SlideShare uma empresa Scribd logo
1 de 286
Disciplina PPGCEP:
Automação da Medição
na Indústria do Petróleo
Professor: André L. Maitelli
Sumário
• Introdução;
• Transformada de Laplace;
• Desempenho transitório de sistemas;
• Desempenho em regime permanente;
• Método do Lugar das Raízes;
• Controle de processos industriais;
• Instrumentação industrial;
• Válvulas de controle;
• Ações de controle;
• Sintonia de controladores PID;
• Controle em cascata, relação e antecipatório;
• Controle override e split range;
• Controle inferencial, adaptativo e robusto.
INTRODUÇÃO
O que é Controle ?
• Um problema de controle consiste em
determinar uma forma de afetar um
sistema físico considerado de modo que o
seu desempenho atenda às especificações
de desempenho;
• O comportamento do sistema físico pode
ser alterado através das variáveis
manipuladas geradas por um controlador.
Especificações de Desempenho
• Podem envolver requisitos como:
– Rapidez na resposta: tempo de subida, transferência
em tempo mínimo;
– Exatidão: sobressinal, erro de regime, rastreamento de
referência;
– Custo: mínima energia, mínimo combustível;
– Segurança: estabilidade, robustez à incertezas;
– Conforto: rejeição à distúrbios, capacidade de auto-
diagnóstico;
– Simplicidade: modelos reduzidos, número pequeno de
componentes.
Controle Automático
Sistema
Entrada Saída
• Sistema:
Controle Automático
• Controle;
• Controlador;
• Sistema de controle a malha aberta:
Sistema
Saída
Dispositivo
de atuação
Resposta
desejada
Controle Automático
• Sistema de controle a Malha Fechada
(em Realimentação):
Sistema
Saída
Comparação Controlador
Dispositivo
de medida
Resposta
desejada
(Set Point)
SP
(Variável de Processo)
PV
Sinal de controle
(Variável manipulada)
MV
Sensor + Transmissor
Controle Automático
• Exemplo: controle de nível de um
reservatório:
Sistema
Controlador
-
+
Reservatório
Bóia
Nível
desejado
Nível
de água
Bomba
Controle de Processos
Controle de Processos
Controle de Processos
Controle de Processos
Controle Ideal
• Impraticável devido:
– Incertezas no modelo G(s);
– Processos de fase não-mínima;
– Limitações no sinal de controle u;
• O que aconteceria com u se a saída desejada yd
fosse um degrau ?
u
yd y
G(s)
1/G(s)
Por que Malha Fechada ???
• Vantagens:
– redução da sensibilidade do sistema à variações
de parâmetros;
– maior rejeição à distúrbios;
• Desvantagens:
– maior número de componentes;
– perda de ganho.
G(s)
R(s) Y(s)
Malha Aberta
R(s) +
-
G(s)
H(s)
E(s)
B(s)
Y(s)
Malha Fechada
Por que Malha Fechada ???
G(s)
R(s) Y(s)
Malha Aberta
R(s) +
-
G(s)
H(s)
E(s)
B(s)
Y(s)
Malha Fechada
 
Y s G s R s
( ) ( ) ( )

Y s Y s
G s G s
G s G s H s
R s
( ) ( )
( ) ( )
( ( ) ( )) ( )
( )
 

 



1
  



Y s
G s
GH s GH s GH s
R s
( )
( )
( ) ( ) ( )
( )

  
1 1
GH s GH s
( ) ( )
 
 


Y s
G s
GH s
R s
( )
( )
( )
( )


1 2
• Variação de parâmetros:
Por que Malha Fechada ???
• Rejeição à perturbações:
G(s)
R(s) Y(s)
Malha Aberta
P(s)
+
+
perturbação
R(s) +
-
G(s)
H(s)
E(s)
B(s)
Y(s) Y(s)
R(s) E(s)
1 G(s)
-H(s)
P(s)
+
+
1
P(s)
Y s
P s
( )
( )
 1
Y s
P s GH s
( )
( ) ( )


1
1
Por que Malha Fechada ???
• Desvantagens:
– Aumento da complexidade do sistema;
– O ganho de um sistema de malha fechada é
reduzido por um fator 1/1+GH;
– Perda da estabilidade: um sistema que em
malha aberta é estável, pode não ser sempre
estável em malha fechada.
Problemas de Controle em
Engenharia
Sistema
Modelo
Matemático
Análise
Projeto
Implementação
Baseado nas especificações
de desempenho
Histórico
• 1769  Máquina a vapor de James Watt;
• 1868  J. C. Maxwell desenvolve o modelo matemático para o
controle de uma máquina a vapor;
• 1913  Henry Ford desenvolve uma máquina de montagem utilizada
na produção de automóveis;
• 1927  H. W. Bode analisa amplificadores realimentados;
• 1932  H. Nyquist desenvolve um método para analisar a estabilidade
de sistemas;
• 1952  Controle numérico desenvolvido pelo MIT;
• 1954  George Devol desenvolve o primeiro projeto industrial
robotizado;
• 1970  Teoria de variáveis de estado e controle ótimo é desenvolvida;
• 1980  Projeto de sistemas de controle robusto é desenvolvido;
• 1990  Automação da manufatura é difundida;
• 1995  Controle automático é largamente utilizado em automóveis.
Sistemas robustos são utilizados na manufatura.
TRANSFORMADA DE
LAPLACE
Transformada de Laplace
• Definição
Seja
f(t)  função do tempo t com f(t)= 0 p/ t < 0
s  variável complexa
L  operador de Laplace
F(s)  transformada de Laplace de f(t)



0
st
dt
e
)
t
(
f
=
F(s)
=
[f(t)]
L
Transformada de Laplace
• Transformada de Algumas Funções
Particulares:
– Degrau Unitário:
f t
( ) 




0 t < 0
1 t 0
F s
s
( ) 
1
– Rampa Unitária:
f t
( ) 




0 t < 0
t t 0
F s
s
( ) 
1
2
Transformada de Laplace
– Função Exponencial:
– Senóide:
f t e at
( )   
t 0 F s
s a
( ) 

1
f t t t
( ) sen
 
 0 F s
s
( ) 



2 2
Transformada de Laplace
– Pulso Unitário
f (t)
p



t
– Impulso Unitário
f (t)
i
t
(t)
( ) lim ( )
t fp t


 0
Fp s st
s
e s
( )     


 



1
0
1
1




e dt
Fi s Fp s
d
d
e s
d
d
s
s e s
s
( ) lim ( ) lim
( )
lim




 


 






 



 

0 0
1
0
1
Propriedades Tranf. Laplace
– Homogeneidade:
– Translação no tempo
L L
[ ( )] [ ( )] ( )
af t a f t aF s
 
– Aditividade L L L
[ ( ) ( )] [ ( )] [ ( )] ( ) ( )
f t f t f t f t F s F s
1 2 1 2 1 2
    
L [ ( )] ( )
f t a s
  e-as F
– Mudança de escala
de tempo
L [ ( )
f F s
1

 





 
– Translação no
domínio s
L eatf t F s a
( ) ( )






 
Propriedades Tranf. Laplace
– Diferenciação:
– Valor Final:
L
dn
dtn
f t snF s sn f sn f t f
n
( ) ( ) ( ) ( ) ( )
( )








    

 

1 0 2 0
1
...
lim ( ) lim ( )
t
f t
s
sF s


0
– Valor Inicial: lim ( ) lim ( )
t
f t
s
sF s



0
– Integração:
 
L f t dt
F s
s
f
s
( )
( ) ( )
  
1 0 f f t dt
t
 


1 0
0
( ) ( )
Propriedades Tranf. Laplace
– Integral da Convolução:
L f t f d
t
F s F s
1 2
0
1 2
( ) ( ) ( ) ( )










   
Transformada Inversa de Laplace
– Expansão em Frações Parciais:
F s F s F s Fn s
( ) ( ) ( ) ( )
   
1 2 ...
L     
1
1 2
[ ( )] ( ) ( ) ( )
F s f t f t fn t
...
– Em controle:
F s
N s
D s
N s
s p s p s pn
( )
( )
( )
( )
( )( ) ( )
 
  
1 2 ...
F(s)
de
pólos
...
p2
1 
)
s
(
p
,
),
s
(
),
s
(
p n
Raízes de N(s) são os zeros do sistema
Transformada Inversa de Laplace
– Pólos reais e diferentes:
– Pólo com multiplicidade r:
F s
C
s p
C
s p
Ck
s pk
Cn
s pn
( ) 



 

 

1
1
2
2
... ...
L 






 
1 Ck
s pk
Ck
p t
k
e  
Ck s pk F s s pk
  
( ) ( )
       
Ckr
s pk
r
Ck r
s pk
r
Ck r i
s pk
r i
Ck
s pk



 


 


( ) ( )
1
1
1
... +
 
Ck r i
i
di
dsi
s pk
rF s
s pk
( )
!
( ) , , ,
  


















1
0 1
i ... r -1
 
L  
 










 
1
1
Ck r i
s pk
r i
Ck r i
r i
p t
k
( ) ( )
( )!
tr-i-1 e
Transformada Inversa de Laplace
– Pólos complexos conjugados:
pk j d
pk j d
 
  
 
 
1
Ck
s pk
Ck
s pk

 
 
1
1
L 

 
 





   
1 1
1
2 90
Ck
s pk
Ck
s pk
Ck
t
dt Ck
o
e 
sen( )
 
Ck s pk F s s p Ck
k
   
( ) ( ) Ck
Tabela de
Transformadas
Exercício
• Resolver a equação diferencial:
0 1 2 3 4 5 6 7 8 9 10
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Step Response
Time (sec)
Amplitude
3
x
5
x
2
x 

 

 0
)
0
(
x
0
)
0
(
x 
 
t
2
cos
e
5
3
t
2
sen
e
10
3
5
3
)
t
(
x t
t 




Funções Matlab
[r,p,k]= residue(num,den)
Ex:
G(s)= 2s3+5s2+3s+6/(s3+6s2+11s+6)
r=[-6 -4 3]´ p=[-3 -2 -1]´ k=2
G(s)=-6/(s+3) + -4/(s+2) + 3/(s+1) + 2
Função de Transferência
• Considere um sistema linear, invariante no tempo,
a parâmetros concentrados descrito pela seguinte
equação diferencial:
u
b
u
b
...
u
b
u
b
y
a
y
a
...
y
a
y n
1
n
)
2
n
(
2
)
1
n
(
1
n
1
n
)
1
n
(
1
)
n
(








 






• Aplicando a transformada de Laplace em ambos
os lados da equação acima, com condições iniciais
nulas:
    )
s
(
U
b
s
b
...
s
b
s
b
)
s
(
Y
a
s
a
...
s
a
s n
1
n
2
n
2
1
n
1
n
1
n
1
n
1
n








 




 
  )
s
(
G
a
s
a
...
s
a
s
b
s
b
...
s
b
s
b
)
s
(
U
)
s
(
Y
n
1
n
1
n
1
n
n
1
n
2
n
2
1
n
1















Função de Transferência
• A Função de Transferência pode ser escrita como:
    
     )
s
(
D
)
s
(
N
K
p
s
...
p
s
p
s
z
s
...
z
s
z
s
K
)
s
(
G
n
2
1
1
n
2
1







 
em que
z z zn
1 2 1
, , ,
... 
p p pn
1 2
, , ,
...
são os zeros do sistema
são os pólos do sistema
G s
( )  0
G s
( )  
Re
Im
pólos zero
Plano complexo s
Função de Transferência
• É a razão entre a Transformada de Laplace da
entrada e a Transformada de Laplace da saída,
quando as condições iniciais são nulas;
• Para um sistema linear, invariante no tempo e
causal, é suficiente para descrevê-lo;
• A transformada inversa da função de transferência
é a resposta ao impulso do sistema;
• A FT é um modelo matemático que constitui um
método operacional para expressar a equação
diferencial que relaciona a variável de entrada à
variável de saída.
Função de Transferência
• Em um sistema fisicamente realizável (causal) o
número de pólos é maior ou igual ao de zeros;
• A FT é uma propriedade inerente ao sistema,
independentemente da magnitude e da natureza da
entrada;
• A FT contém as unidades necessárias para relacionar a
entrada à saída; entretanto, não fornece nenhuma
informação relativa à estrutura física do sistema;
• Se a FT for conhecida, a saída pode ser estudada para
diferentes entradas;
• Se a FT não for conhecida, ela pode ser determinada
experimentalmente com o auxílio de entradas
conhecidas e do estudo das respectivas respostas do
sistema;
Exemplo
2
s
1
U(s)
)
( 2



  t
e
t
u
3
2
4
)
(
)
(
2




s
s
s
U
s
Y
)
2
)(
3
)(
1
(
4
)
2
)(
3
2
(
4
)
( 2










s
s
s
s
s
s
s
Y
t
2
t
3
t
e
3
4
e
e
3
1
)
t
(
y 






Se
Dado
)
2
(
)
3
(
)
1
(
)
2
)(
3
)(
1
(
4










s
c
s
b
s
a
s
s
s
Modelagem de Sistemas Dinâmicos
• Obtenção das equações diferenciais que
descrevem o comportamento do sistema;
• Difícil obtenção do modelo completo do sistema;
• Modelo adequado depende do propósito:
simulação, controle, etc;
• Métodos baseados em leis físicas;
• Métodos por identificação;
• Modelos lineares e não-lineares;
• Linearização em ponto de operação;
• Para sistemas físicos: variáveis generalizadas.
Variáveis Generalizadas
• Variáveis generalizadas de um dado sistema são aquelas
cujo produto é igual (ou proporcional) a potência (energia
no tempo) entrando ou saindo do sistema;
• Neste par de variáveis generalizadas, identificamos dois
tipos de variáveis, que dependem da forma com que elas
agem nos elementos dos sistemas: as variáveis ATRAVÉS
(corrente, força) e as variáveis ENTRE (tensão,
velocidade);
• A designação também está relacionada ao tipo de
instrumento requerido para medir cada variável em um
sistema físico: medidores de força e corrente são usados
em série para medir o que atravessa o elemento, e
medidores de velocidade e tensão são conectados em
paralelo para medir a diferença entre o elemento;
Variáveis Generalizadas
• A tabela abaixo mostra as variáveis generalizadas para
diferentes sistemas físicos:
Sistema Variável Através Variável Entre
Elétrico Corrente, i Tensão, v
Mecânico Força, F Velocidade, v
Rotacional Torque,  Velocidade angular, 
Fluido Vazão, Q Pressão, P
Térmico Fluxo de Calor, q Temperatura, T
Variáveis Generalizadas
• Sob o enfoque energético e usando a definição de
variáveis generalizadas, podemos classificar os
elementos de sistemas em três tipos:
– Fontes de Energia:
• Esforço;
• Fluxo;
– Armazenadores de Energia:
• Esforço;
• Fluxo;
– Dissipadores de Energia.
Variáveis Generalizadas
• A tabela a seguir mostra os elementos de diferentes
sistemas físicos, separando-os em armazenador de fluxo,
armazenador de esforço e dissipadores:
Sistema Armazenador de
Fluxo
Armazenador de
Esforço
Dissipador
Elétrico Capacitor
i C
dv
dt
 21
Indutor
v L
di
dt
21 
Resistor
i
v
R
 21
Mecânico Massa
F M
dv
dt
 2
Mola
v
K
dF
dt
21
1

Atrito Viscoso
F Bv
 21
Rotacional Inércia


 J
d
dt
2
Mola Rot.


21
1

K
d
dt
r
Atrito Viscoso Rot.
 
 Br 21
Fluido Reservatório
Q C
dP
dt
f
 21
Inércia fluida
P I
dQ
dt
f
21 
Resistência fluida
Q
R
P
f

1
21
Térmico Corpo
q C
dT
dt
t
 2
-- Resistência Térmica
q
R
T
f

1
21
Variáveis Generalizadas
• Interconexão de elementos de sistemas
Restrição de compatibilidade de esforço:
ek
k
n


 0
1
Restrição de continuidade de fluxo:
fk
k
n


 0
1
Exemplo
0
z
k
)
z
-
z
(
b
z
b
z
m
f
z
k
)
z
-
z
(
b
z
b
z
m
z
m
f
z
m
f
z
f
z
b
f
)
z
-
z
(
b
f
)
z
-
z
(
b
f
z
k
f
z
k
f
2
2
1
2
3
2
2
2
1
1
1
2
1
3
1
1
1
1
2
2
m2
1
1
1
m
2
b2
1
1
b1
1
2
3
b3
2
1
3
3
b
2
2
k2
1
1
1
k



































Estabilidade
• A estabilidade de um sistema linear de malha
fechada é determinada pela localização de seus
pólos de malha fechada no plano s;
• Se qualquer um destes pólos estiver no semiplano
direito do plano s, então, com o decorrer do
tempo, eles darão origem ao modo dominante e a
resposta transitória aumentará monotonicamente
ou oscilará com amplitude crescente;
• Existem critérios para a avaliação da estabilidade
sem necessitar do cálculo dos pólos de malha
fechada (critério de Routh).
Estabilidade
• Critério BIBO (Bounded Input, Bounded
Output):
– “Um sistema qualquer é estável se e somente se
para toda e qualquer entrada limitada, a saída
correspondente também for limitada”;
– “Um sistema linear a malha fechada, invariante
no tempo, a parâmetros concentrados é estável
se e somente se todos os pólos de sua função de
transferência de malha fechada estão no semi-
plano esquerdo aberto do plano complexo s”
Estabilidade
• Critério de Routh
)
s
(
D
)
s
(
N
a
s
a
...
s
a
s
a
b
s
b
...
s
b
s
b
)
s
(
R
)
s
(
Y
n
1
n
1
n
1
n
0
m
1
m
1
m
1
m
0














sn
a3
b2 b3 b4
c2 c3
d2 d3
:
e1 e2
f1
g1
sn
sn
sn
sn
s
s
s
a a a a
a a a
b
c c
d d




1
2
3
4
2
1
0
0 2 4 6
1 5 7
1
1 4
1 4
:
...
...
...
...
:
1
3
0
2
1
1
a
a
a
a
a
b


1
5
0
4
1
2
a
a
a
a
a
b


1
7
0
6
1
3
a
a
a
a
a
b


1
2
1
3
1
1
b
b
a
a
b
c


1
3
1
5
1
2
b
b
a
a
b
c


1
4
1
7
1
3
b
b
a
a
b
c


1
2
1
2
1
1
c
c
b
b
c
d


1
3
1
3
1
2
c
c
b
b
c
d


 O número de raízes da equação característica com
partes real positiva é igual ao número de mudanças
de sinal dos coeficientes da 1ª coluna da tabela
Comportamento Dinâmico
Exercícios
• Analisar a estabilidade do sistema
G(s)= K/(s(s2+s+1)(s+2)); H(s)=1
1+G(s)H(s)=s4+3s3+3s2+2s+K
0 < K < 14/9
Funções Matlab
sys= tf(Numg,Deng);
sysr= tf(Numh,Denh);
sysmf= feedback(sys,sysr);
roots(a)
DESEMPENHO
TRANSITÓRIO DE
SISTEMAS
Transitório de Sistemas de 1a
Ordem
ac t bc t dr t
( ) ( ) ( )

  a  0
a
b
T
 (constante de tempo do sistema )
d
b
K
 (ganho do sistema )
Tc t c t Kr t
( ) ( ) ( )

 
C s
R s
G s
K
Ts
( )
( )
( )
 
1
K
1
sT
R(s) C(s)
+
-
E(s)
G s
Ts
( ) 

1
1
para K=1
Transitório de Sistemas de 1a
Ordem
• Resposta ao Degrau Unitário
C s
sT s s s T
( )
/


 

1
1
1 1 1
1
c t e t T
( ) /
  
1
Transitório de Sistemas de 1a
Ordem
• Resposta a Rampa Unitária
C s
s Ts s
T
s
T
Ts
( ) 

  

1 1
1
1
1
2 2
2
c t t T Te t T
( ) /
   
e(t r t c(t T e t T
) ( ) ) /
    


 


1 e T
( )
 
Exemplo Sistema de 1a Ordem
qs
h
qe
v2
v1
Transitório de Sistemas de 2a
Ordem
ac t bc t dc t er t
( ) ( ) ( ) ( )
 
  
Definindo:
b
a
d
a
e
a
K
n n
  
2 2
 
; ;
c t c t c t Kr t
n n
( ) ( ) ( ) ( )
 
  
2 2
 
C s
R s
K
s s
n n
( )
( )

 
2 2
2 
K
R(s) C(s)
+
-
E(s) 1
s(s+2 )
n
Transitório de Sistemas de 2a
Ordem
Considerando K=1
C s
R s s s
n n
( )
( )

 
1
2
2 2
 
s s s
n n n n
2 2 2
2 0 1
       
    
Pólos do sistema:
Transitório de Sistemas de 2a
Ordem
Três casos:
1) Caso SUBAMORTECIDO O sistema tem dois pólos complexos
conjugados e apresenta oscilações
0 1
 

c(t
e t
dt tg
n
) sen
 


  








1
1 2
1 1 2





n
d 

 2
1
 (freqüência natural amortecida)
Se =0 c t t
n
( ) cos
 
1 
Transitório de Sistemas de 2a
Ordem
2) Caso CRITICAMENTE AMORTECIDO
1


 
t
e
)
t
(
c n
t
n



 

1
1
3) Caso SOBREAMORTECIDO
1


c(t n e s t
s
e s t
s
)  












1
2 2 1 1 2
1 2


s n n
1
2 1 2
2 1
  





   






     
e s
Transitório de Sistemas de 2a
Ordem
Transitório de Sistemas de 2a
Ordem
0
2
4
6
8
10
0
0.5
1
0
0.5
1
1.5
2
t (s)
Gráfico Tridimensional das Curvas de Resposta ao Degrau Unitário

Resposta
Transitório de Sistemas de 2a
Ordem
• Especificações de resposta transitória
% overshoot
tempo de subida
tempo de estabilização
tempo de pico
d
r
t









 
2
1 1
tg
d
p
t








 




2
1
/
p e
100
(%)
M
n
s
4
t


n
s
3
t


(2%)
(5%)
Exemplo Sistema de 2a Ordem
• Sistema Massa/mola/atrito
Efeito de um Zero
Sistemas de Ordem Superior
 
   
 

 








 q
1
j
r
1
k
2
k
k
k
2
j
m
1
i
i
s
2
s
p
s
s
z
s
K
)
s
(
C
 
 
  















q
1
j
r
1
k
2
k
k
k
2
2
k
k
k
k
k
k
j
j
s
2
s
1
c
s
b
p
s
a
s
a
)
s
(
C
   


 



















r
1
k
2
k
k
t
k
r
1
k
2
k
k
t
k
q
1
j
t
p
j t
1
sen
e
c
t
1
cos
e
b
e
a
a
)
t
(
c k
k
k
k
j
• A Resposta é a soma de um certo número de curvas
exponenciais e curvas senoidais amortecidas
Pólos Dominantes e Dominados
• Se um sistema é estável, então os pólos que estão longe do eixo
j tem partes reais negativas de valor elevado, e os termos
exponenciais correspondentes a estes pólos decaem rapidamente
a zero;
• A dominância relativa de pólos de malha fechada é determinada
pela relação das partes reais dos pólos de malha fechada, bem
como pelos valores relativos dos resíduos calculados nos pólos
de malha fechada. O valor dos resíduos depende tanto dos pólos
quanto dos zeros de malha fechada;
• Se as relações entre as partes reais dos pólos excedem cinco e
não existem zeros na vizinhança, então os pólos de malha
fechada mais próximos do eixo j dominarão a resposta
transitória. Estes pólos são chamados de DOMINANTES e os
mais distantes do eixo j são chamados de DOMINADOS.
Pólos Dominantes e Dominados
Exemplo:
)
10
s
)(
2
s
)(
1
s
(
20
)
s
(
G




