Função Modular Profª Juliana
Schivani
Dallol tem temperatura média anual de 41 °C e o mês mais quente, tem média
superior ...
Função Modular Profª Juliana
Schivani
A menor média anual de temperatura ocorre na Plateau Station, na
Antártida, onde é i...
Função Modular Profª Juliana Schivani
Fuso horário
Função Modular Profª Juliana Schivani
Fuso horário
|-3| = 3
|5| = 5
3 + 5 = 8 horas para o leste
(acréscimo)
Módulo ou valor absoluto de um
número real
É a distância desse número até a sua origem zero.
Função Modular Profª Juliana ...
Algumas propriedades
2 = 4 𝑝𝑜𝑖𝑠 2 ∙ 2 = 4
| − 2| = 4
Função Modular Profª Juliana Schivani
𝑥2 = |𝑥|
|x| ≥ 0
|x|² = |x²| = ...
Função Modular Profª Juliana Schivani
Função Modular Profª Juliana Schivani
f (x) =
R$ 33,21 + 4,19x
se 11m³ ≤ x ≤ 15m³
R$ 33,21 + 4,50(x – 15)
se 16m³ ≤ x ≤ 20...
Função Modular
A função modular é definida por duas sentenças, com base no
conceito de módulo, ou seja:
Função Modular Pro...
Função Modular Profª Juliana Schivani
f (x) =
R$ 33,21 + 4,19x, se 11m³ ≤ x ≤ 15m³
R$ 33,21 + 4,50(x – 15), se 16m³ ≤ x ≤ ...
Gráfico da função modular
O gráfico da função
modular f(x) = |x| é a
união dos gráficos de
cada sentença (x, se
x ≥ 0 e –...
Gráfico da função modular
O gráfico da função
g(x) = |x| ± k é
congruente ao de
f(x) = |x|, porém,
transladado k
unidades ...
Gráfico da função modular
O gráfico da função
h(x) = |x ± k| é
congruente ao de
f(x) = |x|, porém,
transladado k
unidades ...
Gráfico da função modular
O gráfico da função p(x) = |x ± k| ± m é congruente
ao de f(x) = |x|, porém, transladado k unida...
Gráfico da função modular
Como fica o gráfico da função f(x) = |x² - 4x + 3|?
Perceba que toda função e está em módulo. Po...
Equação Modular
|x| = k ⟹ x = k ou x = – k
Em um determinando mês verificou que o número n de pessoas que
compravam no sup...
Inequação Modular
Na reta real abaixo, observe quando a distância à
origem é menor que 4 e quando a distância à origem é
m...
Inequação Modular
Seja a> 0:
Inequação Modular
No ano passado, Vitor participou de um curso de
Matemática em que, todo mês, foi submetido a uma
avaliaç...
Inequação Modular
f(x) > 5
|x – 6| > (5 – 3) ∙ 2
|x – 6| > 4
x – 6 > 4 ou x – 6 < - 4
x > 4 + 6 ou x < - 4 + 6
x > 10 ou x...
12.b3.funcao modular 1
Próximos SlideShares
Carregando em…5
×

12.b3.funcao modular 1

492 visualizações

Publicada em

Função Modular

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
492
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
14
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide
  • Dentre outras funções, o meridiano de Greenwich serve para estabelecer fusos horários. Como a cada 24hs a Terra dá uma volta completa em torno do seu eixo, isto é, dá um giro de 360°, então cada fuso (faixa de 15° de deslocamento) permanece uma hora a mais para à direita (leste) e uma hora a menos para à esquerda (oeste).
  • Dentre outras funções, o meridiano de Greenwich serve para estabelecer fusos horários. Como a cada 24hs a Terra dá uma volta completa em torno do seu eixo, isto é, dá um giro de 360°, então cada fuso (faixa de 15° de deslocamento) permanece uma hora a mais para à direita (leste) e uma hora a menos para à esquerda (oeste).
  • CUIDADO! Errado dizer que (−𝑥)² = -x. O certo é 𝑥² = x (só vale para x positivo). x = 3 ⟹ 𝑥² = 3² = 9 = 3 = x Mas x = -4 ⟹ 𝑥² = (−4)² = 16 = 4 ≠ x
  • X – 15 e x – 20 porque o consumidor paga 4,19 pelos primeiros 15m³ usados e passa a pagar 4,50 por cada excedente aos 15, se ele usar 20, por exemplo, 20 – 15 = 5m³ excedentes.
  • Explicar que a igualdade provem do conceito de modulo. A solução teorica é: CASO 1 – supor x≥0 e tirar o que está dentro do modulo, resolvendo a equação. CASO 2 – supor x <0 e neste caso, o que está dentro do módulo é multiplicado por -1.
  • 12.b3.funcao modular 1

