Curso Raciocínio Lógico p/ Concurso CNMP

1.297 visualizações

Publicada em

Aula demonstrativa do Curso de Raciocínio Lógico para Concurso CNMP.

Veja o curso completo no site: https://www.estrategiaconcursos.com.br/curso/raciocinio-logico-p-cnmp-todos-os-cargos-com-videoaulas-5782/

Publicada em: Educação
0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.297
No SlideShare
0
A partir de incorporações
0
Número de incorporações
33
Ações
Compartilhamentos
0
Downloads
89
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Curso Raciocínio Lógico p/ Concurso CNMP

  1. 1. Aula 00 Raciocínio Lógico p/ CNMP (todos os cargos) - com videoaulas Professor: Arthur Lima 00000000000 - DEMO
  2. 2. ! ∀∀
  3. 3. AULA 00 (demonstrativa) SUMÁRIO PÁGINA 1. Apresentação 01 2. Edital e cronograma do curso 02 3. Resolução de questões da FCC 04 4. Questões apresentadas na aula 20 5. Gabarito 26 1. APRESENTAÇÃO Seja bem-vindo a este curso de RACIOCÍNIO LÓGICO-MATEMÁTICO, desenvolvido para atender o edital do concurso para o Conselho Nacional do Ministério Público (CNMP), a ser realizado pela Fundação Carlos Chagas (FCC) em 01/03/2015. Essa matéria será cobrada para os cargos de Analista e Técnico Judiciário. Caso você não me conheça, segue uma breve introdução. Sou Engenheiro Aeronáutico pelo Instituto Tecnológico de Aeronáutica (ITA), e trabalhei por 5 anos no mercado de aviação, até ingressar no cargo de Auditor-Fiscal da Receita Federal do Brasil. Neste curso abordaremos todo o conteúdo previsto no edital, vendo tanto a parte teórica como a resolução de questões. Vale mencionar que a FCC tem uma forte tendência em repetir “modelos de questões” entre uma prova e outra, motivo pelo qual resolveremos juntos cerca de 450 exercícios, com destaque para os da própria FCC, em especial aqueles cobrados nos concursos dos últimos anos. Além disso, disponibilizarei vídeo-aulas sobre todos os temas do seu edital. Gostaria de terminar esta introdução dizendo que estarei disponível diariamente para tirar dúvidas através do fórum disponível na área do aluno. Caso você queira tirar alguma dúvida comigo antes de adquirir o curso, escreva para arthurlima@estrategiaconcursos.com.br . 00000000000 00000000000 - DEMO
  4. 4. ! ∀∀
  5. 5. 2. EDITAL E CRONOGRAMA DO CURSO Inicialmente, transcrevo abaixo o conteúdo programático previsto no edital do CNMP, tanto para os cargos de Analista como para os cargos de Técnico: RACIOCÍNIO LÓGICO-MATEMÁTICO: Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; dedução de novas informações das relações fornecidas e avaliação das condições usadas para estabelecer a estrutura daquelas relações. Compreensão e elaboração da lógica das situações por meio de: raciocínio verbal, raciocínio matemático, raciocínio sequencial, orientação espacial e temporal, formação de conceitos, discriminação de elementos. Compreensão do processo lógico que, a partir de um conjunto de hipóteses, conduz, de forma válida, a conclusões determinadas. Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais; problemas. Frações e operações com frações. Números e grandezas proporcionais: razões e proporções; divisão em partes proporcionais; regra de três; porcentagem e problemas. Nosso curso será dividido em 8 aulas, além desta demonstrativa. Segue abaixo o calendário previsto. A data apresentada é a “data limite” de publicação das aulas, mas saiba que normalmente eu disponibilizo com bastante antecedência: Data Número da Aula 13/12 Aula 00 – demonstrativa 20/12 Aula 01 - Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas para estabelecer a estrutura daquelas relações. Compreensão e elaboração da lógica das situações por meio de: raciocínio verbal, raciocínio matemático, raciocínio sequencial, orientação espacial e temporal, formação de conceitos, discriminação de elementos. 27/12 Aula 02 - Continuação da aula anterior 04/01 Aula 03 - Compreensão do processo lógico que, a partir de um conjunto de hipóteses, conduz, de forma válida, a conclusões determinadas. 11/01 Aula 04 - Continuação da aula anterior 18/01 Aula 05 - Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais; problemas. Frações e operações com frações. 25/01 Aula 06 - Números e grandezas proporcionais: razões e proporções; divisão em partes proporcionais; regra de três; porcentagem e problemas. 03/02 Aula 07 - Bateria de questões recentes da FCC 05/02 Aula 08 - Resumo teórico 00000000000 00000000000 - DEMO