10
s
72
/
2
2
s
8
/
10
1
s
9
/
20
s
1
)
10
s
)(
2
s
)(
1
s
(
s
20
)
s
(
C











t
10
t
2
t
e
72
2
e
8
10
e
9
20
1
)
t
(
c 






Resposta ao Degrau:
Aproximação - s=0 em G(s) no pólo dominado
G s
s s s s
( )
( )( ) ( )(

  

 
20
1 2)(0 10
2
1 2)
2
s
1
1
s
2
s
1
)
2
s
)(
1
s
(
s
2
)
s
(
C







 t
2
t
e
e
2
1
)
t
(
c 




Resposta ao Degrau aproximada:
Pólos Dominantes e Dominados
Comparação (respostas exata e aproximada):
curva exata
curva aproximada
Efeitos das Não-Linearidades
• Todos os processos industriais reais são não-lineares;
• Um processo não-linear pode ser definido como aquele que
tem um ganho, uma constante de tempo ou uma taxa de
integração que não são constantes, mas dependentes das
entradas e saídas do processo;
• Para que o processo de nível do exemplo seja linear, a
constante de tempo e o ganho obtidos quando a abertura da
válvula muda de 20% para 25% devem ser os mesmos
obtidos quando a abertura da válvula muda de 60% para
65%, ou de 90% para 95%, etc;
• Vazão em um orifício com fluxo laminar é proporcional à
raiz quadrada do nível.
Efeitos de Não-Linearidades
• O comportamento não-linear pode originar-se em
qualquer das partes constituintes do sistema:
processo, atuador ou sensor;
• Se a não-linearidade for “suave” (diferenciável)
uma linearização pode ser feita;
• Caso contrário, o tratamento será mais difícil;
• Não-linearidades “duras” mais comuns:
– Saturação de atuadores;
– Zona morta (ex. atrito estático);
– Histerese (ex. engrenagens).
Algumas Não-Linearidades
saturação histerese
zona morta
Tempo Morto
• Presente em grande parte dos processos;
• Pode provocar problemas de instabilidade;
• Exemplo: sistema de nível
– Considerando como entrada a percentagem de abertura na válvula
v1, quando ocorre uma mudança na mesma, a vazão de entrada do
tanque só variará algum tempo depois, dependendo da distância da
válvula da entrada de líquido no tanque;
– Chamado também de atraso de transporte;
– Por exemplo, se a válvula está localizada a 20 metros da entrada do
tanque e a velocidade do líquido na tubulação for de 10 metros por
segundo, o tempo morto do processo será de 2 segundos.
Tempo Morto
• Função de Transferência: G(s)= e-sT
• Aproximação de Padé: aproxima o atraso por uma função
racional;
• Matlab: pade(Td,n). Ex: Td=1, n=3
   
    











48
Ts
8
Ts
2
Ts
1
48
Ts
8
Ts
2
Ts
1
e 3
2
3
2
Ts
Tempo Morto
• Aproximação de Padé n=1, 2, 3
Sistemas de Controle
Multivariável
CONTROLADOR PLANTA
SP
Variáveis Controladas
Perturbações
Variáveis
Manipuladas
Funções Matlab
t=0:0.005:5
step(num,den,t) resposta ao degrau
impulse(num,den) resposta ao impulso
lsim(num,den,r,t) resposta entrada arbit.
plot(t,y) traça a curva y x t
DESEMPENHO EM
REGIME
PERMANENTE
Desempenho em Regime
Permanente
• A análise do desempenho em regime
permanente de um sistema consiste no
estudo do comportamento da resposta do
sistema quando o tempo tende a infinito (ou
for muito grande);
• Desde que o sistema seja estável, o
desempenho em regime depende do tipo do
sistema (número de integradores – 1/s –
existentes em G(s)H(s).
Desempenho em Regime
Permanente
R(s) +
-
G(s)
H(s)
E (s)
B(s)
C(s)
a
 
 







 N
n
1
i
i
N
m
1
i
i
p
s
s
z
s
K
)
s
(
H
)
s
(
G
)
s
(
H
)
s
(
G
)
s
(
E
)
s
(
R
)
s
(
H
)
s
(
C
)
s
(
R
)
s
(
E a
a 


 )
s
(
R
)
s
(
H
)
s
(
G
1
1
)
s
(
Ea


Erro de Regime: )
s
(
sE
lim
)
t
(
e
lim
e a
0
s
a
t
ss





)
s
(
H
)
s
(
G
1
)
s
(
sR
lim
e
0
s
ss



Desempenho em Regime
Permanente
O erro atuante Ea(s) só coincide com o erro E(s) = R(s) - C(s)
quando H(s)= 1. De uma forma geral:
  )
s
(
R
)
s
(
H
)
s
(
G
1
)
s
(
G
)
s
(
H
)
s
(
G
1
)
s
(
C
)
s
(
R
)
s
(
E






Desempenho em Regime
Permanente
Para uma entrada do tipo degrau de magnitude A:
 
)
0
(
H
)(
0
(
G
1
A
)
s
(
H
)
s
(
G
1
s
/
A
s
lim
e
0
s
ss





Definindo a constante de erro de posição estático (Kp)
)
0
(
H
)
0
(
G
)
s
(
H
)
s
(
G
lim
K
0
s
P 


p
ss
K
1
A
e


O erro de regime permanente é dado por
Desempenho em Regime
Permanente
Para uma entrada do tipo rampa de inclinação A:
Definindo a constante de erro de velocidade estático (Kv)
O erro de regime permanente é dado por
 
)
s
(
H
)
s
(
sG
A
lim
)
s
(
H
)
s
(
sG
s
A
lim
)
s
(
H
)
s
(
G
1
s
/
A
s
lim
e
0
s
0
s
2
0
s
ss








)
s
(
H
)
s
(
sG
lim
K
0
s
v


v
ss
K
A
e 
Desempenho em Regime
Permanente
O erro de regime para uma entrada parábola é:
Definindo a constante de erro de aceleração estático (Ka)
O erro de regime permanente é dado por
r t At
( ) /
 2
2
 
)
s
(
H
)
s
(
G
s
A
lim
)
s
(
H
)
s
(
G
s
s
A
lim
)
s
(
H
)
s
(
G
1
s
/
A
s
lim
e 2
0
s
2
2
0
s
3
0
s
ss








)
s
(
H
)
s
(
G
s
lim
K 2
0
s
a


a
ss
K
A
e 
Desempenho em Regime
Permanente
Resumo:
p
K
1
A

A
Kv
A
Ka
Entrada Degrau
r(t)= A
Entrada Rampa
r(t)= At
Entrada Parábola
r(t)= At2/2
Tipo 0  
Tipo 1 0 
Tipo 2 0 0
Tipo 3 0 0 0
Exemplos - Desempenho em
Regime Permanente
Calcular erro de regime para:
(a) Calcular erro de regime para G(s)H(s)= 1/s(s+1)(s+2)
(b) Qual o erro mínimo para uma entrada rampa para o
sistema G(s)H(s)= K/(s(s+1)(s+2))
MÉTODO DO LUGAR
DAS RAÍZES
Método do Lugar Geométrico
das Raízes (Root Locus)
• Consiste no traçado dos pólos de malha
fechada de um sistema quando o seu ganho
(ou algum parâmetro) varia de zero a
infinito;
• É uma ferramenta gráfica poderosa para a
análise e síntese de sistemas.
Método do Lugar Geométrico
das Raízes (Root Locus)
• Idéia:
R(s) +
-
C(s)
s(s+4)
K
C s
R s
K
s s K
( )
( )

 
2 4
• Pólos de Malha Fechada (raízes da eq. característica)
s s K
2 4 0
  
s
K
K
p K
p K

  
   
   
   





4 16 4
2
2 4
1 2 4
2 2 4
K=0
K=0
K
K




Re
Im
-2
-4
LGR
LGR
 Como G(s)H(s) representa uma
quantidade complexa, a igualdade
acima precisa ser desmembrada
em duas equações.
 Estas equações fornecem as
seguintes condições para a
localização dos pólos no plano s:
G(s)
R(s) C(s)
+
-
)
(
)
(
1
)
(
)
(
s
H
s
G
s
G
s
GMF


1
)
(
)
( 

s
H
s
G
 Condição de Módulo:
 Condição de Ângulo:
1
G(s)H(s) 
0,1,...
=
);
1
2
(
180
G(s)H(s)
k
k 



p1
p2
z1
Ponto de
Teste
si
1
A
A
K.B
2
1
1

)
1
2
(
180
θ
θ o
1
2
1 



 k

Re
Im
Método do Lugar Geométrico
das Raízes (Root Locus)
Pólos de Malha Fechada  Raízes da Equação Característica
1 + G(s)H(s) = 0 G s H s
( ) ( )  1
G s H s G s H s k
( ) ( ) ( ) ( ) )
   
1 180(2 1
; k = 0,1,...
Re
Im

1
2
-2
-4
 
1
+ 2
= 180
o
A
B
O
K
OA OB
= 1
Método do Lugar Geométrico
das Raízes (Root Locus)
Regras para construção:
G s H s G s H s k
( ) ( ) ( ) ( ) ( )
   
1 180 2 1
; k = 0,1,...
 
 
G s H s
K s zi
i
m
sN s pj
j
n N
( ) ( ) 







1
1
G s H s z
i
m
N j
j
n N
i
( ) ( ) 

 


 

1
1
2
 
Regras LGR
Passo Regra
1- Escrever a equação característica tal que o parâmetro de interesse K
apareça como um multiplicador
1+ K P(s)=0
2- Fatorar P(s) em termos de n pólos e m zeros
   
1
1 1
0
 




 
K s zi
i
m
s pj
j
n
/
3- Localizar os pólos e zeros de P(s) no plano s X = pólos ; O = zeros
4- Localizar as partes do eixo real que fazem parte do LGR O LGR passa em todo ponto do eixo real a direita do qual existir um número
ímpar de pólos mais zeros
5- Determinar o número de ramos do LGR O número de ramos r é igual ao número de pólos de P(s) ( )
n m

6- O LGR é simétrico em relação ao eixo real ---
7- Os ramos do LGR que tendem para infinito são assintóticos a retas
centradas em CG e com ângulos i
   
CG
pj zi
n m

  


 ;
o
i
180 (2i 1)
; i 0,1,...,(n -m-1)
n -m

  
8- Determinar o ponto onde o LGR cruza com o eixo imaginário Utilizar o critério de estabilidade de Routh
9- Determinar o ponto de separação sobre o eixo real 1
K
P(s)
  ;
dK
0
ds

10- Determinar o ângulo de partida de pólos complexos ou de chegada a zeros
complexos
o
i i
P(s) 180 (2k 1) para s z ou s p
    
11- Determinar os lugares do LGR que satisfazem a condição de ângulo o
x
P(s) 180 (2k 1) para s
  
12- Determinar o parâmetro Kx para uma raiz específica sx P s s sx
( ) 
 Exemplo 1:
2. Fatorar o polinômio P(s) em
termos dos nP pólos e nZ zeros.
1. Escrever o polinômio
característico do modo que o
parâmetro de interesse (K)
apareça claramente:
K
R(s) C(s)
+
-
s + 2
s ( s + 4 )
 Sistema com 2 pólos e 1 zero reais:
4s
s
2
s
P(s)
4s
s
2
s
K
1
G(s)H(s)
1 2
2









 
4
s
s
2
s
K
1
KP(s)
1
4s
s
2
s
K
1
G(s)H(s)
1 2












 Exemplo 1:
X = Pólos e O = Zeros.
O LGR começa nos pólos e termina nos zeros.
3. Assinalar os pólos e zeros de
malha aberta no plano s com os
símbolos correspondentes:
K
R(s) C(s)
+
-
s + 2
s ( s + 4 )
Lugar Geométrico das Raízes
(LGR)
Re
-5 -4 -3 -2 -1
-0.2
-0.1
0
0.1
0.2
Im
 Exemplo 1:
O LGR se situa à esquerda de um número
ímpar de pólos e zeros.
4. Assinalar os segmentos do eixo
real que são LGR:
K
R(s) C(s)
+
-
s + 2
s ( s + 4 )
Lugar Geométrico das Raízes
(LGR)
Re
-5 -4 -3 -2 -1
-0.2
-0.1
0
0.1
0.2
Im
Lugar Geométrico das Raízes
(LGR) Im
Total de
1 pólos e zeros
(nº Impar)
Total de
2 pólos e zeros
(nº Par)
Total de
3 pólos e zeros
(nº Impar)
R(s) C(s)
+
-
K
( s + 4 )
( s + 2 )
(
( s + 4 )
s + 1 )
s
 Exemplo 2:
2. Fatorar o polinômio P(s) em
termos dos nP pólos e nZ zeros.
1. Escrever o polinômio
característico do modo que o
parâmetro de interesse (K)
apareça claramente:
 Sistema com 4 pólos e 1 zero, todos reais:
s
32
s
32
s
10
s
1
s
K
1
KP(s)
1 2
3
4







2
)
4
s
)(
2
s
(
s
)
1
s
(
P(s)




R(s) C(s)
+
-
K
( s + 4 )
( s + 2 )
(
( s + 4 )
s + 1 )
s
LGR
–
Construção
 Exemplo 2:
X = Pólos e O = Zeros.
O LGR começa nos pólos e termina nos zeros.
3. Assinalar os pólos e zeros de
malha aberta no plano s com os
símbolos correspondentes:
Lugar Geométrico das Raízes
(LGR)
Re
-5 -4 -3 -2 -1
-0.2
-0.1
0
0.1
0.2
Im
Pólo com
multiplicidade 2
O LGR se situa à esquerda de um número
ímpar de pólos e zeros.
4. Assinalar os segmentos do eixo
real que são LGR:
Total de
1 pólos e zeros
(nº Impar)
Total de
2 pólos e zeros
(nº Par)
Total de
3 pólos e zeros
(nº Impar)
Total de
5 pólos e zeros
(nº Impar)
Trecho entre
2 pólos
LS = nP = 4
5. Determinar o nº de lugares
separados,
LS = nP, quando np ≥ nZ;
6. O LGR é Simétrico em Relação
ao eixo real.
 Exemplo 2:
z
P
i
j
A
n
n
z
p





  )
(
)
(

 
 
1
,...,
2
,
1
,
0
:
com
;
180
1
2 o






z
P
z
P
A
n
n
q
n
n
q

7. (nP - nZ) seguimentos de um
LGR prosseguem em direção
aos zeros infinitos ao longo de
assíntotas centralizadas em A
e com ângulos A.
3
3
9
1
4
)
1
(
)
4
(
2
)
2
(











A

 
 
 
 
 




























2
;
300
180
3
1
2
.
2
1
;
180
180
3
1
1
.
2
0
;
60
180
3
1
0
.
2
2
1
180
1
4
1
2
o
o
o
o
o
o
o
q
q
q
n
n
q
A
A
A
z
P
A




3


A










2
;
300
1
;
180
0
;
60
o
o
o
q
q
q
A

Lugar Geométrico das Raízes
(LGR)
Re
-5 -4 -3 -2 -1
-0.2
-0.1
0
0.1
0.2
Im
60º
180º
300º
A
8. Determinar o ponto de saída
sobre o eixo real (se existir).
1º Fazer K = p(s);
2º Determinar as raízes de:
0
ds
dp(s)

 2
2
3
4
2
3
4
2
3
4
1
s
32
s
64
s
62
s
24
3s
ds
)
s
(
dp
1
s
s
32
s
32
s
10
s
K
)
s
(
p
s
32
s
32
s
10
s
1
s
K
1
KP(s)
1

























5994
,
2
s
0
ds
)
s
(
dp




dp(s)
ds
= 0  s = -2,5994
(Pto. de saída sobre Re)
 Exemplo 3:
2. Fatorar o polinômio P(s) em
termos dos nP pólos e nZ zeros.
1. Escrever o polinômio
característico do modo que o
parâmetro de interesse (K)
apareça claramente:
 Sistema com 2 pólos reais e 2 pólos complexos:
R(s) C(s)
+
-
K
( s + 8s + 32 )
s
2
1
( s + 4 )
s
128
s
64
s
12
s
1
K
1
KP(s)
1 2
3
4






)
4
4
s
)(
4
4
s
)(
4
s
(
s
1
P(s)
i
i 





 Exemplo 3:
R(s) C(s)
+
-
K
( s + 8s + 32 )
s
2
1
( s + 4 )
X = Pólos e O = Zeros.
O LGR começa nos pólos e termina nos zeros.
3. Assinalar os pólos e zeros de
malha aberta no plano s com os
símbolos correspondentes:
O LGR se situa à esquerda de um número
ímpar de pólos e zeros.
4. Assinalar os segmentos do eixo
real que são LGR:
LS = nP = 4
5. Determinar o nº de lugares
separados,
LS = nP, quando np ≥ nZ;
6. O LGR é Simétrico em Relação
ao eixo real.
-10
-5
5
10
-10 -8 -6 -4 -2 0 2
Re
Im
Total de
1 pólos e zeros
(nº Impar)
Total de
2 pólos e zeros
(nº Par)
 Exemplo 3:
-10
-5
5
10
-10 -8 -6 -4 -2 0 2
Re
Im
z
P
i
j
A
n
n
z
p





  )
(
)
(

 
 
1
,...,
2
,
1
,
0
:
com
;
180
1
2 o






z
P
z
P
A
n
n
q
n
n
q

7. (nP - nZ) seguimentos de um
LGR prosseguem em direção
aos zeros infinitos ao longo de
assíntotas centralizadas em A
e com ângulos A.
3


A
















3
;
315
2
;
225
1
;
135
0
;
45
o
o
o
o
q
q
q
q
A
A
A
A




 
  




















3
;
315
2
;
225
1
;
135
0
;
45
3
1
180
4
1
2
o
o
o
o
o
q
q
q
q
n
n
q
A
A
A
A
z
P
A





3
4
12
4
)
4
(
)
4
(
)
4
(
)
0
(











A

-3

A
225º 45º
315º
135º
8. Determinar o ponto de saída
sobre o eixo real (se existir).
1º Fazer K = p(s);
2º Determinar as raízes de:
0
ds
dp(s)

128
-
s
128
s
36
s
4
ds
)
s
(
dp
s
128
s
64
s
12
s
K
)
s
(
p
s
128
s
64
s
12
s
1
K
1
KP(s)
1
2
3
2
3
4
2
3
4
































5767
,
1
2.55
3.71
2.55
+
3.71
s
0
ds
)
s
(
dp
i
i
5767
,
1
s
0
ds
)
s
(
dp




-4 -3 -2 -1 0 s
p(s)
20
40
60
80
(-1,5767; 83,5704)
9. Utilizando o critério de Routh-
Hurwirtz, determinar o ponto no
qual o eixo real é cruzado (se
isso ocorrer).
 Exemplo 3:
O polinômio característico é:
0
K
s
128
s
64
s
12
s 2
3
4





0
89
,
568
s
33
,
53 2


33
,
53
12
128
)
64
(
12
b1 


K
2250
,
0
128
b
)
K
(
12
)
128
(
b
c
1
1
1 



A partir do critério de Routh-
Hurwirtz, determinamos o polinômio
auxiliar:
89
,
568
0,23
128
K 

K
s0
c1
s1
K
b1
s2
128
12
s3
K
64
1
s4
cujo as raízes determinam os pontos
onde o LGR cruza o eixo imaginário.
s1,2 = ± 3,27i
Logo, o limite de ganho para estabilidade é:
568,89
53,33
Os pontos onde o LGR cruza o eixo
imaginário são: s1,2 = ± 3,27i
-10
-5
5
10
-10 -8 -6 -4 -2 0 2
Re
Im
5767
,
1
s
0
ds
)
s
(
dp




s1,2 = ± 3,2660 i
R(s) C(s)
+
-
K
( s + 8s + 32 )
s
2
1
( s + 4 )
-10
-5
5
10
-10 -8 -6 -4 -2 0 2
Re
Im
90º
90º
135º
em s = pj ou zi. .
o
o
360
180
P(s) q



10. Usando a condição de ângulo,
determinar o ângulo de partida
para os pólos complexos.
 Exemplo 3:
o
o
o
o
o
1 225
)
135
90
90
(
180
θ 




1
o
o
o
o
1 180
135
90
90
θ 



1
Por Simetria
Funções Matlab
rlocus(num,den)
K=0:0.01:10
rlocus(num,den,K)
[K,r]= rlocfind(num,den)
Mais Exemplos
Exemplos (Root Locus)
Exemplos (Root Locus)
Exemplos (Root Locus)
Exemplos (Root Locus)
Exemplos (Root Locus)
Especificações
(a) ωn ≥ 1.8/tr
(b) ξ ≥ 0.6(1-Mp)
(c) σ ≥ 4.6/ts
(d) combinação
Projeto de Controladores via
LGR
• Para um sistema de 2ª ordem:
2
n
n
2
2
n
s
2
s
)
s
(
R
)
s
(
C






1
s 2
n
n 






Pólos:
M
(%)
Mp 
T
ts 

n
Região Viável para os pólos de malha fechada
Re
Im
( )
min
 = cos 
min
-1
Especificações:
Exemplo 1
r(t) +
-
c(t)
2
e(t)
2
G (s)
c
s
Dado:
Projetar um controlador Gc(s) para que: 4
K
e
%
20
M
;
s
4
t a
p
s 


0 1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
G(s)=2/s2
Gc(s)=(s+2.5)
sem controlador
com controlador PD
CONTROLADOR PD
Exemplo 2
H(s) =1 . Projetar um controlador para que o sistema tenha erro zero para
entrada rampa, sem alterar significativamente o transitório.
Dado: G s
s s
( )
( )


