SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
TRABALHO DIRIGIDO FÍSICA 2
                           Professor (a)        Ano                Ensino        Turno            Data
                          Sergio Wagner          20                Médio         Manhã
  100% de aprovação                                    Aluno (a)                                     Nº
     para a vida.



01. (UECE) A temperatura de 0,15 kg, de um líquido cujo calor específico é 0,50 cal/g.0C, elevou-se de – 200C
até 400C. A quantidade de calor recebida pelo corpo foi de:
a) 4,5.103 cal    b) 4,0.103 cal    c) 1,5.103 cal    d) 1,0.103 cal
m = 0,15 kg = 150 g.
Q = m.c.∆θ = 150.0,5.[40 – (-20)] = 75.60 = 4500 cal = 4,5.103 cal.

02. (UECE) Geraldo, velho admirador de Sócrates, filosofia: “ Verifico que, fornecendo calor a um corpo, sua
temperatura se eleva; logo, o fornecimento de calor a coros sempre implicará em aumento de sua temperatura “.
a) a verificação de Geraldo pode ser correta, mas sua generalização é falsa.
b) a verificação e a generalização são ambas corretas.
c) a verificação e a generalização só serão corretas para corpos de boa condutividade térmica.
d) a verificação pode ser correta, mas a generalização só será válida para corpos de alto calor específico.
O calor pode ser recebido (∆θ > 0) ou liberado (∆θ < 0).

03. (UECE) Associe a primeira coluna com a segunda:
        COLUNA1                                 COLUNA 2
I. irradiação                                ( ) não depende do meio material
II. convecção calorífica                     ( ) ocorre mais facilmente nos sólidos que
                                                 nos gases
III. condução térmica                        ( ) implica transporte de matéria
A sequência correta, de cima para baixo, é:
a) I, II, III   b) I, III, II    c) II, I, III    d) II, III, I
Na condução ocorre somente nos sólidos; na convecção, ocorre nos fluídos (líquidos e gases) com transporte de
matéria (massas de ar); e na irradiação, é a única que ocorre no vácuo, através de ondas eletromagnéticas, sendo
que estas, não precisam de um meio material para se propagar.

04. (UECE) Cedem-se 684 cal a 200 g de ferro que estão a uma temperatura de 100C. Sabendo-se que o calor
específico do ferro vale 0,114 cal/0C, concluímos que a temperatura final do ferro será:
a) 100C      b) 200C       c) 300C       d) 400C
Q = m.c.∆θ ՜ 684 = 200.0,114.∆θ ՜ ∆θ = 684/22,8 = 300C.
∆θ = θ – θ0 ՜ 30 = θ – 10 ՜ θ = 30 + 10 = 400C.

05. (UECE) O gráfico abaixo indica a variação da temperatura de 1,0 g de uma substância em função da
quantidade de calor que lhe é fornecido. A substância está primitivamente no estado sólido. O calor de fusão da
substância é, em cal/g:
a) 5     b) 30     c) 45      d) 60




Q = m.Lf ՜ 30 = 1.Lf ՜ Lf = 30 cal/g.

06. (UECE) Em um calorímetro, mistura-se um corpo A, de massa 200 g, de calor específico 0,2 cal/g.0C e a
600C, com outro corpo B, de massa 100 g, calor específico 0,1 cal/g.0C e a 100C. A temperatura final de
equilíbrio térmico, é:
a) 500C       b) 400C    c) 300C     d) 200C
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 200.0,2.(T – 60) + 100.0,1.(T – 10) = 0 ՜ 40.(T – 60)
+ 10.(T – 10) = 0 ՜ 40T – 2400 + 10T – 100 = 0 ՜ T = 2500/50 = 500C.

07. (UECE) Se um material A tem calor específico superior o de um material B, podemos assegurar que:
a) A conduz melhor calor que B.
b) B conduz melhor calor que A.
c) A perde calor mais facilmente que B.
d) B perde calor mais facilmente que A.

08. (UECE) A capacidade térmica de uma caneca de alumínio é 16 cal/0C. Sabendo-se que o calor específico do
alumínio é 0,2 cal/g.0C, pode-s afirmar que a massa dessa caneca, em gramas, é:
a) 3,2     b) 32      c) 80      d) 160
C = m.c ՜ 16 = 0,2.m ՜ m = 16/0,2 = 80 g.

