SlideShare uma empresa Scribd logo
1 de 50
02/17/15 Oiti G. Paiva 1
BalanceamentoBalanceamento
DinâmicoDinâmico
02/17/15 Oiti G. Paiva 2
BALANCEAMENTO DE ROTORES RÍGIDOS
Um rotor é dito rígido quando ele não se
deforma na velocidade de operação. Quando sobre a
superfície deste rotor existe um desequilíbrio de
massa, durante a rotação do mesmo aparecerá uma
força centrífuga de valor:
F = m ω r2
02/17/15 Oiti G. Paiva 3
Esta força gira com o eixo, provocando
reações alternadas nos apoios que se
traduzem em vibrações nos mancais. O
processo de controle destas forças centrífugas
é conhecido como balanceamento de massa.
02/17/15 Oiti G. Paiva 4
BALANCEAMENTO ESTÁTICO
Se o rotor se apoia sobre mancais sem atrito, ou uma
base lisa e nivelada, agirá sobre a massa M
desequilibrante um momento estático Mr, que fará
com que o rotor gire até que esta venha para a
vertical,
M
CG
02/17/15 Oiti G. Paiva 5
Para balancearmos tal rotor, basta que façamos com
que o CG volte a coincidir com o eixo de rotação.
Para tal, colocaremos uma massa corretiva M’ a
uma distância r’ do centro e a 180° do
desbalanceamento original tal que:
M’r’ = Mr
02/17/15 Oiti G. Paiva 6
BALANCEAMENTO DINÂMICO
O rotor ao lado está dinami-
camente desbalanceado, ape-
sar de estar estaticamente
balanceado. As massas iguais
M1 e M2 colocadas a 180°,
num mesmo raio, garantem
o balanceamento estático.
M 2
M 1
O rotor está dinamicamente desbalanceado
porque se for colocado em rotação aparece-
ram duas forças centrífugas
F1 = m1
ω r
2
F2 = m2
ω r
2
e
02/17/15 Oiti G. Paiva 7
Estas duas forças formarão um binário
desequilibrante, responsável por reações de apoio
alternadas ou vibrações, conforme mostra a figura
abaixo:
R1
R2
FC1
FC2
02/17/15 Oiti G. Paiva 8
O desequilíbrio dinâmico existe, porque o rotor tem
mais de um plano de desequilíbrio. De um modo
geral, discos finos (onde a espessura é 20 vezes
menor que o diâmetro) tais como rebolos, discos de
serra, polias de um gorne, são considerados como
rotores de um só plano de desequilíbrio. Os rotores
com mais de um plano de desequilíbrio só giram
isentos de vibrações, se balanceados dinamicamente.
O balanceamento dinâmico é conseguido com a
colocação de massas apropriadas em dois ou mais
planos de correção.
02/17/15 Oiti G. Paiva 9
M1
M2
I
II
L/2L/4L/4
M2
M1
O rotor da figura abaixo tem duas massas (M1 e M2),
dispostas a 90° e em planos diferentes. Os planos I e
II serão selecionados como planos de equilíbrio. No
balanceamento dinâmico de rotores industriais
geralmente os planos de equilíbrio são os externos,
por facilidade de acesso.
02/17/15 Oiti G. Paiva 10
EQUILÍBRIO DA MASSA M2
Para equilíbrio da massa M2, colocaremos a 180°
desta duas massas de igual valor, M’2 = 0,5 M2, uma
em cada plano de equilíbrio. Nesta condição os
momentos estáticos e dinâmicos são nulos.
M2
L/2 L/2
M’2 = 0,5 M2 M’2 = 0,5 M2
I II
02/17/15 Oiti G. Paiva 11
EQUILÍBRIO DA MASSA M1
Para obtermos momento dinâmico nulo,
colocaremos nos planos I e II as massas M1’ e M1’’,
de tal modo que:
M1’ = 3M1/4 e M1’’ = M1/4
I II
L/4 3L/4
02/17/15 Oiti G. Paiva 12
Uma vez que as correções são feitas no raio externo,
a velocidade angular e o raio são os mesmos para as
massas corretivas e, deste modo, as forças
centrífugas são proporcionais às massas, o que nos
permite somá-las vetorialmente, o que torna possível
a correção do desbalanceamento original com
apenas uma massa em cada plano.
Plano I Mc = (0,5M2) + (0,75M1)
2 2
V
Plano II Mc = (0,5M2) + (0,25M1)
2 2
V
02/17/15 Oiti G. Paiva 13
Consideremos um rotor qualquer,
concêntrico a um eixo de acionamento que
gira a uma velocidade de 1800 rpm.
02/17/15 Oiti G. Paiva 14
45°45°
90°90°
135°135°
180°180°
270°270°
315°315°
225°225°
0°0°
02/17/15 Oiti G. Paiva 15
Um peso qualquer colocado sobre a superfície deste
rotor causa um desequilíbrio de massa no mesmo.
Quando o rotor gira, este desequilíbrio acompanha o
movimento de giro, causando uma vibração no
sentido radial na mesma freqüência em que acontece
o giro. É o que acontece com as rodas
desbalanceadas de um carro. A vibração pode ser
sentida pelo motorista no volante do mesmo.
02/17/15 Oiti G. Paiva 16
0°0°
02/17/15 Oiti G. Paiva 17
FF
FF
FF
FF
FF
FF
FF
FF
FF
02/17/15 Oiti G. Paiva 18
Balancear um rotor, é descobrirmos o local exato
onde se encontra esta massa de desequilíbrio e qual o
seu valor. De posse destes dados, colocamos uma
massa de igual valor a um ângulo de 180° da massa
de desequilíbrio, restabelecendo a condição de
equilíbrio ou repouso do rotor.
02/17/15 Oiti G. Paiva 19
O desbalanceamento de massa é uma das
causas mais freqüentes de vibração em
ventiladores, devido ao acúmulo irregular de
material sobre sua superfície.
02/17/15 Oiti G. Paiva 20
O desbalanceamento de um rotor ocorre
quando a resultante das forças radiais
atuantes no mesmo é diferente de zero.