2
2
0 1 2 3 4 5 6 7 8 9 10
0
0.2
0.4
0.6
0.8
1
1.2
1.4
CONTROLADOR PI
G(s)=2/s(s+2)
Gc(s)=(s+0.01)/s
sem controlador
CONTROLE DE
PROCESSOS
INDUSTRIAIS
Controle de Processos
Industriais
Processo
Controlador
Sensor
Transdutor
Elemento final
de controle
Transmissor
SetPoint
Variável de
Processo
SP
PV
MV
Variável
Manipulada
temperatura
pressão
nível
vazão
tensão mecânica
deslocamento
tensão elétrica
impedância
elétrica
pneumática
hidráulica
Processos Industriais
• Sensor, Transmissor, Válvula de Controle:
campo (junto ao processo);
• Controlador: sala de controle ou campo;
• Equipamentos de controle: analógicos ou
digitais;
• Sistemas analógicos: sinais de ar
pressurizado (3 a 15 psi) ou sinais de
corrente/tensão (4-20 mA, 0-10 Vdc);
Controlador Industrial
• Modos de Operação: Manual ou
Automático;
• Ações de Controle: Direta ou Reversa;
Características de um
Controlador Industrial
• Indicar o valor da Variável de Processo (PV);
• Indicar o valor da saída do controlador, a Variável
Manipulada (MV);
• Indicar o Set Point (SP);
• Ter um chave para selecionar entre modo manual
ou automático;
• Ter uma forma de alterar o valor do SetPoint
quando o controlador está em automático;
• Ter uma forma de alterar MV quando o
controlador está em manual;
• Ter um modo de seleção entre ações direta e
reversa do controlador.
Controlador Industrial
Multi-Loop - Exemplo
• Na indústria, um controlador microprocessado é
chamado de Inteligente, possuindo diversas
funções que os antigos controladores analógicos
não possuíam;
• O controlador Single Loop é o instrumento
microprocessado que pode ser usado para
controlar uma única malha;
• O microprocessador pode ter qualquer função
configurável e por isso, um mesmo instrumento
pode funcionar como controlador convencional,
como controlador cascata, como controlador auto-
seletor ou como computador de vazão com
compensação de pressão e temperatura.
Controladores Inteligentes
• A configuração pode ser feita através de teclados
acoplados ao instrumento ou através de
programadores separados;
• A propriedade de auto-sintonia é disponível na
maioria dos controladores Single Loop, exceto nos
de baixo custo;
• Os controladores Single Loop possuem ainda
capacidade de auto/manual, ponto de ajuste
múltiplo, auto-diagnose e memória;
• São construídos de conformidade com normas
para serem facilmente incorporados e acionados
por sistemas SDCD;
Controladores Inteligentes
• Os controladores Multi Loop podem
controlar várias malhas independentes;
• Tem um custo mais baixo por malha de
controle;
• Possuem maior facilidade de comunicação
entre as malhas, que é feita via software;
• Tem a desvantagem de haver um
comprometimento de todas as malhas em
caso de defeito na CPU;
Controladores Inteligentes
• Controlador Multi Loop é capaz de
controlar simultaneamente até 4 malhas de
controle, com até 8 blocos PID e mais de
120 blocos de controle avançado;
• A sua programação pode ser feita através de
um módulo programador ou por um
software instalado em um PC ou
compatível, proporcionando uma interface
gráfica de fácil utilização;
Controlador CD-600 Smar
• Possui um modo de operação self-tuning (auto-
ajustável), em que os parâmetros do PID da malha
escolhida se ajustarão automaticamente, mantendo
a sintonia da malha, mesmo sob diferentes
condições de operação;
• Possui 8 entradas analógicas, 4 entradas digitais, 8
saídas analógicas e 8 saídas digitais;
• Possuem uma estação de Backup incorporada para
ambas as saídas analógicas e digitais;
• É integrável com sistemas supervisórios e
distribuídos.
Controlador CD-600 Smar
INSTRUMENTAÇÃO
INDUSTRIAL
Introdução
• Instrumentação trata de instrumentos industriais,
que são utilizados para medir as variáveis de
processo:
– Vazão;
– Pressão;
– Temperatura;
– Nível, etc.
• Cada instrumento é identificado por um TAG:
– Fluxogramas de processo e de engenharia;
– Desenhos de detalhamento;
– Painéis sinópticos.
TAGs
TAGs
TAGs
Fluxograma
Simbologia de Instrumentos
Simbologia de Instrumentos
Linhas de Instrumentos
Balões de Instrumentos
Balões de Instrumentos
Malha de controle de pressão
PT
211
½"
0-300 #
PIC
211
S.P.
C-#2
(PI)
PAH
dp/dt
AO-21
AI-17
PY
211
AS
AS P
PCV
211
FC
TRANSMISSORES
INTELIGENTES
• Evolução dos Transmissores
– pelas exigências dos usuários por melhor desempenho e
custo reduzido;
– pelos desenvolvimentos que ocorreram nas tecnologias
adjacentes, microeletrônica, ciência dos materiais e
tecnologias de comunicação.
• Os microprocessadores, se tornaram:
– Baratos;
– Pequenos;
– Baixo consumo;
– Fácil manutenção (auto-testável);
• Nos anos 1980s, surgem instrumentos
microprocessados, chamados de “inteligentes”.
Evolução
Evolução
• O microprocessador é associado a circuitos
adicionais de I/O e outros periféricos para formar
um controlador, conceitualmente equivalente a
um computador digital dentro do instrumento.
• Logo, os transmissores inteligentes possuem um
pequeno computador em seu interior que
geralmente lhe dá a habilidade de fazer, entre
várias outras, duas coisas principais:
– modificar sua saída para compensar os efeitos de erros;
– se comunicar (enviar dados e ser interrogado) com
outros dispositivos.
Evolução dos Transmissores
• É interessante destacar duas denominações
encontradas na literatura, que são parecidas, mas
possuem uma importante diferença;
– Costuma-se chamar de “Transmissor smart” o
transmissor que possui as características de corrigir os
erros de não linearidade do sensor primário, através
de memória e sensores auxiliares;
– Costuma-se denominar “Transmissor inteligente” o
transmissor que além de possuir as características
smart, armazene a informação referente ao
transmissor em si (seus dados de aplicação e sua
localização) e gerencie um sistema de comunicação
que possibilite uma comunicação de duas vias.
Memória
Micro
processador
Conversor
D/A
Conversor
A/D
4 a 20 mA
1o sensor
2o sensor
(opcional)
Componentes de um transmissor smart
Transmissor Smart
Transmissor Inteligente
Memória
Micro
processador
Conversor
D/A
Conversor
A/D
4 a 20 mA
1o sensor
2o sensor
(opcional)
Sistema
Comunicação
Componentes de um transmissor inteligente:
• Transmissor inteligente é um transmissor em que
as funções de um sistema microprocessador são
compartilhadas entre:
– derivar o sinal de medição primário,
– armazenar a informação referente ao transmissor
em si, seus dados de aplicação e sua localização e
– gerenciar um sistema de comunicação que possibilite
uma comunicação de duas vias (transmissor para
receptor e do receptor para o transmissor),
superposta sobre o mesmo circuito que transporta o
sinal de medição, a comunicação sendo entre o
transmissor e qualquer unidade de interface ligada
em qualquer ponto de acesso na malha de medição
ou na sala de controle.
Transmissores Inteligentes
• Um transmissor inteligente pode ter sua faixa de
calibração facilmente alterada através de
comandos de reprogramação em vez de ter ajustes
mecânicos locais;
• O instrumento microprocessado pode fazer várias
medições simultâneas e fazer computações
matemáticas complexas destes sinais, para
compensar, linearizar e filtrar os resultados finais.
A medição é indireta, porém ela parece direta para
o operador;
• É possível selecionar automaticamente a unidade
mais adequada para a variável medida.
Transmissores Inteligentes
Evolução dos Transmissores
• Para a transmissão digital dos sinais, no início foi
desenvolvido um protocolo que aproveitava a
própria cablagem já existente, fazendo transitar
sinais digitais sobre sinais analógicos 4-20 mA;
• Este protocolo (HART) não foi mais que um
paliativo, embora permaneça até hoje;
• Depois surgiram uma profusão de padrões e
protocolos que pretendiam ser o único e melhor
barramento de campo. O tempo e o mercado
acabaram por depurar o conceito e a selecionar os
mais aptos.
Protocolo HART
• O HART (Highway Addressable Remote Transducer)
foi criado em 1980 e possibilita o uso de instrumentos
inteligentes em cima dos cabos 4-20 mA tradicionais;
• O sinal Hart é modulado em FSK (Frequency Shift
Key) e é sobreposto ao sinal analógico de 4-20 mA;
Para transmitir 1 é utilizado um sinal de 1 mA pico a
pico na freqüência de 1200 Hz e para transmitir 0 a
freqüência de 2400 Hz é utilizada;
• A comunicação é bidirecional.
Protocolo HART
Protocolo HART
• Este protocolo permite que além do valor da variável
medida, outros valores significativos sejam
transmitidos, como parâmetros para o instrumento,
dados de configuração do dispositivo, dados de
calibração e diagnóstico;
• O sinal FSK é contínuo em fase, não impondo
nenhuma interferência sobre o sinal analógico.
Protocolo HART
• Como o mestre e os instrumentos conseguem
conversar através do sinal digital sobreposto, é
possível ligá-los em rede.
LD 301 - Smar
LD 301 - Smar
• O sensor de pressão utilizado pelos transmissores inteligentes de
pressão série LD301, é do tipo capacitivo (célula capacitiva).
Onde:
P1 e P2 são pressões aplicadas
nas câmaras H e L.
CH = capacitância medida entre a
placa fixa do lado de P1 e o
diafragma sensor.
CL = capacitância medida entre a
placa fixa do lado de P2 e o
diafragma sensor.
d = distância entre as placas fixas
de CH e CL.
∆d = deflexão sofrida pelo
diafragma sensor devido à
aplicação da pressão
diferencial DP = P1 - P2.
LD 301 – Display
LD 301 – Display (Exemplo)
Configuradores
• A Smar desenvolveu dois tipos de Configuradores para os seus
equipamentos HART : Configurador HT2 (antigo) e Configurador HPC301
(atual).
Configuradores
• Através dos configuradores HART , o firmware do LD301 permite que os
seguintes recursos de configuração possam ser acessados:
• Identificação e Dados de Fabricação do Transmissor;
• Trim da Variável Primária – Pressão;
• Trim de Corrente da Variável Primária;
• Ajuste do Transmissor à Faixa de Trabalho;
• Seleção da Unidade de Engenharia;
• Função de Transferência para Medição de Vazão;
• Tabela de Linearização;
• Configuração do Totalizador;
• Configuração do Controlador PID e Tabela de Caracterização da MV%;
• Configuração do Equipamento;
• Manutenção do Equipamento.
• As operações que ocorrem entre o configurador e o transmissor não
interrompem a medição do sinal de pressão e não perturbam o sinal de saída. O
configurador pode ser conectado no mesmo cabo do sinal de 4-20 mA até 2000
metros de distância do transmissor.
Programação – Ajuste Local
O transmissor tem sob a placa de
identificação dois orifícios, que
permitem acionar as duas chaves
magnéticas da placa principal com a
introdução do cabo da chave de
fenda imantada.
É através das ações S e Z que se
percorre a árvore de programação
e se altera os parâmetros.
Programação – Ajuste Local
Ajuste Local Completo
O transmissor deve estar com o display conectado para que esta função
seja habilitada. As funções disponibilizadas para o ajuste local são:
• Corrente Constante;
• Ajuste da Tabela de Pontos;
• Unidade de Engenharia;
• Limites de Segurança;
• Trim de Corrente e Pressão;
• Linearização;
• Ativação da Totalização;
• Mudança de Endereço;
• e alguns itens da função Informação.
Árvore de Programação Via Ajuste
Local
O ajuste local utiliza uma estrutura em árvore sendo que a atuação na chave
magnética (Z) permite a rotação entre as opções de um ramo e a atuação na
outra (S), detalha a opção selecionada. A Figura abaixo mostra as opções
disponíveis no LD301.
VÁLVULAS DE
CONTROLE
Definições
• Válvula de controle é a forma mais simples de
manipular vazões, pressões e níveis;
• Presente em um grande número de processos
industriais;
• Controle:
– Liga-desliga: válvula totalmente aberta ou fechada
• Pressostatos;
• Termostatos;
– Contínuo: válvula pode assumir posições
intermediárias;
Definições
• Sinal de controle para as válvulas:
– Eletrônico
– Pneumático
• Maioria das malhas de controle;
• Simples;
• Confiável;
• Econômico;
• Eficiente.
Definições
• A válvula em uma malha de controle
Partes de uma Válvula
Corpo
• O corpo ou carcaça é a parte
da válvula que é ligada à
tubulação e que contem o
orifício variável da passagem
do fluido;
• O corpo da válvula de
controle é essencialmente um
vaso de pressão, com uma ou
duas sedes, onde se assenta o
plug (obturador), que está na
extremidade da haste, que é
acionada pelo atuador
pneumático;
Sede Obturador
Haste
Sede
• A sede da válvula é onde se
assenta o obturador. A
posição relativa entre o
obturador e a sede é que
estabelece a abertura da
válvula;
• Sede dupla:
– Menor esforço, menor
atuador;
– Vazamentos mais
freqüentes.
Sede simples Sede dupla
Obturador
• A forma do obturador
define a relação entre a o
movimento da haste e a
abertura da válvula;
• Tipos de Obturadores:
– (a) Igual percentagem;
– (b) Linear;
– (c) Abertura rápida.
(a) (b) (c)
Atuador
• Atuador é o componente da válvula que recebe o
sinal de controle e o converte em abertura
modulada da válvula;
• O atuador da válvula não requer a alimentação de
ar pneumático para sua operação; funciona apenas
com o sinal padrão de 20 a 100 kPa (3 a 15 psi);
• O atuador pneumático à diafragma recebe
diretamente o sinal do controlador pneumático e o
converte numa força que irá movimentar a haste da
válvula, onde está acoplado o obturador que irá
abrir continuamente a válvula de controle.
Atuador
Atuador
• Opções de projeto:
– Operação do atuador
• ar para abrir - mola para fechar,
• ar para fechar - mola para abrir,
– Estado de falha:
• falha-fechada (FC - fail close),
• falha-aberta (FO - fail open),
• falha-indeterminada (FI - fail indetermined),
• falha-última-posição (FL - fail last position).
Atuador Pneumático
AR PARA ABRIR
compressão da
mola
sinal
pneumático
pressão da
linha
AR PARA FECHAR
compressão da
mola
sinal
pneumático
pressão da
linha
MAIOR ESFORÇO
Características da Válvula
• A característica da válvula de controle é definida
como a relação entre a vazão através dela e a
posição da haste, variando ambas de 0 a 100%. A
vazão na válvula depende do sinal de saída do
controlador que vai para o atuador;
• Na definição da característica, admite-se que
– o atuador da válvula é linear (o deslocamento da haste é
proporcional à saída do controlador);
– a queda de pressão através da válvula é constante;
– o fluido do processo não está em cavitação, flashing ou
na vazão sônica (choked).
Características da Válvula
• É desejável que uma malha de controle seja linear
em sua faixa de atuação:
– Sensor, transmissor, controlador, válvula e processo
lineares;
• Em processos não-lineares, para o conjunto linear:
– Controladores não-lineares;
– Comportamento da válvula não-linear;
• Característica de vazão da válvula:
– Igual percentagem;
– Linear;
– Abertura rápida.
Características da Válvula
)
1
d
(
R
q 

Características da Válvula
• Igual percentagem:
– Iguais percentagens de variação do sinal de
entrada da válvula correspondem a iguais
percentagens de variação na abertura da
válvula;
– Modelo exponencial entre vazão e abertura;
– Pequeno ganho em baixas vazões;
– Ganho elevado em altas vazões;
– Bom controle em baixas vazões.
Características da Válvula
• Linear
– Vazão diretamente proporcional à abertura da
válvula;
– Ganho constante em todas as vazões.
Características da Válvula
• Abertura rápida:
– Produz uma grande vazão com pequeno
deslocamento da haste da válvula, no início da
abertura;
– Grande ganho em baixa vazão;
– Pequeno ganho em alta vazão;
– Normalmente utilizada em controle liga-desliga
• Não é adequada para controle contínuo
Características da Válvula
• Característica nominal (inerente):
– Assume queda de pressão constante na válvula;
• Característica instalada:
– Na tubulação, a queda de pressão na válvula
não é constante;
– Igual percentagem se torna linear;
– Linear se torna abertura rápida.
Escolha da Válvula
• A válvula com característica linear é comumente
usada em processos de nível de líquido e em
outros processos onde a queda da pressão através
da válvula é aproximadamente constante;
• A válvula com característica de igual percentagem
é a mais usada; geralmente, em aplicações com
grandes variações da queda de pressão ou onde
uma pequena percentagem da queda de pressão do
sistema total ocorre através da válvula;
• Quando se tem a medição da vazão com placa de
orifício, cuja saída do transmissor é proporcional
ao quadrado da vazão, deve-se usar uma válvula
com característica de raiz quadrática
(aproximadamente a de abertura rápida).
AÇÕES DE CONTROLE
Ações de Controle
• Para um controlador automático em uma malha fechada
manter uma variável de processo igual ao valor desejado,
ele deve saber se a variável está no valor correto;
• Mas uma resposta SIM ou NÃO é insuficiente e o
controlador deve saber, no mínimo, se a variável está
acima ou abaixo do ponto de ajuste;
• Para um melhor controle, o controlador deve saber o valor
da diferença entre a medição e o ponto de ajuste (erro);
• Para um controle melhor ainda, o controlador deve saber a
duração do erro existente;
• Para um controle melhor possível, o controlador deve
saber a velocidade de variação da variável de processo
(PV).
• Estes vários refinamentos do controle implicam
nos modos de controle, que podem ser os
seguintes:
– Controle Liga-Desliga;
– Controle Proporcional;
– Controle Integral;
– Controle Derivativo.
Ações de Controle
Controle Liga-Desliga
• A saída de um controlador on-off é ou
ligada ou desligada;
• Seu valor depende do sinal do erro e da
ação do controlador: direta ou reversa;
• O controle liga-desliga do nível do tanque:
se o nível estiver abaixo do nível desejado,
o controlador abre totalmente a válvula v1;
se o nível do tanque estiver acima do
desejado, o controlador fecha totalmente a
válvula.
Controle Proporcional
• Fornece uma saída modulada que pode ter
qualquer valor entre o mínimo (0%) e o
máximo (100%) da faixa da saída do
controlador;
• O valor depende de vários fatores, como:
direção e tamanho do erro de controle,
ganho ou sensitividade do controlador e
ação de controle direta ou reversa.
Controle Proporcional
em que e(t)= PV-SP (ação Direta)
e(t)= SP-PV (ação Reversa)
Kp é o ganho proporcional
)
(t
e
K
MV p

Banda Proporcional (BP)
Banda Proporcional
Erro
Saída do
Controlador
p
K
BP
100

Controle Proporcional Mais
Integral
• O valor da saída do controlador depende
dos seguintes fatores: a direção, magnitude
e duração do erro de controle, o ganho do
controlador e ação do controlador: direta ou
reversa.
Controle Proporcional Mais
Integral
em que e(t)= PV-SP (ação Direta)
e(t)= SP-PV (ação Reversa)
Kp é o ganho proporcional
Tr é o tempo integral







  
 d
e
T
t
e
K
MV
r
p )
(
1
)
(
Tempo Integral
• O tempo integral Tr é expresso em minutos
por repetição;
• Termo que origina-se do teste de colocar o
controlador em um erro fixo e verificar
quanto tempo a ação integral leva para
produzir a mesma mudança na saída do
controlador que o controlador proporcional
tem com ganho igual a 1 (ação integral
repete a ação proporcional);
Off-set zero
• Por causa da ação integral, este controlador
não possui desvio permanente de controle;
• Este fato ocorre porque a ação integral
armazena o histórico do erro e permite um
valor de MV diferente de zero a partir de
um instante de tempo, mesmo com o valor
do erro sendo zero a partir deste mesmo
instante.
Controlador Proporcional mais
Integral mais Derivativo (PID)
• O modo derivativo é também chamado de controle
de variação;
• Um controlador PID modula sua saída, cujo valor
depende dos seguintes fatores: direção, magnitude
e duração e taxa de variação do erro de controle;
ganho do controlador, que depende do ganho
proporcional, ganho integral e ganho derivativo,
todos ajustáveis; e ação do controlador: direta ou
reversa.
Controlador PID
em que e(t)= PV-SP (ação Direta)
e(t)= SP-PV (ação Reversa)
Kp é o ganho proporcional
Tr é o tempo integral
Td é o tempo derivativo
• É chamado de PID paralelo clássico;










  dt
)
t
(
de
T
d
)
(
e
T
1
)
t
(
e
K
MV d
r
p
Controlador PID Paralelo
• Usando Laplace: 








 s
T
sT
1
1
K
)
s
(
E
)
s
(
U
)
s
(
G d
r
p
c
• O termo derivativo apresenta problemas
de implementação;
• Uma solução bastante utilizada na prática
é usar um filtro na parte derivativa:
s
T
1
s
T
)
s
(
D
d
d



• Em que o termo α é pequeno < 1/8;
Controlador PID Série
• Em função desta dificuldade de
implementação do termo derivativo, os
fabricantes de controladores analógicos
utilizaram o algoritmo de controle do tipo
Série ou Interativo:
)
s
(
E
sT
1
1
K
G
r
p
PI 







)
s
(
E
sT
1
1
s
T
1
s
T
1
K
)
s
(
U
r
d
d
p 
















)
s
(
G
s
T
1
s
T
1
)
s
(
U PI
d
d










Controlador PI-D
• O sinal da derivada depende da ação do controlador;
• Esta configuração evita perturbações quando SP varia
abruptamente (degrau);








  dt
dPV
T
d
e
T
t
e
K
MV d
r
p 
)
(
1
)
(
Controlador I-PD
• O sinal da derivada depende da ação do controlador;
• Esta configuração evita altas derivadas quando SP varia
conforme um degrau;
• Evita amplificações das variações bruscas de SP.