09. (UECE) Um calorímetro, cujo equivalente em água é igual a 35 g, contém 115 g de água à temperatura de
200C. Colocam-se, então, no calorímetro, mais 300 g de água à temperatura de 500C. A temperatura de
equilíbrio térmico é:
a) 400C       b) 500C    c) 350C      d) 200C
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ (35 + 115).1.(T – 20) + 100.1.(T – 50) = 0 ՜ 150.(T –
20) + 300.(T – 50) = 0 ՜ 150T – 3000 + 300T – 15000 = 0 ՜ T = 18000/450 = 400C.

10. (UECE) O aumento da quantidade de dióxido de carbono (CO2) na atmosfera, motivado pela queima do
petróleo e derivados (óleo diesel e gasolina), carvão e lenha, nas usinas termoelétricas, na indústria, nos
caminhões e automóveis, torna a atmosfera opaca à radiação térmica que tenta sair para o espaço, devolvendo-o
à Terra: é o efeito estufa.
Durante a Conferência Rio-92, robusteceu se a consciência de que é preciso encontrar substitutos mais limpos
                           92, robusteceu-se
para esses combustíveis, como por exemplo a energia solar. O esquema abaixo ilustra um sistema de
aquecimento de água por energia solar: uma placa metálica P, pintada de preto, serve de apoio a um tubo
metálico T, recurvado em forma de serpentina; um depósito de água R é conectado à serpentina por meio de
condutos de borracha S. A água passa pela serpentina exposta ao sol e vai para o recipiente R onde é
                                                                sol
armazenada. O aquecimento da água contida no depósito R, pela absorção de energia solar, é devido
basicamente aos seguintes fenômenos, pela ordem:




a) condução, irradiação, convecção.
b) irradiação, convecção, condução.
c) convecção, condução, irradiação.
d) irradiação, condução, convecção.

11. (UECE) Quando há diferença de temperatura entre dois pontos, o calor pode fluir por condução, convecção
ou radiação, do ponto de temperatura mais alta para o de temperatura mais baixa. O “ transporte “ de calor se dá
                                                                          baixa.
junto com o transporte de matéria no caso da:
a) condução somente.
b) radiação somente.
c) convecção somente.
d) radiação e convecção.

12. (UECE) Mistura-se água fria,`a temperatura de 200C, com água quente a 800C, obtendo-se 1 kg de água a
                   se
400C. A massa de água fria misturada é, em, kg:
a) 2/3    b) 1/3     c) 1/2       d) 1/4
mF + mQ = 1 kg mQ = 1– mF.
QF + QQ = 0 mF.cF.(40 – 20) + mQ.cQ.(40 – 80) = 0 mF.1.20 + (1– mF).1.(– 40) = 0 20mF – 40 + 40mF
= 0 mF = 40/60 = 2/3 kg.

13. (UECE) O gráfico fornece a variação de temperatura de uma substância, inicialmente no estado sólido, em
função da quantidade de calor que ela recebe. A massa da substância vale 5 gramas. A razão do calor específico
da substância no estado sólido pelo seu calor específico no estado líquido é:




a) 1/4      b) 1/3     c) 2/3     d) 3/4
I. No sólido: QS = m.cS.∆θL ՜ 50 = 5.cS.40 ՜ cS = 50/200 = 1/4 cal/g.0C.
II. No Líquido: QL = m.cL.∆θL ՜ 100 = 5.cL.60 ՜ cL = 100/300 = 1/3 cal/g.0C.
III. cS/cL = (1/4)/(1/3) = 3/4.

14. (UECE) O chamado “ efeito estufa “, devido ao excesso de gás carbônico presente na atmosfera, provocado
pelos poluentes, faz aumentar a temperatura por que:
a) A atmosfera é transparente à energia radiante do sol e opaca às ondas de calor.
b) A atmosfera é opaca à energia radiante do sol e transparente para as ondas de calor.
c) A atmosfera é transparente tanto para a energia radiante do sol como para as ondas de calor.
d) A atmosfera funciona como um meio refletor para a energia radiante e como meio absorvente para a energia
térmica.