    1. 1. Função Modular Profª Juliana Schivani Dallol tem temperatura média anual de 41 °C e o mês mais quente, tem média superior de 46,4 °C. É a cidade mais quente da Terra, localizada na Etiópia.
    2. 2. Função Modular Profª Juliana Schivani A menor média anual de temperatura ocorre na Plateau Station, na Antártida, onde é igual a –56,7°C.
    3. 3. Função Modular Profª Juliana Schivani Fuso horário
    4. 4. Função Modular Profª Juliana Schivani Fuso horário |-3| = 3 |5| = 5 3 + 5 = 8 horas para o leste (acréscimo)
    5. 5. Módulo ou valor absoluto de um número real É a distância desse número até a sua origem zero. Função Modular Profª Juliana Schivani |-8| = 8 |3| = 3 |-3| = 3 |x| = x , se x ≥ 0 - x , se x < 0
    6. 6. Algumas propriedades 2 = 4 𝑝𝑜𝑖𝑠 2 ∙ 2 = 4 | − 2| = 4 Função Modular Profª Juliana Schivani 𝑥2 = |𝑥| |x| ≥ 0 |x|² = |x²| = x² Ex.: |6|² = 6² = 36, |6²| = |36| = 36 |x ∙ y| = |x| ∙ |y| Ex.: |2 · 3| = |2| · |3| |6| = 2 · 3 = 6 |x + y| ≤ |x| + |y| Ex.: |1 + (-2)| ≤ |1| + |-2| |-1| = 1 ≤ 1 + 2 ⟹ 1 ≤ 3 |x – y| ≥ ||x| – |y|| Ex.: |1 – (-2)| ≥ ||1| - |-2|| |3| ≥ |1 – 2| ⟹ 3 ≥ 1
    7. 7. Função Modular Profª Juliana Schivani
    8. 8. Função Modular Profª Juliana Schivani f (x) = R$ 33,21 + 4,19x se 11m³ ≤ x ≤ 15m³ R$ 33,21 + 4,50(x – 15) se 16m³ ≤ x ≤ 20m³ R$ 33,21 + 5,42(x – 20) se x ≥ 21 m³ FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA
    9. 9. Função Modular A função modular é definida por duas sentenças, com base no conceito de módulo, ou seja: Função Modular Profª Juliana Schivani 𝑓 𝑥 = 𝑥, 𝑠𝑒 𝑥 ≥ 0 −𝑥, 𝑠𝑒 𝑥 < 0
    10. 10. Função Modular Profª Juliana Schivani f (x) = R$ 33,21 + 4,19x, se 11m³ ≤ x ≤ 15m³ R$ 33,21 + 4,50(x – 15), se 16m³ ≤ x ≤ 20m³ R$ 33,21 + 5,42(x – 20), se x ≥ 21 m³
    11. 11. Gráfico da função modular O gráfico da função modular f(x) = |x| é a união dos gráficos de cada sentença (x, se x ≥ 0 e – x, se x <0). Como o módulo de um número sempre é positivo, a Imagem dessa função será ℝ+ Função Modular Profª Juliana Schivani
    12. 12. Gráfico da função modular O gráfico da função g(x) = |x| ± k é congruente ao de f(x) = |x|, porém, transladado k unidades para cima (k>0) ou k unidades para baixo (k<0)
    13. 13. Gráfico da função modular O gráfico da função h(x) = |x ± k| é congruente ao de f(x) = |x|, porém, transladado k unidades para a esquerda (k>0) ou k unidades para a direita (k<0)
    14. 14. Gráfico da função modular O gráfico da função p(x) = |x ± k| ± m é congruente ao de f(x) = |x|, porém, transladado k unidades para a esquerda (k>0) ou k unidades para a direita (k<0) e m unidades para cima (m>0) ou para baixo (m<0). p(x) = |x + 1| + 2
    15. 15. Gráfico da função modular Como fica o gráfico da função f(x) = |x² - 4x + 3|? Perceba que toda função e está em módulo. Por definição, o resultado de um módulo é sempre um número positivo, logo, o gráfico desta função estará completamente no eixo x e y positivos.
    16. 16. Equação Modular |x| = k ⟹ x = k ou x = – k Em um determinando mês verificou que o número n de pessoas que compravam no supermercado Alagoas era dado pela lei n(x) = 20 ∙ |x – 25| + 300 em que x = 1, 2, 3, ..., 30 representa cada dia do mês. Em quais dias do mês, 400 pessoas compraram neste supermercado? n(x) = 20 ∙ |x – 25| + 300 400 = 20 ∙ |x – 25| + 300 |x – 25| = (400 – 300)/20 |x – 25| = 5 x – 25 = 5 x – 25 = – 5 x = 30º dia ou x = 20º dia
    17. 17. Inequação Modular Na reta real abaixo, observe quando a distância à origem é menor que 4 e quando a distância à origem é maior que 4:
    18. 18. Inequação Modular Seja a> 0:
    19. 19. Inequação Modular No ano passado, Vitor participou de um curso de Matemática em que, todo mês, foi submetido a uma avaliação. A função f(x) ilustrada na imagem, representa a nota obtida por Vitor no mês x (x = 1 corresponde ao mês de janeiro). Em que mês Vitor ficou acima de 5?
    20. 20. Inequação Modular f(x) > 5 |x – 6| > (5 – 3) ∙ 2 |x – 6| > 4 x – 6 > 4 ou x – 6 < - 4 x > 4 + 6 ou x < - 4 + 6 x > 10 ou x < 2 Ele tirou acima de 5 no mês de novembro (11), dezembro (12) ou janeiro (1).

    ×