02/17/15 Oiti G. Paiva 21
A conseqüência mais imediata do
desbalanceamento de massa sobre um rotor é
o aumento da vibração na freqüência de
rotação do mesmo, com predominância nas
direções radiais.
02/17/15 Oiti G. Paiva 22
De uma maneira simples, o coletor de dados
2115, da CSI pode nos ajudar a fazer o
balanceamento de rotores, através do
programa FASTBALL. Em seguida
falaremos da aplicação deste programa passo
a passo.
02/17/15 Oiti G. Paiva 23
Utility Keypad
Off
Route
Analyse Notes
Enter Reset
Print
Ins
Page
Dele
ABC
7
JKL
4
STU
1
DEF
8
MNO
5
Space
0
VWX
2
GHI
9
PQR
6
YZ*
3
Clr
/#&
Exp
.,
Mark
-+
Dec
Csi 2115
ON
OFF
02/17/15 Oiti G. Paiva 24
DETERMINAÇÃO DO PONTO DE
REFERÊNCIA
A determinação do ponto de referência é
feita com a colocação da fita reflexiva no eixo
do rotor. Todas as medidas e ações
posteriores devem ser tomadas tendo este
ponto como ponto zero (0).
02/17/15 Oiti G. Paiva 25
ÂNGULO DO PESO DE TESTE
Para facilitar o nosso trabalho devemos
colocar o peso de prova em fase com a
fita reflexiva, ou seja, a zero grau de
nossa referência.
02/17/15 Oiti G. Paiva 26
Utility Keypad
Off
Route
Analyse Notes
Enter Reset
Print
Ins
Page
Dele
ABC
7
JKL
4
STU
1
DEF
8
MNO
5
Space
0
VWX
2
GHI
9
PQR
6
YZ*
3
Clr
/#&
Exp
.,
Mark
-+
Dec
Csi 2115 ON
OFF
UTILITY FUNCTIONS
(1) COMMUNICATION
(2) SELECT ROUTE
(3) CHANGE SETUP
(4) CLEAR MEMORY
(5) CHECK BATTERY
(6) SPECIAL FUNCTIONS
02/17/15 Oiti G. Paiva 27
Utility Keypad
Off
Route
Analyse Notes
Enter Reset
Print
Ins
Page
Dele
ABC
7
JKL
4
STU
1
DEF
8
MNO
5
Space
0
VWX
2
GHI
9
PQR
6
YZ*
3
Clr
/#&
Exp
.,
Mark
-+
Dec
Csi 2115 ON
OFF
SPECIAL FUNCTIONS
(1) GENERATE REPORT
(2) ENTER DWNLD PROG
(3) EXIT DWNLD PROG
(4) REMOV DWNLD PROG
(5) SET CALIBRATION
(6) METER TEST
02/17/15 Oiti G. Paiva 28
Utility Keypad
Off
Route
Analyse Notes
Enter Reset
Print
Ins
Page
Dele
ABC
7
JKL
4
STU
1
DEF
8
MNO
5
Space
0
VWX
2
GHI
9
PQR
6
YZ*
3
Clr
/#&
Exp
.,
Mark
-+
Dec
Csi 2115 ON
OFF
DOWNLOADABLE PROGS
6.14 FASTBAL 1 MAIN
02/17/15 Oiti G. Paiva 29
BALANCE FUNCTIONS
(1) JOB DEFINITION
(2) MAKE MEASUREMENT
(3) CORRECTION WEIGHTS
(4) TOLERANCE CHECK/TRIM
(5) OPTIONS
( )
( )
( )
( )
( )
MENU PRINCIPALMENU PRINCIPAL
BALANCE FUNCTIONSBALANCE FUNCTIONS
(1) JOB DEFINITION ( Definição do trabalho) - Permite ao usuário definir o trabalho
e o tipo de máquina a ser balanceada, bem como as tolerâncias a serem empregadas.
(2) MAKE MEASUREMENT (Medições) - Campo para leitura do nível inicial de vibração
e valores pós colocação do peso de teste.
(3) CORRECTION WEIGHTS (Pesos de correção) - Calcula os pesos a serem aplicados
para balanceamento do equipamento.
(4) TOLERANCE CHECK/TRIM (Refino) - Permite refinar o balanceamento com a
colocação ou retirada de peso do rotor.
(5) OPTIOS (Opções) - Permite o armazenamento dos trabalhos na memória do aparelho
02/17/15 Oiti G. Paiva 30
EXPLORANDO O MENUEXPLORANDO O MENU
JOB DEFINITIONJOB DEFINITION
JOB DEFINITION
CLEAR JOB: Yes/No USER
JOB#:
MACH ID:
MACH DESC:
STATION:
SHAFT#: SPEC:
CLEAR JOB - Apaga ou não o trabalho atual apresentado no display do instrumento.
USER - Iniciais do executor do balanceamento.
JOB# - Número a ser dado ao trabalho.
MACH ID - TAG da máquina.
MACH DESC - Nome da máquina.
STATION - Área da fábrica.
SHAFT# - Número de eixos aos quais o rotor está diretamente ligado.
SPEC - Nível de vibração admitido após balanceamento.
02/17/15 Oiti G. Paiva 31
EXPLORANDO O MENUEXPLORANDO O MENU
DEFINE BALANCE JOBDEFINE BALANCE JOB
DEFINE BALANCE JOB
WEIGHTS PLANES:
MEASUREMENT PLANES
MEASUREMENT POINTS.
MEASUREMENT SPEEDS:
DISCRETE WEIGHT POSITIONS: Yes/No
SUBTRACT RUNOUT: Yes/No
WEIGHT PLANES - Número de planos onde serão colocados pesos de balanceamento.
MEASUREMENT PLANES - Número de mancais onde serão feitas medidas de vibração.
MEASUREMENT POINTS - Número total de pontos de medição.
MEASUREMENT SPEEDS - Número de velocidades do equipamento.
DISCRETE WEIGHT POSITIONS - Pesos podem ser colocados em qualquer local ao
longo do rotor ou somente nas pás do mesmo? Sim ou não?
SUBTRACT RUNOUT - Subtrair runout do eixo? Sim ou não?
02/17/15 Oiti G. Paiva 32
EXPLORANDO O MENUEXPLORANDO O MENU
DEFINE TACH OPTIONSDEFINE TACH OPTIONS
DEFINE TACH OPTIONS
ANGLE (DEG TDC): 0
DIR OF ROTATION: CCW/CW
DELTA RPM: 1 A 500
1ST BALANCE SPEED: 0
ANGLE (DEG TDC) - Posição do foto-tacômetro. Quando zero (0), é automaticamente
ajustada.
DIR OF ROTATION - CW (sentido horário) / CCW (sentido anti-horário)
DELTA RPM - Variação da rotação em RPM (máximo 500 rpm). Quando zero (0) é
automaticamente ajustada.
1ST BALANCE SPEED - Velocidade de rotação do rotor. Serve para validar ou não o
“DELTA RPM” inserido acima. Quando zero (0), o critério anterior é desabilitado.
02/17/15 Oiti G. Paiva 33
EXPLORANDO O MENUEXPLORANDO O MENU
DEFINE BALANCE SENSORDEFINE BALANCE SENSOR
DEFINE BALANCE SENSOR
Sensor Type: Accel/Vel/Prox
