de equações fornecidas pelas condições de equilíbrio da Estática.
Um tipo de estrutura hiperestática es’ta
ilustrado na figura ao lado. As incógnitas são quatro:
RA, RB, HA e MA. As equações fundamentais da
Estática não são suficientes para resolver as equações
de equilíbrio. São necessárias outras condições
relativas ao comportamento da estrutura, como, p.
ex., a sua deformabilidade para determinar todas as
incógnitas. RA RB
HA
A
AM
L
P
B
Curso Prático & Objetivo
Direitos Autorais Reservados
Curso Prático & Objetivo
Direitos Autorais Reservados

Estatica corpos rigidos

  • 1.
    ESTÁTICA DOS CORPOSRÍGIDOS 1. Forças no plano A Força representa a ação de um corpo sobre o outro e é caracterizada pelo seu ponto de aplicação, sua intensidade, direção e sentido. A intensidade de uma força é expressa em Newton (N) no Sistema Internacional de Unidades (SI). A direção de uma força é definida por sua linha de ação, ou seja, é a reta ao longo da qual a força atua, sendo caracterizada pelo ângulo que forma com algum eixo fixo, como indicado na Figura 1 abaixo. F α F α Figura 2.1 O sentido da força é indicado por uma seta (vetor). Denomina-se Grupo de forças, o conjunto de forças aplicadas em um único ponto de um corpo. Sistema de forças é o conjunto de forças aplicadas simultaneamente em pontos diversos de um mesmo corpo. 2. Equilíbrio de um ponto material Ponto material é uma pequena porção de matéria que pode ser considerada como se ocupasse um ponto no espaço. Quando a resultante de todas as forças que atuam sobre um ponto material é nula, este ponto está em equilíbrio. Este princípio é conseqüência da primeira lei de Newton: “se a força resultante que atua sobre um ponto material é zero, este ponto permanece em repouso (se estava originalmente em repouso) ou move-se ao longo de uma reta com velocidade constante (se originalmente estava em movimento)”. Para exprimir algebricamente as condições de equilíbrio de um ponto material, escreve-se: 0==Σ RF onde: F = força R = resultante das forças Curso Prático & Objetivo Direitos Autorais Reservados 01Curso Prático & Objetivo Direitos Autorais Reservados
  • 2.
    A representação gráficade todas as forças que atuam em um ponto material pode ser representada por um diagrama de corpo livre, como indica a figura ao lado. F3 F2 A F4 F1 Figura 2.2 Exemplo: verificar se o sistema de forças indicado está em equilíbrio As condições necessárias e suficientes para o equilíbrio são: 0=Σ xF 0º302000º3010001500 =−−=Σ sensenFx 010005001500 =−−=Σ xF ok 0=Σ yF 0866º30cos1000º30cos2000 =−−=Σ yF 08668661732 =−−=Σ yF ok xA F = 1500N1 F = 1000N3 F = 866N2 30° y F = 2000N4 30° Resposta: O sistema de forças está em equilíbrio 3. Resultante de uma força Constata-se experimentalmente que duas forças P e Q que atuam sobre um ponto material podem ser substituídas por uma única força R que tenha o mesmo efeito sobre esse ponto material. Essa força é chamada de resultante de P e Q. Portanto, a resultante de um grupo de forças é a força que, atuando sozinha, produz ação idêntica à produzida pelo grupo ou sistema de forças. A resultante pode ser determinada por soluções gráficas ou analíticas. a) Soluções gráficas: quando um ponto material está em equilíbrio sob a ação de mais de três forças o problema pode ser resolvido graficamente pelo desenho de um polígono de forças, como indicado nas figuras abaixo. Regra do paralelogramo Q A P A P Q R R Curso Prático & Objetivo Direitos Autorais Reservados 02Curso Prático & Objetivo Direitos Autorais Reservados
  • 3.
