129
CAPITULO 05 - EIXOS E ARVORES DE TRANSMISSÃO
5.1 - INTRODUÇÃO
Eixo é um elemento mecânico rotativo ou estacionário (condição estática) de secção
usualmente circular onde são montados outros elementos mecânicos de transmissão tais como:
engrenagens, polias, ventiladores, rodas centradas, entre outros. Os eixos são suportados
(apoiados) em mancais, de deslizamento ou rolamento, tendo secção quase sempre mássica e
variável, com rasgos de chavetas para fixação de componentes. A figura 1 mostra uma
iluminação de um eixo.
Figura 1 – Eixo
Os eixos são elementos solicitados a esforços de flexão, tração/compressão ou torção,
que atuam individualmente de forma combinada. Para a segurança do sistema em que o eixo
está inserido, este deve ser dimensionado para cargas estáticas (parado ou com rotação muito
baixa) ou dinâmica (altas rotações). Este dimensionamento leva em conta a resistência do
material de que foi confeccionado, comparam-se as tensões que atuam no mesmo com os
limites de resistência do material, estáticos (Sy ou Su) ou dinâmicos (Se – fadiga).
Em certos sistemas mecânicos, o nível de deflexão do eixo pode constituir em um
parâmetro crítico, devendo o eixo ser dimensionado usando a teoria de deflexão. Em outras
palavras, a geometria do eixo deve ser definida para os limites aceitáveis de deflexão, antes da
análise das tensões/resistências.
5.2 - MATERIAIS PARA EIXOS E ÁRVORES
Há uma grande variedade de materiais possíveis para a fabricação de eixos e árvores.
De acordo com o serviço devem ter alta resistência e baixa sensibilidade aos efeitos da
concentração de tenção.
Para se obter, em um cálculo, diâmetros menores e grandes resistências, pode-se usar
aços-liga, em geral tratados termicamente. Estes aços, porém têm a desvantagem de serem
130
caros e de maior sensibilidade às concentrações de tensões. Além disso, o diâmetro é muitas
vezes subordinado à certas deformações admissíveis, tornando o aço-liga contra indicado, já
que o problema não é mais de resistência.
Os aços-carbono, de baixo e médio teor, são, muito usados na fabricação de eixos e
árvores. Aços muito empregados são os seguintes: SAE 1015, 1020, 1025, 1030, 1040, 1045,
2340, 2345, 3115, 3120, 3135, 3140, 4023, 4063, 4140, 4340, 4615, 4620 e 5140.
Como vemos uma grande variedade de material existe para a confecção de eixos e
árvores. A seleção dependerá sempre das condições de serviço, custo, usinabilidade e
características especiais por ventura exigidas. É um campo muito aberto em que o projetista
deve procurar sempre maiores conhecimentos, pois praticamente qualquer material ferroso,
não-ferroso ou não metálico, pode ser usado, por uma razão qualquer, na execução de um eixo
ou uma árvore.
AISI Nº Tratamento Temperatura
ºC
Tensão de
escoamento
Mpa
Tensão de
ruptura
MPa
Alongamento
%
Redução de
Área
%
Dureza
Brinell
1030 Q&T
Q&T
Q&T
Q&T
Q&T
Normal
Annealed
Q&T
Q&T
205
315
425
540
650
925
870
205
425
848
800
731
669
586
521
430
779
758
648 17
621 19
579 23
517 28
441 32
345 32
317 35
593 19
552 21
47 495
53 401
60 302
65 255
70 207
61 149
64 137
48 262
54 241
1040
1050
Q&T
Normal
Annealed
Q&T
Q&T
Q&T
Normal
Annealed
650
900
790
205
425
650
900
790
634
590
519
1120
1090
717
748
636
434 29
374 28
353 30
807 9
793 13
538 28
427 20
365 24
65 192
55 170
57 149
27 514
36 444
65 235
39 217
40 187
1060 Q&T
Q&T
Q&T
Normal
Annealed
425
540
650
900
790
1080
965
800
776
626
765 14
669 17
524 23
421 18
372 22
41 311
45 277
54 229
37 229
38 179
Tabela 1 – Características dos Materiais para eixos
131
AISI Nº Tratamento Temperatura
ºC
Tensão de
escoamento
Mpa
Tensão de
ruptura
MPa
Alongamento
%
Redução de
Área
%
Dureza
Brinell
1095 Q&T
Q&T
Q&T
Q&T
Normal
Annealed
1141 Q&T
Q&T
4130 Q&T
Q&T
Q&T
Q&T
Q&T
Normal
Annealed
315
425
540
650
900
790
315
540
205
315
425
540
650
870
865
1260
1210
1090
896
1010
658
1460
896
1630
1500
1280
1030
814
670
560
813 10
772 12
676 15
552 21
500 9
380 13
1280 9
765 18
1460 10
1380 11
1190 13
910 17
703 22
436 25
361 28
30 375
32 363
37 321
47 269
13 293
21 192
32 415
57 262
41 467
43 435
49 380
57 315
64 245
59 197
56 156
4140
4140
Q&T
Q&T
Q&T
Q&T
Q&T
Normal
Annealed
205
315
425
540
650
870
815
1770
1550
1250
951
758
1020
655
1640 8
1430 9
1140 13
834 18
655 22
655 18
417 26
38 510
43 445
49 370
58 285
63 230
47 302
57 197
4340 Q&T
Q&T
Q&T
Q&T
315
425
540
650
1720
1470
1170
965
1590 10
1360 10
1080 13
855 19
40 486
44 430
51 360
60 280
Tabela 1 (continuação) – Características dos Materiais para eixos
5.3 - CARREGAMENTO ESTÁTICO
A determinação das dimensões de uma árvore é muito simples quando sujeito somente
a carregamento estático, principalmente se comparado a quando se tem carregamento
dinâmico. E mesmo com carregamento dinâmico, muitas vezes é necessário se ter uma boa
noção das dimensões das peças para se ter um bom começo dos problemas e por isto faz-se
antes uma analise como se o carregamento fosse estático.
132

2
 2
2
xy
' 3
5.3.1 - CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO, TORÇÃO E ESFORÇO AXIAL
As tensões em um ponto na superfície de uma árvore de diâmetro (d) sujeita flexão,
torção e carregamento axial são:
32 M 4 F 16 T
x (1) (2)
d 3
d 2 xy
d 3
Onde a componente axial (F) de σx pode ser positiva ou negativa. Nós observamos que
há três carregamentos. Momento (M), força (F), e torque (T) aparecem na seção contendo o
ponto especifico na superfície.
Usando o circulo de Mohr podemos mostrar que as 2 principais tensões não nulas, são:
1
 x  2
a b x  
 2 
xy 

(3)
Estas tensões podem ser combinadas de forma a obter a máxima tensão de
cisalhamento (τmax) e a tensão de Von Mises (σ’); dando em:
1
   2
a b
 x

2
 (4)max
2   2  
1
2 2 2
a a b b
1
2 2 2
x xy (5)
Substituindo as equações (1) e (2) em (4) e (5) teremos:
 2 
1
2 2 2 (6)max 
 d 3  8 M F D 8 T
'
4
8 M
d 3
F d
2
1
48 T 2 2 (7)
Estas equações nos permitem determinar τmax ou σ’ quando o diâmetro(d) é dado ou
determinar o diâmetro quando tivermos posse das tensões.
Se a analise ou projeto da árvore for baseada na teoria da máxima tensão de
cisalhamento, então τmax é:
all
SSy Sy
n 2 n
(8)
As equações (6) e (8) são úteis para a determinação do fator de segurança(n), se o
diâmetro for conhecido, ou para determinar o diâmetro se o coeficiente de segurança for
conhecido.
133
'
y
y
Uma analise similar pode ser feita levando em conta a teoria da energia de distorção
para falhas, onde a tensão de Von Mises é:
S y
'all
n
(9)
5.3.2 - CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO E TORÇÃO
Em varias aplicações, a componente axial (F) das equações (6) e (7) é próxima de zero
ou tão pequena em relação às outras que pode ser desconsiderada. Daí teremos:
max
16
d 3
16 
(M 2
1
T 2
)2
2 2
1

(10)
3  4 M
d 
3 T 2


(11)
É mais fácil resolver estas equações para se encontrar o diâmetro. Substituindo as
equações (8) e (9) nos temos:
 32 n
d 
 Sy
M 2
T 2
1
1  3
2


(12)
Usando a teoria de máxima tensão de cisalhamento, se o diâmetro for conhecido,
calcula-se n da seguinte forma:
1 32
n d 3
S
1
M 2
T 2
2 (13)
Se usarmos como base a teoria de energia de distorção, teremos:
16 n
d 
 Sy
4 M 2
3
1
1 3
T 2 2


(14)
Onde:
1 16
4 M 2
n d 3
S
1
3 T 2 2 (15)
n = fator de segurança. n = 1,5 a 2,0
Sy = limite de escoamento do material.
M = momento Máximo no eixo.
T = torque máximo.
134
5.4 – EXERCÍCIOS RESOLVIDOS - CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO E
TORÇÃO
1. Qual o diâmetro de um eixo mostrado na figura 2, feito de um aço AISI 1035 laminado
F 700N
3,73kW
Figura 2 – Engrenagem no eixo.
Motor
n
I) Torque:
1750rpm
T
30 103
.H
.n , onde H=> Potência em KW, tem-se:
T
30 103.3,73
.1750
T 20,35N.m
II) Momento:
M
F
.
L 700
.
0,3
2 2 2 2
M 52,5N.m
III) Material:
Pela Tabela =>
IV) Segurança:
Usar n=2.
V) Diâmetro:
Sy 462MPa
135





2
3

 
y
  
1
d
 32n
M 2
T
1
2
 .Sy
d
 32.2


52,52
1
1 3
20,352 2

.462 106 
d 13,54mm
2. Do exercício anterior visto, tem-se:
M 52,5N.m 
T 20,35N.m

S 462MPa
d 13,47mm
n 2 

M 52,5N.m
T 20,35N.m
Sy 462MPa
Su 551,5MPa
Ka 0,78
Kb 0,85
Kc 0,923(Su
Kd 1,0
Ke 1,0
Kf 1,0
Se
1520MPa)
Ka.Kb.Kc.K d.Ke.Kf.Se '
Se (0,78)(0,85)(0,923)(1)(1)(1)(0,504.551,5
Se 170,1MPa
106
)


2
1
1  3
2  2
d
32.2

52,5   20,35 


 
 170,1



106


 551,5
 
106



d 18,50mm
5.5 - DIMENSIONANDO EIXOS PELA NORMA ASME
OBSERVAÇÃO: a norma ASME para Eixo de Transmissão:
- Não considera fadiga
- Não considera concentração de tensão
136
m t
2
Segundo a norma ASME – as máximas tensões são cisalhantes:
d 0,30.S yt d 0,18.Sut (16)
d = máxima tensão cisalhante admissível
S yt
Su
tensão escoamento admissível
tensão de ruptura admissível
As normas prevêem que se as concentrações de tensões estiverem presentes devido a
entalhe em chavetas, a tensão máxima admissível deve ser diminuída de 25%. A máxima
tensão cisalhante em um eixo submetido à flexão-torção é dada por:
2
 
 a

2
(17)max
x
 2
M
.y
I
xy

M
.
d
.d
4
2
32.M
.d 3
T
.y
64
M
.
d 16.T
x
I
logo,
.d
4
2
64
.d 3
1
.
32.M

16.T
 max x
  
4  .d3
 
16
M 2
T 2

.d 3

min
.d 3
x tensão de flexão (psi)
xy
tensão de torção (psi)
M momento de flexão (lbf.in)
T = momento de torção (lbf.in)
d = diâmetro dp eixo (in)
Segundo o critério da ASME, momento M e T devem ser multiplicados por fatores de
correção devido a choques e fadiga.
16.T
. M 2
T 2
d
.d 3
→
16.T
.d
.d 3
C .M 2
C T 2
→ Fórmula da ASME (19)
137
para diâmetro de eixos baseado na teoria da máxima tensão cisalhante. Fatores Cm e Ct dados
na tabela.
5.6 - EIXOS E ÁRVORES SUJEITOS À FADIGA
Qualquer árvore girante que sofre momento de flexão e torção fixas estão sujeitos a uma
inversão, reversão completa da tensão causada pelo giro da árvore, mais a tensão de
cisalhamento permanecerá a mesma.
onde:
32 M a
xa
d 3
(20) xym
16 Tm
d 3
(21)
σxa = Tensão de Amplitude Alternada
τxym = Tensão de Cisalhamento Constante
Estas duas tensões podem ser manipuladas usando dois círculos de Mohr
Se estivermos usando a teoria de máxima tenção de cisalhamento, teremos:
a 2 a (22) m 2 m (23)
Se estivermos usando a teoria da energia de distorção, teremos:
a xa (24) m 3 xym (25)
5.6.1 - CRITÉRIO DE FADIGA – GOODMAN
Para qualquer eixo carregado com um momento de flexão e torção fixos, estará
submetido a uma flexão reversa provocando tensões alternadas e torção estacionária,
provocando tensões médias. Assim tem-se:
32Ma
ax
d3 mxy
16Tm
d3 (26)
Usando estas expressões e a equação da linha de Goodman:
a
Se
m
1
Su
(27)
Pode-se obter, após desenvolvimento analítico que:
138