15. (UECE) O uso de chaminés para escape de gases quentes oriundos de combustão é uma aplicação do
processo térmico de:
a) irradiação b) condução c) dilatação d) convecção

16. (UECE) A capacidade térmica de uma amostra de água é 5 vezes maior que a de um bloco de ferro. A
amostra de água se encontra a 20ºC e a do bloco, a 50ºC. Colocando-os num recipiente termicamente isolado e
de capacidade térmica desprezível, a temperatura final de equilíbrio é:
a) 250C     b) 300C    c) 350C d) 400C
Sabendo que C = m.c, CA = 5.CB = 5.mB.cB.
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ CA.(T – 20) + CB.(T – 50) = 0 ՜ 5.CB.(T – 20) +
CB.(T – 50) = 0 ՜ (dividindo os dois termos por CB) temos: 5.(T – 20) + 1.(T – 50) = 0 ՜ 5T – 100 + T – 50 =
0 ՜ T = 150/6 = 250C.

17. (UECE) O calor se propaga por convecção no(na):
a) água b) vácuo c) chumbo         d) vidro

18. (UECE) Considere um sistema constituído de dois volumes de água, um de 400 litros à temperatura de 20ºC
e o outro de 100 litros à 70ºC. Sabendo-se que o sistema está isolado da vizinhança, a temperatura de equilíbrio
é, em graus centígrados, igual a:
a) 20      b) 30      c) 45      d) 60
QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 400.1.(T – 20) + 100.1.(T – 70) = 0 ՜ 400.(T – 20) +
100.(T – 10) = 0 ՜ 400T – 8000 + 100T – 7000 = 0 ՜ T = 15000/500 = 300C.

19. (UECE) Considerando que os calores específico e latente de vaporização da água são respectivamente c =
4190 J/kg.K e L = 2256 kJ/kg, a energia mínima necessária para vaporizar 0,5 kg de água que se encontra a
30oC, em kJ, é aproximadamente:
a) 645     b) 1275      c) 1940      d) 3820
Q1 = m.c.∆θ = 0,5.4190.(100 – 30) = 146,65 Kj e Q2 = m.L = 0,5.2256 = 1128 kJ, logo QTOTAL = 146,65 +
1128 = 1274,65 kJ.

20. (UECE) Um corpo de massa 400 g é aquecido através de fonte térmica de potência 500 cal/min. constante.
A temperatura do corpo, em função do tempo, aumenta segundo o gráfico abaixo:




O calor específico do material de que é feito o corpo é:
a) 0,615 cal/g.oC    b) 0,715 cal/g.oC      c) 0,625 cal/g.oC   d) 0,725 cal/g.oC




P = Q/∆t ՜ 500 = Q/10 ՜ Q = 5000 cal.
Q = m.c.∆θ ՜ 5000 = 400.c.20 ՜ c = 5000/8000 = 0,625 cal/g.oC.

21. Ográfico a seguir indica esquematicamente o diagrama da pressão (p) exercida sobre uma substância em
função de sua temperatura (θ ):




Quais as correspondentes fases do estado de agregação das partículas dessa substância, indicadas pelas regiões
assinaladas na figura?
Região I – Sólido; Região II – Líquido; Região III – Vapor; e Região IV – Gás;

22. (UECE) O gráfico representa a variação da temperatura de um corpo sólido em função do tempo, ao ser
aquecido por uma fonte que libera energia a uma potência constante de 150 cal/min. Sendo a massa do corpo
igual a 100 g, o seu calor específico, em cal/gºC, é:
a) 0,55   b) 0,75   c) 0,65   d) 0,85




P = Q/∆t ՜ 150 = Q/10 ՜ Q = 1500 cal.
Q = m.c.∆θ ՜ 1500 = 100.c.20 ՜ c = 1500/2000 = 0,75 cal/g.oC.

23. O diagrama de estado de uma substância é esquematizado abaixo:




Identifique o que representa cada letra no diagrama:
A – estado sólido; B – estado líquido; C – estado gasoso (vapor); D – estado gasoso (gás); K – temperatura
crítica ou ponto crítico; e Z – ponto triplo.

24. Um corpo de massa 50 g, inicialmente no estado sólido, recebe calor de acordo com a representação gráfica
a seguir, passando para o estado líquido:




No gráfico, Q representa a quantidade de calor recebida pelo corpo e T, sua temperatura na escala Celsius.
Calcule:
a) o calor específico do estado líquido;
No estado sólido:
Q = m.c.∆θ
400 = 50 · cS · (40 – 0)
cS = 0,20 cal/g.°C.

b) o calor latente de fusão;
Na fusão (patamar):
Q=mL
500 – 400 = 50 · LF
LF = 2,0 cal/g.

c) o calor específico do estado gasoso;
No estado líquido:
Q = m.c.∆θ
600 – 500 = 50.cL.(80 – 40)
cL = 0,05 cal/g °C

25. (Efoa-MG) O gráfico ao lado representa o resultado do monitoramento da temperatura de um metal como
          MG)
função do tempo durante o processo termodinâmico.