    Regra do Triângulo A Q A R=P+Q P Q P R=P+Q Composiçãode forças R=F1+F2-F3 F3 R=F1+F2 F1 F1 R=F1+F2+F3 F2 F3 F3 F2 F3 Decomposição de forças F Fx y x y F b) Soluções analíticas: os métodos analíticos utilizam a trigonometria e as equações de equilíbrio. Exemplos Determinar a Resultante das duas forças P e Q agem sobre o parafuso A. Q=60 N 25º 20ºA P=40 N Curso Prático & Objetivo Direitos Autorais Reservados 03Curso Prático & Objetivo Direitos Autorais Reservados
  • 4.
    a. Soluções gráficas 35.0° R=98N A 20º 25º P=40 N Q=60 N R=98 N Q=60 N A P=40 N 35.0° Regra do paralelogramo Regra do triângulo b. Solução analítica: trigonometria Cálculo da força resultante: Lei dos cossenos: BPQQPR cos2222 −+= º155cos604024060 222 ×××−+=R NR 7,97= Cálculo do ângulo α Lei dos senos R senB Q senA = 7,97 º155 60 sensenA = 25,0=senA º15=A º20+= Aα º35º20º15 =+=α A R Q=60 N α P=40 N B 155° C Sabendo-se que o parafuso está fixo, portanto em equilíbrio, existem forças de reação que equilibram as forças Q e P. Este princípio é explicado pela terceira lei de Newton: “A toda ação corresponde uma reação, com a mesma intensidade, mesma direção e sentido contrário”. Portanto, o parafuso está reagindo por uma força de mesma intensidade da resultante de P e Q, mas em sentido contrário. A força de reação pode ser decomposta em duas forças Fx e Fy, que são suas projeções sobre os eixos (x e y). NFx 80º35cos7,97 =×= NsenFy 56º357,97 =×= A R=97,7 N 35° Fx=80 N 20º Fy=56 N R=97,7 N P=40 N 25º Q=60 N 35.0° Curso Prático & Objetivo Direitos Autorais Reservados 04Curso Prático & Objetivo Direitos Autorais Reservados
  • 5.
    Verificação do equilíbriodo ponto A Para que o ponto A esteja em equilíbrio é necessário que a somatória de todas as forças que agem no ponto A sejam nulas, ou seja: 0 1 =∑= n i nF y Q=60 N Fy=56 N x 25º 20ºA Fx=80 N P=40 N ∑ = 0xF ∑ =−×+×= 080º20cos40º45cos60xF 00 = ok ∑ = 0yF ∑ =−×+×= 056º2040º4560 sensenFy 00 = ok Um caso particular da terceira lei de Newton é a lei da gravitação que trata da atração da Terra sobre um ponto material localizado em sua superfície. A força de atração exercida pela Terra sobre o ponto material é definida como o seu peso (P). a intensidade do peso P de um ponto material de massa m é expresso como. gmP ⋅= onde g=9,81 m/s2 é a aceleração da gravidade. 2. Determinar as forças nos cabos. gmP ⋅= ( )2 /81,9)(75 smkgP ×= NP 736= 30°50° A 75 kg C B 736 N 80° 60° ACT 40° TAB solução gráfica: desenho do polígono de forças. º80 736 º40º60 sensen T sen T ACAB == TAB = 647 N e TAC = 480 N Curso Prático & Objetivo Direitos Autorais Reservados 05Curso Prático & Objetivo Direitos Autorais Reservados
  • 6.
    50° 30° A 736 N TAB ACT solução analítica:equações de equilíbrio. 0=Σ xF 0º50cosº30cos =⋅−⋅ ABAC TT º30cos º50cos⋅ = AB AC T T (1) 0=Σ yF 0736º30º50 =−⋅+⋅ senTsenT ACAB Substituindo TAC pela relação (1), tem-se 736º30 º30cos º50cos º50 =⋅ ⋅ +⋅ sen T senT AB AB TAB = 647 N e TAC = 480 N Exercícios 1. Determinar a força F e o ângulo α. A AT =2,5 kN BT = 2,5 kN F y α x 50°20° C 20° B50° α F Respostas: F=2,85 kN e α = 74,7º 2. Determinar as forças nos cabos x y 60° 20° AT TB P m=50 kg A 60° 20° B Respostas: TA = 761,3 N e TB = 381 N 3. Determinar a resultante do sistema de forças indicado e o seu ângulo de inclinação em relação ao eixo x. 70° F = 15 N3 F = 10 N1 x50° F = 20 N2 Curso Prático & Objetivo Direitos Autorais Reservados 06Curso Prático & Objetivo Direitos Autorais Reservados
  • 7.
