Tcm 04

1.661 visualizações

Publicada em

0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.661
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
103
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Tcm 04

  1. 1. Transferência de Calor e Massa Prof. Dr. Lucas Freitas Berti Engenharia de Materiais - UTFPR lenberti@gmail.com 1
  2. 2. Aula 4 Condução Unidimensional em Regime Permanente 29/05/2013
  3. 3. Transferência de Calor e Massa Presença Cobrança da presença 3
  4. 4. Transferência de Calor e Massa Revisão  A Equação da Difusão de Calor (Difusão Térmica)  Condições de Contorno e Inicial 4  Ementa
  5. 5. Transferência de Calor e Massa A Equação da Difusão de Calor (Difusão Térmica) 5
  6. 6. Transferência de Calor e Massa Um dos objetivos principais da análise da condução de calor é determinar o campo de temperaturas (distribuição de temperaturas) num meio resultante das condições impostas em suas fronteiras. Uma vez conhecida esta distribuição, o fluxo de calor por condução em qualquer ponto do meio ou na sua superfície pode ser determinado através da Lei de Fourier. 6
  7. 7. Transferência de Calor e Massa Objetivo: uma equação diferencial cuja solução, para condições de contorno especificadas, forneça a distribuição de temperaturas no meio. Metodologia: aplicação da conservação da energia, ou seja, define-se um volume de controle diferencial, identificam-se os processos de transferência de energia relevantes e substituem-se as equações das taxas de transferência de calor apropriadas. 7
  8. 8. Transferência de Calor e Massa acusaigent EEEE   Volume de controle diferencial, dx.dy.dz, para análise da condução em coordenadas cartesianas. 8
  9. 9. Transferência de Calor e Massa  Equação da Difusão do Calor (Difusão Térmica) Coordenadas cartesianas t T cq z T k zy T k yx T k x p                                  Em qualquer ponto do meio, a taxa líquida de transferência de energia por condução no interior de um volume unitário somada à taxa volumétrica de geração de energia térmica deve ser igual à taxa de variação da energia térmica acumulada no interior deste volume. 9
  10. 10. Transferência de Calor e Massa Com frequência, é possível trabalhar com versões simplificadas da Equação do Calor. Exemplo: condução 1D com propriedades constantes e sem geração de energia. t T x T       1 2 2 10
  11. 11. Transferência de Calor e Massa 11 Transferência de Calor e Massa Heat Flux Components (2.22)               T T T q k i k j k k r r z rq q zq • Coordenadas Cilíndricas:  , ,T r z sin               T T T q k i k j k k r r r   (2.25) rq q q •Coordenadas Esféricas  , ,T r   • Coordenadas Cartesianas:  , ,T x y z               T T T q k i k j k k x y z xq yq zq (2.3)
  12. 12. Transferência de Calor e Massa 12 Transferência de Calor e Massa Heat Flux Components (cont.) • In angular coordinates , the temperature gradient is still based on temperature change over a length scale and hence has units of C/m and not C/deg.  or ,   • Heat rate for one-dimensional, radial conduction in a cylinder or sphere: – Cylinder 2  r r r rq A q rLq or, 2    r r r rq A q rq – Sphere 2 4  r r r rq A q r q
  13. 13. Transferência de Calor e Massa  Equação do Calor: Coordenadas Cilíndricas t T cq z T k z T k rr T kr rr p                                   2 11 radial, r circunferencial, Φ axial, z 13
  14. 14. Transferência de Calor e Massa  Equação do Calor: Coordenadas Esféricas radial, r polar, θ azimutal, Φ t T cq T senk senr T k senrr T kr rr p                                     222 2 2 111 14
  15. 15. Transferência de Calor e Massa Condições de Contorno e Inicial 15
  16. 16. Transferência de Calor e Massa Para determinação da distribuição de temperaturas num meio, é necessário resolver a forma apropriada da Equação do Calor. Tal solução depende das condições físicas existentes nas fronteiras do meio, e, se a situação variar com o tempo (processo transiente), a solução também depende das condições existentes no meio em algum instante inicial. 16