Analisando o gráfico, é CORRETO afirmar que:
a) o metal sofreu apenas a mudança da fase líquida para a sólida.
b) o metal sofreu apenas a mudança da fase vapor para a líquida.
c) ao final do processo o metal encontra na fase sólida.
                                 encontra-se
d) ao final do processo o metal encontra na fase líquida.
                                 encontra-se
e) ao final do processo o metal encontra na fase vapor.
                                 encontra-se
Durante todo o processo, a temperatura diminui e há dois patamares em que a temperatura se
mantém constante durante certo tempo, indicando então mudança de estado. Assim, o metal começa
no estado gasoso, resfria-se até mudar para o estado líquido, resfria se novamente e muda para o
                          se                                  resfria-se
estado sólido e ainda se resfria mais um pouco.

“O único lugar onde o sucesso vem antes do trabalho é no dicionário [ Albert Einstein ]
 O                                                       dicionário”.

Mais conteúdo relacionado

Mais procurados

Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
trigono_metrico
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
celiomelosouza
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
Kamilla Oliveira
 
Mat exercicios equacao do segundo grau parte i
Mat exercicios equacao do segundo grau   parte iMat exercicios equacao do segundo grau   parte i
Mat exercicios equacao do segundo grau parte i
trigono_metria
 

Mais procurados (20)

Exercicios plano cartesiano
Exercicios plano cartesianoExercicios plano cartesiano
Exercicios plano cartesiano
 
Lista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – PorcentagemLista de Exercícios 1 – Porcentagem
Lista de Exercícios 1 – Porcentagem
 
Física - Exercícios Resolvidos de Equilíbrio de um Ponto Material
Física - Exercícios Resolvidos de Equilíbrio de um Ponto MaterialFísica - Exercícios Resolvidos de Equilíbrio de um Ponto Material
Física - Exercícios Resolvidos de Equilíbrio de um Ponto Material
 
Matematica exercicios numeros_complexos_gabarito
Matematica exercicios numeros_complexos_gabaritoMatematica exercicios numeros_complexos_gabarito
Matematica exercicios numeros_complexos_gabarito
 
FunçãO QuadráTica
FunçãO QuadráTicaFunçãO QuadráTica
FunçãO QuadráTica
 
Matemática completa volume 1 parte 1
Matemática completa volume 1 parte 1Matemática completa volume 1 parte 1
Matemática completa volume 1 parte 1
 
Situação problemas ideia de função
Situação problemas   ideia de funçãoSituação problemas   ideia de função
Situação problemas ideia de função
 
Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
 
02 matematica 7ano1
02 matematica 7ano102 matematica 7ano1
02 matematica 7ano1
 
Mapa mental todas as materias
Mapa mental todas as materiasMapa mental todas as materias
Mapa mental todas as materias
 
Exercicios geometria espacial
Exercicios geometria espacialExercicios geometria espacial
Exercicios geometria espacial
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
 
Atividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 anoAtividade avaliativa recuperação 7 ano
Atividade avaliativa recuperação 7 ano
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Teoria de conjuntos fichas de exercícios
Teoria de conjuntos   fichas de exercícios Teoria de conjuntos   fichas de exercícios
Teoria de conjuntos fichas de exercícios
 
Caderno de exercícios equação do 2º grau
Caderno de exercícios equação do 2º grauCaderno de exercícios equação do 2º grau
Caderno de exercícios equação do 2º grau
 
Mat exercicios equacao do segundo grau parte i
Mat exercicios equacao do segundo grau   parte iMat exercicios equacao do segundo grau   parte i
Mat exercicios equacao do segundo grau parte i
 
Lista de exercícios equações fracionárias e sistema de inequações
Lista de exercícios   equações fracionárias e sistema de inequaçõesLista de exercícios   equações fracionárias e sistema de inequações
Lista de exercícios equações fracionárias e sistema de inequações
 
Velocidade média, instantânea e aceleração escalar
Velocidade média, instantânea e aceleração escalarVelocidade média, instantânea e aceleração escalar
Velocidade média, instantânea e aceleração escalar
 
8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos8 ano produtos notáveis e ângulos
8 ano produtos notáveis e ângulos
 

