O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Apostila pm pa

33.285 visualizações

Publicada em

Apostila de matemática para soldado da Polícia Militar do Pará (PM-PA)

Publicada em: Educação
  • Entre para ver os comentários

Apostila pm pa

  1. 1. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 1 APOSTILA DE MATEMÁTICA – PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca FADESP em 31/Julho/2016. Além deste breve resumo, veja em seguida a resolução das questões da prova da PM/PA 2007, que foi realizada também pela mesma banca (a prova de 2012 foi da UEPA). Números inteiros: operações e propriedades. Números racionais, representação fracionária e decimal: operações e propriedades. Mínimo múltiplo comum. Porcentagem. Números naturais: aqueles de “contagem natural”  {0, 1, 2, 3, ...} Números inteiros: naturais e seus opostos  {... -2, -1, 0, 1, 2, ...} Números racionais: podem ser escritos na forma A B , onde A e B são inteiros. Três tipos: - são racionais: frações, números com casas decimais finitas (ex.: 0,8751), dízimas periódicas (ex.: 0,333... ou simplesmente 0,3); - este conjunto inclui todos os inteiros, que por sua vez inclui todos os naturais. Mínimo múltiplo comum (MMC): o MMC entre dois números é o menor número que é múltiplo de ambos os números. Ex.: o MMC entre 10 e 15 é o número 30. Por outro lado, veja que o número 30 é divisível por 10 e também por 15. - para obter o MMC, basta fatorar os números, usando todos os divisores necessários até tornar os dois números iguais a 1. Ex.: Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: https://www.estrategiaconcursos.com.br/curso/matematica-p-pm-pa-soldado-com-videoaulas/?pr=3215
  2. 2. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 2 10 15 Fatores 5 15 (mantido, pois não é divisível por 2) 2 5 (mantido, pois não é divisível por 3) 5 3 1 1 5 (chegamos ao valor 1 para ambos os números, portanto temos o MMC) MMC = 2 x 3 x 5 = 30 Porcentagem: quantia de interesse Porcentagem = 100% total  OU SEJA, quantia de interesse = porcentagem total número percentual  fração  número decimal 20%  20/100  0,20 Aumentar um valor em x% é igual a multiplicá-lo por (1 + x%). Reduzir um valor em x% é igual a multiplicá-lo por (1 – x%). “De” equivale à multiplicação: portanto, 20% de 300 é igual a 20% x 300. Razão e proporção. Regra de três simples. - Grandezas diretamente proporcionais: crescem e decrescem juntas. Resolva montando uma regra de três e fazendo a “multiplicação cruzada”; - Grandezas inversamente proporcionais: uma aumenta quando a outra diminui. Antes da “multiplicação cruzada”, inverta os valores de uma grandeza. - Passos para resolver uma regra de três composta: 1) identificar, usando setas, as grandezas que são diretamente proporcionais e as que são inversamente proporcionais em relação a grandeza que queremos descobrir (aquela que possui o X). 2) inverter as colunas que forem inversamente proporcionais à grandeza que queremos. 3) igualar a razão onde está a grandeza X com o produto das outras razões.
  3. 3. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 3 Equação do 1º grau. Sistema de equações do 1º grau. Relação entre grandezas: tabelas e gráficos. Média aritmética simples. - Produtos notáveis mais importantes: 2 2 2 ( ) 2a b a a b b      2 2 2 ( ) 2a b a a b b      2 2 ( ) ( )a b a b a b     - Equação de 1º grau: a.x + b = 0 (sua raiz é x = -b/a) - Método da substituição em sistema de equações de 1º grau: com duas equações e duas variáveis, isole uma variável na primeira equação e substitua na segunda. - média aritmética simples: consiste na soma de todos os valores, dividida pela quantidade total de valores. Soma dos valores Média = Quantidade total ou seja, Soma dos valores Média Quantidade total  - propriedades relativas à média de um conjunto de dados: - somando-se ou subtraindo-se um valor constante em todos os valores, a média desse novo conjunto será somada ou subtraída do mesmo valor. - multiplicando-se ou dividindo-se todos os dados por um valor constante, a média desse novo conjunto será multiplicada ou dividida pelo mesmo valor. - o valor da média é calculado utilizando todos os valores da amostra. Portanto, qualquer alteração nesses valores poderá alterar a média. Assim, costumamos dizer que a média é afetada pelos valores extremos da distribuição.