Sensitivity:
Convert to:
Data Units: Standard
Sensor Power: ON/OFF
Mux Enabled: ON/OFF
SENSOR TYPE: Alterna entre os sensores usados para balanceamento
SENSITIVITY: Campo para entrada da sensibilidade do sensor.
CONVERT TO: Converte o sinal do sensor para outras unidades.
DATA UNITS: Deixando como standard, este campo apresentará as ordens de
grandeza Gs, mm/s e microns para sinais convertidos para aceleração, velocidade
ou deslocamento, respectivamente.
SENSOR POWER: ON caso a alimentação do sensor venha do próprio coletor.
MUX ENABLE: OFF (só habilitado no caso de uso de mais de um sensor).
02/17/15 Oiti G. Paiva 34
EXPLORANDO O MENUEXPLORANDO O MENU
MEASUREMENT POINTSMEASUREMENT POINTS
MEASUREMENT POINTS
POINT
ID
01H
01V
02H
02V
MEAS
PLANE
1
1
2
2
ANGLE
TDC
270
0
270
0
INPUT
CHANNEL
1
2
3
4
POINT ID: Nomenclatura dos pontos de leitura de vibração para o balanceamento.
MEAS PLANE: Plano de medição para tomada das leituras.
ANGLE TDC: Distância, em graus, entre pontos de leitura em cada plano.
INPUT CHANNEL: Canais de leitura, variando de acordo com o número de pontos
escolhidos.
02/17/15 Oiti G. Paiva 35
APÓS ESPECIFICARMOS OS PONTOS DE
MEDIÇÃO, TERMINAMOS A DEFINIÇÃO DE
NOSSO TRABALHO, JOB DEFINITION. AO
TECLARMOS ENTER O DISPLAY DO
COLETOR RETORNA À TELA BALANCE
FUNCTIONS E VAMOS ENTÃO PROCEDER AO
SEGUNDO PASSO PARA O BALANCEAMENTO,
MAKE MEASUREMENT, OU SEJA, VAMOS
INICIAR O BALANCEAMENTO DE NOSSA
MÁQUINA.
02/17/15 Oiti G. Paiva 36
MENU PRINCIPALMENU PRINCIPAL
BALANCE FUNCTIONSBALANCE FUNCTIONS
BALANCE FUNCTIONS
(1) JOB DEFINITION
(2) MAKE MEASUREMENT
(3) CORRECTION WEIGHTS
(4) TOLERANCE CHECK/TRIM
(5) OPTIONS
( )
( )
( )
( )
( )
X
Ao teclar ENTER nesta tela o usuário estará
selecionando a opção FAZER MEDIÇÕES, e
o coletor mostrará a tela seguinte:
02/17/15 Oiti G. Paiva 37
SELECT MEASUREMENT
REFERENCE RUN: Corrida para coletar dados de
vibração originais, antes do balanceamento.
TRIAL RUN: Corrida de teste, que permite coletar
dados após colocação do peso de teste.
(1) REFERENCE RUN
(2) TRIAL RUN
( )
( )
02/17/15 Oiti G. Paiva 38
SELECT MEAS POINT
MPT
01H
CH
1
SPEED
0
MAG
0
PHASE
0
REFERENCE RUN
Nesta tela selecionamos o ponto de medição e
teclamos ENTER para adquirir dados de referência.
02/17/15 Oiti G. Paiva 39
SELECT MEASUREMENT
(1) REFERENCE RUN
(2) TRIAL RUN
( )
( )
X
Após a coleta de dados da corrida de referência
o passo seguinte é a corrida de teste, na qual é
pedido o peso de prova. Entrando neste modo
tem-se a seguinte tela:
02/17/15 Oiti G. Paiva 40
TRIAL RUN - WEIGHTS
PLANE
P1(C)
WT
10
LOC
0
WT
0
LOC
0
WT: Peso da massa de teste (em qualquer unidade)
LOC: Posição em graus da massa de teste.
02/17/15 Oiti G. Paiva 41
Após a colocação do peso de teste , segue-se,
como na rodada de referência, uma nova
tela para leitura dos novos valores de vibração.
SELECT MEAS POINT
MPT
01H
CH
1
SPEED
0
MAG
0
PHASE
0
02/17/15 Oiti G. Paiva 42
Após a coleta dos dados na corrida de teste
indicada como TRIAL RUN, o software
apresentará, no campo CORRECTION
WEIGHTS (pesos de correção), o peso da
massa de correção a ser colocada/retirada
do rotor para efetuar o balanceamento do
mesmo.
02/17/15 Oiti G. Paiva 43
BALANCE FUNCTIONS
(1) JOB DEFINITION
(2) MAKE MEASUREMENT
(3) CORRECTION WEIGHTS
(4) TOLERANCE CHECK/TRIM
(5) OPTIONS
( )
( )
( )
( )
( )
X
X
02/17/15 Oiti G. Paiva 44
TRIAL RUN - WEIGHTS
PLANE
P1(C)
WT
55
LOC
33
WT
0
LOC
0
02/17/15 Oiti G. Paiva 45
No nosso exemplo, a massa de correção
é de 55 gramas colocada a 33 graus do
ponto de referência (contrário ao sentido
de rotação do rotor).
02/17/15 Oiti G. Paiva 46
Após colocarmos o peso de correção na
posição especificada entramos no campo
TOLERANCE CHECK/TRIM, onde
fazemos uma nova medição e verificamos
o resultado do balanceamento.
02/17/15 Oiti G. Paiva 47
BALANCE FUNCTIONS
(1) JOB DEFINITION
(2) MAKE MEASUREMENT
(3) CORRECTION WEIGHTS
(4) TOLERANCE CHECK/TRIM
(5) OPTIONS
( )
( )
( )
( )
( )
X
X
X
02/17/15 Oiti G. Paiva 48
TOLERANCE CHECK/TRIM
(1) APPLIED WEIGHT
(2) CHECK RESULT
(3) TRIM CORRECTION
( )
( )
( )
CHECK RUN # 1
02/17/15 Oiti G. Paiva 49
APPLIED WEIGHTS: Peso e local da massa de
correção a ser colocada no rotor.
CHECK RESULT: Após discriminação do peso e
local de aplicação da massa de balanceamento no
rotor, acessamos o CHECK RESULT (verificação
de resultado), onde dá-se início à nova etapa de
leituras para verificação do nível de vibração
02/17/15 Oiti G. Paiva 50
TRIM CORRECTION: Essa função permite um
refino do balanceamento realizado na etapa anterior.
Uma vez acessada, essa função levará o usuário a
uma nova rodada (CHECK RUN # 2), na qual será
definido um novo peso de correção a ser afixado no
rotor. As etapas de refino do balanceamento (TRIM
CORRECTION) podem ser tantas quanto o usuário
desejar, ou seja, até quando os índices de vibração
atingirem níveis satisfatórios.