Semelhante a Td de calorimetria

Av2 2º ano 3º bim listão
Av2 2º ano 3º bim   listãoAv2 2º ano 3º bim   listão
Av2 2º ano 3º bim listão
jacoanderle
 
Exercícios extras_calorimetria
Exercícios extras_calorimetriaExercícios extras_calorimetria
Exercícios extras_calorimetria
O mundo da FÍSICA
 
3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano
O mundo da FÍSICA
 
Lista 13 calorimetria
Lista 13 calorimetriaLista 13 calorimetria
Lista 13 calorimetria
rodrigoateneu
 
3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano
O mundo da FÍSICA
 

Semelhante a Td de calorimetria (20)

Lista 2° ano
Lista 2° anoLista 2° ano
Lista 2° ano
 
Calor sensivel e calor latente
Calor sensivel e calor latenteCalor sensivel e calor latente
Calor sensivel e calor latente
 
CALORIMETRIA
CALORIMETRIACALORIMETRIA
CALORIMETRIA
 
Lista Termologia (T2)
Lista Termologia (T2)Lista Termologia (T2)
Lista Termologia (T2)
 
Av2 2º ano 3º bim listão
Av2 2º ano 3º bim   listãoAv2 2º ano 3º bim   listão
Av2 2º ano 3º bim listão
 
www.videoaulagratisapoio.com.br - Física - Termologia
www.videoaulagratisapoio.com.br - Física -  Termologiawww.videoaulagratisapoio.com.br - Física -  Termologia
www.videoaulagratisapoio.com.br - Física - Termologia
 
calorimetria (2).pptx
calorimetria (2).pptxcalorimetria (2).pptx
calorimetria (2).pptx
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Calorimetria:Quantidade e trocas de calor
Calorimetria:Quantidade e trocas de calorCalorimetria:Quantidade e trocas de calor
Calorimetria:Quantidade e trocas de calor
 
206 calorimetria
206 calorimetria206 calorimetria
206 calorimetria
 
Exercícios extras_calorimetria
Exercícios extras_calorimetriaExercícios extras_calorimetria
Exercícios extras_calorimetria
 
Simulado calorimetria 2
Simulado calorimetria 2Simulado calorimetria 2
Simulado calorimetria 2
 
Simulado calorimetria 2
Simulado calorimetria 2Simulado calorimetria 2
Simulado calorimetria 2
 
3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano3° Etapa_1° Avaliação_Tipo I_2° Ano
3° Etapa_1° Avaliação_Tipo I_2° Ano
 
Revparalela2ano
Revparalela2anoRevparalela2ano
Revparalela2ano
 
Lista 13 calorimetria
Lista 13 calorimetriaLista 13 calorimetria
Lista 13 calorimetria
 
3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano3° Etapa_1° Avaliação_Tipo II_2° Ano
3° Etapa_1° Avaliação_Tipo II_2° Ano
 
Calorimetria (2017)
Calorimetria (2017)Calorimetria (2017)
Calorimetria (2017)
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetriawww.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
www.AulasEnsinoMedio.com.br - Física - Exercício calorimetria
 

Último

8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
HELENO FAVACHO
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 

Último (20)

Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
GÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptxGÊNERO CARTAZ - o que é, para que serve.pptx
GÊNERO CARTAZ - o que é, para que serve.pptx
 
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVAEDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
 
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia TecnologiaPROJETO DE EXTENSÃO I - Radiologia Tecnologia
PROJETO DE EXTENSÃO I - Radiologia Tecnologia
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 