  6. 6. ! ∀∀
  7. 7. Como já disse, além de um completo curso escrito (em PDF), você terá acesso a vídeo-aulas sobre todos os tópicos do seu edital, como uma forma de diversificar o seu estudo. Se você sentir a necessidade de mais explicações em qualquer ponto da disciplina, peço que entre em contato pelo fórum disponível na área do aluno! Sem mais, vamos ao curso. 00000000000 00000000000 - DEMO
  8. 8. ! ∀∀
  9. 9. 3. RESOLUÇÃO DE QUESTÕES DA FCC Nesta primeira aula vamos resolver juntos algumas questões recentes da FCC. Selecionei principalmente questões que exigem pouco conhecimento prévio. Neste tipo de exercício o importante é saber interpretar o enunciado, evidenciando as informações fornecidas e, então, estruturar o raciocínio visando chegar à resposta solicitada. Portanto, faz-se necessário resolver diversos exercícios atentamente, para que você vá criando “modelos mentais” que te auxiliem a resolver questões da prova, ainda que sejam um pouco diferentes das vistas aqui. Não esgotaremos este tema nessa aula inaugural. Teremos diversos outros exercícios como estes ao longo deste curso, de modo que você possa praticar bastante. Vamos começar? Sugiro que você leia a questão e tente resolvê-la antes de ver a resolução comentada. 1. FCC – TRT/16ª – 2014) Em um encontro de 60 colegas, 20% são homens, e o restante mulheres. Sabe-se que 37,5% das mulheres presentes no encontro têm mais de 50 anos de idade, e que 25% dos homens presentes no encontro têm mais de 50 anos de idade. Apenas com relação às pessoas com 50 anos de idade ou menos, presentes no encontro, os homens correspondem à (A) 25% das mulheres. (B) 30% das mulheres. (C) 20% das mulheres. (D) 35% das mulheres. (E) 15% das mulheres. RESOLUÇÃO: O enunciado nos disse que os homens são 20% de 60 pessoas. Em matemática podemos substituir o “de” pela multiplicação, ou seja: Homens = 20% x 60 = 12 Como ao todo temos 60 pessoas, e destas 12 são homens, então as mulheres somam: Mulheres = 60 – 12 = 48 00000000000 00000000000 - DEMO
  10. 10. ! ∀∀
  11. 11. Foi dito que 37,5% das mulheres e 25% dos homens tem mais de 50 anos, ou seja: Mulheres com mais de 50 = 37,5% x 48 = 18 Homens com mais de 50 = 25% x 12 = 3 Portanto, temos 12 – 3 = 9 homens e 48 – 18 = 30 mulheres com menos de 50 anos. Os homens representam, em percentual das mulheres: Percentual = 9 / 30 Percentual = 0,30 Percentual = 30% Resposta: B 2. FCC – TRT/16ª – 2014) Uma urna contém 14 bolas vermelhas, 15 pretas, 5 azuis e 11 verdes. Retirando-se ao acaso uma bola por vez dessa urna, o número mínimo de retiradas para se ter certeza que uma bola azul esteja entre as que foram retiradas é (A) 6. (B) 20. (C) 1. (D) 41. (E) 40. RESOLUÇÃO: Este é um tipo “clássico” de questões da FCC. Quando queremos ter certeza de que pelo menos 1 bola azul foi retirada, devemos imaginar o “pior caso”, ou seja, aquel caso de “azar extremo”. Se tivermos muito “azar”, vamos tirar todas as 14 bolas vermelhas, as 15 pretas e as 11 verdes, sem tirar nenhuma azul. Neste caso, já teremos tirado 14 + 15 + 11 = 40 bolas, e mesmo assim não teremos nenhuma azul em mãos. Mesmo neste caso de “extremo azar”, a 41ª bola certamente será azul (afinal só sobraram elas). Portanto, na pior das hipóteses precisaremos tirar 41 bolas para ter uma azul. Reescrevendo: após tirar 41 bolas, certamente pelo menos uma será azul. Resposta: D 00000000000 00000000000 - DEMO
  12. 12. ! ∀∀
  13. 13. 3. FCC – TRT/BA – 2013 ) Em uma concessionária de automóveis, cinco carros de cores diferentes (vermelho, azul, branco, preto e prata) foram expostos em fila, em ordem decrescente de preço. O carro vermelho que foi exposto é mais caro do que o prata, mas é mais barato do que o branco. Além disso, sabe-se que o carro preto ficou imediatamente depois do carro prata na fila. Apenas com essas informações, pode-se concluir que o carro mais barato do grupo (A) pode ser o azul ou o preto. (B) certamente é o branco. (C) pode ser o branco ou o azul. (D) certamente é o preto. (E) pode ser o branco ou o preto. RESOLUÇÃO: Vamos colocar os carros em fila decrescente de preços, deixando à esquerda os mais caros e à direita os mais baratos. O carro vermelho que foi exposto é mais caro do que o prata, mas é mais barato do que o branco. Podemos representar isso assim: ... branco ... vermelho ... prata ... As reticências (...) significam que não temos certeza se existem outros carros naquelas posições, ok? Além disso, sabe-se que o carro preto ficou imediatamente depois do carro prata na fila: ... branco ... vermelho ... prata-preto ... Veja que usei o hífen entre o prata e o preto para simbolizar que não há nenhum carro entre eles, pois um está IMEDIATAMENTE após o outro. 