Mais conteúdo relacionado

Mais procurados

Projeto de máquinas
Projeto de máquinasProjeto de máquinas
Projeto de máquinasRobert Scheer
 
Curso análise de vibração em máquinas rotativas críticas
Curso análise de vibração em máquinas rotativas críticasCurso análise de vibração em máquinas rotativas críticas
Curso análise de vibração em máquinas rotativas críticasMatheus Silva
 
Ce aula 05 máquina cc
Ce aula 05 máquina ccCe aula 05 máquina cc
Ce aula 05 máquina ccIgor Fortal
 
13 Diagnóstico de motores eléctricos A Norma ISO 20958 - Análise de assinat...
13 Diagnóstico de motores eléctricos   A Norma ISO 20958 - Análise de assinat...13 Diagnóstico de motores eléctricos   A Norma ISO 20958 - Análise de assinat...
13 Diagnóstico de motores eléctricos A Norma ISO 20958 - Análise de assinat...DMC Engenharia e Sistemas Ibéricos Lda
 
1 análise de vibração - definições técnicas
1  análise de vibração - definições técnicas1  análise de vibração - definições técnicas
1 análise de vibração - definições técnicasEvaldo Agnoletto
 
Rolamentos e mancais
Rolamentos e mancaisRolamentos e mancais
Rolamentos e mancaisDaniel Garcia
 
manual-curso-de-motores
manual-curso-de-motoresmanual-curso-de-motores
manual-curso-de-motoresGian Paganotto
 
Lista de exercícios
Lista de exercíciosLista de exercícios
Lista de exercíciosolivema91
 

Mais procurados (20)

Bombas industriais
Bombas industriaisBombas industriais
Bombas industriais
 
Projeto de máquinas
Projeto de máquinasProjeto de máquinas
Projeto de máquinas
 
Curso análise de vibração em máquinas rotativas críticas
Curso análise de vibração em máquinas rotativas críticasCurso análise de vibração em máquinas rotativas críticas
Curso análise de vibração em máquinas rotativas críticas
 
Analise de vibrações em engrenagens 2 - vibrações em engrenagens
Analise de vibrações em engrenagens 2 - vibrações em engrenagensAnalise de vibrações em engrenagens 2 - vibrações em engrenagens
Analise de vibrações em engrenagens 2 - vibrações em engrenagens
 
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
 
Ce aula 05 máquina cc
Ce aula 05 máquina ccCe aula 05 máquina cc
Ce aula 05 máquina cc
 
03 Diagnóstico de Motores Eléctricos - Modos de Falha
03 Diagnóstico de Motores Eléctricos - Modos de Falha03 Diagnóstico de Motores Eléctricos - Modos de Falha
03 Diagnóstico de Motores Eléctricos - Modos de Falha
 
13 Diagnóstico de motores eléctricos A Norma ISO 20958 - Análise de assinat...
13 Diagnóstico de motores eléctricos   A Norma ISO 20958 - Análise de assinat...13 Diagnóstico de motores eléctricos   A Norma ISO 20958 - Análise de assinat...
13 Diagnóstico de motores eléctricos A Norma ISO 20958 - Análise de assinat...
 
Análise de vibrações em engrenagens 3 - Técnicas de diagnóstico
Análise de vibrações em engrenagens 3  - Técnicas de diagnósticoAnálise de vibrações em engrenagens 3  - Técnicas de diagnóstico
Análise de vibrações em engrenagens 3 - Técnicas de diagnóstico
 
1 análise de vibração - definições técnicas
1  análise de vibração - definições técnicas1  análise de vibração - definições técnicas
1 análise de vibração - definições técnicas
 
Análise de vibracao
Análise de vibracaoAnálise de vibracao
Análise de vibracao
 
Bombas de Deslocamento Positivo
Bombas de Deslocamento PositivoBombas de Deslocamento Positivo
Bombas de Deslocamento Positivo
 
Rolamentos e mancais
Rolamentos e mancaisRolamentos e mancais
Rolamentos e mancais
 
Análise de vibrações em engrenagens 1 - Conceitos Gerais
Análise de vibrações em engrenagens 1 - Conceitos GeraisAnálise de vibrações em engrenagens 1 - Conceitos Gerais
Análise de vibrações em engrenagens 1 - Conceitos Gerais
 
Elementos de Apoio
Elementos de ApoioElementos de Apoio
Elementos de Apoio
 
Mecanismos
MecanismosMecanismos
Mecanismos
 
manual-curso-de-motores
manual-curso-de-motoresmanual-curso-de-motores
manual-curso-de-motores
 
Lista de exercícios
Lista de exercíciosLista de exercícios
Lista de exercícios
 
Roscas,parafusos porcas e arruelas
Roscas,parafusos porcas e arruelasRoscas,parafusos porcas e arruelas
Roscas,parafusos porcas e arruelas
 
Torno Mecânico- Acessórios
Torno Mecânico- Acessórios Torno Mecânico- Acessórios
Torno Mecânico- Acessórios
 

Semelhante a Balanceamento

ALINHAMENTO DE EIXOS.ppt
ALINHAMENTO DE EIXOS.pptALINHAMENTO DE EIXOS.ppt
ALINHAMENTO DE EIXOS.pptnelsonbsusigan
 