T


2


32n  M 
2
T  
1
1
2  3

d   a
  m
   (28)
  Se 

 Su  

5.6.2 – CRITÉRIO DE FADIGA - SODERBERG
Utilizando o teorema da máxima tensão cisalhante:
16.T
xy
.d 3
32.M
x
.d 3
Para qualquer plano fazendo um ângulo α com o plano horizontal tem:
16.T
.cos 2.m
.d 3
→ valor médio
16.M
.sen2.a
.d 3
→ (amplitude da componente alternativa)
Por meio da geometria analítica, tem-se que:
.d 3
n (29)
16.
2
 
 
 
2
 M 
 
 Ssy   Sse 
 2
 
1
1
3
2  2
16.n T
d . 
 M 


(30)
  
  
  Ssy 

 Sse   

Para o critério da máxima tensão cisalhante (usada)
 2
 
1
1
3
2  2
32.n T
. 
 M 


d   
   (31)
sendo que: Ssx 0,5.Sx
  Sy 

 Se   

n Fator de segurança.
S y Tensão de escoamento.
Se Limite de resistência à fadiga.
139
Para casos mais gerais usar equação:
140
2

2

 e  S S S 

n  T 
2 2
 M   M   M
1
1
3
 2
32.
d 
. a
  m   a
  am  

(32)
onde:
 S 
 
 
 y 
 
 e 
 
 y   
Ta
Tm
M a
M am
Torque (amplitude)
Torque médio
Momento (amplitude)
Momento médio
5.7 – EXERCÍCIOS RESOLVIDOS - CRITÉRIO DE FADIGA POR SODERBERG
1. Um eixo usinado é fabricado de um aço com Su = 550 MPa. Calcular n.
Dado: T = 6,0 KN
R
175.F
1
500
R
325.F
1
500
a tensão alternada
max min
=a
2
n
Se
a
max
M
a
I
c
M R1.L
100Mpa
175.F
.200
500
420KN.m
.d 4
I
I onde:
64 c
.d3
d
e c
32 2
M
a KF .
I
c
Se
Se´
Ka .Kb .Kc .Kd .Ke .Se ´
0,504.Su
140
b
a
Ka a.Su a = 4,51 e b = -0,265
K 4,51.550 0,265
0,847
 d
Kb 
0,1133

 0,841
 7,62
Kc Kd 1
K
1
e
K f
K
r
0,0857f
d
→ K t 1,72 → D
1,428
d
K f 1 q. Kt 1) 1,58 q 0,80
logo, Ke
logo,
1
1,58
0,633
Se 124,4MPa
n
Se
a
124,4
99,08
1,25
2. A transmissão representada na figura é movida por um motor elétrico, assíncrono, de
indução, trifásico, com potência P= 3,7 kW e rotação n= 1140 rpm. Dimensionar o
diâmetro da árvore 2, sabendo-se que a árvore é maciça e o material utilizado possui Su
= 700 Mpa, Sy = 630 Mpa e o fator de projeto é 1,8, com as engrenagens enchavetadas
no eixo (adotar Kf= 2,8). As engrenagens são cilíndricas (ECDR) e possuem as
seguintes características geométricas:
Z1= 23; Z2=49; Z3=28 e Z4= 47 m= 2,5 mm e ângulo de pressão 20º.
141
F
T
0
0
0 2
0 3
Figura 3 - Exercício resolvido 1.
Calculemos o torque na árvore 1
3000 P Z2
MT 2
. .
n Z1
A potência do motor - P = 3700 W
Portanto
3000
.
3700
.
49
MT 2
1140 23
MT 2
66.030N.mm
Esforços na transmissão:
Força tangencial (FT)
Força tangencial (no primeiro par)
Diâmetro primitivo
2.M 2
T
d 2
d m.Z2
2,5.49 d02
122,5mm
F
2x66030
T
122,5
FT 1.078N
Diâmetro primitivo:
d m.Z3
2,5.28 d 70mm3
F
2x66030
T
70
FT 1.887N
Força radial no primeiro par
FR FT .tg20º
FR 1078.tg 20º FR 392N
142
Força radial no segundo par
FR FT .tg20º
FR 1887.tg20º FR 687N
Momento fletor
Plano vertical
M A 0
600.RBV
687.500 392.100
RBV
638N
Figura 4 – Forças cisalhantes, diagrama de
momento fletor no plano vertical
Fy
RAV
RAV
0
RBV
441N
392 687
M max RAV .500 392.400
M max 63.700N.mm
143
S
S S
'
e e
Plano Horizontal
M A 0
600.RB H
RB H
1078.100
1393N
1887.500
Fy
RA H
RA H
0
RBH
584N
1087 1887
2 2
M max M H MV
M max 637002
1393002
Figura 5 – Forças cisalhantes, diagrama de
momento fletor no plano horizontal
M max 153.174N.mm
Cálculo do diâmetro considerando cargas estáticas
TMTC
32.n
d  .(M 2
1
1
3
T 2
)2

 .Sy 
32.1,8
d  .(1531742
1
1
3
660302
)2
 d 16,95mm

TED
.630 
16.n
d  .(4.M 2
1
1
3
3.T 2
)2
 d 16,99mm
 .Sy 
Cálculo do diâmetro considerando carregamento dinâmico
e 0,504.Su
'
0,504.700
'
352,8Mpa
144
e
2
b
a
1
2
Ka a.Su a = 4,51 e b = -0,265
K 4,51.700 0,265
0,784
 d
Kb 
0,1133


 7,62
0,1133
 
K 
16,93
b
 7,62 
0,91
Kc Kd 1
K
1
e
K f
K f 2,8 Ke 0,357
Se Ka .Kb.Kc.Kd .Ke.S '
Se 0,784x0,91x1x1x0,357x352,8
Cálculo do diâmetro pelo critério de Goodman
1

 2 2
3
d
32.n
.
 Ma

Tm   
      
  Se 

 Su  


32.1,8 155215,3 
2
1
1
3
 66030   2

d  .
 


84,86 

 700
  
  