  4. 4. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 4 Sistema métrico: medidas de tempo, comprimento, superfície e capacidade. Noções de geometria: forma, perímetro, área, volume, teorema de Pitágoras. Veja as principais unidades do sistema métrico em amarelo nas tabelas abaixo, seus múltiplos e submúltiplos, e como efetuar as conversões: Unidades de comprimento (distância) Milímetro (mm) Centímetro (cm) Decímetro (dm) Metro (m) Decâmetro (dam) Hectômetro (hm) Quilômetro (km) 1000mm 100cm 10dm 1m 0,1dam 0,01hm 0,001km Multiplicar por 10   Dividir por 10 Unidades de superfície (área) Milímetro quadrado (mm2 ) Centímetro quadrado (cm2 ) Decímetro quadrado (dm2 ) Metro quadrado (m2 ) Decâmetro quadrado (dam2 ) Hectômetro quadrado (hm2 ) Quilômetro quadrado (km2 ) 1.000.000mm2 10.000cm2 100dm2 1m2 0,01dam2 0,0001hm2 0,000001km2 Multiplicar por 100   Dividir por 100 Unidades de capacidade (volume) Milímetro cúbico (mm3 ) Centímetro cúbico (cm3 ) Decímetro cúbico (dm3 ) Metro cúbico (m3 ) Decâmetro cúbico (dam3 ) Hectômetro cúbico (hm3 ) Quilômetro cúbico (km3 ) 1000000000mm3 1000000cm3 1000dm3 1m3 0,001dam3 0,000001hm3 0,000000001km3 Multiplicar por 1000   Dividir por 1000 ** lembre que 1 litro = 1dm3 , e que 1000 litros = 1m3 - Perímetro: soma dos comprimentos dos lados de uma figura plana; - Áreas das principais figuras planas: Figura Área Figura Área Retângulo A = b x h Área = base x altura Quadrado 2 A L Área = lado ao quadrado
  5. 5. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 5 Trapézio   2 b B h A    Área = (base menor + base maior) x altura / 2 Losango 2 D d A   Área = (diagonal menor x diagonal maior) / 2 Paralelogramo b b h A = b x h Área = base x altura Triângulo*** 2 b h A   Área = (base x altura) / 2 Círculo 2 A r  Área = pi x raio ao quadrado *** Teorema de Pitágoras (triângulos retângulos): hipotenusa2 = (cateto1)2 + (cateto2)2 - Volumes das principais figuras espaciais: Figura Área Figura Área Paralelepípedo H L C V = Ab x h Volume = área da base x altura V = C x L x H Volume = comprimento x largura x altura Cubo A A A  3 V A Volume = aresta ao cubo Cilindro R H V = Ab x h Volume = área da base x altura  2 V R H Volume = pi x raio ao quadrado x altura Cone R H G 3 Ab H V   Volume = área da base x altura / 3 Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: https://www.estrategiaconcursos.com.br/curso/matematica-p-pm-pa-soldado-com-videoaulas/?pr=3215
  6. 6. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 6 Pirâmide 3 Ab H V   Volume = área da base x altura / 3 Prisma H L V = Ab x h Volume = área da base x altura Esfera V = 4 R3/3 Volume = 4 x pi x raio ao cubo / 3 E aí, vamos resolver juntos as questões da prova da POLÍCIA MILITAR DO PARÁ de 2007? Esta foi a última prova aplicada pela FADESP, que é a mesma banca do concurso de 2016! 1. FADESP – Soldado PM/PA – 2007) Dos 100 soldados que participavam de um curso de formação de cabos, 40 gostavam de praticar voleibol, 68 gostavam de praticar futebol e 14 não gostavam de praticar esses esportes. A quantidade de soldados que gostavam de praticar tanto voleibol quanto futebol é igual a (A) 18. (B) 22. (C) 30.