Td de calorimetria

  • 1. TRABALHO DIRIGIDO FÍSICA 2 Professor (a) Ano Ensino Turno Data Sergio Wagner 20 Médio Manhã 100% de aprovação Aluno (a) Nº para a vida. 01. (UECE) A temperatura de 0,15 kg, de um líquido cujo calor específico é 0,50 cal/g.0C, elevou-se de – 200C até 400C. A quantidade de calor recebida pelo corpo foi de: a) 4,5.103 cal b) 4,0.103 cal c) 1,5.103 cal d) 1,0.103 cal m = 0,15 kg = 150 g. Q = m.c.∆θ = 150.0,5.[40 – (-20)] = 75.60 = 4500 cal = 4,5.103 cal. 02. (UECE) Geraldo, velho admirador de Sócrates, filosofia: “ Verifico que, fornecendo calor a um corpo, sua temperatura se eleva; logo, o fornecimento de calor a coros sempre implicará em aumento de sua temperatura “. a) a verificação de Geraldo pode ser correta, mas sua generalização é falsa. b) a verificação e a generalização são ambas corretas. c) a verificação e a generalização só serão corretas para corpos de boa condutividade térmica. d) a verificação pode ser correta, mas a generalização só será válida para corpos de alto calor específico. O calor pode ser recebido (∆θ > 0) ou liberado (∆θ < 0). 03. (UECE) Associe a primeira coluna com a segunda: COLUNA1 COLUNA 2 I. irradiação ( ) não depende do meio material II. convecção calorífica ( ) ocorre mais facilmente nos sólidos que nos gases III. condução térmica ( ) implica transporte de matéria A sequência correta, de cima para baixo, é: a) I, II, III b) I, III, II c) II, I, III d) II, III, I Na condução ocorre somente nos sólidos; na convecção, ocorre nos fluídos (líquidos e gases) com transporte de matéria (massas de ar); e na irradiação, é a única que ocorre no vácuo, através de ondas eletromagnéticas, sendo que estas, não precisam de um meio material para se propagar. 04. (UECE) Cedem-se 684 cal a 200 g de ferro que estão a uma temperatura de 100C. Sabendo-se que o calor específico do ferro vale 0,114 cal/0C, concluímos que a temperatura final do ferro será: a) 100C b) 200C c) 300C d) 400C Q = m.c.∆θ ՜ 684 = 200.0,114.∆θ ՜ ∆θ = 684/22,8 = 300C. ∆θ = θ – θ0 ՜ 30 = θ – 10 ՜ θ = 30 + 10 = 400C. 05. (UECE) O gráfico abaixo indica a variação da temperatura de 1,0 g de uma substância em função da quantidade de calor que lhe é fornecido. A substância está primitivamente no estado sólido. O calor de fusão da substância é, em cal/g:
  • 2. a) 5 b) 30 c) 45 d) 60 Q = m.Lf ՜ 30 = 1.Lf ՜ Lf = 30 cal/g. 06. (UECE) Em um calorímetro, mistura-se um corpo A, de massa 200 g, de calor específico 0,2 cal/g.0C e a 600C, com outro corpo B, de massa 100 g, calor específico 0,1 cal/g.0C e a 100C. A temperatura final de equilíbrio térmico, é: a) 500C b) 400C c) 300C d) 200C QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 200.0,2.(T – 60) + 100.0,1.(T – 10) = 0 ՜ 40.(T – 60) + 10.(T – 10) = 0 ՜ 40T – 2400 + 10T – 100 = 0 ՜ T = 2500/50 = 500C. 07. (UECE) Se um material A tem calor específico superior o de um material B, podemos assegurar que: a) A conduz melhor calor que B. b) B conduz melhor calor que A. c) A perde calor mais facilmente que B. d) B perde calor mais facilmente que A. 08. (UECE) A capacidade térmica de uma caneca de alumínio é 16 cal/0C. Sabendo-se que o calor específico do alumínio é 0,2 cal/g.0C, pode-s afirmar que a massa dessa caneca, em gramas, é: a) 3,2 b) 32 c) 80 d) 160 C = m.c ՜ 16 = 0,2.m ՜ m = 16/0,2 = 80 g. 09. (UECE) Um calorímetro, cujo equivalente em água é igual a 35 g, contém 115 g de água à temperatura de 200C. Colocam-se, então, no calorímetro, mais 300 g de água à temperatura de 500C. A temperatura de equilíbrio térmico é: a) 400C b) 500C c) 350C d) 200C QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ (35 + 115).1.(T – 20) + 100.1.(T – 50) = 0 ՜ 150.(T – 20) + 300.(T – 50) = 0 ՜ 150T – 3000 + 300T – 15000 = 0 ՜ T = 18000/450 = 400C. 10. (UECE) O aumento da quantidade de dióxido de carbono (CO2) na atmosfera, motivado pela queima do petróleo e derivados (óleo diesel e gasolina), carvão e lenha, nas usinas termoelétricas, na indústria, nos caminhões e automóveis, torna a atmosfera opaca à radiação térmica que tenta sair para o espaço, devolvendo-o à Terra: é o efeito estufa.