00000000000 00000000000 - DEMO
  14. 14. ! ∀∀
  15. 15. O carro azul pode estar em qualquer das posições onde colocamos as reticências. Se ele estiver à esquerda do prata, o carro preto será o mais barato. Se ele estiver à direita do carro preto, então o azul será o mais barato. Assim sendo, podemos concluir que o carro mais barato do grupo pode ser o preto ou o azul. RESPOSTA: A 4. FCC – TRT/1ª – 2013) Em um planeta fictício X, um ano possui 133 dias de 24 horas cada, dividido em 7 meses de mesma duração. No mesmo período em que um ano terrestre não bissexto é completado, terão sido transcorridos no planeta X, exatamente, (A) 1 ano, 6 meses e 4 dias. (B) 2 anos e 4 dias. (C) 2 anos e 14 dias. (D) 2 anos, 5 meses e 14 dias. (E) 2 anos, 5 meses e 4 dias. RESOLUÇÃO: Observe que 1 ano do planeta X dura 133 dias, de modo que 2 anos duram 266 dias. Para completar 365 dias, faltam ainda 365 – 266 = 99 dias. Veja ainda que os meses do planeta X são compostos por 19 dias cada. Assim, 5 meses contém 95 dias. Sobram ainda 4 dias. Portanto, 365 dias terrestres equivalem a 2 anos, 5 meses e 4 dias do planeta X. Resposta: E 5. FCC – TRT/1ª – 2013) A rede de supermercados “Mais Barato” possui lojas em 10 estados brasileiros, havendo 20 lojas em cada um desses estados. Em cada loja, há 5.000 clientes cadastrados, sendo que um mesmo cliente não pode ser cadastrado em duas lojas diferentes. Os clientes cadastrados recebem um cartão com seu nome, o nome da loja onde se cadastraram e o número “Cliente Mais Barato”, que é uma sequência de quatro algarismos. Apenas com essas informações, é correto concluir que, necessariamente, 00000000000 00000000000 - DEMO
  16. 16. ! ∀∀
  17. 17. (A) existe pelo menos um número “Cliente Mais Barato” que está associado a 100 ou mais clientes cadastrados. (B) os números “Cliente Mais Barato” dos clientes cadastrados em uma mesma loja variam de 0001 a 5000. (C) não há dois clientes cadastrados em um mesmo estado que possuam o mesmo número “Cliente Mais Barato”. (D) existem 200 clientes cadastrados no Brasil que possuem 0001 como número “Cliente Mais Barato”. (E) não existe um número “Cliente Mais Barato” que esteja associado a apenas um cliente cadastrado nessa rede de supermercados. RESOLUÇÃO: Vejamos cada alternativa: (A) existe pelo menos um número “Cliente Mais Barato” que está associado a 100 ou mais clientes cadastrados. Existem 10.000 possibilidades de número para o “Cliente mais Barato”, uma vez que são números com 4 algarismos (de 0000 a 9999). Em cada uma das 200 lojas temos 5.000 clientes cadastrados. Portanto, em cada loja metade (5000) dos números disponíveis estão sendo usados, e a outra metade está disponível. Deste modo, podemos afirmar que pelo menos um número de 4 dígitos é repetido em metade ou mais lojas, isto é, em pelo menos 100 lojas. CORRETO. (B) os números “Cliente Mais Barato” dos clientes cadastrados em uma mesma loja variam de 0001 a 5000. ERRADO. Nada impede que alguma loja use números fora de ordem, escolhendo, por exemplo, números acima de 5000. (C) não há dois clientes cadastrados em um mesmo estado que possuam o mesmo número “Cliente Mais Barato”. ERRADO. É possível que clientes de diferentes lojas, no mesmo estado, possuam o mesmo número. (D) existem 200 clientes cadastrados no Brasil que possuem 0001 como número “Cliente Mais Barato”. 00000000000 00000000000 - DEMO
  18. 18. ! ∀∀