  7. 7. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 7 (D) 46. RESOLUÇÃO: Sendo V e F os conjuntos de soldados que gostavam de voleibol e futebol, respectivamente, podemos dizer que: n(V) = 40 n(F) = 68 Como, das 100 pessoas, 14 não gostavam de nenhum desses esportes, então 100 – 14 = 86 gostavam de pelo menos um dos esportes. Ou seja, n(V ou F) = 86 Usando a fórmula para dois conjuntos, temos: n(V ou F) = n(V) + n(F) – n(V e F) 86 = 40 + 68 – n(V e F) n(V e F) = 108 – 86 n(V e F) = 22 Isto é, 22 pessoas gostavam de ambos os esportes. Resposta: B 2. FADESP – Soldado PM/PA – 2007) Se numa festa a quantidade de moças está para a quantidade de rapazes na razão de 13 para 12, então a porcentagem de moças presentes é (A) 46%. (B) 48%. (C) 50%. (D) 52% RESOLUÇÃO: Para cada 13 moças, temos 12 rapazes. Portanto, em um grupo de 13+12 = 25 pessoas na festa, teremos 13 moças e 12 rapazes. Portanto, o percentual de mulheres na festa é: Percentual = mulheres / total Percentual = 13 / 25
  8. 8. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 8 Multiplicando numerador e denominador por 4, ficamos com: Percentual = 52 / 100 Percentual = 52% Resposta: D 3. FADESP – Soldado PM/PA – 2007) A prova de um concurso continha 60 questões, e os pontos eram calculados pela fórmula P = 3C – 2E + 120, onde C era a quantidade de questões certas e E a de questões erradas. Um candidato que obteve 225 pontos acertou: (A) 45 questões. (B) 30 questões. (C) 20 questões. (D) 15 questões. RESOLUÇÃO: O total de questões é igual a 60. Portanto, se acertamos “C” questões, o número de questões erradas é de 60 – C. Ou seja, E = 60 – C. Sabendo que o candidato fez 225 pontos, podemos escrever que: P = 3C – 2E + 120 225 = 3C – 2(60 – C) + 120 225 = 3C – 120 + 2C + 120 225 = 5C C = 225 / 5 C = 450 / 10 C = 45 Ou seja, o candidato acertou 45 questões. Resposta: A 4. FADESP – Soldado PM/PA – 2007) Sabendo-se que uma pessoa consome aproximadamente 800 metros cúbicos de água por ano e que o planeta dispõe de, no máximo, 9000 quilômetros cúbicos de água para o consumo por ano, pode-se afirmar que a capacidade máxima de habitantes que o planeta suporta, considerando-se apenas a disponibilidade de água para consumo, é aproximadamente:
  9. 9. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 9 (A) 11.100.000.000. (B) 11.150.000.000. (C) 11.250.000.000. (D) 11.350.000.000. RESOLUÇÃO: Cada pessoa consome 800 metros cúbicos. O planeta possui 9.000 quilômetros cúbicos de água. Para transformar quilômetros cúbicos em metros cúbicos, devemos multiplicar por 1.000 três vezes consecutivas (para ir de km3 para hm3, depois para dam3, e então para m3). Ou seja, 9.000 km3 = 9.000 x 1.000 x 1.000 x 1.000 m3 9.000 km3 = 9.000.000.000.000 m3 Portanto, se 1 habitante consome 800m3, vejamos quantos habitantes precisamos para consumir 9.000.000.000.000m3: 1 pessoa ---------------- 800 m3 N pessoas ---------------- 9.000.000.000.000 m3 1 x 9.000.000.000.000 = N x 800 90.000.000.000 = N x 8 45.000.000.000 = N x 4 22.500.000.000 = N x 2 N = 11.250.000.000 pessoas Resposta: C 5. FADESP – Soldado PM/PA – 2007) Para encher um recipiente com capacidade de 15 litros, a quantidade mínima de vezes que terei de utilizar uma garrafa de refrigerante com capacidade para 600 ml é (A) 20. (B) 25. (C) 30. (D) 35. RESOLUÇÃO: Sendo N o número de vezes que vamos usar a garrafa de 600ml (ou melhor, de 0,6 litro), podemos dizer que:
  10. 10. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 10 N x 0,6 litro = 15 litros N = 15 / 0,6 N = 150 / 6 N = 50 / 2 N = 25 vezes Resposta: B 6. FADESP – Soldado PM/PA – 2007) O trabalho realizado por três máquinas durante 6 horas por dia, em 2 dias, custa R$ 1.800,00. Se uma máquina apresentar defeito e parar de funcionar, o custo da operação por 4 dias, com um funcionamento de 5 horas por dia, é igual a (A) R$ 1.850,00. (B) R$ 1.900,00. (C) R$ 1.950,00. (D) R$ 2.000,00. RESOLUÇÃO: Podemos esquematizar as informações do enunciado assim: Máquinas Horas por dia Dias Custo 3 6 2 1.800 2 5 4 C Veja que o número de máquinas caiu de 3 para 2, afinal uma parou de funcionar. Queremos descobrir o custo C na segunda situação. Precisamos agora avaliar quais grandezas são diretamente proporcionais e quais são inversamente proporcionais em relação ao Custo, que é o que queremos descobrir. Intuitivamente, observe que quanto MAIOR o número de máquinas, MAIOR o custo. Da mesma forma, quanto MAIS horas por dia, MAIOR é o custo. E quanto MAIS dias de trabalho, MAIOR é o custo. Todas as grandezas são diretamente proporcionais ao custo. Podemos montar nossa proporção, deixando a coluna da nossa variável (custo) de um lado e as demais colunas do outro lado da igualdade: 1800 3 6 2 2 5 4C   
  11. 11. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 11 1800 3 6 1 2 5 2C    1800 3 3 1 1 5 2C    1800 9 10C  1800 x 10 = 9C 200 x 10 = C 2000 = C O custo é de 2.000 reais. Resposta: D Para responder às DUAS próximas questões, leia atentamente o texto abaixo. Considere pi aproximadamente igual a 3. Para realizar o Teste de Aptidão Física (TAF), as Forças Armadas utilizam uma pista cujas laterais são semelhantes a um retângulo com a largura igual à metade do comprimento, tendo, nas extremidades do comprimento, dois semicírculos. 7. FADESP – Soldado PM/PA – 2007) Se o comprimento da pista é igual a 420 m, então o raio dos semicírculos é igual a (A) 30 m. (B) 35 m. (C) 40 m. (D) 45 m. RESOLUÇÃO: A pista tem a forma de um retângulo onde a largura é a metade do comprimento, ou seja, o comprimento C é o dobro da largura L, ou melhor, C = 2L: As laterais são semicírculos:
  12. 12. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 12 Note que o comprimento total da pista é igual à soma dos dois segmentos de medida 2L, e mais os 2 semicírculos, que juntos formam um círculo. Este círculo tem diâmetro com medida L, de modo que o seu raio mede L/2. O comprimento deste círculo é: Comprimento do círculo = 2 x pi x raio Comprimento = 2 x 3 x L/2 Comprimento = 3L Assim, sabendo que o comprimento total da pista é de 420 metros, podemos escrever que: Comprimento total da pista = círculo + segmentos retos 420 = 3L + 2L + 2L 420 = 7L L = 420 / 7 L = 60 metros O raio de cada semicírculo é de L/2 = 60/2 = 30 metros. Resposta: A 8. FADESP – Soldado PM/PA – 2007) A área, em metros quadrados, ocupada pela pista é igual a (A) 6900. (B) 7900. (C) 8900. (D) 9900. RESOLUÇÃO:
  13. 13. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 13 A área total da pista é a soma da área de um círculo de raio 30 metros com a área de um retângulo de largura L = 60 metros e comprimento 2L = 120 metros. Ou seja, Área total = área do círculo + área do retângulo Área total = pi x raio2 + largura x comprimento Área total = 3 x 302 + 60 x 120 Área total = 3 x 900 + 6 x 1200 Área total = 2700 + 7200 Área total = 9900 m2 Resposta: D 9. FADESP – Soldado PM/PA – 2007) Nos Jogos da Polícia Militar, a delegação de um batalhão obteve 37 medalhas. Sendo o número