  dt
dPV
T
d
e
T
PV
K
MV d
r
p 
)
(
1
Aspectos Práticos da
Implementação de PIDs
• Vários aspectos práticos devem ser
observados na implementação dos
controladores PID, dentre eles:
– Anti-reset windup;
– Bumpless;
– Filtro derivativo.
Anti Reset Windup
• Atuador satura e controlador continua a integrar o
erro;
• Solução: deixar de integrar o erro durante a
saturação;
Time
y
ysp
c
A
Time
y
ysp
c
Bumpless
• Transição não suave entre controladores;
• Solução: suavizar com mudanças gradativas.
Time
w/o bumpless transfer
w/ bumpless transfer
Time
Internal Setpoint
True Setpoint
SINTONIA DE
CONTROLADORES
PID
Sintonia de Controladores PID
• Sintonia significa ajustar a sensitividade de cada
ação de controle de dos elementos dinâmicos
auxiliares usados para que o sistema de controle,
incluindo o processo, forneça o melhor
desempenho possível;
• Há procedimentos matemáticos e estudos de
processo que podem ser usados para estimar os
melhores ajustes preliminares de sintonia para um
dado controlador;
• Na prática, os controladores são ajustados no
campo por tentativa e erro e pela experiência.
Sintonia de Controladores PID
• Mesmo quando se usam métodos
sofisticados, a sintonia final resultante deve
ser confirmada por tentativa de campo, com
o controlador interagindo com o processo;
• Atualmente são disponíveis controladores
eletrônicos microprocessados com
capacidade de auto-sintonia;
Sintonia de Controladores PID
• Objetivos do controle:
– Estabilidade em malha fechada;
– Respeitar critérios de desempenho;
• Existem dois critérios principais de
controle:
– A rejeição à perturbações (problema
regulador);
– O acompanhamento de Set-Point (problema
servo).
Sintonia de Controladores PID
• Critérios de desempenho:
A
SP
B
C
TA
PV
Tempo
TS
- Menor sobrevalor (A/B);
- Menor tempo de subida (TS);
- Razão de declínio (C/A)
especificada;
- Menor tempo de acomodação
(TA);
- Mínima energia na MV;
- Índice de desempenho para
avaliar a qualidade de controle;
Sintonia de Controladores PID
• Robustez:
– O sistema de controle deve ter um bom desempenho
em toda a sua região de operação;
– Projeto do sistema usa-se um modelo que é uma
simplificação da planta real (parâmetros, não-
linearidades, pontos de operação).
Métodos para Sintonia de PID
• Ziegler & Nichols – 1º e 2º métodos;
• Método Heurístico de Cohen e Coon;
• Método do Modelo Interno (IMC);
• Método da Integral do Erro;
• Método do Lugar das Raízes.
Regras de Ziegler-Nichols
• Úteis quando a dinâmica do sistema não for
bem conhecida;
• Existem duas regras para a determinação
dos parâmetros;
• Mais popular: Simples e experimental;
• Problemas SISO;
• Modelo do Processo: Curva de reação do
processo (1º ordem com tempo morto) ou
ganho último (Ku e Pu);
• Critério: Razão de declínio 1/4
• Aplicável quando a planta não envolver
integradores e não entrar em oscilação em malha
aberta
• Passos para a sintonia:
1) Colocar a planta em malha aberta (Controlador
em Manual);
2) Aplicar um degrau na entrada da planta e observar
a resposta (figura a seguir);
3) Extrair desta curva de resposta o atraso (L) e a
constante de tempo (T);
4) Os parâmetros do controlador devem ser
sintonizados de acordo com a tabela a seguir.
Primeiro Método Z&N
Primeiro Método Z&N
Tabela de Parâmetros Z&N
Controlador Kp Tr Td
Proporcional T/(K.L) ∞ 0
Proporcional
Integrativo 0.9 T/(K.L) L/0.3 0
Proporcional
Integrativo
Derivativo
1.2 T/(K.L) 2 L 0.5 L
• O ganho proporcional do controlador (Kp) é inversamente
proporcional ao ganho do processo (K);
• O ganho proporcional (Kp) é inversamente proporcional à
razão entre o tempo morto e a constante de tempo do
processo (L/T). Quanto maior a razão L/T, mais difícil é o
controle do processo e menor deve ser a constante Kp;
• O tempo integral Tr está relacionado com a dinâmica do
processo. Quanto mais lento o processo (maior L), maior
deve ser o tempo integral Tr;
• O tempo derivativo Td do controlador também está
relacionado com a dinâmica do processo (L). Quanto mais
lento (maior L), maior deve ser o tempo derivativo Td;
• Z&N sempre utilizaram uma relação de ¼ entre Td e Tr, ou
seja Tr= 4Td.
Observações Z&N
• As regras foram desenvolvidas para os
controladores analógicos pneumáticos ou
eletrônicos;
• Não existe consenso na literatura se o controlador
tratado era série ou paralelo. Acredita-se ser
paralelo;
• As sintonias do PID por Z&N são boas para
processos com razão L/T (fator de
incontrolabilidade) entre 0,1 e 0,3. Para fatores
maiores que 4, as regras de Z&N geram sistemas
instáveis em malha fechada.
Problemas Sintonia Z&N
Exemplo
)
1
s
)(
5
.
0
s
)(
1
.
0
s
(
05
.
0
)
s
(
G




Segundo Método Z&N
• Aplicável quando a planta em malha fechada com
um controlador proporcional seja instabilizável;
• Passos para a sintonia:
1) Colocar um controlador proporcional (modo
automático) com o processo;
2) Aplicar um degrau na entrada SP e aumentar Kp
até que o sistema atinja o limiar da instabilidade.
Neste caso, a curva de resposta terá a forma da
figura a seguir.
Segundo Método Z&N
Tabela de Parâmetros Z&N
Controlador Kp Tr Td
Proporcional 0.50 Kcr ∞ 0
Proporcional
Integrativo 0.45 Kcr Pcr/1.2 0
Proporcional
Integrativo
Derivativo
0.60 Kcr Pcr/2 Pcr/8
Exemplo
)
5
s
)(
1
s
(
s
1
)
s
(
G



Método de Cohen e Coon (C&C)
• Sintonia de controladores PID com um
tempo morto mais elevado (fator L/T maior
que 0,3);
• Baseia-se na razão de decaimento ¼;
Tabela de Parâmetros C&C
Controlador Kp Tr Td
Proporcional ∞ 0
Proporcional
Integrativo 0
Proporcional
Integrativo
Derivativo
KL
T
T
L
350
.
0
03
.
1 






KL
T
T
L
083
.
0
90
.
0 






KL
T
T
L
250
.
0
35
.
1 






L
T
L
600
.
0
27
.
1
T
L
083
.
0
90
.
0














L
T
L
330
.
0
54
.
0
T
L
250
.
0
35
.
1





















T
L
250
.
0
35
.
1
L
5
.
0
Observações - Método C&C
• Apresenta um desempenho aceitável para
valores L/T entre 0,6 e 4,5;
• A robustez é ruim para L/T menores que 2;
• Costuma produzir sintonias agressivas, por
isso, sugere-se partir de ganhos sugeridos e
ir aumentando gradativamente (Tr ao
contrário);
Método do Modelo Interno (IMC)
• Tem como objetivo a partir do modelo do
processo e de uma especificação de
desempenho, obter o melhor controlador;
• Possui um modelo interno que pode ser
utilizado apenas na fase de projeto, ou
também na fase de operação;
• Necessita do modelo do processo, que pode
ser obtido por identificação.
Estrutura IMC
C(s)
+
-
+
Gp(s)
Y
Gm(s)
-
E
SP
Processo
Controlador
Modelo
)
s
(
C
)
s
(
G
1
)
s
(
C
)
s
(
G
)
s
(
SP
)
s
(
Y
p
p

 









 s
T
s
T
1
1
K
)
s
(
C d
r
p
Idéia IMC
• Propor um modelo de desempenho de malha
fechada e projetar o PID;
• Exemplo- sistema em malha fechada de 1ª ordem
com constante de tempo λ:
1
s
1
)
s
(
SP
)
s
(
Y



)
s
(
C
)
s
(
G
1
)
s
(
C
)
s
(
G
1
s
1
)
s
(
SP
)
s
(
Y
p
p





• Igualando com a equação anterior:
• Obtemos o seguinte controlador:
s
)
s
(
G
1
)
s
(
C
p 

Idéia IMC
• Assim, se a planta for um integrador puro


K
1
)
s
(
C
s
K
)
s
(
Gp 
Que se trata de um controlador Proporcional;
• Para outros modelos, temos os controladores da
tabela a seguir:
• Obtém-se o seguinte controlador:
Tabela de Parâmetros IMC
Modelo do
Processo
Kp Tr Td
1
Ts
K
 
K
T
  
1
s
T
1
s
T
K
2
1 

1
Ts
2
s
T
K
2
2



s
K
)
1
Ts
(
s
K



K
T
T 2
1
2
1 T
T 
2
1
2
1
T
T
T
T



K
T
2
T
2

2
T

K
1

K
1
T
T 0


0
Tabela de Parâmetros IMC
Controlador Kp Tr Td Sugestão para o
desempenho
PID
PI
)
L
2
(
K
L
T
2





2
K
L
T
2
2
L
T 
2
L
T 
L
T
2
TL

0
8
.
0
L


7
.
1
L


• Quando a dinâmica do processo puder ser representada por
um modelo de 1ª ordem com atraso:
1
Ts
Ke
)
s
(
G
sL
p



• A sintonia sugerida é a apresentada na tabela abaixo:
Método da Integral do Erro
• Utiliza como critério de desempenho a
integral de uma função do erro em uma
janela de tempo, suficiente para eliminar o
erro em regime permanente;
• A vantagem do método é que considera toda
a curva de resposta do sistema, ao invés de
somente dois pontos, como é o caso do
método do decaimento;
Método da Integral do Erro
• Critérios mais utilizados:
– IAE (Integral do valor Absoluto do Erro);
– ITAE (Integral do produto do Tempo pelo valor
Absoluto do Erro);
 


t
0
d
)
(
e
IAE
 



t
0
d
)
(
e
ITAE
• O critério ITAE é menos sensível aos erros
que ocorrem no início do controle.
Método da Integral do Erro
• Os trabalhos de Lopez et al. (1967) e Rovira et al
(1969) utilizaram o PID clássico paralelo:










 s
T
s
T
1
1
K
)
s
(
C d
r
p
• O método também considera que a dinâmica do
processo pode ser representada por um modelo de
primeira ordem com atraso:
1
Ts
Ke
)
s
(
G
sL
p



Método da Integral do Erro
• No trabalho de Lopez et al. (1967) considerou-se
uma perturbação na carga, ou seja o objetivo é
rejeitar perturbações (problema regulatório);
• O problema de otimização foi resolvido
numericamente, ou seja, foram obtidas as sintonias
que minimizassem a integral;
• A razão L/T utilizada foi entre 0 e 1;
• As seguintes equações de sintonia foram obtidas:















B
p
T
L
A
K
1
K














 D
r
T
L
C
T
T















F
d
T
L
E
T
T
Método da Integral do Erro
• As constantes A, B, C, D, E e F são obtidas
através da tabela abaixo:
Controlador Critério A B C D E F
PI IAE 0.984 -0.986 0.608 -0.707 -- --
PI ITAE 0.859 -0.977 0.674 -0.680 -- --
PID IAE 1.435 -0.921 0.878 -0.749 0.482 1.137
PID ITAE 1.357 -0.947 0.842 -0.738 0.381 0.995
Método da Integral do Erro
• No trabalho de Rovira et. (1969) considerou-se
uma perturbação no setpoint (problema servo);
• O problema de otimização foi resolvido
numericamente, ou seja, foram obtidas as sintonias
que minimizassem a integral;
Método da Integral do Erro
• Neste caso, as constantes A, B, C, D, E e F são
obtidas através da tabela abaixo:
Controlador Critério A B C D E F
PI IAE 0.758 -0.861 1.020 -0.323 -- --
PI ITAE 0.586 -0.916 1.030 -0.165 -- --
PID IAE 1.086 -0.869 0.740 -0.130 0.348 0.914
PID ITAE 0.965 -0.850 0.796 -0.147 0.308 0.929
Regras Práticas para Sintonia
• Os tipos mais comuns de malhas
encontradas na indústria são:
– Nível;
– Fluxo (vazão);
– Temperatura;
– Pressão.
Malhas de Fluxo
• Controladores PI são usados na maioria das
malhas de fluxo;
• Uma grande Banda Proporcional (BP=150), ou
pequeno ganho, é usada para reduzir o efeito do
ruído do sinal de fluxo, devido à sua turbulência;
• Um pequeno valor de tempo integrativo (Tr= 0.1
minutos por repetição) para garantir um
seguimento rápido do SetPoint (SP);
Malhas de Fluxo
• A dinâmica deste tipo de processo é
usualmente muito rápida;
• O sensor observa a mudança no fluxo
imediatamente;
• A dinâmica da válvula de controle é a
mais lenta na malha, daí a necessidade
de um tempo integrativo baixo.
Malhas de Nível
• Usualmente são usados controladores
PI neste tipo de malha;
• Normalmente são utilizadas Bandas
Proporcionais (BP) baixas (entre 50 e
100).
Exemplos - Malhas de Nível
Malhas de Pressão
• Em geral, malhas de pressão são mais
rápidas que malhas de fluxo e mais lentas
que malhas de nível;
• Existem diferentes tipos de malhas de
pressão, o que dificulta regras práticas para
sintonia.
Exemplos - Malhas de Pressão
Malha rápida Malha lenta
Malhas de Temperatura
• Malhas de controle de temperatura são usualmente
lentas devido ao atraso de tempo do sensor e
atrasos devido a trocas de calor;
• Controladores PID são freqüentemente usados;
• São selecionadas Bandas Proporcionais
relativamente baixas;
• O tempo integrativo é da mesma ordem da
constante de tempo do processo;
• O tempo derivativo é ajustado, freqüentemente,
como sendo a quarta parte da constante de tempo
do processo, dependendo do nível de ruído do
sinal do transmissor.
Regras de Sintonia On-Line
1- Com o controlador em modo manual, retire as
ações integral e derivativa do controlador, isto é,
sete Tr no valor máximo de minutos por repetição
e Td no valor mínimo;
2- Sete o valor da Banda Proporcional (BP) para um
valor alto (ganho pequeno), por exemplo, 200;
3- Coloque o controlador em automático;
4- Coloque um valor pequeno de Setpoint e observe
a resposta da variável de processo (PV). Se o
ganho é pequeno, a resposta será lenta;
5- Reduza o valor de BP por um fator 2 (dobre o
ganho) e faça uma pequena mudança em SP;
Regras de Sintonia On-Line
6- Continue reduzindo BP, repetindo o passo 5, até
que a malha torne-se oscilatória e sem
amortecimento. O ganho em que isto ocorre é
chamado de ganho definitivo;
7- Retorne o ganho para a metade do valor do ganho
definitivo;
8- Agora, comece a alterar a ação integral, reduzindo
Tr por fatores de 2, produzindo pequenos
distúrbios no processo para cada valor de Tr e
observando o efeito;
9- Encontre o valor de Tr para o qual a malha torne-
se pouco amortecida e sete o valor de Tr para
metade deste valor;
Regras de Sintonia On-Line
10- Comece a alterar a ação derivativa, aumentando
Td. Perturbe o sistema e encontre o valor de Td que
produza um bom controle sem amplificar muito o
ruído em PV;
11- Reduza BP novamente de 10 em 10% até que as
especificações desejadas em termos de coeficiente
de amortecimento e sobressinal sejam atingidas.
CONTROLE EM
CASCATA, RELAÇÃO
E ANTECIPATÓRIO
Controle em Cascata, Relação e
Antecipatório
• Alternativas ao tradicional controle por
realimentação;
• Não substituem o controlador por
realimentação convencional, mas são
alterações ou adições que possibilitam
melhorar o desempenho do sistema de
controle.
Controle em Cascata
• É um método simples, envolvendo dois
controladores por realimentação em cascata;
• O controle em cascata é definido como a
configuração onde o sinal de entrada de um
controlador é o Set Point gerado pelo outro
controlador.
Controle em Cascata
Gc1(s)
+
-
+
Gc2(s) G1(s) G2(s)
-
R1(s) R2(s) Y2(s) Y1(s)
laço secundário
laço primário
Controle em Cascata
Controle em Cascata
(s)
G
)
s
(
G
)
s
(
G
)
s
(
G
(s)
(s)G
G
1
(s)
G
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
R
)
s
(
Y
c2
1
c
2
1
2
c2
c2
1
c
2
1
1
1



)]
s
(
G
)
s
(
G
1
[
(s)
(s)G
G
(s)
G
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
R
)
s
(
Y
1
1
c
2
c2
c2
1
c
2
1
1
1


Gc1(s)
+
-
G2(s)
R1(s) R2(s) Y2(s) Y1(s)
(s)
(s)G
G
1
(s)
(s)G
G
2
c2
2
c2

Equação característica:
0
)
s
(
G
)
s
(
G
1
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
G
1
2
2
c
2
2
c
1
1
c 










primário secundário
Controle Convencional – exemplo
LC
+
-
G(s)
SP H
Controle em Cascata - exemplo
LC
+
-
+
FC G1(s) G2(s)
-
SP2 Q H
malha de vazão
malha de nível
SP1
Controle em Cascata - exemplo
Considerando:
1
1
c K
)
s
(
G 
2
2
c K
)
s
(
G 
1
s
1
)
s
(
G 1
c


2
s
1
)
s
(
G 2
c


Controle convencional:
2
1K
K
)
2
s
)(
1
s
(
1


-
+
LGR
Controle em Cascata - exemplo
Controle em cascata:
-
+
1
K 2
K
1
s
1
 2
s
1

+
-
laço secundário
laço primário
LGR-primário
-2 2
K
1

2
K
1

LGR-secundário
Operação
• Quando ocorre um aumento na vazão de entrada, o
nível aumentará e o controlador de nível
aumentará o sinal de Set Point para o controlador
da vazão de saída, fazendo com que a mesma
aumente, retornando o nível do tanque ao valor do
Set Point ajustado para o mesmo;
• Quando ocorre uma mudança na pressão na linha
de descarga, o controlador de vazão ajustará a
válvula de saída antes que o nível do tanque seja
significativamente alterado.
Controle de Relação
• Existem muitas situações nos processos industriais
onde é necessário manter duas variáveis numa
proporção ou relação definida;
• Uma variável flutua livremente de acordo com as
exigências do processo e é chamada de variável
livre;
• A outra variável é proporcional à variável livre e é
chamada de variável manipulada;
• Exemplos: a mistura de aditivos à gasolina,
mistura proporcional de reagentes de um reator
químico e a mistura de fluxos quentes e frios para
se obter uma determinada temperatura da mistura.
Controle de Relação - Exemplo
• O controle antecipatório ou feedforward é
proposto para suprir uma deficiência do
controle por realimentação, que é a
necessidade da existência de um erro para
que o controlador tome alguma atitude;
• A idéia do controle antecipatório é medir os
distúrbios que perturbam o processo e tomar
uma atitude antes que os mesmos perturbem
a saída do processo;
Controle Antecipatório
Feedforward
• O distúrbio é medido e baseado num valor
do Set Point para a variável controlada, é
calculado o valor necessário para a variável
manipulada de maneira a evitar que a
variável controlada seja alterada;
• Para tanto, é necessário o conhecimento da
dinâmica do processo, o atraso de
transporte, constante de tempo e ganho, no
caso de um processo de primeira ordem.
Controle Antecipatório
Controle Antecipatório
)
s
(
N
)
s
(
G
)
s
(
E
)
s
(
G
)
s
(
G
)
s
(
Y n
c 

Gc(s) G(s)
Gn(s)
+
-
+
+ Y(s)
R(s) E(s)
N(s)
)
s
(
Y
)
s
(
R
)
s
(
E 

  )
s
(
N
)
s
(
G
)
s
(
Y
)
s
(
R
)
s
(
G
)
s
(
G
)
s
(
Y n
c 


  )
s
(
N
)
s
(
G
)
s
(
R
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
G
1
)
s
(
Y n
c
c 


Controle Antecipatório
)
s
(
N
)
s
(
G
)
s
(
G
1
)
s
(
G
)
s
(
R
)
s
(
G
)
s
(
G
1
)
s
(
G
)
s
(
G
)
s
(
Y
c
n
c
c




Influência da entrada Influência das perturbações
• Se as perturbações são mensuráveis, o
controle feedforward é um método útil para
cancelar os seus efeitos na saída do
processo.
Controle Antecipatório
  )
s
(
N
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
N
)
s
(
G
)
s
(
Y
)
s
(
R
)
s
(
G
)
s
(
G
)
s
(
Y c
ff
n
c 



    )
s
(
N
)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
Y
)
s
(
R
)
s
(
G
)
s
(
G
)
s
(
Y c
ff
n
c 



Controle Antecipatório
Gc(s) G(s)
Gn(s)
+
-
+
+ Y(s)
R(s) E(s)
N(s)
Gff(s)
+
saída
perturbação
controlador
feedforward
  0
)
s
(
G
)
s
(
G
)
s
(
G c
ff
n 

)
s
(
G
)
s
(
G
)
s
(
G
)
s
(
G
c
n
ff 

• A vantagem deste tipo de controle é que a
ação corretiva ocorre antecipadamente, ao
contrário do controle por realimentação, em
que a ação corretiva acontece somente
depois da saída ser afetada.
Controle Antecipatório
• Sistema de controle de temperatura
Exemplo
Exemplo
• Perturbação:
– mudança vazão de saída da torre (depende do
nível da torre);
– seu efeito não pode sentido imediatamente,
devido aos atrasos envolvidos no sistema;
– um controlador convencional agirá somente
quando houve um erro;
– um controlador feedforward que receberá a
também a informação da vazão, poderá agir
mais cedo sobre a válvula de vapor.
Exemplo
CONTROLE
“OVERRIDE” e “SPLIT
RANGE”
Controle Override
• Também chamada de controle seletivo;
• É uma forma de controle multivariável em
que uma única variável manipulada (MV)
pode ser ajustada usando-se várias variáveis
controladas (PV), uma de cada vez.
Controle Override – Exemplo 1
• Quando a pressão do gás de saída do compressor ultrapassa um valor pré-
ajustado, o controle passa a ser exercido pela malha de pressão, ao invés da
malha de fluxo, através da chave HSS ativada por valores altos.
• Controle override para proteção de um
compressor:
Controle Override – Exemplo 2
• Inicialmente o controle busca manter a pressão na linha de vapor.
Quando o nível se torna muito baixo, o controle passa a ser exercido
pela malha de nível.
• Controle override para proteção de geradores de
vapor:
Controle Split Range
• Em certas aplicações, uma única malha de
controle de fluxo pode não garantir um bom
desempenho do sistema em uma grande faixa de
operação;
• Controle de fluxo do tipo Split Range usa dois
controladores (um com uma válvula de controle
pequena e o outro com uma válvula de controle
grande), ambos em paralelo;
• Para fluxos pequenos, a válvula grande é fechada
e a válvula pequena garante um controle de fluxo
de boa qualidade;
• Para grandes fluxos, ambas as válvulas estão
abertas.
Controle Split Range – Exemplo 1
FT
FT
FC
FC
Total Flow Rate
Signal
to
Control
Valve
(%)
Larger Control
Valve
Smaller Control
Valve
Controle Split Range – Exemplo 2
TT
Cooling
Water
Steam
Split-Range
Temperature
Controller
TT TC
RSP
Controle de Temperatura Split Range
Controle Split Range – Exemplo 2
Controle de Temperatura Split Range
0
20
40
60
80
100
Error from Setpoint for Jacket Temperature
Signal
to
Control
Valve
(%)
Steam
Cooling
Water
T > Tref
Resfriar
T < Tref
Aquecer
CONTROLE
INFERENCIAL,
ROBUSTO E
ADAPTATIVO
Controle Inferencial
Controle Inferencial
• Pela monitoração de variáveis secundárias é
possível inferir a variável primária, geralmente
uma medida da qualidade do produto;
• Os estimadores de inferência podem ser por
equações de relação;
• O uso de Redes Neurais tem tido sucesso;
• Um exemplo típico é o controle de composição.
Em misturas binárias em fase vapor, esta
composição pode ser determinada a partir da
pressão e da temperatura por meio de uma
equação de estado.
Controle Adaptativo
Controle Adaptativo
• Os parâmetros do modelo são atualizados
periodicamente;
• Os parâmetros atualizados são então usados
pelo controlador;
• São comercialmente disponíveis
controladores PID com auto-sintonia;
• Uso de modelos não-lineares: redes neurais,
séries temporais não-lineares.
Controle Preditivo com
Restrições
Controle Preditivo com Restrições
• Controladores PID não são adequados para
sistemas com grandes atrasos;
• Controladores preditivos são uma boa
alternativa;
• Controle Preditivo Generalizado (GPC) é
largamente usado na indústria;
• No GPC o cálculo do sinal de controle é um
problema de otimização, onde objetivos
econômicos e restrições (limites em fluxos,
pressões, temperaturas, emissões na atmosfera,
etc) podem ser incluídos na formulação do
problema.
Controle Robusto
• Quantificação das incertezas no modelo
“nominal” do processo (faixa de operação);
• Projeto de um controlador que deve manter
a estabilidade, bem como um desempenho
especificado sobre a faixa de condições de
operação.
Obrigado pela Atenção !!!