  19. 19. ERRADO. Isto até pode ocorrer, se em cada uma das 200 lojas o número 0001 for utilizado para algum cliente. Mas nada obriga as lojas a usarem este número, dado que elas tem 10.000 possibilidades de números para cadastro. (E) não existe um número “Cliente Mais Barato” que esteja associado a apenas um cliente cadastrado nessa rede de supermercados. ERRADO. Pode ser que um número (ex.: 9999) seja usado em apenas uma loja, para um único cliente, e não seja usado por nenhuma outra loja. Resposta: A 6. FCC – TRT/1ª – 2013) Seis pessoas, dentre as quais está Elias, estão aguardando em uma fila para serem atendidas pelo caixa de uma loja. Nesta fila, Carlos está à frente de Daniel, que se encontra imediatamente atrás de Bruno. Felipe não é o primeiro da fila, mas está mais próximo do primeiro lugar do que do último. Sabendo que Ari será atendido antes do que Carlos e que Carlos não é o quarto da fila, pode-se concluir que a pessoa que ocupa a quarta posição da fila (A) certamente é Bruno. (B) certamente é Daniel. (C) certamente é Elias. (D) pode ser Bruno ou Daniel. (E) pode ser Bruno ou Elias. RESOLUÇÃO: Imagine que a fila seja representada pelas lacunas abaixo, onde a primeira pessoa estaria à esquerda e a última à direita: __ - __ - __ - __ - __ - __ Sabemos que Daniel se encontra imediatamente atrás de Bruno, ou seja, não há ninguém entre os dois. Sabemos ainda que Carlos está à frente de ambos. Assim, podemos representá-los: ...Carlos ... Bruno – Daniel ... Ari está à frente de Carlos, ou seja: ... Ari ...Carlos ... Bruno – Daniel ... 00000000000 00000000000 - DEMO
  20. 20. ! ∀∀
  21. 21. Felipe não é o primeiro da fila, mas está mais próximo do primeiro lugar do que do último. Assim, ele deve ser o segundo ou o terceiro. Como Carlos não é o quarto, vemos que Felipe e Elias não podem estar, ambos, à sua frente. Assim, como Felipe já está entre os 3 primeiros, sobra para Elias a quarta ou a última posições. Assim, temos 2 possibilidades para a quarta posição: Elias ou Bruno (neste caso, com Elias na última posição). Resposta: E 7. FCC – TRT/12ª – 2013) Observe a sequência: 1 2 4 8 16 , , , , ,... 2013 2012 2010 2006 1998 Mantido o padrão da sequência, a primeira fração maior do que 1 irá superar a unidade em a) 34/495 b) 34/990 c) 37/990 d) 478/512 e) 34/512 RESOLUÇÃO: Note que os números presentes nos numeradores vão sendo multiplicados por 2 ao longo da sequência: 1, 2, 4, 8 e 16. Logo, os próximos numeradores serão 32, 64, 128, 256, 512, 1024, 2048 etc. Já nos denominadores, repare que: - de 2013 para 2012 subtraimos 1; - de 2012 para 2010 subtraimos 2; - de 2010 para 2006 subtraimos 4; - de 2006 para 1998 subtraimos 8; Assim, devemos continuar a sequência de denominadores subtraindo 16, 32, 64, 128, 256, 512, 1024 etc. Entendendo a regra de formação da sequência, podemos escrever os seus próximos termos: 1 2 4 8 16 32 64 128 256 512 1024 , , , , , , , , , , ... 2013 2012 2010 2006 1998 1982 1950 1886 1758 1502 990 00000000000 00000000000 - DEMO
  22. 22. ! ∀∀
  23. 23. Observe que o primeiro número onde o numerador é maior que o denominador (sendo, portanto, maior que 1) é 1024/990. A diferença entre 1024/990 e 1 é: 1024 1024 990 34 1 990 990 990 − − = = Resposta: B 8. FCC – TRT/12ª – 2013) Compareceram a uma festa apenas os casais Silva, Moraes e Gomes. A respeito do instante em que cada pessoa chegou à festa sabe- se que: I. Todos os homens chegaram antes que suas respectivas esposas. II. O Sr. Silva não foi o primeiro a chegar e chegou depois de uma mulher. III. A Sra. Gomes chegou antes que o Sr. Moraes. IV. A Sra. Moraes foi a quinta pessoa a chegar, logo depois de seu marido. Nas condições descritas, as posições em que chegaram o Sr. e a Sra. Silva, respectivamente, foram (A) 4 e 6. (B) 3 e 6. (C) 3 e 4. (D) 2 e 6. (E) 2 e 4. RESOLUÇÃO: Na tabela abaixo temos as 6 posições de chegada que precisamos preencher com as 6 pessoas que formam os casais: 1º 2º 3º 4º 5º 6º Das informações fornecidas, vamos começar pelas mais “fáceis”: IV. A Sra. Moraes foi a quinta pessoa a chegar, logo depois de seu marido. 00000000000 00000000000 - DEMO
  24. 24. ! ∀∀