d 32,15mm
5.8 – CHAVETAS / PINOS
Chavetas e pinos são dispositivos mecânicos usados para fixar no eixo, engrenagens,
polias e outros elementos de tal forma que o torque possa ser transmitido através dele. Os
pinos são usados com duplo propósito, o de transmitir o torque e evitar deslocamento axial do
componente montado no eixo. A figura abaixo ilustra estes dispositivos.
145
Figura 6 – Chavetas e Pinos.
5.9 - UNIÃO DE EIXOS COM CUBOS
O cubo é a parte centra do elemento (polia, engrenagem, etc.) onde é realizado um
rasgo para a fixação da chaveta.
Figura 7 – União de eixos com chavetas cúbicas.
A chaveta é uma peça que vai ocupar o rasgo no eixo e no cubo, simultaneamente,
fazendo a união dos mesmos.
Os principais tipos de chavetas, as mais usadas são definidas por normas (padrões).
Estas chavetas são do tipo:
Chaveta meia-lua (woodruff)
Chaveta plana.
Chaveta inclinada.
A figura 8 mostra estas chavetas e a geometria, bem como a forma de usinagem do
rasgo. Observar que os rasgos das chavetas meia-lua são usinados com fresa circular as
chavetas planas e inclinadas com fresa circular e de topo.
146
Para exemplificar os padrões de chavetas tem-se:
Uniões por adaptação de forma.
Uniões por adaptação de forma com pretensão.
Uniões por atrito.
Chaveta meia-lua.
Chavetas planas e inclinadas.
Figura 8 – Tipos de Chavetas
5.10 - DIMENSIONAMENTO DE CHAVETAS
Como já foi visto anteriormente, as chavetas são tabeladas quanto a sua secção.O
dimensionamento da chaveta consiste em determinar o seu comprimento mínimo (L), como é o
caso das chavetas planas e inclinadas (as mais usadas).
147
Figura 9 – Dimensionamento das chavetas.
As tensões que atuam nas chavetas são determinadas da seguinte forma:
Figura 10 – Tensões atuantes nas chavetas.
Quando a chaveta acopla (une) um eixo e uma polia, a transmissão de potencia do eixo
para a polia, força a chaveta de forma inclinada. Esta força (F) tende a cisalhar (rasgar) a seção
AA’ da chaveta. Logo:
F F
A t.L Modelo Matemático (33)
Comparando com o limite de resistência cisalhante ao escoamento (Ssy) e para um fator
de segurança n, tem-se:
Ssy
n
F
t.L
Ssy
n
(34)
5.11 – EXERCÍCIOS RESOLVIDOS – CHAVETAS
1. Um eixo de aço AISI 1018 (ABNT) trefilado a frio tem Ssy = 185MPa. Uma chaveta
quadrada deve ser usada para acoplar um eixo de d = 40mm e uma engrenagem, que
transmitirão 22,38KW a uma rotação de 1100rpm. Usar fator de segurança n = 3,0.
148
T
F
d => Força na chaveta
2
R
d 40
⇒ R
2 2
20mm
Como: T
30 103
.H
.n
, onde H=> Potência em KW, tem-se
T
30 103
.22,38
⇒ T
.1100
Figura 11 – aplicação de chaveta.
194,2N.m
Logo:
F
194,2
⇒ F 9713N
20 10 3
Para a chaveta, temos:
F
t.L
Ssy
n
L
F
.
t.
n
Ssy
L
9713
.
0,008 185
3
106
L 19,7mm
Observar que, o comprimento mínimo é L = 19,7mm como a geometria do cubo é
maior do que o diâmetro do eixo, e como as chavetas têm o comprimento do cubo,
pode-se dizer que o comprimento da chaveta a ser usada é:
L 40mm
149
5.12 - VIBRAÇÃO DE EIXOS
A figura 12 mostra um rotor consistindo de um grande disco de massa M montado em
um eixo, na metade da distância entre os mancais. A massa do eixo será considerada
desprezível comparada com M. Mesmo com um balanceamento de alto grau de precisão, há
contudo uma pequena excentricidade e do centro de massa g do disco, em relação ao eixo de
rotação. Por causa da excentricidade, a força centrífuga ocasionada pela rotação do eixo faz
com que este sofra uma deflexão r. Visto pela extremidade do eixo como na figura 12, o centro
O do disco parece estar girando em torno do eixo de rotação sobre uma circunferência de raio r.
A força de inércia causada por este movimento forçado é Fo = M(r + e) w2
. Devido à deflexão do
eixo, considerado como uma mola, a resistência à força de inércia é kr, sendo k a constante de
mola do eixo na flexão. O sentido da aceleração do centro de gravidade g é conhecido neste
caso, de modo que se pode mostrar o vetor MA como uma força de inércia Fo (como na figura
12). Pode-se então escrever a equação do equilíbrio estático:
∑ F 0
M ( r e ) w 2
kr 0 (35)
Figura 12 - Rotor com disco
150
n
n
Para se determinar o raio r, pode-se apresentar a equação (35) da seguinte forma:
ew 2
r
k w 2
M (36)
Quando a velocidade ω do eixo for igual a k / M , o denominador da equação (36) se
anulará e r atingirá valores intoleravelmente grandes. A rotação do eixo assim defletido parece
com uma viga em vibração quando visto do lado onde somente pode-se observar a projeção do
movimento. Portanto, pode-se considerar k / M do eixo rotativo como a freqüência circular
natural ωn da viga quando levada a vibrar naturalmente no seu primeiro modo de vibração.
Pode-se escrever a equação (36), na forma adimensional:
r (w/ w )2
e 1 (w/ w )2
(37)
A representação gráfica da equação (37) e indica a condição crítica de rotação, quando
ω for igual a ω n = k / M , devido às amplitudes muito grandes da vibração do eixo. Na
condição crítica, chama-se ω de ωc e a velocidade de rotação do eixo em rotações por minuto
será
60 60
nc
2
wc
2
wn
(38)
onde ω n = k / M normalmente é expresso em rad/s. Assim,
n
60
w
60 k
9,55
k
9,55
kg
29,9
k k
30c
2
n
2 M M P P P (39)
na qual nc è a velocidade crítica em rotação por minuto, k está em Newtons por metro e M. em
quilogramas. Pode-se calcular a constante k da mola através da deflexão estática δest do eixo
devido ao peso do rotor. Assim, k = Mg/δest e quando substituído na equação (39), a velocidade
crítica será expressa pela seguinte equação:
nc 30
1
est
(40)
Segundo os livros-texto de resistência dos materiais, pode-se calcular a deflexão
estática de uma carga P atuando no centro de uma viga uniforme bi-apoiada, como δest = Pl3
/48
EIA. Assim, a velocidade crítica de um eixo com uma massa M situado no meio da viga, pode
ser calculada em termos das dimensões do eixo (l é o comprimento do eixo, entre apoios, IA é o
151
momento de inércia da área da seção reta do eixo, igual a πd4
/64, d é o diâmetro do eixo) e do
módulo de elasticidade E do material do eixo.
Ed4
nc 46
Pl3
(41)
Assim, de acordo com a equação (41), pode-se alterar o material e as dimensões do
eixo, assim como o peso da massa Af, de modo que a velocidade crítica nc seja superior ou
inferior à velocidade de projeto n na qual deseja-se operar. Caso n/nc for menor do que 0,707
ou maior do que 1,414, r será menor do que o dobro da excentricidade e. Por exemplo, se a
excentricidade e for 0,025 mm, r será 0,050 mm quando n/nc = 2 .
É interessante observar que em velocidades muito acima da crítica (ω/ωn>>1,0), o valor
de r/e = -1 e r = - e, indicando que o centro de massa de M estará no eixo de rotação. Neste
caso a massa não estará oscilando, porém o eixo oscilará em torno do centro de massa de M.
Até agora, considerou-se desprezível a massa do eixo. No caso da massa do eixo ser
grande bastante para não ser desprezada, e o eixo ter diâmetro uniforme, deve-se somar à
massa M 50 por cento da massa m do eixo, para se determinar à freqüência circular natural.
w
k
n
(M 0,5m) (42)
Conforme mostra a figura 12, supõe-se que os mancais do eixo sejam rígidos. Em certos
casos, pode-se considerar os mancais como elasticamente apoiados, e neste caso o δest da
equação (40) deve incluir a deflexão estática dos apoios assim como a deflexão do eixo.
Entretanto, aplica-se a equação (40) somente quando a flexibilidade dos apoios for a mesma
para todas as posições angulares do rotor.
5.13 - FREQÜÊNCIA NATURAL E VELOCIDADE CRÍTICA
Pode-se ter uma variedade muito grande de configurações de rotores desde que sejam
usadas diversas massas e diversos apoios, assim como eixos de diâmetros variáveis. Embora
as curvas do fator de amplificação sejam difíceis de serem obtidas matematicamente, as
velocidades críticas dos eixos são determinadas com relativa facilidade através de cálculos de
freqüência natural. No próximo item, serão apresentados diversos casos de determinação da
velocidade crítica a partir da freqüência natural.
152
5.14 - FREQÜÊNCIA NATURAL DE EIXOS COM DIVERSAS MASSAS
Em um eixo rotativo com diversas massas conforme mostra a figura 13a, pode-se
determinar a freqüência circular natural ωn do eixo que, sem girar, vibra livremente, sem
amortecimento, após uma deflexão inicial no primeiro modo de vibração.
Pode-se aplicar o método de Rayleigh neste caso. Considerando que o sistema
vibratório é conservativo, a soma da energia potencial e da cinética é constante em qualquer
fase da vibração. Duas destas fases analisam-se facilmente. Na fase em que todas as massas
estão simultaneamente nos máximos deslocamentos Y, a energia armazenada elasticamente
no eixo é igual è energia potencial ∑ FY/2. Nesta fase a energia cinética é zero porque todos os
pontos do sistema estão momentaneamente com velocidade zero. Assim, a energia potencial é
EP
F1Y1 F2Y2
...
FnYn
2 2 2 (43)
As forcas F são as necessárias para a deflexão do eixo, como se fosse uma mola, ate
ficar com a conformação mostrada nesta fase. O produto forca-deslocamento determina energia
potencial. Entretanto, como a forca e diretamente proporcional ao deslocamento, a forca media
que atua durante o deslocamento Y e F/2.
Durante a vibração, o eixo passa pela fase de repouso (não deformada) na qual a
energia potencial e zero, mas a energia cinética e máxima porque as velocidades das massas
são máximas. Considerando que as massas tem movimento harmônico simples, as velocidades
são V = Yωn e as energias cinéticas são MV2
/2 = M(Yωn)2
/2. Assim, a energia cinética do
sistema é
2 2
EC
wn
M Y 2
M Y 2
M Y 2

wn
PY 2
P Y 2
P Y 2
 1 1 2 2 ... n n   1 1 2 2 ... n n 2 2g
(a) Flexão dinâmica
(44)
153
w 2
d1
d2
d3
n
W1 W2 W3
(b) Flexão estática
Figura 13 – Flexão
Igualando-se os membros da direita das equações (43) e (44), pode-se deter-minar a
freqüência circular natural ωn. Entretanto, as forças F e os deslocamentos Y não são
conhecidos, mas podem ser determinados considerando-se a forma do eixo defletido
estaticamente sob a ação dos pesos conforme indica a figura 13b. Considerando que os
deslocamentos Y da vibração são proporcionais as deflexões δ da deformação estática, então
Y1 Y2
...
Yn
1 2 n (45)
Como as formas para defletirem uma mola são proporcionais as deflexões então
F1 Y1
,
F2 Y2
,
Fn Yn
P1 1 P2 2 Pn n (46)
Igualando as expressões da energia potencial e da cinética dadas pelas equações (43) e
(44) e usando as equações (45) e (46) para a eliminação de F e Y, a equação resultante que da
a freqüência circular natural é
w2
g
P1 1 P2 2 ... Pn n
n
P 2
P 2
... P 2
 1 1 2 2 n n 
2
g
∑P
∑P
(47)
e a velocidade critica pode-se determinar de nc = 60 ωn /2π.
A equação de Rayleigh equação (47) e uma expressão simples e altamente útil para
determinar a freqüência natural fundamental de muitos tipos de rotores. A determinação da
deflexão estática constitui a maior parte do esforço necessário na execução dos cálculos
conforme está ilustrado nos exemplos seguintes. As fórmulas de deflexão de vigas, para
inúmeros casos, estão disponíveis em livros texto de resistência dos materiais e em manuais.
Pode-se aplicar o método da área do diagrama de momento fletor e outros em casos gerais.
Dispõe também de métodos gráficos, conforme ilustrado no item seguinte, para a determinação
das deflexões estáticas de rotores com eixos de diâmetros variáveis.
154
Para inclusão da massa do eixo nos cálculos, deve-se dividi-lo em diversos
comprimentos, cada um tratado como se fosse uma massa adicional.
A equação (47) não e estritamente uma avaliação exata da freqüência natural porque a
curva das deflexões estáticas não e proporcional exatamente a curva deflexões dinâmicas,
como foi considerado. Entretanto, o resultado obtido equação e somente um ou dois por cento
superior a freqüência natural funda verdadeira. Considerando que outros fatores tais como
efeitos giroscópicos durante a oscilação, ajustagens forçadas de discos no eixo, e chavetas
alteram raramente a velocidade critica, a equação (47) produz uma resposta aceitável. A
deflexão dos apoios pode ter uma influencia maior sobre as velocidades críticas e devem ser
acrescidas as deflexões do eixo, na equação (47).
A freqüência natural dada pela equação (47) é a fundamental, ou a mais baixa
freqüência do sistema de massas. É desejável, portanto, se possível projetarem-se as
dimensões de um, eixo de tal modo que a velocidade crítica mais baixa seja superior à
velocidade de projeto. Entretanto, nem sempre isso é possível. Em turbinas de alta rotação, a
velocidade de operação pode estar entre duas velocidades críticas de modo que o eixo não
necessita tornar-se excessivamente pesado. Neste caso, é necessária a passagem pela
velocidade crítica mais baixa, o que pode ser perigoso. Entretanto, se o rotor estiver
cuidadosamente balanceado e a primeira velocidade crítica for baixa, as forças perturbadoras
serão pequenas nas regiões perto da crítica. Também, a amplitude de vibração à velocidade
crítica aumenta a níveis perigosos somente se for permitido um tempo para a amplitude crescer;
portanto, acelerando-se na passagem pela velocidade crítica, pode-se manter as amplitudes em
intensidades aceitáveis. O amortecimento natural do material do eixo, embora pequeno,
também tende a reduzir as amplitudes. Muitas máquinas bem sucedidas foram projetadas para
funcionar entre velocidades críticas.
Quando o eixo se estende para fora dos mancais como na figura 12a, deve-se inverter
os sentidos dos pesos como indica a figura 12b na determinação das deflexões estáticas para
emprego na equação (47). Deve-se notar que se simula dessa maneira a curva da deflexão
dinâmica de meia-onda, para obtenção da freqüência natural mais baixa.
155
(a)
Figura 14 – Freqüência natural da estrutura
(b)
5.15 – EXERCÍCIOS RESOLVIDOS – VIBRAÇÕES EM EIXOS
1. Um rotor de compressor de 25 kg e um rotor de turbina, de 15 kg, são montadas em um
eixo de aço conforme mostra a figura 13a. O eixo deve operar à velocidade prevista de
10.000 rpm. Empregando a equação de Rayleigh (47) determine o diâmetro do eixo
mais leve que possa ser usado para que tenha uma velocidade critica fundamental de
12.000 rpm, com uma margem de segurança de 2.000 rpm.
156
1 2
(a)
(b)
(c)
Figura 15 – Aplicação de vibrações em um eixo
(d)
Conforme a figura 15b mostra, inverte-se a carga P2 a fim de se obter uma curva de
deflexão com o formato do uma meia-onda simples. As figuras 15c e 15d mostram a
forma da viga deformada sob a ação de cada carga atuando independentemente,
conduzindo assim a dois casos cujas fórmulas deflexão estática mostradas a seguir
encontra-se em livros-texto de resistência dos materiais. Pelo método da superposição,
pode-se determinar as deflexões δ1 e δ2:
Pl3
P l2
a1 2
1 1 1
48EIA 16EIA
1 25 0,503
15 0,502
0,25 0,12369
 EIA  48 16  EIA
Pl2
a P a2
(l a) 0,322
2 2 2
16EIA 3EI A EIA
Usando-se a equação (47),
157
A n
A
A