Notas de aula momento angular
Notas de aula   momento angularNotas de aula   momento angular
Notas de aula momento angularFerreira José
 
Alinhamento de eixos
Alinhamento de eixosAlinhamento de eixos
Alinhamento de eixosJulioRezende5
 
CESTALTO-CATALOGO-COMPLETO.pdf
CESTALTO-CATALOGO-COMPLETO.pdfCESTALTO-CATALOGO-COMPLETO.pdf
CESTALTO-CATALOGO-COMPLETO.pdfLuizRoberto95
 
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...LuizRoberto95
 
Dimensionamento de um limitador de torque de fricção em uma esteira transport...
Dimensionamento de um limitador de torque de fricção em uma esteira transport...Dimensionamento de um limitador de torque de fricção em uma esteira transport...
Dimensionamento de um limitador de torque de fricção em uma esteira transport...Diego Siqueira de Lima
 
Tabela de defeitos e espectros
Tabela de defeitos e espectros Tabela de defeitos e espectros
Tabela de defeitos e espectros TIAGO OLIVEIRA
 
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...DMC Engenharia e Sistemas Ibéricos Lda
 
rigger-140723092531-phpapp02.pptx
rigger-140723092531-phpapp02.pptxrigger-140723092531-phpapp02.pptx
rigger-140723092531-phpapp02.pptxBrbaraNvea
 
Cap-5-Rotacao-torque-potencia.pdf
Cap-5-Rotacao-torque-potencia.pdfCap-5-Rotacao-torque-potencia.pdf
Cap-5-Rotacao-torque-potencia.pdfssuserad794a
 
Ch_7_Shigley-EIXOS-2021-1 (2).pdf
Ch_7_Shigley-EIXOS-2021-1 (2).pdfCh_7_Shigley-EIXOS-2021-1 (2).pdf
Ch_7_Shigley-EIXOS-2021-1 (2).pdfEmanoel
 
Correção ficha aval. movimento e operadores
Correção ficha aval. movimento e operadoresCorreção ficha aval. movimento e operadores
Correção ficha aval. movimento e operadoresAgostinho NSilva
 

Semelhante a Balanceamento (20)

ALINHAMENTO DE EIXOS.ppt
ALINHAMENTO DE EIXOS.pptALINHAMENTO DE EIXOS.ppt
ALINHAMENTO DE EIXOS.ppt
 
Notas de aula momento angular
Notas de aula   momento angularNotas de aula   momento angular
Notas de aula momento angular
 
Balanceamento
BalanceamentoBalanceamento
Balanceamento
 
Alinhamento de eixos
Alinhamento de eixosAlinhamento de eixos
Alinhamento de eixos
 
CESTALTO-CATALOGO-COMPLETO.pdf
CESTALTO-CATALOGO-COMPLETO.pdfCESTALTO-CATALOGO-COMPLETO.pdf
CESTALTO-CATALOGO-COMPLETO.pdf
 
05 medidoresdedeslocamento
05 medidoresdedeslocamento05 medidoresdedeslocamento
05 medidoresdedeslocamento
 
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...
212055702-Como-calcular-a-potencia-do-motor-e-selecionar-o-redutor-no-acionam...
 
Dimensionamento de um limitador de torque de fricção em uma esteira transport...
Dimensionamento de um limitador de torque de fricção em uma esteira transport...Dimensionamento de um limitador de torque de fricção em uma esteira transport...
Dimensionamento de um limitador de torque de fricção em uma esteira transport...
 
Bel 6 k
Bel 6 kBel 6 k
Bel 6 k
 
INSTRUMENTAÇÃO.pdf
INSTRUMENTAÇÃO.pdfINSTRUMENTAÇÃO.pdf
INSTRUMENTAÇÃO.pdf
 
Aula 6_EM1.ppt
Aula 6_EM1.pptAula 6_EM1.ppt
Aula 6_EM1.ppt
 
Aula 17 - Torção.pdf
Aula 17 - Torção.pdfAula 17 - Torção.pdf
Aula 17 - Torção.pdf
 
Tabela de defeitos e espectros
Tabela de defeitos e espectros Tabela de defeitos e espectros
Tabela de defeitos e espectros
 
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...
Identificação de avarias em rolamentos, a rodar a muito baixa velocidade de r...
 
Sintese
SinteseSintese
Sintese
 
rigger-140723092531-phpapp02.pptx
rigger-140723092531-phpapp02.pptxrigger-140723092531-phpapp02.pptx
rigger-140723092531-phpapp02.pptx
 
Cap-5-Rotacao-torque-potencia.pdf
Cap-5-Rotacao-torque-potencia.pdfCap-5-Rotacao-torque-potencia.pdf
Cap-5-Rotacao-torque-potencia.pdf
 
Ch_7_Shigley-EIXOS-2021-1 (2).pdf
Ch_7_Shigley-EIXOS-2021-1 (2).pdfCh_7_Shigley-EIXOS-2021-1 (2).pdf
Ch_7_Shigley-EIXOS-2021-1 (2).pdf
 
Cnc introdução
Cnc introduçãoCnc introdução
Cnc introdução
 
Correção ficha aval. movimento e operadores
Correção ficha aval. movimento e operadoresCorreção ficha aval. movimento e operadores
Correção ficha aval. movimento e operadores
 