  25. 25. Essa informação nos permite posicionar a Sra. Moraes na 5ª posição e o Sr. Moraes na 4ª posição, pois ninguém chegou entre eles (ela chegou logo depois dele). Assim, temos: 1º 2º 3º 4º 5º 6º Sr. Moraes Sra. Moraes I. Todos os homens chegaram antes que suas respectivas esposas. II. O Sr. Silva não foi o primeiro a chegar e chegou depois de uma mulher. Observe que a 1ª posição deve ser de um homem, pois todos os homens chegaram antes de suas esposas (logo nenhuma esposa pode ter sido a 1ª pessoa a chegar). Como o Sr. Silva não foi o primeiro a chegar, e nem o Sr. Moraes, só sobra essa posição para o Sr. Gomes: 1º 2º 3º 4º 5º 6º Sr. Gomes Sr. Moraes Sra. Moraes III. A Sra. Gomes chegou antes que o Sr. Moraes. Como a Sra. Gomes chegou antes do Sr. Moraes, ela deve ter sido a 2ª ou 3ª pessoa a chegar. Como o Sr. Silva chegou após uma mulher, podemos concluir que a Sra. Gomes foi a 2ª e o Sr. Silva o 3º: 1º 2º 3º 4º 5º 6º Sr. Gomes Sra. Gomes Sr. Silva Sr. Moraes Sra. Moraes Sra. Silva Note que já preenchi também a última posição com a Sra. Silva, pois foi a única posição restante para ela. Com isso, cumprimos todas as condições do enunciado. As posições em que chegaram o Sr. e a Sra. Silva, respectivamente, foram a 3ª e 6ª. Resposta: B 9. FCC – TRT/12ª – 2013) Na sequência de formação lógica 18; 22; 21; 25; 24; 28; 27; 31; 30; 34; . . ., a soma dos números maiores que 40 e menores que 50 é igual a (A) 273. (B) 269. 00000000000 00000000000 - DEMO
  26. 26. ! ∀∀
  27. 27. (C) 230. (D) 195. (E) 312. RESOLUÇÃO: Observe que a sequência do enunciado pode ser desmembrada em outras duas sequências intercaladas: 18; 22; 21; 25; 24; 28; 27; 31; 30; 34; . . ., Na sequência vermelha, basta ir somando 3 unidades: 18, 21, 24, ... . Na sequência azul, também basta ir somando 3 unidades: 22, 25, 28, ... Prolongando as duas sequências, temos: 18; 22; 21; 25; 24; 28; 27; 31; 30; 34; 33, 37, 36, 40, 39, 43, 42, 46, 45, 49, 48, 52, 51, 55 . . ., Somando os números maiores que 40 e menores que 50 temos: 43 + 42 + 46 + 45 + 49 + 48 = 273 Resposta: A 10. FCC – TRT/12ª – 2013) As irmãs Luciana, Rosana e Joana, de idades diferentes, possuem cada uma delas apenas um cão de estimação. Os nomes dos cães são: Rex, Bobby e Touro. Um dos cães é preto, outro é marrom e o outro é branco. A ordem expressa na questão não representa a ordem das cores nem a ordem das donas. Sabe-se que Rex, um cão marrom, não é de Joana e pertence à irmã com idade do meio. Rosana, que não é a mais nova, tem um cão branco que não é o Touro. Sendo assim, é possível concluir corretamente que (A) Rex é marrom e é de Rosana. (B) Bobby é branco e é de Luciana. (C) Touro não é branco e pertence a Rosana. (D) Touro não é marrom e pertence à irmã mais nova. (E) Rosana é a dona de Bobby que é preto. RESOLUÇÃO: 00000000000 00000000000 - DEMO
  28. 28. ! ∀∀
  29. 29. Temos aqui uma questão onde precisamos associar 3 irmãs a 3 idades, 3 cães de 3 cores. Para isso, podemos começar montando a tabela abaixo, que resume todas as possíveis associações: Irmã Idade Nome do cão Cor do cão Luciana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Rosana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Joana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Agora podemos utilizar as informações dadas no enunciado para “cortar” algumas das possibilidades e marcar outras. Vamos começar pelas informações mais diretas / fáceis de se trabalhar: “Sabe-se que Rex, um cão marrom, não é de Joana e pertence à irmã com idade do meio. Rosana, que não é a mais nova, tem um cão branco que não é o Touro.” Veja que Rex não é de Joana. Podemos cortá-lo das opções de Joana. Note também que Rosana não é a mais nova, e não é dona do Touro. Podemos cortar essas opções de Rosana. Até aqui temos: Irmã Idade Nome do cão Cor do cão Luciana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Rosana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Joana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco O cão de Rosana é branco. Podemos marcar essa cor para ela, e eliminar as demais possibilidades. Também podemos cortar a cor branca das demais irmãs: 00000000000 00000000000 - DEMO
  30. 30. ! ∀∀