w2
g
P1 1 P2 2

gEI
 25 0,12369 15 0,332 
n 
P 2
P 2  A 25 0,123692
15 0,3322 
 1 1 2 2   
Para g= 9,81m/s² e E= 2,1 x 1010
kg/m²
w2
81,678 1010
In A
I 0,012243 10 10
w 2
Para nc= 12.000 rpm
w
2 nc
1260 rad/sn
60
Portanto, o momento de inércia necessário do eixo é:
I 0,012243 10 10
12602
Como IA= πd4
/64,
d4 64
I 395973, 4762 10-10
d 0,0793 m 79,9 mm
Deve-se usar um diâmetro de 80mm.
2. Os apoios do rotor do exemplo 1, figura 15a, foram considerados como rígidos.
Determine a velocidade crítica do rotor do exemplo 1 se cada um dos apoios sofrer uma
deflexão de 0,14/EIA sob um carregamento estático. Use IA = 1,84 x 10-6
m4
e E = 2,1 x
1010
kg/m2
.
Devido à flexibilidade dos apoios, as cargas Pl e P2 terão uma deflexão adicional.
Conforme indica a figura 16, sob o carregamento, o apoio da esquerda desloca-se para
baixo e o da esquerda para cima. Como se pode ver, não há influência nobre a deflexão
da carga P1, porém o deslocamento de Pl aumenta de 0,28/EIA. Portanto as deflexões
estáticas totais são
0,12369
1
0,332 0,28 0,612
2
EIA
EIA EIA EIA .
Substituindo estes valores na equação (47),
158
n
w2
774602
wn 880,1 rad/s
n
60
w
60
(880) 8404 rpmc
2
n
2
5.16 - EIXOS ESCALONADOS
A equação (47) para velocidade crítica se aplica a eixos de rotores do tipo mostrado na
figura 10a, no qual o diâmetro varia em degraus. Entretanto, como IA é variável em tais casos,
não se derivam com facilidade para as deflexões estáticas. Pode-se usar um dos diversos
métodos gráficos, tal como o seguinte.
0,14
EI
0,14
EIA
0,28
EIA
Figura 16 – Eixos Escalonados
Deve-se recordar da resistência dos materiais que para se determinar à deflexão
estática deve-se resolver a equação diferencial básica:
d2
y M
dx2
EIA (48)
Na qual y é a deflexão, M é o momento fletor como função de x, e IA é O momento de
inércia da seção reta do eixo, como função de x. Integrando-se duas vezes a equação (48)
obtém-se a deflexão da viga. A primeira integração conduz a dy/dx, inclinação da curva elástica
da viga deformada. Além disso, iniciando-se com as cargas da viga, necessitam-se de duas
integrações para a obtenção do diagrama do momento fletor. Assim, necessita-se de quatro
integrações para se obterem as deflexões a partir do carregamento conhecido.
Como o processo de integração é o somatório de áreas sob as curvas, pode-se
empregar um método gráfico para um somatório para vigas complexas que têm funções com
numerosas descontinuidades. O método gráfico exige que as curvas sejam traçadas em escala
159
a fim de que as áreas sob as curvas possam ser avaliadas através da medição de quadrados
ou usando-se um planímetro.
A figura 17a mostra um rotor de aço com uma engrenagem de 89,0 N e um eixo de três
diâmetros diferentes. Divide-se a viga em cinco partes, mostrando-se os pesos de cada parte
no respectivo centro de gravidade. Uma delas inclui o peso da engrenagem. A figura 17a é um
diagrama de carregamento a partir do qual pode-se determinar o diagrama de esforço cortante
mostrado na figura 17b através de métodos convencionais (a primeira integração). Obtém-se o
diagrama de momento fletor da figura 17c através das áreas do diagrama de esforço cortante (a
segunda integração). Por exemplo, a ordenada M1 é obtida a partir da área Al, a ordenada M2,
n
∑A
é a soma das áreas A1+A2 e a ordenada Mn é 1 . Deve-se levar em conta o sinal de cada
área. Devem-se multiplicar as áreas em milímetros quadrados pelo fator de conversão
apropriado obtido das escalas do diagrama de esforço cortante, afim de que as ordenadas do
diagrama de momento fletor sejam em N/mm.
160
Figura 17 – Deflexões em um eixo de carregamento conhecido
Depois de realizadas as integrações, deve-se transformar o diagrama de momento fletor
no diagrama M/EIA conforme exigido pela equação (48). Divide-se cada ordenada do diagrama
de momento fletor pelo valor adequado de EIA (E = 207x x 103
N/mm2
para o aço e IA = πd4
/64)
para obtenção das ordenadas M/EIA da figura 17d. Obtém-se as ordenadas da figura 17 e
representando a inclinação dy/dx da elástica (terceira integração), através das áreas do
diagrama M/EIA. As ordenadas traçadas a partir do eixo x' são todas positivas. Entretanto, sabe-
se do formato esperado da elástica que as inclinações são negativas perto da extremidade da
esquerda da viga, positivas na extremidade da direita e nas proximidades do meio da viga há
uma inclinação nula. Assim, traça-se o eixo x escolhido arbitrariamente de tal modo que as
161
w g
áreas negativas sejam aproximadamente iguais às positivas, na figura 17e. Faz-se a quarta
integração usando-se as áreas da figura 17e para obtenção das ordenadas da deflexão estática
y na figura 17f. Observa-se que as ordenadas da deflexão estática são negativas porque as
áreas da curva dy/dx são negativas na extremidade da esquerda onde se inicia a integração.
Embora estas ordenadas sejam levantadas a partir do eixo x traça-se o eixo x conforme
indicado porque se sabe que são nulas as deflexões da viga nos apoios. Como o eixo x, traçado
arbitrariamente no diagrama da inclinação da elástica figura 15e, havia dividido igualmente as
áreas negativas e positivas, então o eixo x' e o x da figura 15f deveriam coincidir.
Dos dados das curvas a e f, calculam-se os seguintes valores:
∑Py 2,94 N mm
∑Py
∑Py2
0,0385 mm
2
n
∑Py2
0,794 106
wn 865 rad/s
n
60(865)
c
2
8260 rpm
5.17 - VELOCIDADES CRÍTICAS DE ORDEM SUPERIOR
Para rotores que tem eixos de diâmetros variáveis como no item precedente, a
determinação da segunda velocidade critica e as velocidades de ordem superior quanto à
flexão, e relativamente mais complexa do que o cálculo da velocidade crítica fundamental da
equação (47). Os livros-texto de Timoshenko, Den Hartog e Thomson apresentam métodos
para rotores com tais eixos e para um número de rotores com eixos uniformes com e sem
massas concentradas. No casos de vigas uniformes simplesmente apoiadas e vigas uniformes
em balanço para as quais a formula seguinte calcula as diversas freqüências naturais:
wn Cn
EIA g
Pl3
(49)
E o coeficiente que indica a n-ésima freqüência natural, P e o peso total da viga em kg, e
/ e o comprimento da viga em metros. O eixo de transmissão do automóvel e eixo de bobina
são exemplos de vigas uniformes simplesmente apoiadas, e as palhetas de compressores e de
turbinas são exemplos aproximados de vigas uniformes em balanço.
162
3
Consideremos o caso da palheta do rotor mostrada na figura 18. Mostra-se a palheta
como uma viga em balanço a qual sofre um ciclo de perturbação de flexão cada vez que passa
por uma palheta do estator e provoca uma mudança na força aerodinâmica. Se N e o número
de palhetas do estator, então a freqüência da perturbação em ciclos por minuto será o produto
de N pela rotação do rotor em rpm. Quando essa freqüência coincidir com a freqüência natural
fn da palheta devida à flexão, existira uma situação crítica. Para a palheta de aço mostrada na
figura 16, os cálculos seguintes ilustram a determinação das diversas velocidades criticas do
rotor para o caso de um estator de 30 palhetas.
E 207x103
N / mm2
g 9810mm / s2
I 76,2mm
I
bh 25,4x3,183
68,1mm4
A
12 12
p 76,5x10 6
N / mm3
P volume p (25, 4 76, 2 3,18)(76, 5 10 6
) 0, 471 N
w n1 c
EI Ag
1
Pl3
3,52
(207 103
) 68,1 9810
0, 471 76, 23
2870 rad/s
60w n1 60
2870 27, 400 ciclos/minfn1
2 2
Figura 18 – Encaixe palheta e rotor
163
c
n
c
n
∑
n
n
f
A velocidade crítica do rotor ocorre gerando n1 Nnc1 .
n
fn1 27400
913 rpmc1
N 30
A segunda e a terceira velocidades críticas são
c2
c2 c1
1
c3
c3 c1
1
22,4
3,52
61,7
3,52
913 5810 rpm
913 16000 rpm
Em geral as palhetas de rotores devem ser delgadas e leves para maquinas de alta
rotação e freqüentemente ultrapassam a primeira e a segunda velocidades criticas. A seleção
do material e importante. Alguns materiais possuem propriedades de amortecimento melhores
do que outros, e isto pode significar a diferença entre o êxito e o fracasso em ultrapassar as
velocidades criticas. As palhetas geralmente são curvas e sua espessura diminui gradualmente,
sendo maior na base do que na extremidade: isto torna a palheta mais rígida e aumenta um
pouco a velocidade critica. Observação: não deve ser utilizado em vigas não uniformes.
5.18 - EIXOS ESCALONADOS
Quando o eixo tem os diâmetros escalonados como o do rotor de dois discos mostrados
na figura 22, a constante da mola torcional é variável. Pode-se determinar uma constante
equivalente kt em função das constantes individuais kl, k2, k3...Kn. Para molas em série, o
torque instantâneo T em cada seção do eixo é o mesmo. Entretanto, os ângulos de torção
diferentes. O ângulo total de torção Φt é a soma de todos os ângulos individuais de torção.
1 1 2 3
T T T T
... n
...
T
kt k1 k2 k3 kn
1 1 1 1
...
1
kt k1 k2 k3
1 1
kt k
kn
(50)
Para o rotor com dois discos e com eixos de diâmetro variável, pode-se substituir kt,
determinado pela equação (50).
164
Figura 19 - Eixo e mancais
5.19 – EXERCÍCIOS PROPOSTOS - DIMENSIONAMENTO DE EIXOS
1. O eixo da figura suporta uma engrenagem cilíndrica de dentes retos para uma rotação de
315 rpm. O diâmetro primitivo da engrenagem é de 364 mm, t=310mm, t1=120 mm,
t2=190 mm. Dimensione este eixo, calculando o valor de d. A engrenagem é enchavetada
no eixo. A carga total atuando no eixo é de 15 KN.
Figura 21 - Exercício proposto 1.
2. Um eixo é fabricado com aço AISI 1137, laminado a frio, e é usado em um cortador de
grama. A potência é suprida ao eixo por uma correia plana à polia A. Em B, uma corrente
de rolos exerce uma força vertical e em C uma correia trapezoidal também exerce uma
força vertical. Nas condições de operação a correia transmite 35 HP a 425 rpm das quais
25 HP é transmitida ao cortador e 10 HP para o ventilador. As duas seções do eixo são
165
unidas por um acoplamento flexível em D e as polias são todas enchavetadas no eixo.
Decida qual serão os diâmetros dos eixos, utilizando a teoria de falhas de Von Mises e o
critério de Goodman.
Figura 22 - Exercício proposto 2.
166
3. Um eixo S de aço AISI 1137, laminado a frio, transmite potencia que recebe de um eixo
W, que gira a 2000 rpm através de uma engrenagem E de 125 mm de diâmetro à
engrenagem A de 375 mm de diâmetro. A potência é transmitida de uma engrenagem C
para a engrenagem G, que varia de 10 HP a 100 HP, retornando a 10 HP, durante uma
rotação de do eixo S. O projeto leva em conta as tensões variáveis e a teoria da máxima
tensão cisalhante TMT|C e o critério de Goodman. Para um fator de projeto n=1,8,
calcule o diâmetro do eixo, utilizando somente as cargas tangenciais motoras.
Figura 23 - Exercício proposto 3.
167
4. Idêntico ao anterior, exceto que as componentes radiais das engrenagens devem também
ser consideradas, todas as engrenagens com ângulo de pressão 20o
.
5. Idêntico ao exercício 4, exceto que a engrenagem G se posiciona em cima da
engrenagem C.
6. Um pequeno eixo é fabricado com aço SAE1035, laminado a quente, recebe potência de
30 HP a 300 rpm, através de uma engrenagem de 300 mm de diâmetro, sendo esta
potência transmitida a outro eixo através de um acoplamento flexível. A engrenagem é
enchavetada no meio do eixo entre dois mancais, com ângulo de pressão 20o
, fator de
segurança n=1,5.
(a) Desprezando a componente radial R da carga total W, determine o diâmetro do eixo.
(b) Considerando ambas componentes radiais e tangencial, determine o diâmetro do
eixo.
Figura 24 - Exercício proposto 6.