Balanceamento

  • 1. 02/17/15 Oiti G. Paiva 1 BalanceamentoBalanceamento DinâmicoDinâmico
  • 2. 02/17/15 Oiti G. Paiva 2 BALANCEAMENTO DE ROTORES RÍGIDOS Um rotor é dito rígido quando ele não se deforma na velocidade de operação. Quando sobre a superfície deste rotor existe um desequilíbrio de massa, durante a rotação do mesmo aparecerá uma força centrífuga de valor: F = m ω r2
  • 3. 02/17/15 Oiti G. Paiva 3 Esta força gira com o eixo, provocando reações alternadas nos apoios que se traduzem em vibrações nos mancais. O processo de controle destas forças centrífugas é conhecido como balanceamento de massa.
  • 4. 02/17/15 Oiti G. Paiva 4 BALANCEAMENTO ESTÁTICO Se o rotor se apoia sobre mancais sem atrito, ou uma base lisa e nivelada, agirá sobre a massa M desequilibrante um momento estático Mr, que fará com que o rotor gire até que esta venha para a vertical, M CG
  • 5. 02/17/15 Oiti G. Paiva 5 Para balancearmos tal rotor, basta que façamos com que o CG volte a coincidir com o eixo de rotação. Para tal, colocaremos uma massa corretiva M’ a uma distância r’ do centro e a 180° do desbalanceamento original tal que: M’r’ = Mr
  • 6. 02/17/15 Oiti G. Paiva 6 BALANCEAMENTO DINÂMICO O rotor ao lado está dinami- camente desbalanceado, ape- sar de estar estaticamente balanceado. As massas iguais M1 e M2 colocadas a 180°, num mesmo raio, garantem o balanceamento estático. M 2 M 1 O rotor está dinamicamente desbalanceado porque se for colocado em rotação aparece- ram duas forças centrífugas F1 = m1 ω r 2 F2 = m2 ω r 2 e
  • 7. 02/17/15 Oiti G. Paiva 7 Estas duas forças formarão um binário desequilibrante, responsável por reações de apoio alternadas ou vibrações, conforme mostra a figura abaixo: R1 R2 FC1 FC2
  • 8. 02/17/15 Oiti G. Paiva 8 O desequilíbrio dinâmico existe, porque o rotor tem mais de um plano de desequilíbrio. De um modo geral, discos finos (onde a espessura é 20 vezes menor que o diâmetro) tais como rebolos, discos de serra, polias de um gorne, são considerados como rotores de um só plano de desequilíbrio. Os rotores com mais de um plano de desequilíbrio só giram isentos de vibrações, se balanceados dinamicamente. O balanceamento dinâmico é conseguido com a colocação de massas apropriadas em dois ou mais planos de correção.
  • 9. 02/17/15 Oiti G. Paiva 9 M1 M2 I II L/2L/4L/4 M2 M1 O rotor da figura abaixo tem duas massas (M1 e M2), dispostas a 90° e em planos diferentes. Os planos I e II serão selecionados como planos de equilíbrio. No balanceamento dinâmico de rotores industriais geralmente os planos de equilíbrio são os externos, por facilidade de acesso.
  • 10. 02/17/15 Oiti G. Paiva 10 EQUILÍBRIO DA MASSA M2 Para equilíbrio da massa M2, colocaremos a 180° desta duas massas de igual valor, M’2 = 0,5 M2, uma em cada plano de equilíbrio. Nesta condição os momentos estáticos e dinâmicos são nulos. M2 L/2 L/2 M’2 = 0,5 M2 M’2 = 0,5 M2 I II
  • 11. 02/17/15 Oiti G. Paiva 11 EQUILÍBRIO DA MASSA M1 Para obtermos momento dinâmico nulo, colocaremos nos planos I e II as massas M1’ e M1’’, de tal modo que: M1’ = 3M1/4 e M1’’ = M1/4 I II L/4 3L/4
  • 12. 02/17/15 Oiti G. Paiva 12 Uma vez que as correções são feitas no raio externo, a velocidade angular e o raio são os mesmos para as massas corretivas e, deste modo, as forças centrífugas são proporcionais às massas, o que nos permite somá-las vetorialmente, o que torna possível a correção do desbalanceamento original com apenas uma massa em cada plano. Plano I Mc = (0,5M2) + (0,75M1) 2 2 V Plano II Mc = (0,5M2) + (0,25M1) 2 2 V
  • 13. 02/17/15 Oiti G. Paiva 13 Consideremos um rotor qualquer, concêntrico a um eixo de acionamento que gira a uma velocidade de 1800 rpm.
  • 14. 02/17/15 Oiti G. Paiva 14 45°45° 90°90° 135°135° 180°180° 270°270° 315°315° 225°225° 0°0°
  • 15. 02/17/15 Oiti G. Paiva 15 Um peso qualquer colocado sobre a superfície deste rotor causa um desequilíbrio de massa no mesmo. Quando o rotor gira, este desequilíbrio acompanha o movimento de giro, causando uma vibração no sentido radial na mesma freqüência em que acontece o giro. É o que acontece com as rodas desbalanceadas de um carro. A vibração pode ser sentida pelo motorista no volante do mesmo.
  • 16. 02/17/15 Oiti G. Paiva 16 0°0°
  • 17. 02/17/15 Oiti G. Paiva 17 FF FF FF FF FF FF FF FF FF
  • 18. 02/17/15 Oiti G. Paiva 18 Balancear um rotor, é descobrirmos o local exato onde se encontra esta massa de desequilíbrio e qual o seu valor. De posse destes dados, colocamos uma massa de igual valor a um ângulo de 180° da massa de desequilíbrio, restabelecendo a condição de equilíbrio ou repouso do rotor.
  • 19. 02/17/15 Oiti G. Paiva 19 O desbalanceamento de massa é uma das causas mais freqüentes de vibração em ventiladores, devido ao acúmulo irregular de material sobre sua superfície.
  • 20. 02/17/15 Oiti G. Paiva 20 O desbalanceamento de um rotor ocorre quando a resultante das forças radiais atuantes no mesmo é diferente de zero.