  • 3. Durante a Conferência Rio-92, robusteceu se a consciência de que é preciso encontrar substitutos mais limpos 92, robusteceu-se para esses combustíveis, como por exemplo a energia solar. O esquema abaixo ilustra um sistema de aquecimento de água por energia solar: uma placa metálica P, pintada de preto, serve de apoio a um tubo metálico T, recurvado em forma de serpentina; um depósito de água R é conectado à serpentina por meio de condutos de borracha S. A água passa pela serpentina exposta ao sol e vai para o recipiente R onde é sol armazenada. O aquecimento da água contida no depósito R, pela absorção de energia solar, é devido basicamente aos seguintes fenômenos, pela ordem: a) condução, irradiação, convecção. b) irradiação, convecção, condução. c) convecção, condução, irradiação. d) irradiação, condução, convecção. 11. (UECE) Quando há diferença de temperatura entre dois pontos, o calor pode fluir por condução, convecção ou radiação, do ponto de temperatura mais alta para o de temperatura mais baixa. O “ transporte “ de calor se dá baixa. junto com o transporte de matéria no caso da: a) condução somente. b) radiação somente. c) convecção somente. d) radiação e convecção. 12. (UECE) Mistura-se água fria,`a temperatura de 200C, com água quente a 800C, obtendo-se 1 kg de água a se 400C. A massa de água fria misturada é, em, kg: a) 2/3 b) 1/3 c) 1/2 d) 1/4 mF + mQ = 1 kg mQ = 1– mF. QF + QQ = 0 mF.cF.(40 – 20) + mQ.cQ.(40 – 80) = 0 mF.1.20 + (1– mF).1.(– 40) = 0 20mF – 40 + 40mF = 0 mF = 40/60 = 2/3 kg. 13. (UECE) O gráfico fornece a variação de temperatura de uma substância, inicialmente no estado sólido, em função da quantidade de calor que ela recebe. A massa da substância vale 5 gramas. A razão do calor específico da substância no estado sólido pelo seu calor específico no estado líquido é: a) 1/4 b) 1/3 c) 2/3 d) 3/4
  • 4. I. No sólido: QS = m.cS.∆θL ՜ 50 = 5.cS.40 ՜ cS = 50/200 = 1/4 cal/g.0C. II. No Líquido: QL = m.cL.∆θL ՜ 100 = 5.cL.60 ՜ cL = 100/300 = 1/3 cal/g.0C. III. cS/cL = (1/4)/(1/3) = 3/4. 14. (UECE) O chamado “ efeito estufa “, devido ao excesso de gás carbônico presente na atmosfera, provocado pelos poluentes, faz aumentar a temperatura por que: a) A atmosfera é transparente à energia radiante do sol e opaca às ondas de calor. b) A atmosfera é opaca à energia radiante do sol e transparente para as ondas de calor. c) A atmosfera é transparente tanto para a energia radiante do sol como para as ondas de calor. d) A atmosfera funciona como um meio refletor para a energia radiante e como meio absorvente para a energia térmica. 15. (UECE) O uso de chaminés para escape de gases quentes oriundos de combustão é uma aplicação do processo térmico de: a) irradiação b) condução c) dilatação d) convecção 16. (UECE) A capacidade térmica de uma amostra de água é 5 vezes maior que a de um bloco de ferro. A amostra de água se encontra a 20ºC e a do bloco, a 50ºC. Colocando-os num recipiente termicamente isolado e de capacidade térmica desprezível, a temperatura final de equilíbrio é: a) 250C b) 300C c) 350C d) 400C Sabendo que C = m.c, CA = 5.CB = 5.mB.cB. QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ CA.(T – 20) + CB.(T – 50) = 0 ՜ 5.CB.(T – 20) + CB.(T – 50) = 0 ՜ (dividindo os dois termos por CB) temos: 5.(T – 20) + 1.