  17. 17. Transferência de Calor e Massa Condição Inicial: como a Equação do Calor é de primeira ordem em relação ao tempo, apenas uma condição deve ser especificada. [T(x,t)t=0 = T(x,0)] Condições na Fronteira (Condições de Contorno): há várias possibilidades comuns que são expressas de maneira simples em forma matemática. Como a Equação do Calor é de segunda ordem em relação às coordenadas espaciais, duas condições de contorno devem ser fornecidas para cada coordenada espacial necessária para descrever o problema. 17
  18. 18. Transferência de Calor e Massa Condições de contorno para a equação da difusão do calor na superfície (x = 0). Condição de Dirichlet Condição de Neumann Condição de Robin 18
  19. 19. Transferência de Calor e Massa Homework Chapter 2 (Incropera et al, 2008):  2.2, 2.3, 2.4, 2.6, 2.8, 2.13, 2.20, 2.26, 2.35, 2.36, 2.39, 2.50 19
  20. 20. Transferência de Calor e Massa Exemple 2.3 20
  21. 21. Transferência de Calor e Massa Exemple 2.3 21
  22. 22. Transferência de Calor e Massa Sumário da aula  A Parede Plana ▫ Distribuição de Temperaturas ▫ Resistência Térmica ▫ A Parede Composta ▫ Resistência de Contato  Uma Análise Alternativa da Condução  Sistemas Radiais ▫ O Cilindro ▫ A Esfera  Resumo dos Resultados da Condução 1D 22  Ementa
  23. 23. Transferência de Calor e Massa A Parede Plana 23
  24. 24. Transferência de Calor e Massa Transferência de calor através de uma placa plana (distribuição de temperaturas). 24
  25. 25. Transferência de Calor e Massa Distribuição de Temperaturas Em regime permanente, sem a presença de fontes ou sumidouros de energia no interior da parede, a forma apropriada da Equação do Calor é: 0      dx dT k dx d Para condução 1D em RP numa parede plana sem geração de calor, o fluxo térmico é uma constante, independente de x. 25
  26. 26. Transferência de Calor e Massa se k = cte, a equação pode ser integrada duas vezes, obtendo-se a solução geral, As condições de contorno para este problema são: com isso, tem-se que   21 cxcxT    10 ,sTT    2,sTLT  L TT c ,s,s 12 1   12 ,sTc  26
  27. 27. Transferência de Calor e Massa Substituindo na solução geral, a distribuição de temperaturas é     112 ,s,s,s T L x TTxT  Para a condução 1D em RP numa parede plana sem geração de calor e condutividade térmica constante, a temperatura varia linearmente com x. 27
  28. 28. Transferência de Calor e Massa Utilizando a distribuição de temperaturas e a Lei de Fourier, tem-se que  21 ,s,sx TT L kA dx dT kAq   21 ,s,s x x TT L k A q q  A taxa de transferência de calor por condução qx e o fluxo térmico q"x são constantes, independentes de x. 28
  29. 29. Transferência de Calor e Massa  Procedimento Padrão para solução de problemas de condução. 1) Solução geral para a distribuição de temperaturas é obtida através da resolução da forma apropriada da Equação do Calor. 2) As condições de contorno são utilizadas para obtenção da solução particular 3) Lei de Fourier é utilizada para determinação da taxa de transferência de calor. 29
  30. 30. Transferência de Calor e Massa Resistência Térmica Caso especial da transferência de calor 1D sem geração interna de energia e com propriedades constantes. Analogia entre as difusões de calor e de carga elétrica. Da mesma forma que uma resistência elétrica está associada à condução de eletricidade, uma resistência térmica está associada à condução de calor. Definição: razão entre um potencial motriz e a correspondente taxa de transferência. 30
  31. 31. Transferência de Calor e Massa  Resistência térmica para condução  Resistência térmica para convecção kA L q TT R x ,s,s cond,t    21 hAq TT R s conv,t 1     Representações na forma de circuitos fornecem uma ferramenta útil tanto para a conceituação quanto para a quantificação de problemas da transferência de calor. 31
  32. 32. Transferência de Calor e Massa  Circuito térmico equivalente para a parede plana com condições de convecção nas superfícies. qx pode ser determinada pela consideração em separado de cada elemento da rede (qx é constante ao longo da rede)                          Ah TT kA L TT Ah TT q ,,s,s,s,s, x 2 2221 1 11 11 32