  • 21. 02/17/15 Oiti G. Paiva 21 A conseqüência mais imediata do desbalanceamento de massa sobre um rotor é o aumento da vibração na freqüência de rotação do mesmo, com predominância nas direções radiais.
  • 22. 02/17/15 Oiti G. Paiva 22 De uma maneira simples, o coletor de dados 2115, da CSI pode nos ajudar a fazer o balanceamento de rotores, através do programa FASTBALL. Em seguida falaremos da aplicação deste programa passo a passo.
  • 23. 02/17/15 Oiti G. Paiva 23 Utility Keypad Off Route Analyse Notes Enter Reset Print Ins Page Dele ABC 7 JKL 4 STU 1 DEF 8 MNO 5 Space 0 VWX 2 GHI 9 PQR 6 YZ* 3 Clr /#& Exp ., Mark -+ Dec Csi 2115 ON OFF
  • 24. 02/17/15 Oiti G. Paiva 24 DETERMINAÇÃO DO PONTO DE REFERÊNCIA A determinação do ponto de referência é feita com a colocação da fita reflexiva no eixo do rotor. Todas as medidas e ações posteriores devem ser tomadas tendo este ponto como ponto zero (0).
  • 25. 02/17/15 Oiti G. Paiva 25 ÂNGULO DO PESO DE TESTE Para facilitar o nosso trabalho devemos colocar o peso de prova em fase com a fita reflexiva, ou seja, a zero grau de nossa referência.
  • 26. 02/17/15 Oiti G. Paiva 26 Utility Keypad Off Route Analyse Notes Enter Reset Print Ins Page Dele ABC 7 JKL 4 STU 1 DEF 8 MNO 5 Space 0 VWX 2 GHI 9 PQR 6 YZ* 3 Clr /#& Exp ., Mark -+ Dec Csi 2115 ON OFF UTILITY FUNCTIONS (1) COMMUNICATION (2) SELECT ROUTE (3) CHANGE SETUP (4) CLEAR MEMORY (5) CHECK BATTERY (6) SPECIAL FUNCTIONS
  • 27. 02/17/15 Oiti G. Paiva 27 Utility Keypad Off Route Analyse Notes Enter Reset Print Ins Page Dele ABC 7 JKL 4 STU 1 DEF 8 MNO 5 Space 0 VWX 2 GHI 9 PQR 6 YZ* 3 Clr /#& Exp ., Mark -+ Dec Csi 2115 ON OFF SPECIAL FUNCTIONS (1) GENERATE REPORT (2) ENTER DWNLD PROG (3) EXIT DWNLD PROG (4) REMOV DWNLD PROG (5) SET CALIBRATION (6) METER TEST
  • 28. 02/17/15 Oiti G. Paiva 28 Utility Keypad Off Route Analyse Notes Enter Reset Print Ins Page Dele ABC 7 JKL 4 STU 1 DEF 8 MNO 5 Space 0 VWX 2 GHI 9 PQR 6 YZ* 3 Clr /#& Exp ., Mark -+ Dec Csi 2115 ON OFF DOWNLOADABLE PROGS 6.14 FASTBAL 1 MAIN
  • 29. 02/17/15 Oiti G. Paiva 29 BALANCE FUNCTIONS (1) JOB DEFINITION (2) MAKE MEASUREMENT (3) CORRECTION WEIGHTS (4) TOLERANCE CHECK/TRIM (5) OPTIONS ( ) ( ) ( ) ( ) ( ) MENU PRINCIPALMENU PRINCIPAL BALANCE FUNCTIONSBALANCE FUNCTIONS (1) JOB DEFINITION ( Definição do trabalho) - Permite ao usuário definir o trabalho e o tipo de máquina a ser balanceada, bem como as tolerâncias a serem empregadas. (2) MAKE MEASUREMENT (Medições) - Campo para leitura do nível inicial de vibração e valores pós colocação do peso de teste. (3) CORRECTION WEIGHTS (Pesos de correção) - Calcula os pesos a serem aplicados para balanceamento do equipamento. (4) TOLERANCE CHECK/TRIM (Refino) - Permite refinar o balanceamento com a colocação ou retirada de peso do rotor. (5) OPTIOS (Opções) - Permite o armazenamento dos trabalhos na memória do aparelho
  • 30. 02/17/15 Oiti G. Paiva 30 EXPLORANDO O MENUEXPLORANDO O MENU JOB DEFINITIONJOB DEFINITION JOB DEFINITION CLEAR JOB: Yes/No USER JOB#: MACH ID: MACH DESC: STATION: SHAFT#: SPEC: CLEAR JOB - Apaga ou não o trabalho atual apresentado no display do instrumento. USER - Iniciais do executor do balanceamento. JOB# - Número a ser dado ao trabalho. MACH ID - TAG da máquina. MACH DESC - Nome da máquina. STATION - Área da fábrica. SHAFT# - Número de eixos aos quais o rotor está diretamente ligado. SPEC - Nível de vibração admitido após balanceamento.
  • 31. 02/17/15 Oiti G. Paiva 31 EXPLORANDO O MENUEXPLORANDO O MENU DEFINE BALANCE JOBDEFINE BALANCE JOB DEFINE BALANCE JOB WEIGHTS PLANES: MEASUREMENT PLANES MEASUREMENT POINTS. MEASUREMENT SPEEDS: DISCRETE WEIGHT POSITIONS: Yes/No SUBTRACT RUNOUT: Yes/No WEIGHT PLANES - Número de planos onde serão colocados pesos de balanceamento. MEASUREMENT PLANES - Número de mancais onde serão feitas medidas de vibração. MEASUREMENT POINTS - Número total de pontos de medição. MEASUREMENT SPEEDS - Número de velocidades do equipamento. DISCRETE WEIGHT POSITIONS - Pesos podem ser colocados em qualquer local ao longo do rotor ou somente nas pás do mesmo? Sim ou não? SUBTRACT RUNOUT - Subtrair runout do eixo? Sim ou não?
  • 32. 02/17/15 Oiti G. Paiva 32 EXPLORANDO O MENUEXPLORANDO O MENU DEFINE TACH OPTIONSDEFINE TACH OPTIONS DEFINE TACH OPTIONS ANGLE (DEG TDC): 0 DIR OF ROTATION: CCW/CW DELTA RPM: 1 A 500 1ST BALANCE SPEED: 0 ANGLE (DEG TDC) - Posição do foto-tacômetro. Quando zero (0), é automaticamente ajustada. DIR OF ROTATION - CW (sentido horário) / CCW (sentido anti-horário) DELTA RPM - Variação da rotação em RPM (máximo 500 rpm). Quando zero (0) é automaticamente ajustada. 1ST BALANCE SPEED - Velocidade de rotação do rotor. Serve para validar ou não o “DELTA RPM” inserido acima. Quando zero (0), o critério anterior é desabilitado.