  31. 31. Irmã Idade Nome do cão Cor do cão Luciana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Rosana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Joana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco “Sabe-se que Rex, um cão marrom, não é de Joana e pertence à irmã com idade do meio. Rosana, que não é a mais nova, tem um cão branco que não é o Touro.” Veja que Rex só pode ser de Luciana ou Rosana. Mas Rex é marrom, e o cão de Rosana é branco. Logo, Rex só pode ser de Luciana. Como Rex é da irmã do meio, esta também é Luciana. Assim: Irmã Idade Nome do cão Cor do cão Luciana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Rosana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Joana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Repare que sobrou para Rosana apenas a opção de ser a irmã mais velha, e ser dona do Bobby. Com isso, sobra para Joana apenas a opção de ser a irmã mais nova, ser dona do Touro, e ser este cão da cor preta: Irmã Idade Nome do cão Cor do cão Luciana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Rosana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco Joana Nova, do meio ou velha Rex, Bobby ou Touro Preto, marrom ou branco 00000000000 00000000000 - DEMO
  32. 32. ! ∀∀
  33. 33. Com isso, podemos analisar as alternativas: (A) Rex é marrom e é de Rosana. ERRADO (B) Bobby é branco e é de Luciana. ERRADO (C) Touro não é branco e pertence a Rosana. ERRADO (D) Touro não é marrom e pertence à irmã mais nova. CORRETO (E) Rosana é a dona de Bobby que é preto. ERRADO Resposta: D 11. FCC – TRT/12ª – 2013) O século XIX é o período que se estende de 1801 até 1900. Alberto nasceu no século XIX. Em 1872, ao comemorar seu aniversário, Alberto notou que sua idade coincidia com os dois últimos algarismos do ano em que nasceu. Nessas condições, Alberto completou 5 anos de idade em (A) 1853. (B) 1836. (C) 1825. (D) 1841. (E) 1848. RESOLUÇÃO: Seja AB o número formado pelos dois últimos dígitos do ano de nascimento de Alberto. Por exemplo, se Alberto nasceu em 1850, então AB = 50. A idade de Alberto em 1872 é igual ao número formado pelos dois dígitos do ano em que nasceu, ou seja, em 1872 Alberto completa AB anos. Por outro lado, a idade é dada pela subtração entre o ano de 1872 e o ano de nascimento, que pode ser escrito como 1800 + AB. Assim, Idade = 1872 – Ano de nascimento AB = 1872 – (1800 + AB) AB = 1872 – 1800 – AB 2 x AB = 72 AB = 72 / 2 AB = 36 Portanto, Alberto nasceu em 1836, de modo que fez 5 anos em 1841. Resposta: D 00000000000 00000000000 - DEMO
  34. 34. ! ∀∀
  35. 35. 12. FCC – TRT/18ª – 2013) A audiência do Sr. José estava marcada para uma segunda-feira. Como ele deixou de apresentar ao tribunal uma série de documentos, o juiz determinou que ela fosse remarcada para exatos 100 dias após a data original. A nova data da audiência do Sr. José cairá em uma (A) quinta-feira. (B) terça-feira. (C) sexta-feira. (D) quarta-feira. (E) segunda-feira. RESOLUÇÃO: Veja que 100 dividido por 7 leva ao quociente 14 e resto 2. Isto significa que os 100 dias corrrespondem a 14 semanas inteiras e mais 2 dias. Cada uma das 14 semanas começa em uma terça-feira, dia seguinte ao que estava marcado o julgamento, e terminam na próxima segunda-feira. Após essas 14 semanas, chegamos a uma segunda-feira, e precisamos ainda contabilizar os 2 dias que faltam para totalizar 100. Assim, chegamos a uma quarta-feira. Resposta: D 13. FCC – TRT/18ª – 2013) Empilhando de modo conveniente 8 dados idênticos, formamos um cubo de altura 2, como representado na figura. Do mesmo modo, para formar um cubo de altura 4, será necessário empilhar de modo conveniente um total de dados idênticos igual a (A) 64. 00000000000 00000000000 - DEMO
  36. 36. ! ∀∀
  37. 37. (B) 48. (C) 36. (D) 24. (E) 16. RESOLUÇÃO: Observe que este cubo de altura igual a 2 possui: 2 dados no sentido da altura, 2 dados no sentido da largura e 2 dados no sentido da profundidade. Isso totaliza 2 x 2 x 2 = 23 = 8 dados. Para a altura 4, é preciso ter 4 dados em cada sentido, totalizando 4 x 4 x 4 = 43 = 64 dados. Resposta: A 14. FCC – TRT/12ª – 2013) Em relação a uma família em que todos os filhos são de uma mesma união entre pai e mãe, sabe-se que a mãe de Maria é irmã do meu irmão gêmeo. Sendo assim, o avô materno de Maria é meu (A) tio. (B) irmão. (C) primo. (D) filho. (E) pai. RESOLUÇÃO: Se a mãe de Maria é irmã do meu irmão gêmeo, então eu também sou irmão da mãe de Maria. Em outras palavras, eu sou tio de Maria, pelo lado materno. O avô materno de Maria é o pai da mãe de Maria, que por sua vez também é meu pai (afinal sou irmão da mãe de Maria). Resposta: E 15. FCC – TRT/12ª – 2013) A partir de meio-dia um relógio de ponteiros começa a atrasar 2 segundos e 2 décimos de segundo a cada 1 minuto. Sendo assim, no horário correto das 16h desse mesmo dia, o ponteiro dos segundos desse relógio estará apontando para a marcação do mostrador correspondente ao número (A) 12. (B) 43. (C) 34. 00000000000 00000000000 - DEMO