Dimensionamento de eixos

  • 1.
    129 CAPITULO 05 -EIXOS E ARVORES DE TRANSMISSÃO 5.1 - INTRODUÇÃO Eixo é um elemento mecânico rotativo ou estacionário (condição estática) de secção usualmente circular onde são montados outros elementos mecânicos de transmissão tais como: engrenagens, polias, ventiladores, rodas centradas, entre outros. Os eixos são suportados (apoiados) em mancais, de deslizamento ou rolamento, tendo secção quase sempre mássica e variável, com rasgos de chavetas para fixação de componentes. A figura 1 mostra uma iluminação de um eixo. Figura 1 – Eixo Os eixos são elementos solicitados a esforços de flexão, tração/compressão ou torção, que atuam individualmente de forma combinada. Para a segurança do sistema em que o eixo está inserido, este deve ser dimensionado para cargas estáticas (parado ou com rotação muito baixa) ou dinâmica (altas rotações). Este dimensionamento leva em conta a resistência do material de que foi confeccionado, comparam-se as tensões que atuam no mesmo com os limites de resistência do material, estáticos (Sy ou Su) ou dinâmicos (Se – fadiga). Em certos sistemas mecânicos, o nível de deflexão do eixo pode constituir em um parâmetro crítico, devendo o eixo ser dimensionado usando a teoria de deflexão. Em outras palavras, a geometria do eixo deve ser definida para os limites aceitáveis de deflexão, antes da análise das tensões/resistências. 5.2 - MATERIAIS PARA EIXOS E ÁRVORES Há uma grande variedade de materiais possíveis para a fabricação de eixos e árvores. De acordo com o serviço devem ter alta resistência e baixa sensibilidade aos efeitos da concentração de tenção. Para se obter, em um cálculo, diâmetros menores e grandes resistências, pode-se usar aços-liga, em geral tratados termicamente. Estes aços, porém têm a desvantagem de serem
  • 2.
    130 caros e demaior sensibilidade às concentrações de tensões. Além disso, o diâmetro é muitas vezes subordinado à certas deformações admissíveis, tornando o aço-liga contra indicado, já que o problema não é mais de resistência. Os aços-carbono, de baixo e médio teor, são, muito usados na fabricação de eixos e árvores. Aços muito empregados são os seguintes: SAE 1015, 1020, 1025, 1030, 1040, 1045, 2340, 2345, 3115, 3120, 3135, 3140, 4023, 4063, 4140, 4340, 4615, 4620 e 5140. Como vemos uma grande variedade de material existe para a confecção de eixos e árvores. A seleção dependerá sempre das condições de serviço, custo, usinabilidade e características especiais por ventura exigidas. É um campo muito aberto em que o projetista deve procurar sempre maiores conhecimentos, pois praticamente qualquer material ferroso, não-ferroso ou não metálico, pode ser usado, por uma razão qualquer, na execução de um eixo ou uma árvore. AISI Nº Tratamento Temperatura ºC Tensão de escoamento Mpa Tensão de ruptura MPa Alongamento % Redução de Área % Dureza Brinell 1030 Q&T Q&T Q&T Q&T Q&T Normal Annealed Q&T Q&T 205 315 425 540 650 925 870 205 425 848 800 731 669 586 521 430 779 758 648 17 621 19 579 23 517 28 441 32 345 32 317 35 593 19 552 21 47 495 53 401 60 302 65 255 70 207 61 149 64 137 48 262 54 241 1040 1050 Q&T Normal Annealed Q&T Q&T Q&T Normal Annealed 650 900 790 205 425 650 900 790 634 590 519 1120 1090 717 748 636 434 29 374 28 353 30 807 9 793 13 538 28 427 20 365 24 65 192 55 170 57 149 27 514 36 444 65 235 39 217 40 187 1060 Q&T Q&T Q&T Normal Annealed 425 540 650 900 790 1080 965 800 776 626 765 14 669 17 524 23 421 18 372 22 41 311 45 277 54 229 37 229 38 179 Tabela 1 – Características dos Materiais para eixos
  • 3.
    131 AISI Nº TratamentoTemperatura ºC Tensão de escoamento Mpa Tensão de ruptura MPa Alongamento % Redução de Área % Dureza Brinell 1095 Q&T Q&T Q&T Q&T Normal Annealed 1141 Q&T Q&T 4130 Q&T Q&T Q&T Q&T Q&T Normal Annealed 315 425 540 650 900 790 315 540 205 315 425 540 650 870 865 1260 1210 1090 896 1010 658 1460 896 1630 1500 1280 1030 814 670 560 813 10 772 12 676 15 552 21 500 9 380 13 1280 9 765 18 1460 10 1380 11 1190 13 910 17 703 22 436 25 361 28 30 375 32 363 37 321 47 269 13 293 21 192 32 415 57 262 41 467 43 435 49 380 57 315 64 245 59 197 56 156 4140 4140 Q&T Q&T Q&T Q&T Q&T Normal Annealed 205 315 425 540 650 870 815 1770 1550 1250 951 758 1020 655 1640 8 1430 9 1140 13 834 18 655 22 655 18 417 26 38 510 43 445 49 370 58 285 63 230 47 302 57 197 4340 Q&T Q&T Q&T Q&T 315 425 540 650 1720 1470 1170 965 1590 10 1360 10 1080 13 855 19 40 486 44 430 51 360 60 280 Tabela 1 (continuação) – Características dos Materiais para eixos 5.3 - CARREGAMENTO ESTÁTICO A determinação das dimensões de uma árvore é muito simples quando sujeito somente a carregamento estático, principalmente se comparado a quando se tem carregamento dinâmico. E mesmo com carregamento dinâmico, muitas vezes é necessário se ter uma boa noção das dimensões das peças para se ter um bom começo dos problemas e por isto faz-se antes uma analise como se o carregamento fosse estático.
  • 4.
    132  2  2 2 xy ' 3 5.3.1- CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO, TORÇÃO E ESFORÇO AXIAL As tensões em um ponto na superfície de uma árvore de diâmetro (d) sujeita flexão, torção e carregamento axial são: 32 M 4 F 16 T x (1) (2) d 3 d 2 xy d 3 Onde a componente axial (F) de σx pode ser positiva ou negativa. Nós observamos que há três carregamentos. Momento (M), força (F), e torque (T) aparecem na seção contendo o ponto especifico na superfície. Usando o circulo de Mohr podemos mostrar que as 2 principais tensões não nulas, são: 1  x  2 a b x    2  xy   (3) Estas tensões podem ser combinadas de forma a obter a máxima tensão de cisalhamento (τmax) e a tensão de Von Mises (σ’); dando em: 1    2 a b  x  2  (4)max 2   2   1 2 2 2 a a b b 1 2 2 2 x xy (5) Substituindo as equações (1) e (2) em (4) e (5) teremos:  2  1 2 2 2 (6)max   d 3  8 M F D 8 T ' 4 8 M d 3 F d 2 1 48 T 2 2 (7) Estas equações nos permitem determinar τmax ou σ’ quando o diâmetro(d) é dado ou determinar o diâmetro quando tivermos posse das tensões. Se a analise ou projeto da árvore for baseada na teoria da máxima tensão de cisalhamento, então τmax é: all SSy Sy n 2 n (8) As equações (6) e (8) são úteis para a determinação do fator de segurança(n), se o diâmetro for conhecido, ou para determinar o diâmetro se o coeficiente de segurança for conhecido.
  • 5.
    133 ' y y Uma analise similarpode ser feita levando em conta a teoria da energia de distorção para falhas, onde a tensão de Von Mises é: S y 'all n (9) 5.3.2 - CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO E TORÇÃO Em varias aplicações, a componente axial (F) das equações (6) e (7) é próxima de zero ou tão pequena em relação às outras que pode ser desconsiderada. Daí teremos: max 16 d 3 16  (M 2 1 T 2 )2 2 2 1  (10) 3  4 M d  3 T 2   (11) É mais fácil resolver estas equações para se encontrar o diâmetro. Substituindo as equações (8) e (9) nos temos:  32 n d   Sy M 2 T 2 1 1  3 2   (12) Usando a teoria de máxima tensão de cisalhamento, se o diâmetro for conhecido, calcula-se n da seguinte forma: 1 32 n d 3 S 1 M 2 T 2 2 (13) Se usarmos como base a teoria de energia de distorção, teremos: 16 n d   Sy 4 M 2 3 1 1 3 T 2 2   (14) Onde: 1 16 4 M 2 n d 3 S 1 3 T 2 2 (15) n = fator de segurança. n = 1,5 a 2,0 Sy = limite de escoamento do material. M = momento Máximo no eixo. T = torque máximo.
  • 6.
    134 5.4 – EXERCÍCIOSRESOLVIDOS - CARREGAMENTO ESTÁTICO SUJEITO À FLEXÃO E TORÇÃO 1. Qual o diâmetro de um eixo mostrado na figura 2, feito de um aço AISI 1035 laminado F 700N 3,73kW Figura 2 – Engrenagem no eixo. Motor n I) Torque: 1750rpm T 30 103 .H .n , onde H=> Potência em KW, tem-se: T 30 103.3,73 .1750 T 20,35N.m II) Momento: M F . L 700 . 0,3 2 2 2 2 M 52,5N.m III) Material: Pela Tabela => IV) Segurança: Usar n=2. V) Diâmetro: Sy 462MPa
  • 7.
    135      2 3    y   1 d  32n M 2 T 1 2  .Sy d  32.2   52,52 1 1 3 20,352 2  .462 106  d 13,54mm 2. Do exercício anterior visto, tem-se: M 52,5N.m  T 20,35N.m  S 462MPa d 13,47mm n 2   M 52,5N.m T 20,35N.m Sy 462MPa Su 551,5MPa Ka 0,78 Kb 0,85 Kc 0,923(Su Kd 1,0 Ke 1,0 Kf 1,0 Se 1520MPa) Ka.Kb.Kc.K d.Ke.Kf.Se ' Se (0,78)(0,85)(0,923)(1)(1)(1)(0,504.551,5 Se 170,1MPa 106 )   2 1 1  3 2  2 d 32.2  52,5   20,35       170,1    106    551,5   106    d 18,50mm 5.5 - DIMENSIONANDO EIXOS PELA NORMA ASME OBSERVAÇÃO: a norma ASME para Eixo de Transmissão: - Não considera fadiga - Não considera concentração de tensão
  • 8.
    136 m t 2 Segundo anorma ASME – as máximas tensões são cisalhantes: d 0,30.S yt d 0,18.Sut (16) d = máxima tensão cisalhante admissível S yt Su tensão escoamento admissível tensão de ruptura admissível As normas prevêem que se as concentrações de tensões estiverem presentes devido a entalhe em chavetas, a tensão máxima admissível deve ser diminuída de 25%. A máxima tensão cisalhante em um eixo submetido à flexão-torção é dada por: 2    a  2 (17)max x  2 M .y I xy  M . d .d 4 2 32.M .d 3 T .y 64 M . d 16.T x I logo, .d 4 2 64 .d 3 1 . 32.M  16.T  max x    4  .d3   16 M 2 T 2  .d 3  min .d 3 x tensão de flexão (psi) xy tensão de torção (psi) M momento de flexão (lbf.in) T = momento de torção (lbf.in) d = diâmetro dp eixo (in) Segundo o critério da ASME, momento M e T devem ser multiplicados por fatores de correção devido a choques e fadiga. 16.T . M 2 T 2 d .d 3 → 16.T .d .d 3 C .M 2 C T 2 → Fórmula da ASME (19)
  • 9.
    137 para diâmetro deeixos baseado na teoria da máxima tensão cisalhante. Fatores Cm e Ct dados na tabela. 5.6 - EIXOS E ÁRVORES SUJEITOS À FADIGA Qualquer árvore girante que sofre momento de flexão e torção fixas estão sujeitos a uma inversão, reversão completa da tensão causada pelo giro da árvore, mais a tensão de cisalhamento permanecerá a mesma. onde: 32 M a xa d 3 (20) xym 16 Tm d 3 (21) σxa = Tensão de Amplitude Alternada τxym = Tensão de Cisalhamento Constante Estas duas tensões podem ser manipuladas usando dois círculos de Mohr Se estivermos usando a teoria de máxima tenção de cisalhamento, teremos: a 2 a (22) m 2 m (23) Se estivermos usando a teoria da energia de distorção, teremos: a xa (24) m 3 xym (25) 5.6.1 - CRITÉRIO DE FADIGA – GOODMAN Para qualquer eixo carregado com um momento de flexão e torção fixos, estará submetido a uma flexão reversa provocando tensões alternadas e torção estacionária, provocando tensões médias. Assim tem-se: 32Ma ax d3 mxy 16Tm d3 (26) Usando estas expressões e a equação da linha de Goodman: a Se m 1 Su (27) Pode-se obter, após desenvolvimento analítico que:
  • 10.
    138  T   2   32n  M 2 T   1 1 2  3  d   a   m    (28)   Se    Su    5.6.2 – CRITÉRIO DE FADIGA - SODERBERG Utilizando o teorema da máxima tensão cisalhante: 16.T xy .d 3 32.M x .d 3 Para qualquer plano fazendo um ângulo α com o plano horizontal tem: 16.T .cos 2.m .d 3 → valor médio 16.M .sen2.a .d 3 → (amplitude da componente alternativa) Por meio da geometria analítica, tem-se que: .d 3 n (29) 16. 2       2  M     Ssy   Sse   2   1 1 3 2  2 16.n T d .   M    (30)         Ssy    Sse     Para o critério da máxima tensão cisalhante (usada)  2   1 1 3 2  2 32.n T .   M    d       (31) sendo que: Ssx 0,5.Sx   Sy    Se     n Fator de segurança. S y Tensão de escoamento. Se Limite de resistência à fadiga.
  • 11.
    139 Para casos maisgerais usar equação:
  • 12.
    140 2  2   e S S S   n  T  2 2  M   M   M 1 1 3  2 32. d  . a   m   a   am    (32) onde:  S       y     e     y    Ta Tm M a M am Torque (amplitude) Torque médio Momento (amplitude) Momento médio 5.7 – EXERCÍCIOS RESOLVIDOS - CRITÉRIO DE FADIGA POR SODERBERG 1. Um eixo usinado é fabricado de um aço com Su = 550 MPa. Calcular n. Dado: T = 6,0 KN R 175.F 1 500 R 325.F 1 500 a tensão alternada max min =a 2 n Se a max M a I c M R1.L 100Mpa 175.F .200 500 420KN.m .d 4 I I onde: 64 c .d3 d e c 32 2 M a KF . I c Se Se´ Ka .Kb .Kc .Kd .Ke .Se ´ 0,504.Su
  • 13.
    140 b a Ka a.Su a= 4,51 e b = -0,265 K 4,51.550 0,265 0,847  d Kb  0,1133   0,841  7,62 Kc Kd 1 K 1 e K f K r 0,0857f d → K t 1,72 → D 1,428 d K f 1 q. Kt 1) 1,58 q 0,80 logo, Ke logo, 1 1,58 0,633 Se 124,4MPa n Se a 124,4 99,08 1,25 2. A transmissão representada na figura é movida por um motor elétrico, assíncrono, de indução, trifásico, com potência P= 3,7 kW e rotação n= 1140 rpm. Dimensionar o diâmetro da árvore 2, sabendo-se que a árvore é maciça e o material utilizado possui Su = 700 Mpa, Sy = 630 Mpa e o fator de projeto é 1,8, com as engrenagens enchavetadas no eixo (adotar Kf= 2,8). As engrenagens são cilíndricas (ECDR) e possuem as seguintes características geométricas: Z1= 23; Z2=49; Z3=28 e Z4= 47 m= 2,5 mm e ângulo de pressão 20º.
  • 14.
    141 F T 0 0 0 2 0 3 Figura3 - Exercício resolvido 1. Calculemos o torque na árvore 1 3000 P Z2 MT 2 . . n Z1 A potência do motor - P = 3700 W Portanto 3000 . 3700 . 49 MT 2 1140 23 MT 2 66.030N.mm Esforços na transmissão: Força tangencial (FT) Força tangencial (no primeiro par) Diâmetro primitivo 2.M 2 T d 2 d m.Z2 2,5.49 d02 122,5mm F 2x66030 T 122,5 FT 1.078N Diâmetro primitivo: d m.Z3 2,5.28 d 70mm3 F 2x66030 T 70 FT 1.887N Força radial no primeiro par FR FT .tg20º FR 1078.tg 20º FR 392N
  • 15.
    142 Força radial nosegundo par FR FT .tg20º FR 1887.tg20º FR 687N Momento fletor Plano vertical M A 0 600.RBV 687.500 392.100 RBV 638N Figura 4 – Forças cisalhantes, diagrama de momento fletor no plano vertical Fy RAV RAV 0 RBV 441N 392 687 M max RAV .500 392.400 M max 63.700N.mm
  • 16.
    143 S S S ' e e PlanoHorizontal M A 0 600.RB H RB H 1078.100 1393N 1887.500 Fy RA H RA H 0 RBH 584N 1087 1887 2 2 M max M H MV M max 637002 1393002 Figura 5 – Forças cisalhantes, diagrama de momento fletor no plano horizontal M max 153.174N.mm Cálculo do diâmetro considerando cargas estáticas TMTC 32.n d  .(M 2 1 1 3 T 2 )2   .Sy  32.1,8 d  .(1531742 1 1 3 660302 )2  d 16,95mm  TED .630  16.n d  .(4.M 2 1 1 3 3.T 2 )2  d 16,99mm  .Sy  Cálculo do diâmetro considerando carregamento dinâmico e 0,504.Su ' 0,504.700 ' 352,8Mpa
  • 17.
    144 e 2 b a 1 2 Ka a.Su a= 4,51 e b = -0,265 K 4,51.700 0,265 0,784  d Kb  0,1133    7,62 0,1133   K  16,93 b  7,62  0,91 Kc Kd 1 K 1 e K f K f 2,8 Ke 0,357 Se Ka .Kb.Kc.Kd .Ke.S ' Se 0,784x0,91x1x1x0,357x352,8 Cálculo do diâmetro pelo critério de Goodman 1   2 2 3 d 32.n .  Ma  Tm             Se    Su     32.1,8 155215,3  2 1 1 3  66030   2  d  .     84,86    700        d 32,15mm 5.8 – CHAVETAS / PINOS Chavetas e pinos são dispositivos mecânicos usados para fixar no eixo, engrenagens, polias e outros elementos de tal forma que o torque possa ser transmitido através dele. Os pinos são usados com duplo propósito, o de transmitir o torque e evitar deslocamento axial do componente montado no eixo. A figura abaixo ilustra estes dispositivos.
  • 18.
    145 Figura 6 –Chavetas e Pinos. 5.9 - UNIÃO DE EIXOS COM CUBOS O cubo é a parte centra do elemento (polia, engrenagem, etc.) onde é realizado um rasgo para a fixação da chaveta. Figura 7 – União de eixos com chavetas cúbicas. A chaveta é uma peça que vai ocupar o rasgo no eixo e no cubo, simultaneamente, fazendo a união dos mesmos. Os principais tipos de chavetas, as mais usadas são definidas por normas (padrões). Estas chavetas são do tipo: Chaveta meia-lua (woodruff) Chaveta plana. Chaveta inclinada. A figura 8 mostra estas chavetas e a geometria, bem como a forma de usinagem do rasgo. Observar que os rasgos das chavetas meia-lua são usinados com fresa circular as chavetas planas e inclinadas com fresa circular e de topo.
  • 19.
    146 Para exemplificar ospadrões de chavetas tem-se: Uniões por adaptação de forma. Uniões por adaptação de forma com pretensão. Uniões por atrito. Chaveta meia-lua. Chavetas planas e inclinadas. Figura 8 – Tipos de Chavetas 5.10 - DIMENSIONAMENTO DE CHAVETAS Como já foi visto anteriormente, as chavetas são tabeladas quanto a sua secção.O dimensionamento da chaveta consiste em determinar o seu comprimento mínimo (L), como é o caso das chavetas planas e inclinadas (as mais usadas).
  • 20.
    147 Figura 9 –Dimensionamento das chavetas. As tensões que atuam nas chavetas são determinadas da seguinte forma: Figura 10 – Tensões atuantes nas chavetas. Quando a chaveta acopla (une) um eixo e uma polia, a transmissão de potencia do eixo para a polia, força a chaveta de forma inclinada. Esta força (F) tende a cisalhar (rasgar) a seção AA’ da chaveta. Logo: F F A t.L Modelo Matemático (33) Comparando com o limite de resistência cisalhante ao escoamento (Ssy) e para um fator de segurança n, tem-se: Ssy n F t.L Ssy n (34) 5.11 – EXERCÍCIOS RESOLVIDOS – CHAVETAS 1. Um eixo de aço AISI 1018 (ABNT) trefilado a frio tem Ssy = 185MPa. Uma chaveta quadrada deve ser usada para acoplar um eixo de d = 40mm e uma engrenagem, que transmitirão 22,38KW a uma rotação de 1100rpm. Usar fator de segurança n = 3,0.
  • 21.
    148 T F d => Forçana chaveta 2 R d 40 ⇒ R 2 2 20mm Como: T 30 103 .H .n , onde H=> Potência em KW, tem-se T 30 103 .22,38 ⇒ T .1100 Figura 11 – aplicação de chaveta. 194,2N.m Logo: F 194,2 ⇒ F 9713N 20 10 3 Para a chaveta, temos: F t.L Ssy n L F . t. n Ssy L 9713 . 0,008 185 3 106 L 19,7mm Observar que, o comprimento mínimo é L = 19,7mm como a geometria do cubo é maior do que o diâmetro do eixo, e como as chavetas têm o comprimento do cubo, pode-se dizer que o comprimento da chaveta a ser usada é: L 40mm
  • 22.
    149 5.12 - VIBRAÇÃODE EIXOS A figura 12 mostra um rotor consistindo de um grande disco de massa M montado em um eixo, na metade da distância entre os mancais. A massa do eixo será considerada desprezível comparada com M. Mesmo com um balanceamento de alto grau de precisão, há contudo uma pequena excentricidade e do centro de massa g do disco, em relação ao eixo de rotação. Por causa da excentricidade, a força centrífuga ocasionada pela rotação do eixo faz com que este sofra uma deflexão r. Visto pela extremidade do eixo como na figura 12, o centro O do disco parece estar girando em torno do eixo de rotação sobre uma circunferência de raio r. A força de inércia causada por este movimento forçado é Fo = M(r + e) w2 . Devido à deflexão do eixo, considerado como uma mola, a resistência à força de inércia é kr, sendo k a constante de mola do eixo na flexão. O sentido da aceleração do centro de gravidade g é conhecido neste caso, de modo que se pode mostrar o vetor MA como uma força de inércia Fo (como na figura 12). Pode-se então escrever a equação do equilíbrio estático: ∑ F 0 M ( r e ) w 2 kr 0 (35) Figura 12 - Rotor com disco
  • 23.
    150 n n Para se determinaro raio r, pode-se apresentar a equação (35) da seguinte forma: ew 2 r k w 2 M (36) Quando a velocidade ω do eixo for igual a k / M , o denominador da equação (36) se anulará e r atingirá valores intoleravelmente grandes. A rotação do eixo assim defletido parece com uma viga em vibração quando visto do lado onde somente pode-se observar a projeção do movimento. Portanto, pode-se considerar k / M do eixo rotativo como a freqüência circular natural ωn da viga quando levada a vibrar naturalmente no seu primeiro modo de vibração. Pode-se escrever a equação (36), na forma adimensional: r (w/ w )2 e 1 (w/ w )2 (37) A representação gráfica da equação (37) e indica a condição crítica de rotação, quando ω for igual a ω n = k / M , devido às amplitudes muito grandes da vibração do eixo. Na condição crítica, chama-se ω de ωc e a velocidade de rotação do eixo em rotações por minuto será 60 60 nc 2 wc 2 wn (38) onde ω n = k / M normalmente é expresso em rad/s. Assim, n 60 w 60 k 9,55 k 9,55 kg 29,9 k k 30c 2 n 2 M M P P P (39) na qual nc è a velocidade crítica em rotação por minuto, k está em Newtons por metro e M. em quilogramas. Pode-se calcular a constante k da mola através da deflexão estática δest do eixo devido ao peso do rotor. Assim, k = Mg/δest e quando substituído na equação (39), a velocidade crítica será expressa pela seguinte equação: nc 30 1 est (40) Segundo os livros-texto de resistência dos materiais, pode-se calcular a deflexão estática de uma carga P atuando no centro de uma viga uniforme bi-apoiada, como δest = Pl3 /48 EIA. Assim, a velocidade crítica de um eixo com uma massa M situado no meio da viga, pode ser calculada em termos das dimensões do eixo (l é o comprimento do eixo, entre apoios, IA é o
  • 24.