    Roteiro: a. Determinar inicialmentea resultante entre as forças F1 e F2 e seu respectivo ângulo (α12) em relação ao eixo x. Chamar a resultante de R12; b. Em seguida, determinar a resultante de todo o sistema, chamando-a de R123 (R123 é a resultante entre R12 e F3); c. Finalmente, determinar o ângulo (α123) de R123 em relação ao eixo x. Respostas: R123 = 32,19 N e α123 = 61,46º 4. Determinar o valor da força F. a) y x 159,65 N 300 N 20° 60° F b) x F 60° 346,41 N 30° 200 N y Resp. F = 314,41 N Resp. F = 400 N c) F y x 45° 45° 141,42 N 141,42 N d) y x F30° 60° 45° 250 N 120 N 91,9 N Resp. F = 200 N Resp. F = 255,45 N e) 329,36 N 100 N 100 N F 60° 70° 45° x y f) 65° 61 kg 45° F 450 N Resp. F = 321,74 N Resp. F=268,95 N Curso Prático & Objetivo Direitos Autorais Reservados 07Curso Prático & Objetivo Direitos Autorais Reservados
  • 8.
    4. Momento deuma força Define-se Momento como a tendência de uma força F fazer girar um corpo rígido em torno de um eixo fixo. O Momento depende do módulo de F e da distância de F em ao eixo fixo. Considere-se uma força F que atua em um corpo rígido fixo no ponto 0, como indicado na figura. A força F é representada por um vetor que define seu módulo, direção e sentido. O vetor d é a distância perpendicular de 0 à linha de ação de F. 0 A d M0 F Define-se o momento escalar do vetor F em relação a 0, como sendo dFM ×=0 onde: M0= momento escalar do vetor F em relação ao ponto 0 0 = pólo ou centro de momento d= distância perpendicular de 0 à linha de ação de F, também chamada de braço de alavanca O momento M0 é sempre perpendicular ao plano que contém o ponto 0. O sentido de M0 é definido pelo sentido de rotação imposto pelo vetor F. Convenciona-se momento positivo se a força F tender a girar o corpo no sentido anti-horário e negativo, se tender a girar o corpo no sentido horário. M-M+ No SI, onde a força é expressa em newtons (N) e a distância em metros (m). Portanto, o momento é expresso em newtons × metros (N × m). 4.1. Momento de um sistema de forças coplanares Chama-se Momento de um sistema de forças coplanares S={(F1,A1),....,(Fn,An)} em relação ao ponto 0, à soma algébrica dos Momentos de cada força em relação ao mesmo ponto 0. 0 A A F F 3 1 1 2 A2 b1 b2 b3 F3 ∑= = n i FS i MM 1 0,0, 4.2. Teorema de Varignon Seja R a resultante do sistema de forças S. “O Momento da resultante de um sistema de forças em relação a um ponto é igual ao momento do sistema ou seja, a soma algébrica dos Momentos de todas as forças componentes em relação ao mesmo ponto O”. ∑= == n i FSR i MMM 1 0,0,0, Curso Prático & Objetivo Direitos Autorais Reservados 08Curso Prático & Objetivo Direitos Autorais Reservados
  • 9.