de medalhas de prata 20% superior ao das de ouro, e o número de medalhas de bronze 25% superior ao das de prata, o número de medalhas de prata obtido por essa delegação foi de (A) 17. (B) 15. (C) 12. (D) 10. RESOLUÇÃO: Seja N o número de medalhas de ouro. As medalhas de prata são 20% a mais, ou seja, Prata = Ouro x (1+20%) Prata = N x (1 + 0,20) Prata = N x (1,20) Prata = 1,2N As medalhas de bronze são 25% a mais que as de prata: Bronze = Prata x (1 + 25%) Bronze = Prata x (1 + 0,25) Bronze = Prata x (1,25) Bronze = 1,2N x (1,25) Bronze = 1,2x1,25xN Bronze = 1,5N
  14. 14. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 14 O total de medalhas é 37, ou seja, 37 = ouro + prata + bronze 37 = N + 1,2N + 1,5N 37 = 3,7N N = 37 / 3,7 N = 10 medalhas de ouro O número de medalhas de prata é 1,2N = 1,2x10 = 12. Resposta: C 10. FADESP – Soldado PM/PA – 2007) Ao se aumentar em 2 m um dos lados de uma sala de forma quadrangular, e o outro lado em 3 m, a sala tornou-se retangular, com 56 m2 de área. Então, a medida, em metros, do lado do quadrado era igual a (A) 5. (B) 6. (C) 7. (D) 8. RESOLUÇÃO: Suponha que o lado do quadrado original media L. Ao aumentar um lado em 2m e o outro em 3m, ficamos com um retângulo com largura L+2 e comprimento L+3. Sabendo que a área deste retângulo é de 56m2, podemos dizer que: Área do retângulo = largura x comprimento 56 = (L+2) x (L+3) Nesta expressão acima podemos testar as opções de resposta. Testando L = 5 (alternativa A), temos o seguinte: (L+2) x (L+3) = (5+2) x (5+3) = 7 x 8 = 56 Portanto, veja que chegamos em 56m2, o que demonstra que o lado do quadrado original era mesmo L = 5 metros.
  15. 15. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 15 Resposta: A 11. FADESP – Soldado PM/PA – 2007) Dois amigos dividiram uma conta de R$135,00. O mais velho apresentou certa quantia e o mais novo completou com dois terços da quantia apresentada pelo mais velho. O valor que o mais novo apresentou foi igual a (A) R$ 84,00. (B) R$ 74,00. (C) R$ 64,00. (D) R$ 54,00. RESOLUÇÃO: Seja V a quantia paga pelo mais velho. O mais novo pagou 2/3 disto, ou seja, 2V/3. O total pago foi de 135 reais, ou seja, V + 2V/3 = 135 3V/3 + 2V/3 = 135 5V/3 = 135 V = 135 x 3/5 V = 27 x 3 V = 81 reais Portanto, o mais novo pagou: 2V/3 = 2x81/3 = 2x27 = 54 reais Resposta: D 12. FADESP – Soldado PM/PA – 2007) Uma pessoa, após receber seu salário, gasta um quinto com transporte e, do que sobra, gasta um terço com alimentação, restando-lhe ainda R$ 480,00. Seu salário é (A) R$ 810,00. (B) R$ 840,00. (C) R$ 870,00. (D) R$ 900,00. RESOLUÇÃO:
  16. 16. MATEMÁTICA P/ POLÍCIA MILITAR DO PARÁ Professor Arthur Lima Prof. Arthur Lima www.estrategiaconcursos.com.br 16 Seja S o salário da pessoa. Subtraindo 1/5 deste salário (transporte), sobram 4/5 do salário, isto é, 4S/5. Deste restante, são gastos 1/3 com alimentação, sobrando 2/3 disto, que corresponde a 480 reais. Ou seja, 2/3 de (4S/5) = 480 2/3 x (4S/5) = 480 4S/5 = 480 x 3/2 4S/5 = 240 x 3 4S/5 = 720 S = 720 x 5/4 S = 180 x 5 S = 900 reais Resposta: D TENHA UMA EXCELENTE PROVA! Saudações, Prof. Arthur Lima Acompanhe vídeos gratuitos no meu canal do Youtube: https://www.youtube.com/channel/UCd1PWMpgSlaV9uSDiEbNktA Curta meu Facebook e acompanhe várias outras dicas: www.facebook.com/ProfArthurLima Conheça meu curso completo de MATEMÁTICA (vídeos e aulas escritas) para a PM/PA 2016 aqui: https://www.estrategiaconcursos.com.br/curso/matematica-p-pm-pa-soldado-com-videoaulas/?pr=3215

×