Mais conteúdo relacionado

Semelhante a Controle_Petróleo.ppt

Aula 09-calculo-termico
Aula 09-calculo-termicoAula 09-calculo-termico
Aula 09-calculo-termicoAlex Ferreira
 
Proteção e seletividade cap. 3 - dispositivos de proteção parte 1
Proteção e seletividade   cap. 3 - dispositivos de proteção   parte 1Proteção e seletividade   cap. 3 - dispositivos de proteção   parte 1
Proteção e seletividade cap. 3 - dispositivos de proteção parte 1Alexandre Esteves Reis
 
Trabalho 2 2015_2-pages_antigo
Trabalho 2 2015_2-pages_antigoTrabalho 2 2015_2-pages_antigo
Trabalho 2 2015_2-pages_antigoFernando Passold
 
Tutorial sobre Ajuste de Controladores PID
Tutorial sobre Ajuste de Controladores PIDTutorial sobre Ajuste de Controladores PID
Tutorial sobre Ajuste de Controladores PIDFernando Passold
 
Prova de aptidão tecnológica
Prova de aptidão tecnológicaProva de aptidão tecnológica
Prova de aptidão tecnológicaokashi24
 
1CseqFFsrPresolvido (1).pptx
1CseqFFsrPresolvido (1).pptx1CseqFFsrPresolvido (1).pptx
1CseqFFsrPresolvido (1).pptxAlvaro Silva
 
Doc modelagem _492246747
Doc modelagem _492246747Doc modelagem _492246747
Doc modelagem _492246747Peterson Silva
 
[PRJ32][Christopher] Aula 14 – controle
[PRJ32][Christopher] Aula 14 – controle[PRJ32][Christopher] Aula 14 – controle
[PRJ32][Christopher] Aula 14 – controleChristopher Cerqueira
 
5 2 funcoes de transferencia
5 2   funcoes de transferencia5 2   funcoes de transferencia
5 2 funcoes de transferenciaPaulo Wanderley
 
Org flip flops_registradores Organizção de flip flops
Org flip flops_registradores Organizção de flip flopsOrg flip flops_registradores Organizção de flip flops
Org flip flops_registradores Organizção de flip flopsJorge Soares
 

Semelhante a Controle_Petróleo.ppt (20)

2 metodos de discretizacao
2   metodos de discretizacao2   metodos de discretizacao
2 metodos de discretizacao
 
Aula 09-calculo-termico
Aula 09-calculo-termicoAula 09-calculo-termico
Aula 09-calculo-termico
 
Proteção e seletividade cap. 3 - dispositivos de proteção parte 1
Proteção e seletividade   cap. 3 - dispositivos de proteção   parte 1Proteção e seletividade   cap. 3 - dispositivos de proteção   parte 1
Proteção e seletividade cap. 3 - dispositivos de proteção parte 1
 
Análise da Resposta Transitória
Análise da Resposta TransitóriaAnálise da Resposta Transitória
Análise da Resposta Transitória
 
Trabalho 2 2015_2-pages_antigo
Trabalho 2 2015_2-pages_antigoTrabalho 2 2015_2-pages_antigo
Trabalho 2 2015_2-pages_antigo
 
Slides Circuitos Sequenciais.pdf
Slides Circuitos Sequenciais.pdfSlides Circuitos Sequenciais.pdf
Slides Circuitos Sequenciais.pdf
 
Tutorial sobre Ajuste de Controladores PID
Tutorial sobre Ajuste de Controladores PIDTutorial sobre Ajuste de Controladores PID
Tutorial sobre Ajuste de Controladores PID
 
Prova de aptidão tecnológica
Prova de aptidão tecnológicaProva de aptidão tecnológica
Prova de aptidão tecnológica
 
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
 
1CseqFFsrPresolvido (1).pptx
1CseqFFsrPresolvido (1).pptx1CseqFFsrPresolvido (1).pptx
1CseqFFsrPresolvido (1).pptx
 
Estudos de Controle - Aula 4: Modelagem (2)
Estudos de Controle - Aula 4: Modelagem (2)Estudos de Controle - Aula 4: Modelagem (2)
Estudos de Controle - Aula 4: Modelagem (2)
 
Sist cont i_conf2_2014
Sist cont i_conf2_2014Sist cont i_conf2_2014
Sist cont i_conf2_2014
 
Trabalho flip flop
Trabalho flip flopTrabalho flip flop
Trabalho flip flop
 
Trabalho01
Trabalho01Trabalho01
Trabalho01
 
Doc modelagem _492246747
Doc modelagem _492246747Doc modelagem _492246747
Doc modelagem _492246747
 
Estudos de Controle - Aula 8: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 8: Análise de Resposta Transitória e de Regime Est...Estudos de Controle - Aula 8: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 8: Análise de Resposta Transitória e de Regime Est...
 
[PRJ32][Christopher] Aula 14 – controle
[PRJ32][Christopher] Aula 14 – controle[PRJ32][Christopher] Aula 14 – controle
[PRJ32][Christopher] Aula 14 – controle
 
5 2 funcoes de transferencia
5 2   funcoes de transferencia5 2   funcoes de transferencia
5 2 funcoes de transferencia
 
Org flip flops_registradores Organizção de flip flops
Org flip flops_registradores Organizção de flip flopsOrg flip flops_registradores Organizção de flip flops
Org flip flops_registradores Organizção de flip flops
 
Lugar raizes
Lugar raizesLugar raizes
Lugar raizes
 

Mais de AlexSouza974126

AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.doc
AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.docAVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.doc
AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.docAlexSouza974126
 
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdf
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdfAula 01- Surgimento e Principais Caracteristicas da AIA.pdf
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdfAlexSouza974126
 
unidade04-c3-handout.pdf
unidade04-c3-handout.pdfunidade04-c3-handout.pdf
unidade04-c3-handout.pdfAlexSouza974126
 
Modelo de Relatorio Eletronica.doc
Modelo de Relatorio Eletronica.docModelo de Relatorio Eletronica.doc
Modelo de Relatorio Eletronica.docAlexSouza974126
 
Apresentacao_Aula_07.pdf
Apresentacao_Aula_07.pdfApresentacao_Aula_07.pdf
Apresentacao_Aula_07.pdfAlexSouza974126
 

Mais de AlexSouza974126 (10)

AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.doc
AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.docAVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.doc
AVALIAÇÃO BIMESTRAL DE GEOGRAFIA I2B.doc
 
pdca numerico.pdf
pdca numerico.pdfpdca numerico.pdf
pdca numerico.pdf
 
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdf
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdfAula 01- Surgimento e Principais Caracteristicas da AIA.pdf
Aula 01- Surgimento e Principais Caracteristicas da AIA.pdf
 
HTML.ppt
HTML.pptHTML.ppt
HTML.ppt
 
Aula_02.pdf
Aula_02.pdfAula_02.pdf
Aula_02.pdf
 
Aula_01.pdf
Aula_01.pdfAula_01.pdf
Aula_01.pdf
 
unidade04-c3-handout.pdf
unidade04-c3-handout.pdfunidade04-c3-handout.pdf
unidade04-c3-handout.pdf
 
Modelo de Relatorio Eletronica.doc
Modelo de Relatorio Eletronica.docModelo de Relatorio Eletronica.doc
Modelo de Relatorio Eletronica.doc
 
Apresentacao_Aula_07.pdf
Apresentacao_Aula_07.pdfApresentacao_Aula_07.pdf
Apresentacao_Aula_07.pdf
 