    151 momento de inérciada área da seção reta do eixo, igual a πd4 /64, d é o diâmetro do eixo) e do módulo de elasticidade E do material do eixo. Ed4 nc 46 Pl3 (41) Assim, de acordo com a equação (41), pode-se alterar o material e as dimensões do eixo, assim como o peso da massa Af, de modo que a velocidade crítica nc seja superior ou inferior à velocidade de projeto n na qual deseja-se operar. Caso n/nc for menor do que 0,707 ou maior do que 1,414, r será menor do que o dobro da excentricidade e. Por exemplo, se a excentricidade e for 0,025 mm, r será 0,050 mm quando n/nc = 2 . É interessante observar que em velocidades muito acima da crítica (ω/ωn>>1,0), o valor de r/e = -1 e r = - e, indicando que o centro de massa de M estará no eixo de rotação. Neste caso a massa não estará oscilando, porém o eixo oscilará em torno do centro de massa de M. Até agora, considerou-se desprezível a massa do eixo. No caso da massa do eixo ser grande bastante para não ser desprezada, e o eixo ter diâmetro uniforme, deve-se somar à massa M 50 por cento da massa m do eixo, para se determinar à freqüência circular natural. w k n (M 0,5m) (42) Conforme mostra a figura 12, supõe-se que os mancais do eixo sejam rígidos. Em certos casos, pode-se considerar os mancais como elasticamente apoiados, e neste caso o δest da equação (40) deve incluir a deflexão estática dos apoios assim como a deflexão do eixo. Entretanto, aplica-se a equação (40) somente quando a flexibilidade dos apoios for a mesma para todas as posições angulares do rotor. 5.13 - FREQÜÊNCIA NATURAL E VELOCIDADE CRÍTICA Pode-se ter uma variedade muito grande de configurações de rotores desde que sejam usadas diversas massas e diversos apoios, assim como eixos de diâmetros variáveis. Embora as curvas do fator de amplificação sejam difíceis de serem obtidas matematicamente, as velocidades críticas dos eixos são determinadas com relativa facilidade através de cálculos de freqüência natural. No próximo item, serão apresentados diversos casos de determinação da velocidade crítica a partir da freqüência natural.
  • 25.
    152 5.14 - FREQÜÊNCIANATURAL DE EIXOS COM DIVERSAS MASSAS Em um eixo rotativo com diversas massas conforme mostra a figura 13a, pode-se determinar a freqüência circular natural ωn do eixo que, sem girar, vibra livremente, sem amortecimento, após uma deflexão inicial no primeiro modo de vibração. Pode-se aplicar o método de Rayleigh neste caso. Considerando que o sistema vibratório é conservativo, a soma da energia potencial e da cinética é constante em qualquer fase da vibração. Duas destas fases analisam-se facilmente. Na fase em que todas as massas estão simultaneamente nos máximos deslocamentos Y, a energia armazenada elasticamente no eixo é igual è energia potencial ∑ FY/2. Nesta fase a energia cinética é zero porque todos os pontos do sistema estão momentaneamente com velocidade zero. Assim, a energia potencial é EP F1Y1 F2Y2 ... FnYn 2 2 2 (43) As forcas F são as necessárias para a deflexão do eixo, como se fosse uma mola, ate ficar com a conformação mostrada nesta fase. O produto forca-deslocamento determina energia potencial. Entretanto, como a forca e diretamente proporcional ao deslocamento, a forca media que atua durante o deslocamento Y e F/2. Durante a vibração, o eixo passa pela fase de repouso (não deformada) na qual a energia potencial e zero, mas a energia cinética e máxima porque as velocidades das massas são máximas. Considerando que as massas tem movimento harmônico simples, as velocidades são V = Yωn e as energias cinéticas são MV2 /2 = M(Yωn)2 /2. Assim, a energia cinética do sistema é 2 2 EC wn M Y 2 M Y 2 M Y 2  wn PY 2 P Y 2 P Y 2  1 1 2 2 ... n n   1 1 2 2 ... n n 2 2g (a) Flexão dinâmica (44)
  • 26.
    153 w 2 d1 d2 d3 n W1 W2W3 (b) Flexão estática Figura 13 – Flexão Igualando-se os membros da direita das equações (43) e (44), pode-se deter-minar a freqüência circular natural ωn. Entretanto, as forças F e os deslocamentos Y não são conhecidos, mas podem ser determinados considerando-se a forma do eixo defletido estaticamente sob a ação dos pesos conforme indica a figura 13b. Considerando que os deslocamentos Y da vibração são proporcionais as deflexões δ da deformação estática, então Y1 Y2 ... Yn 1 2 n (45) Como as formas para defletirem uma mola são proporcionais as deflexões então F1 Y1 , F2 Y2 , Fn Yn P1 1 P2 2 Pn n (46) Igualando as expressões da energia potencial e da cinética dadas pelas equações (43) e (44) e usando as equações (45) e (46) para a eliminação de F e Y, a equação resultante que da a freqüência circular natural é w2 g P1 1 P2 2 ... Pn n n P 2 P 2 ... P 2  1 1 2 2 n n  2 g ∑P ∑P (47) e a velocidade critica pode-se determinar de nc = 60 ωn /2π. A equação de Rayleigh equação (47) e uma expressão simples e altamente útil para determinar a freqüência natural fundamental de muitos tipos de rotores. A determinação da deflexão estática constitui a maior parte do esforço necessário na execução dos cálculos conforme está ilustrado nos exemplos seguintes. As fórmulas de deflexão de vigas, para inúmeros casos, estão disponíveis em livros texto de resistência dos materiais e em manuais. Pode-se aplicar o método da área do diagrama de momento fletor e outros em casos gerais. Dispõe também de métodos gráficos, conforme ilustrado no item seguinte, para a determinação das deflexões estáticas de rotores com eixos de diâmetros variáveis.
  • 27.
    154 Para inclusão damassa do eixo nos cálculos, deve-se dividi-lo em diversos comprimentos, cada um tratado como se fosse uma massa adicional. A equação (47) não e estritamente uma avaliação exata da freqüência natural porque a curva das deflexões estáticas não e proporcional exatamente a curva deflexões dinâmicas, como foi considerado. Entretanto, o resultado obtido equação e somente um ou dois por cento superior a freqüência natural funda verdadeira. Considerando que outros fatores tais como efeitos giroscópicos durante a oscilação, ajustagens forçadas de discos no eixo, e chavetas alteram raramente a velocidade critica, a equação (47) produz uma resposta aceitável. A deflexão dos apoios pode ter uma influencia maior sobre as velocidades críticas e devem ser acrescidas as deflexões do eixo, na equação (47). A freqüência natural dada pela equação (47) é a fundamental, ou a mais baixa freqüência do sistema de massas. É desejável, portanto, se possível projetarem-se as dimensões de um, eixo de tal modo que a velocidade crítica mais baixa seja superior à velocidade de projeto. Entretanto, nem sempre isso é possível. Em turbinas de alta rotação, a velocidade de operação pode estar entre duas velocidades críticas de modo que o eixo não necessita tornar-se excessivamente pesado. Neste caso, é necessária a passagem pela velocidade crítica mais baixa, o que pode ser perigoso. Entretanto, se o rotor estiver cuidadosamente balanceado e a primeira velocidade crítica for baixa, as forças perturbadoras serão pequenas nas regiões perto da crítica. Também, a amplitude de vibração à velocidade crítica aumenta a níveis perigosos somente se for permitido um tempo para a amplitude crescer; portanto, acelerando-se na passagem pela velocidade crítica, pode-se manter as amplitudes em intensidades aceitáveis. O amortecimento natural do material do eixo, embora pequeno, também tende a reduzir as amplitudes. Muitas máquinas bem sucedidas foram projetadas para funcionar entre velocidades críticas. Quando o eixo se estende para fora dos mancais como na figura 12a, deve-se inverter os sentidos dos pesos como indica a figura 12b na determinação das deflexões estáticas para emprego na equação (47). Deve-se notar que se simula dessa maneira a curva da deflexão dinâmica de meia-onda, para obtenção da freqüência natural mais baixa.
  • 28.
    155 (a) Figura 14 –Freqüência natural da estrutura (b) 5.15 – EXERCÍCIOS RESOLVIDOS – VIBRAÇÕES EM EIXOS 1. Um rotor de compressor de 25 kg e um rotor de turbina, de 15 kg, são montadas em um eixo de aço conforme mostra a figura 13a. O eixo deve operar à velocidade prevista de 10.000 rpm. Empregando a equação de Rayleigh (47) determine o diâmetro do eixo mais leve que possa ser usado para que tenha uma velocidade critica fundamental de 12.000 rpm, com uma margem de segurança de 2.000 rpm.
  • 29.
    156 1 2 (a) (b) (c) Figura 15– Aplicação de vibrações em um eixo (d) Conforme a figura 15b mostra, inverte-se a carga P2 a fim de se obter uma curva de deflexão com o formato do uma meia-onda simples. As figuras 15c e 15d mostram a forma da viga deformada sob a ação de cada carga atuando independentemente, conduzindo assim a dois casos cujas fórmulas deflexão estática mostradas a seguir encontra-se em livros-texto de resistência dos materiais. Pelo método da superposição, pode-se determinar as deflexões δ1 e δ2: Pl3 P l2 a1 2 1 1 1 48EIA 16EIA 1 25 0,503 15 0,502 0,25 0,12369  EIA  48 16  EIA Pl2 a P a2 (l a) 0,322 2 2 2 16EIA 3EI A EIA Usando-se a equação (47),
  • 30.
    157 A n A A  w2 g P1 1P2 2  gEI  25 0,12369 15 0,332  n  P 2 P 2  A 25 0,123692 15 0,3322   1 1 2 2    Para g= 9,81m/s² e E= 2,1 x 1010 kg/m² w2 81,678 1010 In A I 0,012243 10 10 w 2 Para nc= 12.000 rpm w 2 nc 1260 rad/sn 60 Portanto, o momento de inércia necessário do eixo é: I 0,012243 10 10 12602 Como IA= πd4 /64, d4 64 I 395973, 4762 10-10 d 0,0793 m 79,9 mm Deve-se usar um diâmetro de 80mm. 2. Os apoios do rotor do exemplo 1, figura 15a, foram considerados como rígidos. Determine a velocidade crítica do rotor do exemplo 1 se cada um dos apoios sofrer uma deflexão de 0,14/EIA sob um carregamento estático. Use IA = 1,84 x 10-6 m4 e E = 2,1 x 1010 kg/m2 . Devido à flexibilidade dos apoios, as cargas Pl e P2 terão uma deflexão adicional. Conforme indica a figura 16, sob o carregamento, o apoio da esquerda desloca-se para baixo e o da esquerda para cima. Como se pode ver, não há influência nobre a deflexão da carga P1, porém o deslocamento de Pl aumenta de 0,28/EIA. Portanto as deflexões estáticas totais são 0,12369 1 0,332 0,28 0,612 2 EIA EIA EIA EIA . Substituindo estes valores na equação (47),
  • 31.