  33. 33. Transferência de Calor e Massa Em termos da diferença de temperatura global e da resistência térmica total, a taxa de transferência de calor pode ser representada por sendo que tot ,, x R TT q 21    AhkA L Ah Rtot 21 11  33
  34. 34. Transferência de Calor e Massa A troca radiante entre a superfície e a vizinhança pode, também, ser importante se h for pequeno.  Resistência térmica para radiação Ahq TT R rrad vizs rad,t 1    Nota: as resistências convectiva e radiante em uma superfície atuam em paralelo, e se T∞ = Tviz, elas podem ser combinadas para se obter uma resistência na superfície única e efetiva. 34
  35. 35. Transferência de Calor e Massa Parede Composta Circuito térmicos equivalentes podem ser utilizados em sistemas mais complexos, como, por exemplo, paredes compostas. Tais paredes possuem uma quantidade qualquer de resistências térmicas em série e em paralelo, devido à presença de camadas diferentes de materiais. 35
  36. 36. Transferência de Calor e Massa Circuito térmico equivalente para uma parede composta em série. 36
  37. 37. Transferência de Calor e Massa A taxa de transferência de calor 1D para esse sistema pode ser representada por sendo que     t ,, x R TT q 41                                       AhAk L Ak L Ak L Ah R C C B B A A t 41 11 37
  38. 38. Transferência de Calor e Massa Alternativamente, a taxa de transferência de calor pode ser relacionada à diferença de temperaturas e à resistência térmica associadas a cada elemento. Por exemplo,                           Ak L TT Ak L TT Ah TT q B B A A ,s,s, x 3221 1 11 1 38
  39. 39. Transferência de Calor e Massa Em sistemas compostos, é conveniente definir um coeficiente global de transferência de calor, U, por uma expressão análoga à Lei de Resfriamento de Newton. ou ainda,   UAq T RR ttot 1 TUAqx  39
  40. 40. Transferência de Calor e Massa As paredes compostas também podem ser caracterizadas por configurações série-paralelo. Embora nesse sistema o escoamento de calor seja multidimensional, é razoável a hipótese de condições 1D. Com base nesta hipótese, dois circuitos térmicos diferentes podem ser usados. 40
  41. 41. Transferência de Calor e Massa Circuito térmico equivalente para uma parede composta série-paralela: considerando que as superfícies normais à direção x sejam isotérmicas. 41
  42. 42. Transferência de Calor e Massa Circuito térmico equivalente para uma parede composta série-paralela: considerando que as superfícies paralelas à direção x sejam adiabáticas. 42
  43. 43. Transferência de Calor e Massa Resistência de Contato x BA c,t q TT R    43
  44. 44. Transferência de Calor e Massa A existência de uma resistência de contato não-nula se deve principalmente aos efeitos da rugosidade da superfície. A transferência de calor é devida à condução através da área de contato real e à condução e/ou radiação através dos interstícios. Os resultados mais confiáveis para predizer R"t,c são aqueles que foram obtidos experimentalmente. 44
  45. 45. Transferência de Calor e Massa 45
  46. 46. Transferência de Calor e Massa Em muitas aplicações ocorre a transferência de calor em um meio saturado, i.e. meio poroso, que é uma combinação estacionária de fluido e um sólido. No capítulo 7 é estudado sobre leito fluidizado, onde um sólido estacionário é percolado por um fluido 46
  47. 47. Transferência de Calor e Massa Meio poroso 47
  48. 48. Transferência de Calor e Massa Meio poroso 48
  49. 49. Transferência de Calor e Massa Meio poroso 49
  50. 50. Transferência de Calor e Massa Meio poroso 50
  51. 51. Transferência de Calor e MassaTransferência de Calor e Massa  Tanto keff,min e keff,max dão boas estimativas para meios onde efeitos de micro- e nanoescala são desprezíveis. Do contrário, a equação de Maxwell para é preferível para melhores valores:  No entanto, ela é aplicável para meios com no máximo 0,25 de porosidade 51
  52. 52. Transferência de Calor e Massa Problema 3.1 52