19_vetores.pdf
19_vetores.pdf19_vetores.pdf
19_vetores.pdf
 

Controle_Petróleo.ppt

  • 1. Disciplina PPGCEP: Automação da Medição na Indústria do Petróleo Professor: André L. Maitelli
  • 2. Sumário • Introdução; • Transformada de Laplace; • Desempenho transitório de sistemas; • Desempenho em regime permanente; • Método do Lugar das Raízes; • Controle de processos industriais; • Instrumentação industrial; • Válvulas de controle; • Ações de controle; • Sintonia de controladores PID; • Controle em cascata, relação e antecipatório; • Controle override e split range; • Controle inferencial, adaptativo e robusto.
  • 4. O que é Controle ? • Um problema de controle consiste em determinar uma forma de afetar um sistema físico considerado de modo que o seu desempenho atenda às especificações de desempenho; • O comportamento do sistema físico pode ser alterado através das variáveis manipuladas geradas por um controlador.
  • 5. Especificações de Desempenho • Podem envolver requisitos como: – Rapidez na resposta: tempo de subida, transferência em tempo mínimo; – Exatidão: sobressinal, erro de regime, rastreamento de referência; – Custo: mínima energia, mínimo combustível; – Segurança: estabilidade, robustez à incertezas; – Conforto: rejeição à distúrbios, capacidade de auto- diagnóstico; – Simplicidade: modelos reduzidos, número pequeno de componentes.
  • 7. Controle Automático • Controle; • Controlador; • Sistema de controle a malha aberta: Sistema Saída Dispositivo de atuação Resposta desejada
  • 8. Controle Automático • Sistema de controle a Malha Fechada (em Realimentação): Sistema Saída Comparação Controlador Dispositivo de medida Resposta desejada (Set Point) SP (Variável de Processo) PV Sinal de controle (Variável manipulada) MV Sensor + Transmissor
  • 9. Controle Automático • Exemplo: controle de nível de um reservatório: Sistema Controlador - + Reservatório Bóia Nível desejado Nível de água Bomba
  • 14. Controle Ideal • Impraticável devido: – Incertezas no modelo G(s); – Processos de fase não-mínima; – Limitações no sinal de controle u; • O que aconteceria com u se a saída desejada yd fosse um degrau ? u yd y G(s) 1/G(s)
  • 15. Por que Malha Fechada ??? • Vantagens: – redução da sensibilidade do sistema à variações de parâmetros; – maior rejeição à distúrbios; • Desvantagens: – maior número de componentes; – perda de ganho. G(s) R(s) Y(s) Malha Aberta R(s) + - G(s) H(s) E(s) B(s) Y(s) Malha Fechada
  • 16. Por que Malha Fechada ??? G(s) R(s) Y(s) Malha Aberta R(s) + - G(s) H(s) E(s) B(s) Y(s) Malha Fechada   Y s G s R s ( ) ( ) ( )  Y s Y s G s G s G s G s H s R s ( ) ( ) ( ) ( ) ( ( ) ( )) ( ) ( )         1       Y s G s GH s GH s GH s R s ( ) ( ) ( ) ( ) ( ) ( )     1 1 GH s GH s ( ) ( )       Y s G s GH s R s ( ) ( ) ( ) ( )   1 2 • Variação de parâmetros:
  • 17. Por que Malha Fechada ??? • Rejeição à perturbações: G(s) R(s) Y(s) Malha Aberta P(s) + + perturbação R(s) + - G(s) H(s) E(s) B(s) Y(s) Y(s) R(s) E(s) 1 G(s) -H(s) P(s) + + 1 P(s) Y s P s ( ) ( )  1 Y s P s GH s ( ) ( ) ( )   1 1
  • 18. Por que Malha Fechada ??? • Desvantagens: – Aumento da complexidade do sistema; – O ganho de um sistema de malha fechada é reduzido por um fator 1/1+GH; – Perda da estabilidade: um sistema que em malha aberta é estável, pode não ser sempre estável em malha fechada.
  • 19. Problemas de Controle em Engenharia Sistema Modelo Matemático Análise Projeto Implementação Baseado nas especificações de desempenho
  • 20. Histórico • 1769  Máquina a vapor de James Watt; • 1868  J. C. Maxwell desenvolve o modelo matemático para o controle de uma máquina a vapor; • 1913  Henry Ford desenvolve uma máquina de montagem utilizada na produção de automóveis; • 1927  H. W. Bode analisa amplificadores realimentados; • 1932  H. Nyquist desenvolve um método para analisar a estabilidade de sistemas; • 1952  Controle numérico desenvolvido pelo MIT; • 1954  George Devol desenvolve o primeiro projeto industrial robotizado; • 1970  Teoria de variáveis de estado e controle ótimo é desenvolvida; • 1980  Projeto de sistemas de controle robusto é desenvolvido; • 1990  Automação da manufatura é difundida; • 1995  Controle automático é largamente utilizado em automóveis. Sistemas robustos são utilizados na manufatura.
  • 22. Transformada de Laplace • Definição Seja f(t)  função do tempo t com f(t)= 0 p/ t < 0 s  variável complexa L  operador de Laplace F(s)  transformada de Laplace de f(t)    0 st dt e ) t ( f = F(s) = [f(t)] L
  • 23. Transformada de Laplace • Transformada de Algumas Funções Particulares: – Degrau Unitário: f t ( )      0 t < 0 1 t 0 F s s ( )  1 – Rampa Unitária: f t ( )      0 t < 0 t t 0 F s s ( )  1 2
  • 24. Transformada de Laplace – Função Exponencial: – Senóide: f t e at ( )    t 0 F s s a ( )   1 f t t t ( ) sen    0 F s s ( )     2 2
  • 25. Transformada de Laplace – Pulso Unitário f (t) p    t – Impulso Unitário f (t) i t (t) ( ) lim ( ) t fp t    0 Fp s st s e s ( )             1 0 1 1     e dt Fi s Fp s d d e s d d s s e s s ( ) lim ( ) lim ( ) lim                         0 0 1 0 1
  • 26. Propriedades Tranf. Laplace – Homogeneidade: – Translação no tempo L L [ ( )] [ ( )] ( ) af t a f t aF s   – Aditividade L L L [ ( ) ( )] [ ( )] [ ( )] ( ) ( ) f t f t f t f t F s F s 1 2 1 2 1 2      L [ ( )] ( ) f t a s   e-as F – Mudança de escala de tempo L [ ( ) f F s 1           – Translação no domínio s L eatf t F s a ( ) ( )        
  • 27. Propriedades Tranf. Laplace – Diferenciação: – Valor Final: L dn dtn f t snF s sn f sn f t f n ( ) ( ) ( ) ( ) ( ) ( )                  1 0 2 0 1 ... lim ( ) lim ( ) t f t s sF s   0 – Valor Inicial: lim ( ) lim ( ) t f t s sF s    0 – Integração:   L f t dt F s s f s ( ) ( ) ( )    1 0 f f t dt t     1 0 0 ( ) ( )
  • 28. Propriedades Tranf. Laplace – Integral da Convolução: L f t f d t F s F s 1 2 0 1 2 ( ) ( ) ( ) ( )              
  • 29. Transformada Inversa de Laplace – Expansão em Frações Parciais: F s F s F s Fn s ( ) ( ) ( ) ( )     1 2 ... L      1 1 2 [ ( )] ( ) ( ) ( ) F s f t f t fn t ... – Em controle: F s N s D s N s s p s p s pn ( ) ( ) ( ) ( ) ( )( ) ( )      1 2 ... F(s) de pólos ... p2 1  ) s ( p , ), s ( ), s ( p n Raízes de N(s) são os zeros do sistema
  • 30. Transformada Inversa de Laplace – Pólos reais e diferentes: – Pólo com multiplicidade r: F s C s p C s p Ck s pk Cn s pn ( )           1 1 2 2 ... ... L          1 Ck s pk Ck p t k e   Ck s pk F s s pk    ( ) ( )         Ckr s pk r Ck r s pk r Ck r i s pk r i Ck s pk            ( ) ( ) 1 1 1 ... +   Ck r i i di dsi s pk rF s s pk ( ) ! ( ) , , ,                      1 0 1 i ... r -1   L                 1 1 Ck r i s pk r i Ck r i r i p t k ( ) ( ) ( )! tr-i-1 e
  • 31. Transformada Inversa de Laplace – Pólos complexos conjugados: pk j d pk j d          1 Ck s pk Ck s pk      1 1 L                1 1 1 2 90 Ck s pk Ck s pk Ck t dt Ck o e  sen( )   Ck s pk F s s p Ck k     ( ) ( ) Ck
  • 33. Exercício • Resolver a equação diferencial: 0 1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Step Response Time (sec) Amplitude 3 x 5 x 2 x       0 ) 0 ( x 0 ) 0 ( x    t 2 cos e 5 3 t 2 sen e 10 3 5 3 ) t ( x t t     
  • 34. Funções Matlab [r,p,k]= residue(num,den) Ex: G(s)= 2s3+5s2+3s+6/(s3+6s2+11s+6) r=[-6 -4 3]´ p=[-3 -2 -1]´ k=2 G(s)=-6/(s+3) + -4/(s+2) + 3/(s+1) + 2
  • 35. Função de Transferência • Considere um sistema linear, invariante no tempo, a parâmetros concentrados descrito pela seguinte equação diferencial: u b u b ... u b u b y a y a ... y a y n 1 n ) 2 n ( 2 ) 1 n ( 1 n 1 n ) 1 n ( 1 ) n (                 • Aplicando a transformada de Laplace em ambos os lados da equação acima, com condições iniciais nulas:     ) s ( U b s b ... s b s b ) s ( Y a s a ... s a s n 1 n 2 n 2 1 n 1 n 1 n 1 n 1 n                   ) s ( G a s a ... s a s b s b ... s b s b ) s ( U ) s ( Y n 1 n 1 n 1 n n 1 n 2 n 2 1 n 1               
  • 36. Função de Transferência • A Função de Transferência pode ser escrita como:           ) s ( D ) s ( N K p s ... p s p s z s ... z s z s K ) s ( G n 2 1 1 n 2 1          em que z z zn 1 2 1 , , , ...  p p pn 1 2 , , , ... são os zeros do sistema são os pólos do sistema G s ( )  0 G s ( )   Re Im pólos zero Plano complexo s
  • 37. Função de Transferência • É a razão entre a Transformada de Laplace da entrada e a Transformada de Laplace da saída, quando as condições iniciais são nulas; • Para um sistema linear, invariante no tempo e causal, é suficiente para descrevê-lo; • A transformada inversa da função de transferência é a resposta ao impulso do sistema; • A FT é um modelo matemático que constitui um método operacional para expressar a equação diferencial que relaciona a variável de entrada à variável de saída.
  • 38. Função de Transferência • Em um sistema fisicamente realizável (causal) o número de pólos é maior ou igual ao de zeros; • A FT é uma propriedade inerente ao sistema, independentemente da magnitude e da natureza da entrada; • A FT contém as unidades necessárias para relacionar a entrada à saída; entretanto, não fornece nenhuma informação relativa à estrutura física do sistema; • Se a FT for conhecida, a saída pode ser estudada para diferentes entradas; • Se a FT não for conhecida, ela pode ser determinada experimentalmente com o auxílio de entradas conhecidas e do estudo das respectivas respostas do sistema;
  • 39. Exemplo 2 s 1 U(s) ) ( 2      t e t u 3 2 4 ) ( ) ( 2     s s s U s Y ) 2 )( 3 )( 1 ( 4 ) 2 )( 3 2 ( 4 ) ( 2           s s s s s s s Y t 2 t 3 t e 3 4 e e 3 1 ) t ( y        Se Dado ) 2 ( ) 3 ( ) 1 ( ) 2 )( 3 )( 1 ( 4           s c s b s a s s s
  • 40. Modelagem de Sistemas Dinâmicos • Obtenção das equações diferenciais que descrevem o comportamento do sistema; • Difícil obtenção do modelo completo do sistema; • Modelo adequado depende do propósito: simulação, controle, etc; • Métodos baseados em leis físicas; • Métodos por identificação; • Modelos lineares e não-lineares; • Linearização em ponto de operação; • Para sistemas físicos: variáveis generalizadas.
  • 41. Variáveis Generalizadas • Variáveis generalizadas de um dado sistema são aquelas cujo produto é igual (ou proporcional) a potência (energia no tempo) entrando ou saindo do sistema; • Neste par de variáveis generalizadas, identificamos dois tipos de variáveis, que dependem da forma com que elas agem nos elementos dos sistemas: as variáveis ATRAVÉS (corrente, força) e as variáveis ENTRE (tensão, velocidade); • A designação também está relacionada ao tipo de instrumento requerido para medir cada variável em um sistema físico: medidores de força e corrente são usados em série para medir o que atravessa o elemento, e medidores de velocidade e tensão são conectados em paralelo para medir a diferença entre o elemento;
  • 42. Variáveis Generalizadas • A tabela abaixo mostra as variáveis generalizadas para diferentes sistemas físicos: Sistema Variável Através Variável Entre Elétrico Corrente, i Tensão, v Mecânico Força, F Velocidade, v Rotacional Torque,  Velocidade angular,  Fluido Vazão, Q Pressão, P Térmico Fluxo de Calor, q Temperatura, T
  • 43. Variáveis Generalizadas • Sob o enfoque energético e usando a definição de variáveis generalizadas, podemos classificar os elementos de sistemas em três tipos: – Fontes de Energia: • Esforço; • Fluxo; – Armazenadores de Energia: • Esforço; • Fluxo; – Dissipadores de Energia.
  • 44. Variáveis Generalizadas • A tabela a seguir mostra os elementos de diferentes sistemas físicos, separando-os em armazenador de fluxo, armazenador de esforço e dissipadores: Sistema Armazenador de Fluxo Armazenador de Esforço Dissipador Elétrico Capacitor i C dv dt  21 Indutor v L di dt 21  Resistor i v R  21 Mecânico Massa F M dv dt  2 Mola v K dF dt 21 1  Atrito Viscoso F Bv  21 Rotacional Inércia    J d dt 2 Mola Rot.   21 1  K d dt r Atrito Viscoso Rot.    Br 21 Fluido Reservatório Q C dP dt f  21 Inércia fluida P I dQ dt f 21  Resistência fluida Q R P f  1 21 Térmico Corpo q C dT dt t  2 -- Resistência Térmica q R T f  1 21
  • 45. Variáveis Generalizadas • Interconexão de elementos de sistemas Restrição de compatibilidade de esforço: ek k n    0 1 Restrição de continuidade de fluxo: fk k n    0 1
  • 47. Estabilidade • A estabilidade de um sistema linear de malha fechada é determinada pela localização de seus pólos de malha fechada no plano s; • Se qualquer um destes pólos estiver no semiplano direito do plano s, então, com o decorrer do tempo, eles darão origem ao modo dominante e a resposta transitória aumentará monotonicamente ou oscilará com amplitude crescente; • Existem critérios para a avaliação da estabilidade sem necessitar do cálculo dos pólos de malha fechada (critério de Routh).
  • 48. Estabilidade • Critério BIBO (Bounded Input, Bounded Output): – “Um sistema qualquer é estável se e somente se para toda e qualquer entrada limitada, a saída correspondente também for limitada”; – “Um sistema linear a malha fechada, invariante no tempo, a parâmetros concentrados é estável se e somente se todos os pólos de sua função de transferência de malha fechada estão no semi- plano esquerdo aberto do plano complexo s”
  • 49. Estabilidade • Critério de Routh ) s ( D ) s ( N a s a ... s a s a b s b ... s b s b ) s ( R ) s ( Y n 1 n 1 n 1 n 0 m 1 m 1 m 1 m 0               sn a3 b2 b3 b4 c2 c3 d2 d3 : e1 e2 f1 g1 sn sn sn sn s s s a a a a a a a b c c d d     1 2 3 4 2 1 0 0 2 4 6 1 5 7 1 1 4 1 4 : ... ... ... ... : 1 3 0 2 1 1 a a a a a b   1 5 0 4 1 2 a a a a a b   1 7 0 6 1 3 a a a a a b   1 2 1 3 1 1 b b a a b c   1 3 1 5 1 2 b b a a b c   1 4 1 7 1 3 b b a a b c   1 2 1 2 1 1 c c b b c d   1 3 1 3 1 2 c c b b c d    O número de raízes da equação característica com partes real positiva é igual ao número de mudanças de sinal dos coeficientes da 1ª coluna da tabela
  • 51. Exercícios • Analisar a estabilidade do sistema G(s)= K/(s(s2+s+1)(s+2)); H(s)=1 1+G(s)H(s)=s4+3s3+3s2+2s+K 0 < K < 14/9
  • 52. Funções Matlab sys= tf(Numg,Deng); sysr= tf(Numh,Denh); sysmf= feedback(sys,sysr); roots(a)
  • 54. Transitório de Sistemas de 1a Ordem ac t bc t dr t ( ) ( ) ( )    a  0 a b T  (constante de tempo do sistema ) d b K  (ganho do sistema ) Tc t c t Kr t ( ) ( ) ( )    C s R s G s K Ts ( ) ( ) ( )   1 K 1 sT R(s) C(s) + - E(s) G s Ts ( )   1 1 para K=1
  • 55. Transitório de Sistemas de 1a Ordem • Resposta ao Degrau Unitário C s sT s s s T ( ) /      1 1 1 1 1 1 c t e t T ( ) /    1
  • 56. Transitório de Sistemas de 1a Ordem • Resposta a Rampa Unitária C s s Ts s T s T Ts ( )       1 1 1 1 1 2 2 2 c t t T Te t T ( ) /     e(t r t c(t T e t T ) ( ) ) /            1 e T ( )  
  • 57. Exemplo Sistema de 1a Ordem qs h qe v2 v1
  • 58. Transitório de Sistemas de 2a Ordem ac t bc t dc t er t ( ) ( ) ( ) ( )      Definindo: b a d a e a K n n    2 2   ; ; c t c t c t Kr t n n ( ) ( ) ( ) ( )      2 2   C s R s K s s n n ( ) ( )    2 2 2  K R(s) C(s) + - E(s) 1 s(s+2 ) n
  • 59. Transitório de Sistemas de 2a Ordem Considerando K=1 C s R s s s n n ( ) ( )    1 2 2 2   s s s n n n n 2 2 2 2 0 1              Pólos do sistema:
  • 60. Transitório de Sistemas de 2a Ordem Três casos: 1) Caso SUBAMORTECIDO O sistema tem dois pólos complexos conjugados e apresenta oscilações 0 1    c(t e t dt tg n ) sen                1 1 2 1 1 2      n d    2 1  (freqüência natural amortecida) Se =0 c t t n ( ) cos   1 
  • 61. Transitório de Sistemas de 2a Ordem 2) Caso CRITICAMENTE AMORTECIDO 1     t e ) t ( c n t n       1 1 3) Caso SOBREAMORTECIDO 1   c(t n e s t s e s t s )               1 2 2 1 1 2 1 2   s n n 1 2 1 2 2 1                         e s
  • 63. Transitório de Sistemas de 2a Ordem 0 2 4 6 8 10 0 0.5 1 0 0.5 1 1.5 2 t (s) Gráfico Tridimensional das Curvas de Resposta ao Degrau Unitário  Resposta
  • 64. Transitório de Sistemas de 2a Ordem • Especificações de resposta transitória % overshoot tempo de subida tempo de estabilização tempo de pico d r t            2 1 1 tg d p t               2 1 / p e 100 (%) M n s 4 t   n s 3 t   (2%) (5%)
  • 65. Exemplo Sistema de 2a Ordem • Sistema Massa/mola/atrito
  • 66. Efeito de um Zero
  • 67. Sistemas de Ordem Superior                     q 1 j r 1 k 2 k k k 2 j m 1 i i s 2 s p s s z s K ) s ( C                       q 1 j r 1 k 2 k k k 2 2 k k k k k k j j s 2 s 1 c s b p s a s a ) s ( C                            r 1 k 2 k k t k r 1 k 2 k k t k q 1 j t p j t 1 sen e c t 1 cos e b e a a ) t ( c k k k k j • A Resposta é a soma de um certo número de curvas exponenciais e curvas senoidais amortecidas
  • 68. Pólos Dominantes e Dominados • Se um sistema é estável, então os pólos que estão longe do eixo j tem partes reais negativas de valor elevado, e os termos exponenciais correspondentes a estes pólos decaem rapidamente a zero; • A dominância relativa de pólos de malha fechada é determinada pela relação das partes reais dos pólos de malha fechada, bem como pelos valores relativos dos resíduos calculados nos pólos de malha fechada. O valor dos resíduos depende tanto dos pólos quanto dos zeros de malha fechada; • Se as relações entre as partes reais dos pólos excedem cinco e não existem zeros na vizinhança, então os pólos de malha fechada mais próximos do eixo j dominarão a resposta transitória. Estes pólos são chamados de DOMINANTES e os mais distantes do eixo j são chamados de DOMINADOS.
  • 69. Pólos Dominantes e Dominados Exemplo: ) 10 s )( 2 s )( 1 s ( 20 ) s ( G     10 s 72 / 2 2 s 8 / 10 1 s 9 / 20 s 1 ) 10 s )( 2 s )( 1 s ( s 20 ) s ( C            t 10 t 2 t e 72 2 e 8 10 e 9 20 1 ) t ( c        Resposta ao Degrau: Aproximação - s=0 em G(s) no pólo dominado G s s s s s ( ) ( )( ) ( )(        20 1 2)(0 10 2 1 2) 2 s 1 1 s 2 s 1 ) 2 s )( 1 s ( s 2 ) s ( C         t 2 t e e 2 1 ) t ( c      Resposta ao Degrau aproximada:
  • 70. Pólos Dominantes e Dominados Comparação (respostas exata e aproximada): curva exata curva aproximada
  • 71. Efeitos das Não-Linearidades • Todos os processos industriais reais são não-lineares; • Um processo não-linear pode ser definido como aquele que tem um ganho, uma constante de tempo ou uma taxa de integração que não são constantes, mas dependentes das entradas e saídas do processo; • Para que o processo de nível do exemplo seja linear, a constante de tempo e o ganho obtidos quando a abertura da válvula muda de 20% para 25% devem ser os mesmos obtidos quando a abertura da válvula muda de 60% para 65%, ou de 90% para 95%, etc; • Vazão em um orifício com fluxo laminar é proporcional à raiz quadrada do nível.
  • 72. Efeitos de Não-Linearidades • O comportamento não-linear pode originar-se em qualquer das partes constituintes do sistema: processo, atuador ou sensor; • Se a não-linearidade for “suave” (diferenciável) uma linearização pode ser feita; • Caso contrário, o tratamento será mais difícil; • Não-linearidades “duras” mais comuns: – Saturação de atuadores; – Zona morta (ex. atrito estático); – Histerese (ex. engrenagens).
  • 74. Tempo Morto • Presente em grande parte dos processos; • Pode provocar problemas de instabilidade; • Exemplo: sistema de nível – Considerando como entrada a percentagem de abertura na válvula v1, quando ocorre uma mudança na mesma, a vazão de entrada do tanque só variará algum tempo depois, dependendo da distância da válvula da entrada de líquido no tanque; – Chamado também de atraso de transporte; – Por exemplo, se a válvula está localizada a 20 metros da entrada do tanque e a velocidade do líquido na tubulação for de 10 metros por segundo, o tempo morto do processo será de 2 segundos.
  • 75. Tempo Morto • Função de Transferência: G(s)= e-sT • Aproximação de Padé: aproxima o atraso por uma função racional; • Matlab: pade(Td,n). Ex: Td=1, n=3                     48 Ts 8 Ts 2 Ts 1 48 Ts 8 Ts 2 Ts 1 e 3 2 3 2 Ts
  • 76. Tempo Morto • Aproximação de Padé n=1, 2, 3
  • 77. Sistemas de Controle Multivariável CONTROLADOR PLANTA SP Variáveis Controladas Perturbações Variáveis Manipuladas
  • 78. Funções Matlab t=0:0.005:5 step(num,den,t) resposta ao degrau impulse(num,den) resposta ao impulso lsim(num,den,r,t) resposta entrada arbit. plot(t,y) traça a curva y x t
  • 80. Desempenho em Regime Permanente • A análise do desempenho em regime permanente de um sistema consiste no estudo do comportamento da resposta do sistema quando o tempo tende a infinito (ou for muito grande); • Desde que o sistema seja estável, o desempenho em regime depende do tipo do sistema (número de integradores – 1/s – existentes em G(s)H(s).
  • 81. Desempenho em Regime Permanente R(s) + - G(s) H(s) E (s) B(s) C(s) a             N n 1 i i N m 1 i i p s s z s K ) s ( H ) s ( G ) s ( H ) s ( G ) s ( E ) s ( R ) s ( H ) s ( C ) s ( R ) s ( E a a     ) s ( R ) s ( H ) s ( G 1 1 ) s ( Ea   Erro de Regime: ) s ( sE lim ) t ( e lim e a 0 s a t ss      ) s ( H ) s ( G 1 ) s ( sR lim e 0 s ss   
  • 82. Desempenho em Regime Permanente O erro atuante Ea(s) só coincide com o erro E(s) = R(s) - C(s) quando H(s)= 1. De uma forma geral:   ) s ( R ) s ( H ) s ( G 1 ) s ( G ) s ( H ) s ( G 1 ) s ( C ) s ( R ) s ( E      
  • 83. Desempenho em Regime Permanente Para uma entrada do tipo degrau de magnitude A:   ) 0 ( H )( 0 ( G 1 A ) s ( H ) s ( G 1 s / A s lim e 0 s ss      Definindo a constante de erro de posição estático (Kp) ) 0 ( H ) 0 ( G ) s ( H ) s ( G lim K 0 s P    p ss K 1 A e   O erro de regime permanente é dado por
  • 84. Desempenho em Regime Permanente Para uma entrada do tipo rampa de inclinação A: Definindo a constante de erro de velocidade estático (Kv) O erro de regime permanente é dado por   ) s ( H ) s ( sG A lim ) s ( H ) s ( sG s A lim ) s ( H ) s ( G 1 s / A s lim e 0 s 0 s 2 0 s ss         ) s ( H ) s ( sG lim K 0 s v   v ss K A e 
  • 85. Desempenho em Regime Permanente O erro de regime para uma entrada parábola é: Definindo a constante de erro de aceleração estático (Ka) O erro de regime permanente é dado por r t At ( ) /  2 2   ) s ( H ) s ( G s A lim ) s ( H ) s ( G s s A lim ) s ( H ) s ( G 1 s / A s lim e 2 0 s 2 2 0 s 3 0 s ss         ) s ( H ) s ( G s lim K 2 0 s a   a ss K A e 
  • 86. Desempenho em Regime Permanente Resumo: p K 1 A  A Kv A Ka Entrada Degrau r(t)= A Entrada Rampa r(t)= At Entrada Parábola r(t)= At2/2 Tipo 0   Tipo 1 0  Tipo 2 0 0 Tipo 3 0 0 0
  • 87. Exemplos - Desempenho em Regime Permanente Calcular erro de regime para: (a) Calcular erro de regime para G(s)H(s)= 1/s(s+1)(s+2) (b) Qual o erro mínimo para uma entrada rampa para o sistema G(s)H(s)= K/(s(s+1)(s+2))
  • 89. Método do Lugar Geométrico das Raízes (Root Locus) • Consiste no traçado dos pólos de malha fechada de um sistema quando o seu ganho (ou algum parâmetro) varia de zero a infinito; • É uma ferramenta gráfica poderosa para a análise e síntese de sistemas.
  • 90. Método do Lugar Geométrico das Raízes (Root Locus) • Idéia: R(s) + - C(s) s(s+4) K C s R s K s s K ( ) ( )    2 4 • Pólos de Malha Fechada (raízes da eq. característica) s s K 2 4 0    s K K p K p K                      4 16 4 2 2 4 1 2 4 2 2 4 K=0 K=0 K K     Re Im -2 -4 LGR
  • 91. LGR  Como G(s)H(s) representa uma quantidade complexa, a igualdade acima precisa ser desmembrada em duas equações.  Estas equações fornecem as seguintes condições para a localização dos pólos no plano s: G(s) R(s) C(s) + - ) ( ) ( 1 ) ( ) ( s H s G s G s GMF   1 ) ( ) (   s H s G  Condição de Módulo:  Condição de Ângulo: 1 G(s)H(s)  0,1,... = ); 1 2 ( 180 G(s)H(s) k k     p1 p2 z1 Ponto de Teste si 1 A A K.B 2 1 1  ) 1 2 ( 180 θ θ o 1 2 1      k  Re Im
  • 92. Método do Lugar Geométrico das Raízes (Root Locus) Pólos de Malha Fechada  Raízes da Equação Característica 1 + G(s)H(s) = 0 G s H s ( ) ( )  1 G s H s G s H s k ( ) ( ) ( ) ( ) )     1 180(2 1 ; k = 0,1,... Re Im  1 2 -2 -4   1 + 2 = 180 o A B O K OA OB = 1
  • 93. Método do Lugar Geométrico das Raízes (Root Locus) Regras para construção: G s H s G s H s k ( ) ( ) ( ) ( ) ( )     1 180 2 1 ; k = 0,1,...     G s H s K s zi i m sN s pj j n N ( ) ( )         1 1 G s H s z i m N j j n N i ( ) ( )          1 1 2  
  • 94. Regras LGR Passo Regra 1- Escrever a equação característica tal que o parâmetro de interesse K apareça como um multiplicador 1+ K P(s)=0 2- Fatorar P(s) em termos de n pólos e m zeros     1 1 1 0         K s zi i m s pj j n / 3- Localizar os pólos e zeros de P(s) no plano s X = pólos ; O = zeros 4- Localizar as partes do eixo real que fazem parte do LGR O LGR passa em todo ponto do eixo real a direita do qual existir um número ímpar de pólos mais zeros 5- Determinar o número de ramos do LGR O número de ramos r é igual ao número de pólos de P(s) ( ) n m  6- O LGR é simétrico em relação ao eixo real --- 7- Os ramos do LGR que tendem para infinito são assintóticos a retas centradas em CG e com ângulos i     CG pj zi n m        ; o i 180 (2i 1) ; i 0,1,...,(n -m-1) n -m     8- Determinar o ponto onde o LGR cruza com o eixo imaginário Utilizar o critério de estabilidade de Routh 9- Determinar o ponto de separação sobre o eixo real 1 K P(s)   ; dK 0 ds  10- Determinar o ângulo de partida de pólos complexos ou de chegada a zeros complexos o i i P(s) 180 (2k 1) para s z ou s p      11- Determinar os lugares do LGR que satisfazem a condição de ângulo o x P(s) 180 (2k 1) para s    12- Determinar o parâmetro Kx para uma raiz específica sx P s s sx ( ) 