    4.3. Momento deum binário Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e sentidos opostos formam um binário. A soma das componentes das duas forças em qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um dado ponto não é zero. Apesar de as duas forças não transladarem o corpo no qual atuam, tendem a fazê-lo girar. b 1-F 2A A1 F1 Exemplos 1. Uma força de 450 N é aplicada no ponto A como ilustrado na figura. Determinar: a) o momento da força em relação a D; b) a menor força aplicada em D que ocasiona o mesmo momento em relação a D; c) o módulo e o sentido da força vertical que, aplicada em C, produz o mesmo momento em relação a D; d) a menor força que, aplicada em C, ocasiona o mesmo momento em relação a D. B 30° A D 225mm 225mm C 125mm 300mm 450 N 30° B 197.3mm 225mm C225mm 52.6° D 125mm 300mm 37.4°325 30° 22.6° A 450 N Solução a) braço de alavanca 197,3 mm Momento M=F×b M=450×197,3= 88785 N.mm ou M= 88,8 N.m B 30° A 225mm 375 mm 225mm C 53.1° 36.9° 125mm D 300mm 450 N b) Para se obter a menor força aplicada em B que ocasiona o mesmo momento em relação a D, deve-se utilizar o maior braço de alavanca, ou seja: 375300225 22 =+=b mm b M F = 8,236 375,0 8,88 ==F N c) b M F = 7,394 225,0 8,88 ==F N Curso Prático & Objetivo Direitos Autorais Reservados 09Curso Prático & Objetivo Direitos Autorais Reservados
  • 10.
    d) A menorforça que, aplicada em C, ocasiona o mesmo momento em relação a D é aquela cujo braço de alavanca é o maior possível, ou seja: 2,318225225 22 =+=b mm b M F = 279 3182,0 8,88 ==F N 30° 318,2 m m 225mm C225mm D 125mm 300mm B A 450 N 2. A figura abaixo representa uma junta rebitada, composta por dois rebites de mesmo diâmetro. Determinar as forças horizontais e verticais atuantes nos rebites. Como os rebites são iguais, as cargas e as reações verticais em cada rebite também são iguais: RAV= RBV= 3000÷2= 1500 N. O rebite A está sendo “puxado” para a direita, portanto, possuirá uma reação horizontal para a esquerda; O rebite B está sendo “empurrado” para a esquerda, portanto, possuirá uma reação horizontal para a direita. Determinação dos esforços horizontais: ∑ = 0AM RBH×200=3000×600 = 9000 N RAH= RBH=9000 N B RBV ARAH RAV RBH 200mm 600mm 3000 N 3. Determinar o Momento em A devido ao binário de forças ilustrado na figura MA= F×b MA= 500×0,12 = 60 N.m 300mm 120mm F1=500 N F2=500 N A 30° B Curso Prático & Objetivo Direitos Autorais Reservados 10Curso Prático & Objetivo Direitos Autorais Reservados
  • 11.
    4. Substituir obinário da figura por uma força F vertical aplicada no ponto B. F1=F2= 500 N MA= F×b b M F = 400 15,0 60 ==F N 300mm 150mm A M =60N.m 120mm A 30° F=400 N B 5. Substituir o binário e a força F ilustrados na figura por uma única força F=400 N, aplicada no ponto C da alavanca. Determinar a distância do eixo ao ponto de aplicação desta força. MA= (400×0,15) + (200×0,12) = 84 N.m F M d = 21,0 400 84 ==d m = 210 mm 420 º60cos 210 ==AC mm 300mm 120mm A M 200 N 200 N d=210mm 150mm A 30° F=400 N AC B C 5. Determinar a intensidade da força F para que atue no parafuso o torque (momento) de 40 N.m. 217 º23cos 200 ==a mm = 0,217 m MA= F×b b M F = 1,184 217,0 40 ==F N 6. Um grifo é utilizado para rosquear um tubo de φ 20 mm a uma luva, como mostra a figura. Determinar a intensidade da força F exercida pelo grifo no tubo, quando a força aplicada no aperto for 40 N. ∑ = 0AM 40 × 180 = F × 30 240 30 18040 = × =F N Curso Prático & Objetivo Direitos Autorais Reservados 11Curso Prático & Objetivo Direitos Autorais Reservados
  • 12.