    158 n w2 774602 wn 880,1 rad/s n 60 w 60 (880)8404 rpmc 2 n 2 5.16 - EIXOS ESCALONADOS A equação (47) para velocidade crítica se aplica a eixos de rotores do tipo mostrado na figura 10a, no qual o diâmetro varia em degraus. Entretanto, como IA é variável em tais casos, não se derivam com facilidade para as deflexões estáticas. Pode-se usar um dos diversos métodos gráficos, tal como o seguinte. 0,14 EI 0,14 EIA 0,28 EIA Figura 16 – Eixos Escalonados Deve-se recordar da resistência dos materiais que para se determinar à deflexão estática deve-se resolver a equação diferencial básica: d2 y M dx2 EIA (48) Na qual y é a deflexão, M é o momento fletor como função de x, e IA é O momento de inércia da seção reta do eixo, como função de x. Integrando-se duas vezes a equação (48) obtém-se a deflexão da viga. A primeira integração conduz a dy/dx, inclinação da curva elástica da viga deformada. Além disso, iniciando-se com as cargas da viga, necessitam-se de duas integrações para a obtenção do diagrama do momento fletor. Assim, necessita-se de quatro integrações para se obterem as deflexões a partir do carregamento conhecido. Como o processo de integração é o somatório de áreas sob as curvas, pode-se empregar um método gráfico para um somatório para vigas complexas que têm funções com numerosas descontinuidades. O método gráfico exige que as curvas sejam traçadas em escala
  • 32.
    159 a fim deque as áreas sob as curvas possam ser avaliadas através da medição de quadrados ou usando-se um planímetro. A figura 17a mostra um rotor de aço com uma engrenagem de 89,0 N e um eixo de três diâmetros diferentes. Divide-se a viga em cinco partes, mostrando-se os pesos de cada parte no respectivo centro de gravidade. Uma delas inclui o peso da engrenagem. A figura 17a é um diagrama de carregamento a partir do qual pode-se determinar o diagrama de esforço cortante mostrado na figura 17b através de métodos convencionais (a primeira integração). Obtém-se o diagrama de momento fletor da figura 17c através das áreas do diagrama de esforço cortante (a segunda integração). Por exemplo, a ordenada M1 é obtida a partir da área Al, a ordenada M2, n ∑A é a soma das áreas A1+A2 e a ordenada Mn é 1 . Deve-se levar em conta o sinal de cada área. Devem-se multiplicar as áreas em milímetros quadrados pelo fator de conversão apropriado obtido das escalas do diagrama de esforço cortante, afim de que as ordenadas do diagrama de momento fletor sejam em N/mm.
  • 33.
    160 Figura 17 –Deflexões em um eixo de carregamento conhecido Depois de realizadas as integrações, deve-se transformar o diagrama de momento fletor no diagrama M/EIA conforme exigido pela equação (48). Divide-se cada ordenada do diagrama de momento fletor pelo valor adequado de EIA (E = 207x x 103 N/mm2 para o aço e IA = πd4 /64) para obtenção das ordenadas M/EIA da figura 17d. Obtém-se as ordenadas da figura 17 e representando a inclinação dy/dx da elástica (terceira integração), através das áreas do diagrama M/EIA. As ordenadas traçadas a partir do eixo x' são todas positivas. Entretanto, sabe- se do formato esperado da elástica que as inclinações são negativas perto da extremidade da esquerda da viga, positivas na extremidade da direita e nas proximidades do meio da viga há uma inclinação nula. Assim, traça-se o eixo x escolhido arbitrariamente de tal modo que as
  • 34.
    161 w g áreas negativassejam aproximadamente iguais às positivas, na figura 17e. Faz-se a quarta integração usando-se as áreas da figura 17e para obtenção das ordenadas da deflexão estática y na figura 17f. Observa-se que as ordenadas da deflexão estática são negativas porque as áreas da curva dy/dx são negativas na extremidade da esquerda onde se inicia a integração. Embora estas ordenadas sejam levantadas a partir do eixo x traça-se o eixo x conforme indicado porque se sabe que são nulas as deflexões da viga nos apoios. Como o eixo x, traçado arbitrariamente no diagrama da inclinação da elástica figura 15e, havia dividido igualmente as áreas negativas e positivas, então o eixo x' e o x da figura 15f deveriam coincidir. Dos dados das curvas a e f, calculam-se os seguintes valores: ∑Py 2,94 N mm ∑Py ∑Py2 0,0385 mm 2 n ∑Py2 0,794 106 wn 865 rad/s n 60(865) c 2 8260 rpm 5.17 - VELOCIDADES CRÍTICAS DE ORDEM SUPERIOR Para rotores que tem eixos de diâmetros variáveis como no item precedente, a determinação da segunda velocidade critica e as velocidades de ordem superior quanto à flexão, e relativamente mais complexa do que o cálculo da velocidade crítica fundamental da equação (47). Os livros-texto de Timoshenko, Den Hartog e Thomson apresentam métodos para rotores com tais eixos e para um número de rotores com eixos uniformes com e sem massas concentradas. No casos de vigas uniformes simplesmente apoiadas e vigas uniformes em balanço para as quais a formula seguinte calcula as diversas freqüências naturais: wn Cn EIA g Pl3 (49) E o coeficiente que indica a n-ésima freqüência natural, P e o peso total da viga em kg, e / e o comprimento da viga em metros. O eixo de transmissão do automóvel e eixo de bobina são exemplos de vigas uniformes simplesmente apoiadas, e as palhetas de compressores e de turbinas são exemplos aproximados de vigas uniformes em balanço.
  • 35.
    162 3 Consideremos o casoda palheta do rotor mostrada na figura 18. Mostra-se a palheta como uma viga em balanço a qual sofre um ciclo de perturbação de flexão cada vez que passa por uma palheta do estator e provoca uma mudança na força aerodinâmica. Se N e o número de palhetas do estator, então a freqüência da perturbação em ciclos por minuto será o produto de N pela rotação do rotor em rpm. Quando essa freqüência coincidir com a freqüência natural fn da palheta devida à flexão, existira uma situação crítica. Para a palheta de aço mostrada na figura 16, os cálculos seguintes ilustram a determinação das diversas velocidades criticas do rotor para o caso de um estator de 30 palhetas. E 207x103 N / mm2 g 9810mm / s2 I 76,2mm I bh 25,4x3,183 68,1mm4 A 12 12 p 76,5x10 6 N / mm3 P volume p (25, 4 76, 2 3,18)(76, 5 10 6 ) 0, 471 N w n1 c EI Ag 1 Pl3 3,52 (207 103 ) 68,1 9810 0, 471 76, 23 2870 rad/s 60w n1 60 2870 27, 400 ciclos/minfn1 2 2 Figura 18 – Encaixe palheta e rotor
  • 36.
    163 c n c n ∑ n n f A velocidade críticado rotor ocorre gerando n1 Nnc1 . n fn1 27400 913 rpmc1 N 30 A segunda e a terceira velocidades críticas são c2 c2 c1 1 c3 c3 c1 1 22,4 3,52 61,7 3,52 913 5810 rpm 913 16000 rpm Em geral as palhetas de rotores devem ser delgadas e leves para maquinas de alta rotação e freqüentemente ultrapassam a primeira e a segunda velocidades criticas. A seleção do material e importante. Alguns materiais possuem propriedades de amortecimento melhores do que outros, e isto pode significar a diferença entre o êxito e o fracasso em ultrapassar as velocidades criticas. As palhetas geralmente são curvas e sua espessura diminui gradualmente, sendo maior na base do que na extremidade: isto torna a palheta mais rígida e aumenta um pouco a velocidade critica. Observação: não deve ser utilizado em vigas não uniformes. 5.18 - EIXOS ESCALONADOS Quando o eixo tem os diâmetros escalonados como o do rotor de dois discos mostrados na figura 22, a constante da mola torcional é variável. Pode-se determinar uma constante equivalente kt em função das constantes individuais kl, k2, k3...Kn. Para molas em série, o torque instantâneo T em cada seção do eixo é o mesmo. Entretanto, os ângulos de torção diferentes. O ângulo total de torção Φt é a soma de todos os ângulos individuais de torção. 1 1 2 3 T T T T ... n ... T kt k1 k2 k3 kn 1 1 1 1 ... 1 kt k1 k2 k3 1 1 kt k kn (50) Para o rotor com dois discos e com eixos de diâmetro variável, pode-se substituir kt, determinado pela equação (50).
  • 37.
    164 Figura 19 -Eixo e mancais 5.19 – EXERCÍCIOS PROPOSTOS - DIMENSIONAMENTO DE EIXOS 1. O eixo da figura suporta uma engrenagem cilíndrica de dentes retos para uma rotação de 315 rpm. O diâmetro primitivo da engrenagem é de 364 mm, t=310mm, t1=120 mm, t2=190 mm. Dimensione este eixo, calculando o valor de d. A engrenagem é enchavetada no eixo. A carga total atuando no eixo é de 15 KN. Figura 21 - Exercício proposto 1. 2. Um eixo é fabricado com aço AISI 1137, laminado a frio, e é usado em um cortador de grama. A potência é suprida ao eixo por uma correia plana à polia A. Em B, uma corrente de rolos exerce uma força vertical e em C uma correia trapezoidal também exerce uma força vertical. Nas condições de operação a correia transmite 35 HP a 425 rpm das quais 25 HP é transmitida ao cortador e 10 HP para o ventilador. As duas seções do eixo são
  • 38.
    165 unidas por umacoplamento flexível em D e as polias são todas enchavetadas no eixo. Decida qual serão os diâmetros dos eixos, utilizando a teoria de falhas de Von Mises e o critério de Goodman. Figura 22 - Exercício proposto 2.
  • 39.
    166 3. Um eixoS de aço AISI 1137, laminado a frio, transmite potencia que recebe de um eixo W, que gira a 2000 rpm através de uma engrenagem E de 125 mm de diâmetro à engrenagem A de 375 mm de diâmetro. A potência é transmitida de uma engrenagem C para a engrenagem G, que varia de 10 HP a 100 HP, retornando a 10 HP, durante uma rotação de do eixo S. O projeto leva em conta as tensões variáveis e a teoria da máxima tensão cisalhante TMT|C e o critério de Goodman. Para um fator de projeto n=1,8, calcule o diâmetro do eixo, utilizando somente as cargas tangenciais motoras. Figura 23 - Exercício proposto 3.
  • 40.
    167 4. Idêntico aoanterior, exceto que as componentes radiais das engrenagens devem também ser consideradas, todas as engrenagens com ângulo de pressão 20o . 5. Idêntico ao exercício 4, exceto que a engrenagem G se posiciona em cima da engrenagem C. 6. Um pequeno eixo é fabricado com aço SAE1035, laminado a quente, recebe potência de 30 HP a 300 rpm, através de uma engrenagem de 300 mm de diâmetro, sendo esta potência transmitida a outro eixo através de um acoplamento flexível. A engrenagem é enchavetada no meio do eixo entre dois mancais, com ângulo de pressão 20o , fator de segurança n=1,5. (a) Desprezando a componente radial R da carga total W, determine o diâmetro do eixo. (b) Considerando ambas componentes radiais e tangencial, determine o diâmetro do eixo. Figura 24 - Exercício proposto 6.