  • 95.  Exemplo 1: 2. Fatorar o polinômio P(s) em termos dos nP pólos e nZ zeros. 1. Escrever o polinômio característico do modo que o parâmetro de interesse (K) apareça claramente: K R(s) C(s) + - s + 2 s ( s + 4 )  Sistema com 2 pólos e 1 zero reais: 4s s 2 s P(s) 4s s 2 s K 1 G(s)H(s) 1 2 2            4 s s 2 s K 1 KP(s) 1 4s s 2 s K 1 G(s)H(s) 1 2            
  • 96.  Exemplo 1: X = Pólos e O = Zeros. O LGR começa nos pólos e termina nos zeros. 3. Assinalar os pólos e zeros de malha aberta no plano s com os símbolos correspondentes: K R(s) C(s) + - s + 2 s ( s + 4 ) Lugar Geométrico das Raízes (LGR) Re -5 -4 -3 -2 -1 -0.2 -0.1 0 0.1 0.2 Im
  • 97.  Exemplo 1: O LGR se situa à esquerda de um número ímpar de pólos e zeros. 4. Assinalar os segmentos do eixo real que são LGR: K R(s) C(s) + - s + 2 s ( s + 4 ) Lugar Geométrico das Raízes (LGR) Re -5 -4 -3 -2 -1 -0.2 -0.1 0 0.1 0.2 Im Lugar Geométrico das Raízes (LGR) Im Total de 1 pólos e zeros (nº Impar) Total de 2 pólos e zeros (nº Par) Total de 3 pólos e zeros (nº Impar)
  • 98. R(s) C(s) + - K ( s + 4 ) ( s + 2 ) ( ( s + 4 ) s + 1 ) s  Exemplo 2: 2. Fatorar o polinômio P(s) em termos dos nP pólos e nZ zeros. 1. Escrever o polinômio característico do modo que o parâmetro de interesse (K) apareça claramente:  Sistema com 4 pólos e 1 zero, todos reais: s 32 s 32 s 10 s 1 s K 1 KP(s) 1 2 3 4        2 ) 4 s )( 2 s ( s ) 1 s ( P(s)    
  • 99. R(s) C(s) + - K ( s + 4 ) ( s + 2 ) ( ( s + 4 ) s + 1 ) s LGR – Construção  Exemplo 2: X = Pólos e O = Zeros. O LGR começa nos pólos e termina nos zeros. 3. Assinalar os pólos e zeros de malha aberta no plano s com os símbolos correspondentes: Lugar Geométrico das Raízes (LGR) Re -5 -4 -3 -2 -1 -0.2 -0.1 0 0.1 0.2 Im Pólo com multiplicidade 2 O LGR se situa à esquerda de um número ímpar de pólos e zeros. 4. Assinalar os segmentos do eixo real que são LGR: Total de 1 pólos e zeros (nº Impar) Total de 2 pólos e zeros (nº Par) Total de 3 pólos e zeros (nº Impar) Total de 5 pólos e zeros (nº Impar) Trecho entre 2 pólos LS = nP = 4 5. Determinar o nº de lugares separados, LS = nP, quando np ≥ nZ; 6. O LGR é Simétrico em Relação ao eixo real.
  • 100.  Exemplo 2: z P i j A n n z p        ) ( ) (      1 ,..., 2 , 1 , 0 : com ; 180 1 2 o       z P z P A n n q n n q  7. (nP - nZ) seguimentos de um LGR prosseguem em direção aos zeros infinitos ao longo de assíntotas centralizadas em A e com ângulos A. 3 3 9 1 4 ) 1 ( ) 4 ( 2 ) 2 (            A                                        2 ; 300 180 3 1 2 . 2 1 ; 180 180 3 1 1 . 2 0 ; 60 180 3 1 0 . 2 2 1 180 1 4 1 2 o o o o o o o q q q n n q A A A z P A     3   A           2 ; 300 1 ; 180 0 ; 60 o o o q q q A  Lugar Geométrico das Raízes (LGR) Re -5 -4 -3 -2 -1 -0.2 -0.1 0 0.1 0.2 Im 60º 180º 300º A 8. Determinar o ponto de saída sobre o eixo real (se existir). 1º Fazer K = p(s); 2º Determinar as raízes de: 0 ds dp(s)   2 2 3 4 2 3 4 2 3 4 1 s 32 s 64 s 62 s 24 3s ds ) s ( dp 1 s s 32 s 32 s 10 s K ) s ( p s 32 s 32 s 10 s 1 s K 1 KP(s) 1                          5994 , 2 s 0 ds ) s ( dp     dp(s) ds = 0  s = -2,5994 (Pto. de saída sobre Re)
  • 101.  Exemplo 3: 2. Fatorar o polinômio P(s) em termos dos nP pólos e nZ zeros. 1. Escrever o polinômio característico do modo que o parâmetro de interesse (K) apareça claramente:  Sistema com 2 pólos reais e 2 pólos complexos: R(s) C(s) + - K ( s + 8s + 32 ) s 2 1 ( s + 4 ) s 128 s 64 s 12 s 1 K 1 KP(s) 1 2 3 4       ) 4 4 s )( 4 4 s )( 4 s ( s 1 P(s) i i      
  • 102.  Exemplo 3: R(s) C(s) + - K ( s + 8s + 32 ) s 2 1 ( s + 4 ) X = Pólos e O = Zeros. O LGR começa nos pólos e termina nos zeros. 3. Assinalar os pólos e zeros de malha aberta no plano s com os símbolos correspondentes: O LGR se situa à esquerda de um número ímpar de pólos e zeros. 4. Assinalar os segmentos do eixo real que são LGR: LS = nP = 4 5. Determinar o nº de lugares separados, LS = nP, quando np ≥ nZ; 6. O LGR é Simétrico em Relação ao eixo real. -10 -5 5 10 -10 -8 -6 -4 -2 0 2 Re Im Total de 1 pólos e zeros (nº Impar) Total de 2 pólos e zeros (nº Par)
  • 103.  Exemplo 3: -10 -5 5 10 -10 -8 -6 -4 -2 0 2 Re Im z P i j A n n z p        ) ( ) (      1 ,..., 2 , 1 , 0 : com ; 180 1 2 o       z P z P A n n q n n q  7. (nP - nZ) seguimentos de um LGR prosseguem em direção aos zeros infinitos ao longo de assíntotas centralizadas em A e com ângulos A. 3   A                 3 ; 315 2 ; 225 1 ; 135 0 ; 45 o o o o q q q q A A A A                              3 ; 315 2 ; 225 1 ; 135 0 ; 45 3 1 180 4 1 2 o o o o o q q q q n n q A A A A z P A      3 4 12 4 ) 4 ( ) 4 ( ) 4 ( ) 0 (            A  -3  A 225º 45º 315º 135º 8. Determinar o ponto de saída sobre o eixo real (se existir). 1º Fazer K = p(s); 2º Determinar as raízes de: 0 ds dp(s)  128 - s 128 s 36 s 4 ds ) s ( dp s 128 s 64 s 12 s K ) s ( p s 128 s 64 s 12 s 1 K 1 KP(s) 1 2 3 2 3 4 2 3 4                                 5767 , 1 2.55 3.71 2.55 + 3.71 s 0 ds ) s ( dp i i 5767 , 1 s 0 ds ) s ( dp     -4 -3 -2 -1 0 s p(s) 20 40 60 80 (-1,5767; 83,5704)
  • 104. 9. Utilizando o critério de Routh- Hurwirtz, determinar o ponto no qual o eixo real é cruzado (se isso ocorrer).  Exemplo 3: O polinômio característico é: 0 K s 128 s 64 s 12 s 2 3 4      0 89 , 568 s 33 , 53 2   33 , 53 12 128 ) 64 ( 12 b1    K 2250 , 0 128 b ) K ( 12 ) 128 ( b c 1 1 1     A partir do critério de Routh- Hurwirtz, determinamos o polinômio auxiliar: 89 , 568 0,23 128 K   K s0 c1 s1 K b1 s2 128 12 s3 K 64 1 s4 cujo as raízes determinam os pontos onde o LGR cruza o eixo imaginário. s1,2 = ± 3,27i Logo, o limite de ganho para estabilidade é: 568,89 53,33 Os pontos onde o LGR cruza o eixo imaginário são: s1,2 = ± 3,27i -10 -5 5 10 -10 -8 -6 -4 -2 0 2 Re Im 5767 , 1 s 0 ds ) s ( dp     s1,2 = ± 3,2660 i
  • 105. R(s) C(s) + - K ( s + 8s + 32 ) s 2 1 ( s + 4 ) -10 -5 5 10 -10 -8 -6 -4 -2 0 2 Re Im 90º 90º 135º em s = pj ou zi. . o o 360 180 P(s) q    10. Usando a condição de ângulo, determinar o ângulo de partida para os pólos complexos.  Exemplo 3: o o o o o 1 225 ) 135 90 90 ( 180 θ      1 o o o o 1 180 135 90 90 θ     1 Por Simetria
  • 113. Especificações (a) ωn ≥ 1.8/tr (b) ξ ≥ 0.6(1-Mp) (c) σ ≥ 4.6/ts (d) combinação
  • 114. Projeto de Controladores via LGR • Para um sistema de 2ª ordem: 2 n n 2 2 n s 2 s ) s ( R ) s ( C       1 s 2 n n        Pólos: M (%) Mp  T ts   n Região Viável para os pólos de malha fechada Re Im ( ) min  = cos  min -1 Especificações:
  • 115. Exemplo 1 r(t) + - c(t) 2 e(t) 2 G (s) c s Dado: Projetar um controlador Gc(s) para que: 4 K e % 20 M ; s 4 t a p s    0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 G(s)=2/s2 Gc(s)=(s+2.5) sem controlador com controlador PD CONTROLADOR PD
  • 116. Exemplo 2 H(s) =1 . Projetar um controlador para que o sistema tenha erro zero para entrada rampa, sem alterar significativamente o transitório. Dado: G s s s ( ) ( )   2 2 0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 CONTROLADOR PI G(s)=2/s(s+2) Gc(s)=(s+0.01)/s sem controlador
  • 118. Controle de Processos Industriais Processo Controlador Sensor Transdutor Elemento final de controle Transmissor SetPoint Variável de Processo SP PV MV Variável Manipulada temperatura pressão nível vazão tensão mecânica deslocamento tensão elétrica impedância elétrica pneumática hidráulica
  • 119. Processos Industriais • Sensor, Transmissor, Válvula de Controle: campo (junto ao processo); • Controlador: sala de controle ou campo; • Equipamentos de controle: analógicos ou digitais; • Sistemas analógicos: sinais de ar pressurizado (3 a 15 psi) ou sinais de corrente/tensão (4-20 mA, 0-10 Vdc);
  • 120. Controlador Industrial • Modos de Operação: Manual ou Automático; • Ações de Controle: Direta ou Reversa;
  • 121. Características de um Controlador Industrial • Indicar o valor da Variável de Processo (PV); • Indicar o valor da saída do controlador, a Variável Manipulada (MV); • Indicar o Set Point (SP); • Ter um chave para selecionar entre modo manual ou automático; • Ter uma forma de alterar o valor do SetPoint quando o controlador está em automático; • Ter uma forma de alterar MV quando o controlador está em manual; • Ter um modo de seleção entre ações direta e reversa do controlador.
  • 123. • Na indústria, um controlador microprocessado é chamado de Inteligente, possuindo diversas funções que os antigos controladores analógicos não possuíam; • O controlador Single Loop é o instrumento microprocessado que pode ser usado para controlar uma única malha; • O microprocessador pode ter qualquer função configurável e por isso, um mesmo instrumento pode funcionar como controlador convencional, como controlador cascata, como controlador auto- seletor ou como computador de vazão com compensação de pressão e temperatura. Controladores Inteligentes
  • 124. • A configuração pode ser feita através de teclados acoplados ao instrumento ou através de programadores separados; • A propriedade de auto-sintonia é disponível na maioria dos controladores Single Loop, exceto nos de baixo custo; • Os controladores Single Loop possuem ainda capacidade de auto/manual, ponto de ajuste múltiplo, auto-diagnose e memória; • São construídos de conformidade com normas para serem facilmente incorporados e acionados por sistemas SDCD; Controladores Inteligentes
  • 125. • Os controladores Multi Loop podem controlar várias malhas independentes; • Tem um custo mais baixo por malha de controle; • Possuem maior facilidade de comunicação entre as malhas, que é feita via software; • Tem a desvantagem de haver um comprometimento de todas as malhas em caso de defeito na CPU; Controladores Inteligentes
  • 126. • Controlador Multi Loop é capaz de controlar simultaneamente até 4 malhas de controle, com até 8 blocos PID e mais de 120 blocos de controle avançado; • A sua programação pode ser feita através de um módulo programador ou por um software instalado em um PC ou compatível, proporcionando uma interface gráfica de fácil utilização; Controlador CD-600 Smar
  • 127. • Possui um modo de operação self-tuning (auto- ajustável), em que os parâmetros do PID da malha escolhida se ajustarão automaticamente, mantendo a sintonia da malha, mesmo sob diferentes condições de operação; • Possui 8 entradas analógicas, 4 entradas digitais, 8 saídas analógicas e 8 saídas digitais; • Possuem uma estação de Backup incorporada para ambas as saídas analógicas e digitais; • É integrável com sistemas supervisórios e distribuídos. Controlador CD-600 Smar
  • 129. Introdução • Instrumentação trata de instrumentos industriais, que são utilizados para medir as variáveis de processo: – Vazão; – Pressão; – Temperatura; – Nível, etc. • Cada instrumento é identificado por um TAG: – Fluxogramas de processo e de engenharia; – Desenhos de detalhamento; – Painéis sinópticos.
  • 130. TAGs
  • 131. TAGs
  • 132. TAGs
  • 139. Malha de controle de pressão PT 211 ½" 0-300 # PIC 211 S.P. C-#2 (PI) PAH dp/dt AO-21 AI-17 PY 211 AS AS P PCV 211 FC
  • 141. • Evolução dos Transmissores – pelas exigências dos usuários por melhor desempenho e custo reduzido; – pelos desenvolvimentos que ocorreram nas tecnologias adjacentes, microeletrônica, ciência dos materiais e tecnologias de comunicação. • Os microprocessadores, se tornaram: – Baratos; – Pequenos; – Baixo consumo; – Fácil manutenção (auto-testável); • Nos anos 1980s, surgem instrumentos microprocessados, chamados de “inteligentes”. Evolução
  • 142. Evolução • O microprocessador é associado a circuitos adicionais de I/O e outros periféricos para formar um controlador, conceitualmente equivalente a um computador digital dentro do instrumento. • Logo, os transmissores inteligentes possuem um pequeno computador em seu interior que geralmente lhe dá a habilidade de fazer, entre várias outras, duas coisas principais: – modificar sua saída para compensar os efeitos de erros; – se comunicar (enviar dados e ser interrogado) com outros dispositivos.
  • 143. Evolução dos Transmissores • É interessante destacar duas denominações encontradas na literatura, que são parecidas, mas possuem uma importante diferença; – Costuma-se chamar de “Transmissor smart” o transmissor que possui as características de corrigir os erros de não linearidade do sensor primário, através de memória e sensores auxiliares; – Costuma-se denominar “Transmissor inteligente” o transmissor que além de possuir as características smart, armazene a informação referente ao transmissor em si (seus dados de aplicação e sua localização) e gerencie um sistema de comunicação que possibilite uma comunicação de duas vias.
  • 144. Memória Micro processador Conversor D/A Conversor A/D 4 a 20 mA 1o sensor 2o sensor (opcional) Componentes de um transmissor smart Transmissor Smart
  • 145. Transmissor Inteligente Memória Micro processador Conversor D/A Conversor A/D 4 a 20 mA 1o sensor 2o sensor (opcional) Sistema Comunicação Componentes de um transmissor inteligente:
  • 146. • Transmissor inteligente é um transmissor em que as funções de um sistema microprocessador são compartilhadas entre: – derivar o sinal de medição primário, – armazenar a informação referente ao transmissor em si, seus dados de aplicação e sua localização e – gerenciar um sistema de comunicação que possibilite uma comunicação de duas vias (transmissor para receptor e do receptor para o transmissor), superposta sobre o mesmo circuito que transporta o sinal de medição, a comunicação sendo entre o transmissor e qualquer unidade de interface ligada em qualquer ponto de acesso na malha de medição ou na sala de controle. Transmissores Inteligentes
  • 147. • Um transmissor inteligente pode ter sua faixa de calibração facilmente alterada através de comandos de reprogramação em vez de ter ajustes mecânicos locais; • O instrumento microprocessado pode fazer várias medições simultâneas e fazer computações matemáticas complexas destes sinais, para compensar, linearizar e filtrar os resultados finais. A medição é indireta, porém ela parece direta para o operador; • É possível selecionar automaticamente a unidade mais adequada para a variável medida. Transmissores Inteligentes
  • 148. Evolução dos Transmissores • Para a transmissão digital dos sinais, no início foi desenvolvido um protocolo que aproveitava a própria cablagem já existente, fazendo transitar sinais digitais sobre sinais analógicos 4-20 mA; • Este protocolo (HART) não foi mais que um paliativo, embora permaneça até hoje; • Depois surgiram uma profusão de padrões e protocolos que pretendiam ser o único e melhor barramento de campo. O tempo e o mercado acabaram por depurar o conceito e a selecionar os mais aptos.
  • 149. Protocolo HART • O HART (Highway Addressable Remote Transducer) foi criado em 1980 e possibilita o uso de instrumentos inteligentes em cima dos cabos 4-20 mA tradicionais; • O sinal Hart é modulado em FSK (Frequency Shift Key) e é sobreposto ao sinal analógico de 4-20 mA; Para transmitir 1 é utilizado um sinal de 1 mA pico a pico na freqüência de 1200 Hz e para transmitir 0 a freqüência de 2400 Hz é utilizada; • A comunicação é bidirecional.
  • 151. Protocolo HART • Este protocolo permite que além do valor da variável medida, outros valores significativos sejam transmitidos, como parâmetros para o instrumento, dados de configuração do dispositivo, dados de calibração e diagnóstico; • O sinal FSK é contínuo em fase, não impondo nenhuma interferência sobre o sinal analógico.
  • 152. Protocolo HART • Como o mestre e os instrumentos conseguem conversar através do sinal digital sobreposto, é possível ligá-los em rede.
  • 153. LD 301 - Smar
  • 154. LD 301 - Smar • O sensor de pressão utilizado pelos transmissores inteligentes de pressão série LD301, é do tipo capacitivo (célula capacitiva). Onde: P1 e P2 são pressões aplicadas nas câmaras H e L. CH = capacitância medida entre a placa fixa do lado de P1 e o diafragma sensor. CL = capacitância medida entre a placa fixa do lado de P2 e o diafragma sensor. d = distância entre as placas fixas de CH e CL. ∆d = deflexão sofrida pelo diafragma sensor devido à aplicação da pressão diferencial DP = P1 - P2.
  • 155. LD 301 – Display
  • 156. LD 301 – Display (Exemplo)
  • 157. Configuradores • A Smar desenvolveu dois tipos de Configuradores para os seus equipamentos HART : Configurador HT2 (antigo) e Configurador HPC301 (atual).
  • 158. Configuradores • Através dos configuradores HART , o firmware do LD301 permite que os seguintes recursos de configuração possam ser acessados: • Identificação e Dados de Fabricação do Transmissor; • Trim da Variável Primária – Pressão; • Trim de Corrente da Variável Primária; • Ajuste do Transmissor à Faixa de Trabalho; • Seleção da Unidade de Engenharia; • Função de Transferência para Medição de Vazão; • Tabela de Linearização; • Configuração do Totalizador; • Configuração do Controlador PID e Tabela de Caracterização da MV%; • Configuração do Equipamento; • Manutenção do Equipamento. • As operações que ocorrem entre o configurador e o transmissor não interrompem a medição do sinal de pressão e não perturbam o sinal de saída. O configurador pode ser conectado no mesmo cabo do sinal de 4-20 mA até 2000 metros de distância do transmissor.
  • 159. Programação – Ajuste Local O transmissor tem sob a placa de identificação dois orifícios, que permitem acionar as duas chaves magnéticas da placa principal com a introdução do cabo da chave de fenda imantada. É através das ações S e Z que se percorre a árvore de programação e se altera os parâmetros.
  • 160. Programação – Ajuste Local Ajuste Local Completo O transmissor deve estar com o display conectado para que esta função seja habilitada. As funções disponibilizadas para o ajuste local são: • Corrente Constante; • Ajuste da Tabela de Pontos; • Unidade de Engenharia; • Limites de Segurança; • Trim de Corrente e Pressão; • Linearização; • Ativação da Totalização; • Mudança de Endereço; • e alguns itens da função Informação.
  • 161. Árvore de Programação Via Ajuste Local O ajuste local utiliza uma estrutura em árvore sendo que a atuação na chave magnética (Z) permite a rotação entre as opções de um ramo e a atuação na outra (S), detalha a opção selecionada. A Figura abaixo mostra as opções disponíveis no LD301.
  • 163. Definições • Válvula de controle é a forma mais simples de manipular vazões, pressões e níveis; • Presente em um grande número de processos industriais; • Controle: – Liga-desliga: válvula totalmente aberta ou fechada • Pressostatos; • Termostatos; – Contínuo: válvula pode assumir posições intermediárias;
  • 164. Definições • Sinal de controle para as válvulas: – Eletrônico – Pneumático • Maioria das malhas de controle; • Simples; • Confiável; • Econômico; • Eficiente.
  • 165. Definições • A válvula em uma malha de controle
  • 166. Partes de uma Válvula
  • 167. Corpo • O corpo ou carcaça é a parte da válvula que é ligada à tubulação e que contem o orifício variável da passagem do fluido; • O corpo da válvula de controle é essencialmente um vaso de pressão, com uma ou duas sedes, onde se assenta o plug (obturador), que está na extremidade da haste, que é acionada pelo atuador pneumático; Sede Obturador Haste
  • 168. Sede • A sede da válvula é onde se assenta o obturador. A posição relativa entre o obturador e a sede é que estabelece a abertura da válvula; • Sede dupla: – Menor esforço, menor atuador; – Vazamentos mais freqüentes. Sede simples Sede dupla
  • 169. Obturador • A forma do obturador define a relação entre a o movimento da haste e a abertura da válvula; • Tipos de Obturadores: – (a) Igual percentagem; – (b) Linear; – (c) Abertura rápida. (a) (b) (c)
  • 170. Atuador • Atuador é o componente da válvula que recebe o sinal de controle e o converte em abertura modulada da válvula; • O atuador da válvula não requer a alimentação de ar pneumático para sua operação; funciona apenas com o sinal padrão de 20 a 100 kPa (3 a 15 psi); • O atuador pneumático à diafragma recebe diretamente o sinal do controlador pneumático e o converte numa força que irá movimentar a haste da válvula, onde está acoplado o obturador que irá abrir continuamente a válvula de controle.
  • 172. Atuador • Opções de projeto: – Operação do atuador • ar para abrir - mola para fechar, • ar para fechar - mola para abrir, – Estado de falha: • falha-fechada (FC - fail close), • falha-aberta (FO - fail open), • falha-indeterminada (FI - fail indetermined), • falha-última-posição (FL - fail last position).
  • 173. Atuador Pneumático AR PARA ABRIR compressão da mola sinal pneumático pressão da linha AR PARA FECHAR compressão da mola sinal pneumático pressão da linha MAIOR ESFORÇO
  • 174. Características da Válvula • A característica da válvula de controle é definida como a relação entre a vazão através dela e a posição da haste, variando ambas de 0 a 100%. A vazão na válvula depende do sinal de saída do controlador que vai para o atuador; • Na definição da característica, admite-se que – o atuador da válvula é linear (o deslocamento da haste é proporcional à saída do controlador); – a queda de pressão através da válvula é constante; – o fluido do processo não está em cavitação, flashing ou na vazão sônica (choked).
  • 175. Características da Válvula • É desejável que uma malha de controle seja linear em sua faixa de atuação: – Sensor, transmissor, controlador, válvula e processo lineares; • Em processos não-lineares, para o conjunto linear: – Controladores não-lineares; – Comportamento da válvula não-linear; • Característica de vazão da válvula: – Igual percentagem; – Linear; – Abertura rápida.
  • 177. Características da Válvula • Igual percentagem: – Iguais percentagens de variação do sinal de entrada da válvula correspondem a iguais percentagens de variação na abertura da válvula; – Modelo exponencial entre vazão e abertura; – Pequeno ganho em baixas vazões; – Ganho elevado em altas vazões; – Bom controle em baixas vazões.
  • 178. Características da Válvula • Linear – Vazão diretamente proporcional à abertura da válvula; – Ganho constante em todas as vazões.
  • 179. Características da Válvula • Abertura rápida: – Produz uma grande vazão com pequeno deslocamento da haste da válvula, no início da abertura; – Grande ganho em baixa vazão; – Pequeno ganho em alta vazão; – Normalmente utilizada em controle liga-desliga • Não é adequada para controle contínuo
  • 180. Características da Válvula • Característica nominal (inerente): – Assume queda de pressão constante na válvula; • Característica instalada: – Na tubulação, a queda de pressão na válvula não é constante; – Igual percentagem se torna linear; – Linear se torna abertura rápida.
  • 181. Escolha da Válvula • A válvula com característica linear é comumente usada em processos de nível de líquido e em outros processos onde a queda da pressão através da válvula é aproximadamente constante; • A válvula com característica de igual percentagem é a mais usada; geralmente, em aplicações com grandes variações da queda de pressão ou onde uma pequena percentagem da queda de pressão do sistema total ocorre através da válvula; • Quando se tem a medição da vazão com placa de orifício, cuja saída do transmissor é proporcional ao quadrado da vazão, deve-se usar uma válvula com característica de raiz quadrática (aproximadamente a de abertura rápida).
  • 183. Ações de Controle • Para um controlador automático em uma malha fechada manter uma variável de processo igual ao valor desejado, ele deve saber se a variável está no valor correto; • Mas uma resposta SIM ou NÃO é insuficiente e o controlador deve saber, no mínimo, se a variável está acima ou abaixo do ponto de ajuste; • Para um melhor controle, o controlador deve saber o valor da diferença entre a medição e o ponto de ajuste (erro); • Para um controle melhor ainda, o controlador deve saber a duração do erro existente; • Para um controle melhor possível, o controlador deve saber a velocidade de variação da variável de processo (PV).
  • 184. • Estes vários refinamentos do controle implicam nos modos de controle, que podem ser os seguintes: – Controle Liga-Desliga; – Controle Proporcional; – Controle Integral; – Controle Derivativo. Ações de Controle
  • 185. Controle Liga-Desliga • A saída de um controlador on-off é ou ligada ou desligada; • Seu valor depende do sinal do erro e da ação do controlador: direta ou reversa; • O controle liga-desliga do nível do tanque: se o nível estiver abaixo do nível desejado, o controlador abre totalmente a válvula v1; se o nível do tanque estiver acima do desejado, o controlador fecha totalmente a válvula.