  38. 38. ! ∀∀
  39. 39. (D) 48. (E) 17. RESOLUÇÃO: Do meio dia (12h) às 16h temos um espaço de 4 horas, ou 4 x 60 minutos, isto é, 240 minutos. Se em 1 minuto o relógio atrasa 2,2 segundos, em 240 minutos o atraso do relógio é de 240 x 2,2 = 528 segundos. Isto significa que quando a hora certa for 16h, o relógio estará 528 segundos atrás. Lembrando que 1 minuto contém 60 segundos, podemos dividir 528 por 60, obtendo quociente 8 e resto 48. Assim, o relógio estará 8 minutos e 48 segundos atrás. Para isso, ao invés de marcar 16:00:00, ele estará marcando 15:51:12 (veja que, de fato, somando mais 8 minutos e 48 segundos, chegamos a 16h). Deste modo, o ponteiro dos segundos estará na posição 12. Resposta: A *************************** Pessoal, por hoje, é só!! Nos vemos aula 01. Abraço, Prof. Arthur Lima - arthurlima@estrategiaconcursos.com.br 00000000000 00000000000 - DEMO
  40. 40. ! ∀∀
  41. 41. 4. LISTA DAS QUESTÕES APRESENTADAS NA AULA 1. FCC – TRT/16ª – 2014) Em um encontro de 60 colegas, 20% são homens, e o restante mulheres. Sabe-se que 37,5% das mulheres presentes no encontro têm mais de 50 anos de idade, e que 25% dos homens presentes no encontro têm mais de 50 anos de idade. Apenas com relação às pessoas com 50 anos de idade ou menos, presentes no encontro, os homens correspondem à (A) 25% das mulheres. (B) 30% das mulheres. (C) 20% das mulheres. (D) 35% das mulheres. (E) 15% das mulheres. 2. FCC – TRT/16ª – 2014) Uma urna contém 14 bolas vermelhas, 15 pretas, 5 azuis e 11 verdes. Retirando-se ao acaso uma bola por vez dessa urna, o número mínimo de retiradas para se ter certeza que uma bola azul esteja entre as que foram retiradas é (A) 6. (B) 20. (C) 1. (D) 41. (E) 40. 3. FCC – TRT/BA – 2013 ) Em uma concessionária de automóveis, cinco carros de cores diferentes (vermelho, azul, branco, preto e prata) foram expostos em fila, em ordem decrescente de preço. O carro vermelho que foi exposto é mais caro do que o prata, mas é mais barato do que o branco. Além disso, sabe-se que o carro preto ficou imediatamente depois do carro prata na fila. Apenas com essas informações, pode-se concluir que o carro mais barato do grupo (A) pode ser o azul ou o preto. (B) certamente é o branco. (C) pode ser o branco ou o azul. 00000000000 00000000000 - DEMO
  42. 42. ! ∀∀
  43. 43. (D) certamente é o preto. (E) pode ser o branco ou o preto. 4. FCC – TRT/1ª – 2013) Em um planeta fictício X, um ano possui 133 dias de 24 horas cada, dividido em 7 meses de mesma duração. No mesmo período em que um ano terrestre não bissexto é completado, terão sido transcorridos no planeta X, exatamente, (A) 1 ano, 6 meses e 4 dias. (B) 2 anos e 4 dias. (C) 2 anos e 14 dias. (D) 2 anos, 5 meses e 14 dias. (E) 2 anos, 5 meses e 4 dias. 5. FCC – TRT/1ª – 2013) A rede de supermercados “Mais Barato” possui lojas em 10 estados brasileiros, havendo 20 lojas em cada um desses estados. Em cada loja, há 5.000 clientes cadastrados, sendo que um mesmo cliente não pode ser cadastrado em duas lojas diferentes. Os clientes cadastrados recebem um cartão com seu nome, o nome da loja onde se cadastraram e o número “Cliente Mais Barato”, que é uma sequência de quatro algarismos. Apenas com essas informações, é correto concluir que, necessariamente, (A) existe pelo menos um número “Cliente Mais Barato” que está associado a 100 ou mais clientes cadastrados. (B) os números “Cliente Mais Barato” dos clientes cadastrados em uma mesma loja variam de 0001 a 5000. (C) não há dois clientes cadastrados em um mesmo estado que possuam o mesmo número “Cliente Mais Barato”. (D) existem 200 clientes cadastrados no Brasil que possuem 0001 como número “Cliente Mais Barato”. (E) não existe um número “Cliente Mais Barato” que esteja associado a apenas um cliente cadastrado nessa rede de supermercados. 6. FCC – TRT/1ª – 2013) Seis pessoas, dentre as quais está Elias, estão aguardando em uma fila para serem atendidas pelo caixa de uma loja. Nesta fila, 00000000000 00000000000 - DEMO