  • 33. 02/17/15 Oiti G. Paiva 33 EXPLORANDO O MENUEXPLORANDO O MENU DEFINE BALANCE SENSORDEFINE BALANCE SENSOR DEFINE BALANCE SENSOR Sensor Type: Accel/Vel/Prox Sensitivity: Convert to: Data Units: Standard Sensor Power: ON/OFF Mux Enabled: ON/OFF SENSOR TYPE: Alterna entre os sensores usados para balanceamento SENSITIVITY: Campo para entrada da sensibilidade do sensor. CONVERT TO: Converte o sinal do sensor para outras unidades. DATA UNITS: Deixando como standard, este campo apresentará as ordens de grandeza Gs, mm/s e microns para sinais convertidos para aceleração, velocidade ou deslocamento, respectivamente. SENSOR POWER: ON caso a alimentação do sensor venha do próprio coletor. MUX ENABLE: OFF (só habilitado no caso de uso de mais de um sensor).
  • 34. 02/17/15 Oiti G. Paiva 34 EXPLORANDO O MENUEXPLORANDO O MENU MEASUREMENT POINTSMEASUREMENT POINTS MEASUREMENT POINTS POINT ID 01H 01V 02H 02V MEAS PLANE 1 1 2 2 ANGLE TDC 270 0 270 0 INPUT CHANNEL 1 2 3 4 POINT ID: Nomenclatura dos pontos de leitura de vibração para o balanceamento. MEAS PLANE: Plano de medição para tomada das leituras. ANGLE TDC: Distância, em graus, entre pontos de leitura em cada plano. INPUT CHANNEL: Canais de leitura, variando de acordo com o número de pontos escolhidos.
  • 35. 02/17/15 Oiti G. Paiva 35 APÓS ESPECIFICARMOS OS PONTOS DE MEDIÇÃO, TERMINAMOS A DEFINIÇÃO DE NOSSO TRABALHO, JOB DEFINITION. AO TECLARMOS ENTER O DISPLAY DO COLETOR RETORNA À TELA BALANCE FUNCTIONS E VAMOS ENTÃO PROCEDER AO SEGUNDO PASSO PARA O BALANCEAMENTO, MAKE MEASUREMENT, OU SEJA, VAMOS INICIAR O BALANCEAMENTO DE NOSSA MÁQUINA.
  • 36. 02/17/15 Oiti G. Paiva 36 MENU PRINCIPALMENU PRINCIPAL BALANCE FUNCTIONSBALANCE FUNCTIONS BALANCE FUNCTIONS (1) JOB DEFINITION (2) MAKE MEASUREMENT (3) CORRECTION WEIGHTS (4) TOLERANCE CHECK/TRIM (5) OPTIONS ( ) ( ) ( ) ( ) ( ) X Ao teclar ENTER nesta tela o usuário estará selecionando a opção FAZER MEDIÇÕES, e o coletor mostrará a tela seguinte:
  • 37. 02/17/15 Oiti G. Paiva 37 SELECT MEASUREMENT REFERENCE RUN: Corrida para coletar dados de vibração originais, antes do balanceamento. TRIAL RUN: Corrida de teste, que permite coletar dados após colocação do peso de teste. (1) REFERENCE RUN (2) TRIAL RUN ( ) ( )
  • 38. 02/17/15 Oiti G. Paiva 38 SELECT MEAS POINT MPT 01H CH 1 SPEED 0 MAG 0 PHASE 0 REFERENCE RUN Nesta tela selecionamos o ponto de medição e teclamos ENTER para adquirir dados de referência.
  • 39. 02/17/15 Oiti G. Paiva 39 SELECT MEASUREMENT (1) REFERENCE RUN (2) TRIAL RUN ( ) ( ) X Após a coleta de dados da corrida de referência o passo seguinte é a corrida de teste, na qual é pedido o peso de prova. Entrando neste modo tem-se a seguinte tela:
  • 40. 02/17/15 Oiti G. Paiva 40 TRIAL RUN - WEIGHTS PLANE P1(C) WT 10 LOC 0 WT 0 LOC 0 WT: Peso da massa de teste (em qualquer unidade) LOC: Posição em graus da massa de teste.
  • 41. 02/17/15 Oiti G. Paiva 41 Após a colocação do peso de teste , segue-se, como na rodada de referência, uma nova tela para leitura dos novos valores de vibração. SELECT MEAS POINT MPT 01H CH 1 SPEED 0 MAG 0 PHASE 0
  • 42. 02/17/15 Oiti G. Paiva 42 Após a coleta dos dados na corrida de teste indicada como TRIAL RUN, o software apresentará, no campo CORRECTION WEIGHTS (pesos de correção), o peso da massa de correção a ser colocada/retirada do rotor para efetuar o balanceamento do mesmo.
  • 43. 02/17/15 Oiti G. Paiva 43 BALANCE FUNCTIONS (1) JOB DEFINITION (2) MAKE MEASUREMENT (3) CORRECTION WEIGHTS (4) TOLERANCE CHECK/TRIM (5) OPTIONS ( ) ( ) ( ) ( ) ( ) X X
  • 44. 02/17/15 Oiti G. Paiva 44 TRIAL RUN - WEIGHTS PLANE P1(C) WT 55 LOC 33 WT 0 LOC 0
  • 45. 02/17/15 Oiti G. Paiva 45 No nosso exemplo, a massa de correção é de 55 gramas colocada a 33 graus do ponto de referência (contrário ao sentido de rotação do rotor).
  • 46. 02/17/15 Oiti G. Paiva 46 Após colocarmos o peso de correção na posição especificada entramos no campo TOLERANCE CHECK/TRIM, onde fazemos uma nova medição e verificamos o resultado do balanceamento.
  • 47. 02/17/15 Oiti G. Paiva 47 BALANCE FUNCTIONS (1) JOB DEFINITION (2) MAKE MEASUREMENT (3) CORRECTION WEIGHTS (4) TOLERANCE CHECK/TRIM (5) OPTIONS ( ) ( ) ( ) ( ) ( ) X X X
  • 48. 02/17/15 Oiti G. Paiva 48 TOLERANCE CHECK/TRIM (1) APPLIED WEIGHT (2) CHECK RESULT (3) TRIM CORRECTION ( ) ( ) ( ) CHECK RUN # 1
  • 49. 02/17/15 Oiti G. Paiva 49 APPLIED WEIGHTS: Peso e local da massa de correção a ser colocada no rotor. CHECK RESULT: Após discriminação do peso e local de aplicação da massa de balanceamento no rotor, acessamos o CHECK RESULT (verificação de resultado), onde dá-se início à nova etapa de leituras para verificação do nível de vibração
  • 50. 02/17/15 Oiti G. Paiva 50 TRIM CORRECTION: Essa função permite um refino do balanceamento realizado na etapa anterior. Uma vez acessada, essa função levará o usuário a uma nova rodada (CHECK RUN # 2), na qual será definido um novo peso de correção a ser afixado no rotor. As etapas de refino do balanceamento (TRIM CORRECTION) podem ser tantas quanto o usuário desejar, ou seja, até quando os índices de vibração atingirem níveis satisfatórios.