  • 186. Controle Proporcional • Fornece uma saída modulada que pode ter qualquer valor entre o mínimo (0%) e o máximo (100%) da faixa da saída do controlador; • O valor depende de vários fatores, como: direção e tamanho do erro de controle, ganho ou sensitividade do controlador e ação de controle direta ou reversa.
  • 187. Controle Proporcional em que e(t)= PV-SP (ação Direta) e(t)= SP-PV (ação Reversa) Kp é o ganho proporcional ) (t e K MV p 
  • 188. Banda Proporcional (BP) Banda Proporcional Erro Saída do Controlador p K BP 100 
  • 189. Controle Proporcional Mais Integral • O valor da saída do controlador depende dos seguintes fatores: a direção, magnitude e duração do erro de controle, o ganho do controlador e ação do controlador: direta ou reversa.
  • 190. Controle Proporcional Mais Integral em que e(t)= PV-SP (ação Direta) e(t)= SP-PV (ação Reversa) Kp é o ganho proporcional Tr é o tempo integral            d e T t e K MV r p ) ( 1 ) (
  • 191. Tempo Integral • O tempo integral Tr é expresso em minutos por repetição; • Termo que origina-se do teste de colocar o controlador em um erro fixo e verificar quanto tempo a ação integral leva para produzir a mesma mudança na saída do controlador que o controlador proporcional tem com ganho igual a 1 (ação integral repete a ação proporcional);
  • 192. Off-set zero • Por causa da ação integral, este controlador não possui desvio permanente de controle; • Este fato ocorre porque a ação integral armazena o histórico do erro e permite um valor de MV diferente de zero a partir de um instante de tempo, mesmo com o valor do erro sendo zero a partir deste mesmo instante.
  • 193. Controlador Proporcional mais Integral mais Derivativo (PID) • O modo derivativo é também chamado de controle de variação; • Um controlador PID modula sua saída, cujo valor depende dos seguintes fatores: direção, magnitude e duração e taxa de variação do erro de controle; ganho do controlador, que depende do ganho proporcional, ganho integral e ganho derivativo, todos ajustáveis; e ação do controlador: direta ou reversa.
  • 194. Controlador PID em que e(t)= PV-SP (ação Direta) e(t)= SP-PV (ação Reversa) Kp é o ganho proporcional Tr é o tempo integral Td é o tempo derivativo • É chamado de PID paralelo clássico;             dt ) t ( de T d ) ( e T 1 ) t ( e K MV d r p
  • 195. Controlador PID Paralelo • Usando Laplace:           s T sT 1 1 K ) s ( E ) s ( U ) s ( G d r p c • O termo derivativo apresenta problemas de implementação; • Uma solução bastante utilizada na prática é usar um filtro na parte derivativa: s T 1 s T ) s ( D d d    • Em que o termo α é pequeno < 1/8;
  • 196. Controlador PID Série • Em função desta dificuldade de implementação do termo derivativo, os fabricantes de controladores analógicos utilizaram o algoritmo de controle do tipo Série ou Interativo: ) s ( E sT 1 1 K G r p PI         ) s ( E sT 1 1 s T 1 s T 1 K ) s ( U r d d p                  ) s ( G s T 1 s T 1 ) s ( U PI d d          
  • 197. Controlador PI-D • O sinal da derivada depende da ação do controlador; • Esta configuração evita perturbações quando SP varia abruptamente (degrau);           dt dPV T d e T t e K MV d r p  ) ( 1 ) (
  • 198. Controlador I-PD • O sinal da derivada depende da ação do controlador; • Esta configuração evita altas derivadas quando SP varia conforme um degrau; • Evita amplificações das variações bruscas de SP.            dt dPV T d e T PV K MV d r p  ) ( 1
  • 199. Aspectos Práticos da Implementação de PIDs • Vários aspectos práticos devem ser observados na implementação dos controladores PID, dentre eles: – Anti-reset windup; – Bumpless; – Filtro derivativo.
  • 200. Anti Reset Windup • Atuador satura e controlador continua a integrar o erro; • Solução: deixar de integrar o erro durante a saturação; Time y ysp c A Time y ysp c
  • 201. Bumpless • Transição não suave entre controladores; • Solução: suavizar com mudanças gradativas. Time w/o bumpless transfer w/ bumpless transfer Time Internal Setpoint True Setpoint
  • 203. Sintonia de Controladores PID • Sintonia significa ajustar a sensitividade de cada ação de controle de dos elementos dinâmicos auxiliares usados para que o sistema de controle, incluindo o processo, forneça o melhor desempenho possível; • Há procedimentos matemáticos e estudos de processo que podem ser usados para estimar os melhores ajustes preliminares de sintonia para um dado controlador; • Na prática, os controladores são ajustados no campo por tentativa e erro e pela experiência.
  • 204. Sintonia de Controladores PID • Mesmo quando se usam métodos sofisticados, a sintonia final resultante deve ser confirmada por tentativa de campo, com o controlador interagindo com o processo; • Atualmente são disponíveis controladores eletrônicos microprocessados com capacidade de auto-sintonia;
  • 205. Sintonia de Controladores PID • Objetivos do controle: – Estabilidade em malha fechada; – Respeitar critérios de desempenho; • Existem dois critérios principais de controle: – A rejeição à perturbações (problema regulador); – O acompanhamento de Set-Point (problema servo).
  • 206. Sintonia de Controladores PID • Critérios de desempenho: A SP B C TA PV Tempo TS - Menor sobrevalor (A/B); - Menor tempo de subida (TS); - Razão de declínio (C/A) especificada; - Menor tempo de acomodação (TA); - Mínima energia na MV; - Índice de desempenho para avaliar a qualidade de controle;
  • 207. Sintonia de Controladores PID • Robustez: – O sistema de controle deve ter um bom desempenho em toda a sua região de operação; – Projeto do sistema usa-se um modelo que é uma simplificação da planta real (parâmetros, não- linearidades, pontos de operação).
  • 208. Métodos para Sintonia de PID • Ziegler & Nichols – 1º e 2º métodos; • Método Heurístico de Cohen e Coon; • Método do Modelo Interno (IMC); • Método da Integral do Erro; • Método do Lugar das Raízes.
  • 209. Regras de Ziegler-Nichols • Úteis quando a dinâmica do sistema não for bem conhecida; • Existem duas regras para a determinação dos parâmetros; • Mais popular: Simples e experimental; • Problemas SISO; • Modelo do Processo: Curva de reação do processo (1º ordem com tempo morto) ou ganho último (Ku e Pu); • Critério: Razão de declínio 1/4
  • 210. • Aplicável quando a planta não envolver integradores e não entrar em oscilação em malha aberta • Passos para a sintonia: 1) Colocar a planta em malha aberta (Controlador em Manual); 2) Aplicar um degrau na entrada da planta e observar a resposta (figura a seguir); 3) Extrair desta curva de resposta o atraso (L) e a constante de tempo (T); 4) Os parâmetros do controlador devem ser sintonizados de acordo com a tabela a seguir. Primeiro Método Z&N
  • 212. Tabela de Parâmetros Z&N Controlador Kp Tr Td Proporcional T/(K.L) ∞ 0 Proporcional Integrativo 0.9 T/(K.L) L/0.3 0 Proporcional Integrativo Derivativo 1.2 T/(K.L) 2 L 0.5 L
  • 213. • O ganho proporcional do controlador (Kp) é inversamente proporcional ao ganho do processo (K); • O ganho proporcional (Kp) é inversamente proporcional à razão entre o tempo morto e a constante de tempo do processo (L/T). Quanto maior a razão L/T, mais difícil é o controle do processo e menor deve ser a constante Kp; • O tempo integral Tr está relacionado com a dinâmica do processo. Quanto mais lento o processo (maior L), maior deve ser o tempo integral Tr; • O tempo derivativo Td do controlador também está relacionado com a dinâmica do processo (L). Quanto mais lento (maior L), maior deve ser o tempo derivativo Td; • Z&N sempre utilizaram uma relação de ¼ entre Td e Tr, ou seja Tr= 4Td. Observações Z&N
  • 214. • As regras foram desenvolvidas para os controladores analógicos pneumáticos ou eletrônicos; • Não existe consenso na literatura se o controlador tratado era série ou paralelo. Acredita-se ser paralelo; • As sintonias do PID por Z&N são boas para processos com razão L/T (fator de incontrolabilidade) entre 0,1 e 0,3. Para fatores maiores que 4, as regras de Z&N geram sistemas instáveis em malha fechada. Problemas Sintonia Z&N
  • 216. Segundo Método Z&N • Aplicável quando a planta em malha fechada com um controlador proporcional seja instabilizável; • Passos para a sintonia: 1) Colocar um controlador proporcional (modo automático) com o processo; 2) Aplicar um degrau na entrada SP e aumentar Kp até que o sistema atinja o limiar da instabilidade. Neste caso, a curva de resposta terá a forma da figura a seguir.
  • 218. Tabela de Parâmetros Z&N Controlador Kp Tr Td Proporcional 0.50 Kcr ∞ 0 Proporcional Integrativo 0.45 Kcr Pcr/1.2 0 Proporcional Integrativo Derivativo 0.60 Kcr Pcr/2 Pcr/8
  • 220. Método de Cohen e Coon (C&C) • Sintonia de controladores PID com um tempo morto mais elevado (fator L/T maior que 0,3); • Baseia-se na razão de decaimento ¼;
  • 221. Tabela de Parâmetros C&C Controlador Kp Tr Td Proporcional ∞ 0 Proporcional Integrativo 0 Proporcional Integrativo Derivativo KL T T L 350 . 0 03 . 1        KL T T L 083 . 0 90 . 0        KL T T L 250 . 0 35 . 1        L T L 600 . 0 27 . 1 T L 083 . 0 90 . 0               L T L 330 . 0 54 . 0 T L 250 . 0 35 . 1                      T L 250 . 0 35 . 1 L 5 . 0
  • 222. Observações - Método C&C • Apresenta um desempenho aceitável para valores L/T entre 0,6 e 4,5; • A robustez é ruim para L/T menores que 2; • Costuma produzir sintonias agressivas, por isso, sugere-se partir de ganhos sugeridos e ir aumentando gradativamente (Tr ao contrário);
  • 223. Método do Modelo Interno (IMC) • Tem como objetivo a partir do modelo do processo e de uma especificação de desempenho, obter o melhor controlador; • Possui um modelo interno que pode ser utilizado apenas na fase de projeto, ou também na fase de operação; • Necessita do modelo do processo, que pode ser obtido por identificação.
  • 225. Idéia IMC • Propor um modelo de desempenho de malha fechada e projetar o PID; • Exemplo- sistema em malha fechada de 1ª ordem com constante de tempo λ: 1 s 1 ) s ( SP ) s ( Y    ) s ( C ) s ( G 1 ) s ( C ) s ( G 1 s 1 ) s ( SP ) s ( Y p p      • Igualando com a equação anterior: • Obtemos o seguinte controlador: s ) s ( G 1 ) s ( C p  
  • 226. Idéia IMC • Assim, se a planta for um integrador puro   K 1 ) s ( C s K ) s ( Gp  Que se trata de um controlador Proporcional; • Para outros modelos, temos os controladores da tabela a seguir: • Obtém-se o seguinte controlador:
  • 227. Tabela de Parâmetros IMC Modelo do Processo Kp Tr Td 1 Ts K   K T    1 s T 1 s T K 2 1   1 Ts 2 s T K 2 2    s K ) 1 Ts ( s K    K T T 2 1 2 1 T T  2 1 2 1 T T T T    K T 2 T 2  2 T  K 1  K 1 T T 0   0
  • 228. Tabela de Parâmetros IMC Controlador Kp Tr Td Sugestão para o desempenho PID PI ) L 2 ( K L T 2      2 K L T 2 2 L T  2 L T  L T 2 TL  0 8 . 0 L   7 . 1 L   • Quando a dinâmica do processo puder ser representada por um modelo de 1ª ordem com atraso: 1 Ts Ke ) s ( G sL p    • A sintonia sugerida é a apresentada na tabela abaixo:
  • 229. Método da Integral do Erro • Utiliza como critério de desempenho a integral de uma função do erro em uma janela de tempo, suficiente para eliminar o erro em regime permanente; • A vantagem do método é que considera toda a curva de resposta do sistema, ao invés de somente dois pontos, como é o caso do método do decaimento;
  • 230. Método da Integral do Erro • Critérios mais utilizados: – IAE (Integral do valor Absoluto do Erro); – ITAE (Integral do produto do Tempo pelo valor Absoluto do Erro);     t 0 d ) ( e IAE      t 0 d ) ( e ITAE • O critério ITAE é menos sensível aos erros que ocorrem no início do controle.
  • 231. Método da Integral do Erro • Os trabalhos de Lopez et al. (1967) e Rovira et al (1969) utilizaram o PID clássico paralelo:            s T s T 1 1 K ) s ( C d r p • O método também considera que a dinâmica do processo pode ser representada por um modelo de primeira ordem com atraso: 1 Ts Ke ) s ( G sL p   
  • 232. Método da Integral do Erro • No trabalho de Lopez et al. (1967) considerou-se uma perturbação na carga, ou seja o objetivo é rejeitar perturbações (problema regulatório); • O problema de otimização foi resolvido numericamente, ou seja, foram obtidas as sintonias que minimizassem a integral; • A razão L/T utilizada foi entre 0 e 1; • As seguintes equações de sintonia foram obtidas:                B p T L A K 1 K                D r T L C T T                F d T L E T T
  • 233. Método da Integral do Erro • As constantes A, B, C, D, E e F são obtidas através da tabela abaixo: Controlador Critério A B C D E F PI IAE 0.984 -0.986 0.608 -0.707 -- -- PI ITAE 0.859 -0.977 0.674 -0.680 -- -- PID IAE 1.435 -0.921 0.878 -0.749 0.482 1.137 PID ITAE 1.357 -0.947 0.842 -0.738 0.381 0.995
  • 234. Método da Integral do Erro • No trabalho de Rovira et. (1969) considerou-se uma perturbação no setpoint (problema servo); • O problema de otimização foi resolvido numericamente, ou seja, foram obtidas as sintonias que minimizassem a integral;
  • 235. Método da Integral do Erro • Neste caso, as constantes A, B, C, D, E e F são obtidas através da tabela abaixo: Controlador Critério A B C D E F PI IAE 0.758 -0.861 1.020 -0.323 -- -- PI ITAE 0.586 -0.916 1.030 -0.165 -- -- PID IAE 1.086 -0.869 0.740 -0.130 0.348 0.914 PID ITAE 0.965 -0.850 0.796 -0.147 0.308 0.929
  • 236. Regras Práticas para Sintonia • Os tipos mais comuns de malhas encontradas na indústria são: – Nível; – Fluxo (vazão); – Temperatura; – Pressão.
  • 237. Malhas de Fluxo • Controladores PI são usados na maioria das malhas de fluxo; • Uma grande Banda Proporcional (BP=150), ou pequeno ganho, é usada para reduzir o efeito do ruído do sinal de fluxo, devido à sua turbulência; • Um pequeno valor de tempo integrativo (Tr= 0.1 minutos por repetição) para garantir um seguimento rápido do SetPoint (SP);
  • 238. Malhas de Fluxo • A dinâmica deste tipo de processo é usualmente muito rápida; • O sensor observa a mudança no fluxo imediatamente; • A dinâmica da válvula de controle é a mais lenta na malha, daí a necessidade de um tempo integrativo baixo.
  • 239. Malhas de Nível • Usualmente são usados controladores PI neste tipo de malha; • Normalmente são utilizadas Bandas Proporcionais (BP) baixas (entre 50 e 100).
  • 240. Exemplos - Malhas de Nível
  • 241. Malhas de Pressão • Em geral, malhas de pressão são mais rápidas que malhas de fluxo e mais lentas que malhas de nível; • Existem diferentes tipos de malhas de pressão, o que dificulta regras práticas para sintonia.
  • 242. Exemplos - Malhas de Pressão Malha rápida Malha lenta
  • 243. Malhas de Temperatura • Malhas de controle de temperatura são usualmente lentas devido ao atraso de tempo do sensor e atrasos devido a trocas de calor; • Controladores PID são freqüentemente usados; • São selecionadas Bandas Proporcionais relativamente baixas; • O tempo integrativo é da mesma ordem da constante de tempo do processo; • O tempo derivativo é ajustado, freqüentemente, como sendo a quarta parte da constante de tempo do processo, dependendo do nível de ruído do sinal do transmissor.
  • 244. Regras de Sintonia On-Line 1- Com o controlador em modo manual, retire as ações integral e derivativa do controlador, isto é, sete Tr no valor máximo de minutos por repetição e Td no valor mínimo; 2- Sete o valor da Banda Proporcional (BP) para um valor alto (ganho pequeno), por exemplo, 200; 3- Coloque o controlador em automático; 4- Coloque um valor pequeno de Setpoint e observe a resposta da variável de processo (PV). Se o ganho é pequeno, a resposta será lenta; 5- Reduza o valor de BP por um fator 2 (dobre o ganho) e faça uma pequena mudança em SP;
  • 245. Regras de Sintonia On-Line 6- Continue reduzindo BP, repetindo o passo 5, até que a malha torne-se oscilatória e sem amortecimento. O ganho em que isto ocorre é chamado de ganho definitivo; 7- Retorne o ganho para a metade do valor do ganho definitivo; 8- Agora, comece a alterar a ação integral, reduzindo Tr por fatores de 2, produzindo pequenos distúrbios no processo para cada valor de Tr e observando o efeito; 9- Encontre o valor de Tr para o qual a malha torne- se pouco amortecida e sete o valor de Tr para metade deste valor;
  • 246. Regras de Sintonia On-Line 10- Comece a alterar a ação derivativa, aumentando Td. Perturbe o sistema e encontre o valor de Td que produza um bom controle sem amplificar muito o ruído em PV; 11- Reduza BP novamente de 10 em 10% até que as especificações desejadas em termos de coeficiente de amortecimento e sobressinal sejam atingidas.
  • 248. Controle em Cascata, Relação e Antecipatório • Alternativas ao tradicional controle por realimentação; • Não substituem o controlador por realimentação convencional, mas são alterações ou adições que possibilitam melhorar o desempenho do sistema de controle.
  • 249. Controle em Cascata • É um método simples, envolvendo dois controladores por realimentação em cascata; • O controle em cascata é definido como a configuração onde o sinal de entrada de um controlador é o Set Point gerado pelo outro controlador.
  • 251. Gc1(s) + - + Gc2(s) G1(s) G2(s) - R1(s) R2(s) Y2(s) Y1(s) laço secundário laço primário Controle em Cascata
  • 252. Controle em Cascata (s) G ) s ( G ) s ( G ) s ( G (s) (s)G G 1 (s) G ) s ( G ) s ( G ) s ( G ) s ( R ) s ( Y c2 1 c 2 1 2 c2 c2 1 c 2 1 1 1    )] s ( G ) s ( G 1 [ (s) (s)G G (s) G ) s ( G ) s ( G ) s ( G ) s ( R ) s ( Y 1 1 c 2 c2 c2 1 c 2 1 1 1   Gc1(s) + - G2(s) R1(s) R2(s) Y2(s) Y1(s) (s) (s)G G 1 (s) (s)G G 2 c2 2 c2  Equação característica: 0 ) s ( G ) s ( G 1 ) s ( G ) s ( G ) s ( G ) s ( G 1 2 2 c 2 2 c 1 1 c            primário secundário
  • 253. Controle Convencional – exemplo LC + - G(s) SP H
  • 254. Controle em Cascata - exemplo LC + - + FC G1(s) G2(s) - SP2 Q H malha de vazão malha de nível SP1
  • 255. Controle em Cascata - exemplo Considerando: 1 1 c K ) s ( G  2 2 c K ) s ( G  1 s 1 ) s ( G 1 c   2 s 1 ) s ( G 2 c   Controle convencional: 2 1K K ) 2 s )( 1 s ( 1   - + LGR
  • 256. Controle em Cascata - exemplo Controle em cascata: - + 1 K 2 K 1 s 1  2 s 1  + - laço secundário laço primário LGR-primário -2 2 K 1  2 K 1  LGR-secundário
  • 257. Operação • Quando ocorre um aumento na vazão de entrada, o nível aumentará e o controlador de nível aumentará o sinal de Set Point para o controlador da vazão de saída, fazendo com que a mesma aumente, retornando o nível do tanque ao valor do Set Point ajustado para o mesmo; • Quando ocorre uma mudança na pressão na linha de descarga, o controlador de vazão ajustará a válvula de saída antes que o nível do tanque seja significativamente alterado.
  • 258. Controle de Relação • Existem muitas situações nos processos industriais onde é necessário manter duas variáveis numa proporção ou relação definida; • Uma variável flutua livremente de acordo com as exigências do processo e é chamada de variável livre; • A outra variável é proporcional à variável livre e é chamada de variável manipulada; • Exemplos: a mistura de aditivos à gasolina, mistura proporcional de reagentes de um reator químico e a mistura de fluxos quentes e frios para se obter uma determinada temperatura da mistura.
  • 259. Controle de Relação - Exemplo
  • 260. • O controle antecipatório ou feedforward é proposto para suprir uma deficiência do controle por realimentação, que é a necessidade da existência de um erro para que o controlador tome alguma atitude; • A idéia do controle antecipatório é medir os distúrbios que perturbam o processo e tomar uma atitude antes que os mesmos perturbem a saída do processo; Controle Antecipatório Feedforward
  • 261. • O distúrbio é medido e baseado num valor do Set Point para a variável controlada, é calculado o valor necessário para a variável manipulada de maneira a evitar que a variável controlada seja alterada; • Para tanto, é necessário o conhecimento da dinâmica do processo, o atraso de transporte, constante de tempo e ganho, no caso de um processo de primeira ordem. Controle Antecipatório
  • 263. ) s ( N ) s ( G ) s ( E ) s ( G ) s ( G ) s ( Y n c   Gc(s) G(s) Gn(s) + - + + Y(s) R(s) E(s) N(s) ) s ( Y ) s ( R ) s ( E     ) s ( N ) s ( G ) s ( Y ) s ( R ) s ( G ) s ( G ) s ( Y n c      ) s ( N ) s ( G ) s ( R ) s ( G ) s ( G ) s ( G ) s ( G 1 ) s ( Y n c c    Controle Antecipatório
  • 264. ) s ( N ) s ( G ) s ( G 1 ) s ( G ) s ( R ) s ( G ) s ( G 1 ) s ( G ) s ( G ) s ( Y c n c c     Influência da entrada Influência das perturbações • Se as perturbações são mensuráveis, o controle feedforward é um método útil para cancelar os seus efeitos na saída do processo. Controle Antecipatório
  • 265.   ) s ( N ) s ( G ) s ( G ) s ( G ) s ( N ) s ( G ) s ( Y ) s ( R ) s ( G ) s ( G ) s ( Y c ff n c         ) s ( N ) s ( G ) s ( G ) s ( G ) s ( Y ) s ( R ) s ( G ) s ( G ) s ( Y c ff n c     Controle Antecipatório Gc(s) G(s) Gn(s) + - + + Y(s) R(s) E(s) N(s) Gff(s) + saída perturbação controlador feedforward
  • 266.   0 ) s ( G ) s ( G ) s ( G c ff n   ) s ( G ) s ( G ) s ( G ) s ( G c n ff   • A vantagem deste tipo de controle é que a ação corretiva ocorre antecipadamente, ao contrário do controle por realimentação, em que a ação corretiva acontece somente depois da saída ser afetada. Controle Antecipatório
  • 267. • Sistema de controle de temperatura Exemplo
  • 268. Exemplo • Perturbação: – mudança vazão de saída da torre (depende do nível da torre); – seu efeito não pode sentido imediatamente, devido aos atrasos envolvidos no sistema; – um controlador convencional agirá somente quando houve um erro; – um controlador feedforward que receberá a também a informação da vazão, poderá agir mais cedo sobre a válvula de vapor.
  • 271. Controle Override • Também chamada de controle seletivo; • É uma forma de controle multivariável em que uma única variável manipulada (MV) pode ser ajustada usando-se várias variáveis controladas (PV), uma de cada vez.
  • 272. Controle Override – Exemplo 1 • Quando a pressão do gás de saída do compressor ultrapassa um valor pré- ajustado, o controle passa a ser exercido pela malha de pressão, ao invés da malha de fluxo, através da chave HSS ativada por valores altos. • Controle override para proteção de um compressor:
  • 273. Controle Override – Exemplo 2 • Inicialmente o controle busca manter a pressão na linha de vapor. Quando o nível se torna muito baixo, o controle passa a ser exercido pela malha de nível. • Controle override para proteção de geradores de vapor:
  • 274. Controle Split Range • Em certas aplicações, uma única malha de controle de fluxo pode não garantir um bom desempenho do sistema em uma grande faixa de operação; • Controle de fluxo do tipo Split Range usa dois controladores (um com uma válvula de controle pequena e o outro com uma válvula de controle grande), ambos em paralelo; • Para fluxos pequenos, a válvula grande é fechada e a válvula pequena garante um controle de fluxo de boa qualidade; • Para grandes fluxos, ambas as válvulas estão abertas.
  • 275. Controle Split Range – Exemplo 1 FT FT FC FC Total Flow Rate Signal to Control Valve (%) Larger Control Valve Smaller Control Valve
  • 276. Controle Split Range – Exemplo 2 TT Cooling Water Steam Split-Range Temperature Controller TT TC RSP Controle de Temperatura Split Range
  • 277. Controle Split Range – Exemplo 2 Controle de Temperatura Split Range 0 20 40 60 80 100 Error from Setpoint for Jacket Temperature Signal to Control Valve (%) Steam Cooling Water T > Tref Resfriar T < Tref Aquecer
  • 280. Controle Inferencial • Pela monitoração de variáveis secundárias é possível inferir a variável primária, geralmente uma medida da qualidade do produto; • Os estimadores de inferência podem ser por equações de relação; • O uso de Redes Neurais tem tido sucesso; • Um exemplo típico é o controle de composição. Em misturas binárias em fase vapor, esta composição pode ser determinada a partir da pressão e da temperatura por meio de uma equação de estado.
  • 282. Controle Adaptativo • Os parâmetros do modelo são atualizados periodicamente; • Os parâmetros atualizados são então usados pelo controlador; • São comercialmente disponíveis controladores PID com auto-sintonia; • Uso de modelos não-lineares: redes neurais, séries temporais não-lineares.
  • 284. Controle Preditivo com Restrições • Controladores PID não são adequados para sistemas com grandes atrasos; • Controladores preditivos são uma boa alternativa; • Controle Preditivo Generalizado (GPC) é largamente usado na indústria; • No GPC o cálculo do sinal de controle é um problema de otimização, onde objetivos econômicos e restrições (limites em fluxos, pressões, temperaturas, emissões na atmosfera, etc) podem ser incluídos na formulação do problema.
  • 285. Controle Robusto • Quantificação das incertezas no modelo “nominal” do processo (faixa de operação); • Projeto de um controlador que deve manter a estabilidade, bem como um desempenho especificado sobre a faixa de condições de operação.