  53. 53. Transferência de Calor e Massa Problema 3.1 53
  54. 54. Transferência de Calor e Massa Problema 3.1 54
  55. 55. Transferência de Calor e Massa Problema 3.1 55
  56. 56. Transferência de Calor e Massa Problema 3.1 56
  57. 57. Transferência de Calor e Massa Problema 3.1 57
  58. 58. Transferência de Calor e Massa Problema 3.1 58
  59. 59. Transferência de Calor e Massa Problema 3.1 59
  60. 60. Transferência de Calor e Massa Problema 3.1 60
  61. 61. Transferência de Calor e Massa Uma Análise Alternativa da Condução 61
  62. 62. Transferência de Calor e Massa Para condições de RP, sem geração de calor e sem perda de calor pelas superfícies laterais, a taxa de transferência de calor qx é necessariamente uma constante independente de x, ou seja, para qualquer elemento diferencial dx, qx = qx+dx . Essa condição é, obviamente, uma consequência da exigência da conservação da energia e deve ser válida mesmo que A(x) e k(T). 62
  63. 63. Transferência de Calor e Massa Um procedimento alternativo pode ser utilizado para as condições de interesse no momento. 63
  64. 64. Transferência de Calor e Massa Além disso, mesmo que a distribuição de temperaturas possa ser 2D, variando em função de x e y, com frequência é razoável desprezar a variação na direção y e supor uma distribuição 1D na direção x. Com isso, é possível trabalhar exclusivamente com a Lei de Fourier ao efetuar uma análise de condução.     dx dT xATkqx  64
  65. 65. Transferência de Calor e Massa Em particular, uma vez que a taxa condutiva é uma constante, a equação da taxa pode ser integrada, mesmo sem o prévio conhecimento de qx e de T(x).      x x T T x dTTk xA dx q 0 0 65
  66. 66. Transferência de Calor e Massa Sistemas Radiais 66
  67. 67. Transferência de Calor e Massa Com frequência, em sistemas cilíndricos e esféricos há gradientes de temperatura somente na direção radial, o que possibilita analisá-los como sistemas 1D. Além disso, em RP sem geração de calor, tais sistemas podem ser analisados pelo método padrão, que começa com a forma apropriada da Equação do Calor, ou pelo método alternativo, que começa com a forma apropriada da Lei de Fourier. 67
  68. 68. Transferência de Calor e Massa O Cilindro Cilindro oco com condições convectivas nas superfícies. 68
  69. 69. Transferência de Calor e Massa  Distribuição de temperaturas         2 21 2 21 ,s,s,s T rrln rrln TTrT  A distribuição de temperaturas associadas à condução radial através de uma parede cilíndrica é logarítmica, não linear. (Na parede plana sob as mesmas condições ela é linear). 69
  70. 70. Transferência de Calor e Massa  Taxa de transferência de calor  Resistência térmica (condução radial)    12 212 rrln TTLk q ,s,s r      Lk rrln R cond,t 2 12  70
  71. 71. Transferência de Calor e Massa Distribuição de temperaturas em uma parede cilíndrica composta. 71
  72. 72. Transferência de Calor e Massa                                        44 342312 11 41 2 1 2222 1 LhrLk rrln Lk rrln Lk rrln Lhr TT q CBA ,, r   41 41 ,, tot ,, r TTUA R TT q        1 44332211   tRAUAUAUAU  Taxa de transferência de calor  Coeficiente global de transferência de calor 72
  73. 73. Transferência de Calor e Massa A Esfera Condução numa casca esférica. 73
  74. 74. Transferência de Calor e Massa  Distribuição de temperaturas  Taxa de transferência de calor  Resistência térmica (condução casca esférica)         1 21 1 12 1 1 ,s,s,s T rr rr TTrT               21 21 11 4 rr TTk q ,s,s r            21 11 4 1 rrk R cond,t  74
  75. 75. Transferência de Calor e Massa Esferas compostas podem ser tratadas da mesma forma que as paredes e os cilindros compostos, onde formas apropriadas da resistência total e do coeficiente global de transferência de calor podem ser determinadas. 75
  76. 76. Transferência de Calor e Massa Raio crítico de isolamento 76
  77. 77. Transferência de Calor e Massa Raio crítico de isolamento 77
  78. 78. Transferência de Calor e Massa Resumo dos Resultados da Condução 1D 78
  79. 79. Transferência de Calor e Massa 21 ,s,s TTT  79

×