(T – 50) = 0 ՜ 5T – 100 + T – 50 = 0 ՜ T = 150/6 = 250C. 17. (UECE) O calor se propaga por convecção no(na): a) água b) vácuo c) chumbo d) vidro 18. (UECE) Considere um sistema constituído de dois volumes de água, um de 400 litros à temperatura de 20ºC e o outro de 100 litros à 70ºC. Sabendo-se que o sistema está isolado da vizinhança, a temperatura de equilíbrio é, em graus centígrados, igual a: a) 20 b) 30 c) 45 d) 60 QA + QB = 0 ՜ mA.cA.(T – 60) + mB.cB.(T – 10) = 0 ՜ 400.1.(T – 20) + 100.1.(T – 70) = 0 ՜ 400.(T – 20) + 100.(T – 10) = 0 ՜ 400T – 8000 + 100T – 7000 = 0 ՜ T = 15000/500 = 300C. 19. (UECE) Considerando que os calores específico e latente de vaporização da água são respectivamente c = 4190 J/kg.K e L = 2256 kJ/kg, a energia mínima necessária para vaporizar 0,5 kg de água que se encontra a 30oC, em kJ, é aproximadamente: a) 645 b) 1275 c) 1940 d) 3820
  • 5. Q1 = m.c.∆θ = 0,5.4190.(100 – 30) = 146,65 Kj e Q2 = m.L = 0,5.2256 = 1128 kJ, logo QTOTAL = 146,65 + 1128 = 1274,65 kJ. 20. (UECE) Um corpo de massa 400 g é aquecido através de fonte térmica de potência 500 cal/min. constante. A temperatura do corpo, em função do tempo, aumenta segundo o gráfico abaixo: O calor específico do material de que é feito o corpo é: a) 0,615 cal/g.oC b) 0,715 cal/g.oC c) 0,625 cal/g.oC d) 0,725 cal/g.oC P = Q/∆t ՜ 500 = Q/10 ՜ Q = 5000 cal. Q = m.c.∆θ ՜ 5000 = 400.c.20 ՜ c = 5000/8000 = 0,625 cal/g.oC. 21. Ográfico a seguir indica esquematicamente o diagrama da pressão (p) exercida sobre uma substância em função de sua temperatura (θ ): Quais as correspondentes fases do estado de agregação das partículas dessa substância, indicadas pelas regiões assinaladas na figura? Região I – Sólido; Região II – Líquido; Região III – Vapor; e Região IV – Gás; 22. (UECE) O gráfico representa a variação da temperatura de um corpo sólido em função do tempo, ao ser aquecido por uma fonte que libera energia a uma potência constante de 150 cal/min. Sendo a massa do corpo igual a 100 g, o seu calor específico, em cal/gºC, é:
  • 6. a) 0,55 b) 0,75 c) 0,65 d) 0,85 P = Q/∆t ՜ 150 = Q/10 ՜ Q = 1500 cal. Q = m.c.∆θ ՜ 1500 = 100.c.20 ՜ c = 1500/2000 = 0,75 cal/g.oC. 23. O diagrama de estado de uma substância é esquematizado abaixo: Identifique o que representa cada letra no diagrama: A – estado sólido; B – estado líquido; C – estado gasoso (vapor); D – estado gasoso (gás); K – temperatura crítica ou ponto crítico; e Z – ponto triplo. 24. Um corpo de massa 50 g, inicialmente no estado sólido, recebe calor de acordo com a representação gráfica a seguir, passando para o estado líquido: No gráfico, Q representa a quantidade de calor recebida pelo corpo e T, sua temperatura na escala Celsius. Calcule: a) o calor específico do estado líquido; No estado sólido:
  • 7. Q = m.c.∆θ 400 = 50 · cS · (40 – 0) cS = 0,20 cal/g.°C. b) o calor latente de fusão; Na fusão (patamar): Q=mL 500 – 400 = 50 · LF LF = 2,0 cal/g. c) o calor específico do estado gasoso; No estado líquido: Q = m.c.∆θ 600 – 500 = 50.cL.(80 – 40) cL = 0,05 cal/g °C 25. (Efoa-MG) O gráfico ao lado representa o resultado do monitoramento da temperatura de um metal como MG) função do tempo durante o processo termodinâmico. Analisando o gráfico, é CORRETO afirmar que: a) o metal sofreu apenas a mudança da fase líquida para a sólida. b) o metal sofreu apenas a mudança da fase vapor para a líquida. c) ao final do processo o metal encontra na fase sólida. encontra-se d) ao final do processo o metal encontra na fase líquida. encontra-se e) ao final do processo o metal encontra na fase vapor. encontra-se Durante todo o processo, a temperatura diminui e há dois patamares em que a temperatura se mantém constante durante certo tempo, indicando então mudança de estado. Assim, o metal começa no estado gasoso, resfria-se até mudar para o estado líquido, resfria se novamente e muda para o se resfria-se estado sólido e ainda se resfria mais um pouco. “O único lugar onde o sucesso vem antes do trabalho é no dicionário [ Albert Einstein ] O dicionário”.