    4.4. Equilíbrio decorpos rígidos Um corpo rígido está em equilíbrio quando todas as forças externas que atuam sobre ele formam um sistema de forças equivalente a zero, isto é, quando todas as forças externas podem ser reduzidas a uma força nula e a um binário nulo. 0=ΣF 00=ΣM As expressões acima definem as equações fundamentais de Estática. Decompondo cada força e cada momento em suas componentes cartesianas, encontram-se as condições necessárias e suficientes para o equilíbrio de um corpo rígido no espaço: x 0 y z 0=Σ xF 0=Σ yF 0=Σ zF 0=Σ xM 0=Σ yM 0=Σ zM Equilíbrio ou em duas dimensões As condições de equilíbrio de um corpo rígido simplificam-se consideravelmente no caso de uma estrutura bidimensional. Escolhendo os eixos x e y no plano da estrutura, tem-se: x 0 y 0=zF 0== yx MM 0MM z= para cada uma das forças aplicadas ao corpo rígido, então as seis equações de equilíbrio no espaço reduzem-se a: 0=Σ xF 0=Σ yF 0=Σ AM onde A é um ponto qualquer no plano da estrutura. Estas três equações podem ser resolvidas para um máximo de três incógnitas. O equilíbrio em duas dimensões é também conhecido como equilíbrio no plano. Curso Prático & Objetivo Direitos Autorais Reservados 12Curso Prático & Objetivo Direitos Autorais Reservados
  • 13.
    5. Apoios Para oestudo do equilíbrio dos corpos rígidos não bastam conhecer somente as forças externas que agem sobre ele, mas também é necessário conhecer como este corpo rígido está apoiado. Apoios ou vínculos são elementos que restringem os movimentos das estruturas e recebem a seguinte classificação: Apoio móvel ou • Impede movimento na direção normal (perpendicular) ao plano do apoio; • Permite movimento na direção paralela ao plano do apoio; • Permite rotação. Apoio fixo • Impede movimento na direção normal ao plano do apoio; • Impede movimento na direção paralela ao plano do apoio; • Permite rotação. Engastamento • Impede movimento na direção normal ao plano do apoio; • Impede movimento na direção paralela ao plano do apoio; • Impede rotação. Curso Prático & Objetivo Direitos Autorais Reservados 13Curso Prático & Objetivo Direitos Autorais Reservados
  • 14.
    14 6. Tipos deEstruturas As estruturas são classificadas em função do número de reações de apoio ou vínculos que possuem. Cada reação constitui uma incógnita a ser determinada. Para as estruturas planas, a Estática fornece três equações fundamentais: 0=Σ xF 0=Σ yF 0=Σ AM 6.1. Estruturas hipostáticas Estruturas hipostáticas são aquelas cujo número de reações de apoio ou vínculos é inferior ao número de equações fornecidas pelas condições de equilíbrio da Estática. A figura ao lado ilustra um tipo de estrutura hipostática. As incógnitas são duas: RA e RB. Esta estrutura não possui restrição a movimentos horizontais. L P A RB B R A 6.2. Estruturas isostáticas Estruturas isostáticas são aquelas cujo número de reações de apoio ou vínculos é igual ao número de equações fornecidas pelas condições de equilíbrio da Estática. No exemplo da estrutura da figura, as incógnitas são três: RA, RB e HA. Esta estrutura está fixa; suas incógnitas podem ser resolvidas somente pelas equações fundamentais da Estática. RA A HA L P RB B 6.3. Estruturas hiperestáticas Estruturas hiperestáticas são aquelas cujo número de reações de apoio ou vínculos é superior ao número de equações fornecidas pelas condições de equilíbrio da Estática. Um tipo de estrutura hiperestática es’ta ilustrado na figura ao lado. As incógnitas são quatro: RA, RB, HA e MA. As equações fundamentais da Estática não são suficientes para resolver as equações de equilíbrio. São necessárias outras condições relativas ao comportamento da estrutura, como, p. ex., a sua deformabilidade para determinar todas as incógnitas. RA RB HA A AM L P B Curso Prático & Objetivo Direitos Autorais Reservados Curso Prático & Objetivo Direitos Autorais Reservados