  44. 44. ! ∀∀
  45. 45. Carlos está à frente de Daniel, que se encontra imediatamente atrás de Bruno. Felipe não é o primeiro da fila, mas está mais próximo do primeiro lugar do que do último. Sabendo que Ari será atendido antes do que Carlos e que Carlos não é o quarto da fila, pode-se concluir que a pessoa que ocupa a quarta posição da fila (A) certamente é Bruno. (B) certamente é Daniel. (C) certamente é Elias. (D) pode ser Bruno ou Daniel. (E) pode ser Bruno ou Elias. 7. FCC – TRT/12ª – 2013) Observe a sequência: 1 2 4 8 16 , , , , ,... 2013 2012 2010 2006 1998 Mantido o padrão da sequência, a primeira fração maior do que 1 irá superar a unidade em a) 34/495 b) 34/990 c) 37/990 d) 478/512 e) 34/512 8. FCC – TRT/12ª – 2013) Compareceram a uma festa apenas os casais Silva, Moraes e Gomes. A respeito do instante em que cada pessoa chegou à festa sabe- se que: I. Todos os homens chegaram antes que suas respectivas esposas. II. O Sr. Silva não foi o primeiro a chegar e chegou depois de uma mulher. III. A Sra. Gomes chegou antes que o Sr. Moraes. IV. A Sra. Moraes foi a quinta pessoa a chegar, logo depois de seu marido. Nas condições descritas, as posições em que chegaram o Sr. e a Sra. Silva, respectivamente, foram (A) 4 e 6. (B) 3 e 6. (C) 3 e 4. (D) 2 e 6. 00000000000 00000000000 - DEMO
  46. 46. ! ∀∀
  47. 47. (E) 2 e 4. 9. FCC – TRT/12ª – 2013) Na sequência de formação lógica 18; 22; 21; 25; 24; 28; 27; 31; 30; 34; . . ., a soma dos números maiores que 40 e menores que 50 é igual a (A) 273. (B) 269. (C) 230. (D) 195. (E) 312. 10. FCC – TRT/12ª – 2013) As irmãs Luciana, Rosana e Joana, de idades diferentes, possuem cada uma delas apenas um cão de estimação. Os nomes dos cães são: Rex, Bobby e Touro. Um dos cães é preto, outro é marrom e o outro é branco. A ordem expressa na questão não representa a ordem das cores nem a ordem das donas. Sabe-se que Rex, um cão marrom, não é de Joana e pertence à irmã com idade do meio. Rosana, que não é a mais nova, tem um cão branco que não é o Touro. Sendo assim, é possível concluir corretamente que (A) Rex é marrom e é de Rosana. (B) Bobby é branco e é de Luciana. (C) Touro não é branco e pertence a Rosana. (D) Touro não é marrom e pertence à irmã mais nova. (E) Rosana é a dona de Bobby que é preto. 11. FCC – TRT/12ª – 2013) O século XIX é o período que se estende de 1801 até 1900. Alberto nasceu no século XIX. Em 1872, ao comemorar seu aniversário, Alberto notou que sua idade coincidia com os dois últimos algarismos do ano em que nasceu. Nessas condições, Alberto completou 5 anos de idade em (A) 1853. (B) 1836. (C) 1825. (D) 1841. (E) 1848. 00000000000 00000000000 - DEMO
  48. 48. ! ∀∀
  49. 49. 12. FCC – TRT/18ª – 2013) A audiência do Sr. José estava marcada para uma segunda-feira. Como ele deixou de apresentar ao tribunal uma série de documentos, o juiz determinou que ela fosse remarcada para exatos 100 dias após a data original. A nova data da audiência do Sr. José cairá em uma (A) quinta-feira. (B) terça-feira. (C) sexta-feira. (D) quarta-feira. (E) segunda-feira. 13. FCC – TRT/18ª – 2013) Empilhando de modo conveniente 8 dados idênticos, formamos um cubo de altura 2, como representado na figura. Do mesmo modo, para formar um cubo de altura 4, será necessário empilhar de modo conveniente um total de dados idênticos igual a (A) 64. (B) 48. (C) 36. (D) 24. (E) 16. 14. FCC – TRT/12ª – 2013) Em relação a uma família em que todos os filhos são de uma mesma união entre pai e mãe, sabe-se que a mãe de Maria é irmã do meu irmão gêmeo. Sendo assim, o avô materno de Maria é meu 00000000000 00000000000 - DEMO
  50. 50. ! ∀∀
  51. 51. (A) tio. (B) irmão. (C) primo. (D) filho. (E) pai. 15. FCC – TRT/12ª – 2013) A partir de meio-dia um relógio de ponteiros começa a atrasar 2 segundos e 2 décimos de segundo a cada 1 minuto. Sendo assim, no horário correto das 16h desse mesmo dia, o ponteiro dos segundos desse relógio estará apontando para a marcação do mostrador correspondente ao número (A) 12. (B) 43. (C) 34. (D) 48. (E) 17. 00000000000 00000000000 - DEMO
  52. 52. ! ∀∀
  53. 53. 5. GABARITO 01 B 02 D 03 A 04 E 05 A 06 E 07 B 08 B 09 A 10 D 11 D 12 D 13 A 14 E 15 A 00000000000 00000000000 - DEMO

×