SlideShare uma empresa Scribd logo
1 de 23
1. INTRODUÇÃO
A Mecânica dos Solos lida com várias propriedades e características dos
solos, avaliadas por meios de ensaios e exames laboratoriais executados sobre
amostras de solos.
Nos problemas ideais, as grandes massas de solo são consideradas
homogenias de forma que as propriedades físicas em qualquer ponto dessa massa
sejam idênticas àquelas determinadas em laboratório com algumas amostras
representativas do terreno. Mas como os solos infelizmente resultam de processos
naturais complexos esse processo não pode ser considerado verdadeiro, pois a
situação raramente corresponde à realidade, porque a maioria dos solos naturais é
heterogênea.
Assim para avaliar conscientemente as propriedades de uma extensa massa
de solo a partir de ensaios laboratoriais executados com um número limitado de
amostras é fundamental compreender os processos responsáveis pela formação dos
solos e como estes influenciam nas respectivas propriedades.
O solo é uma complexa mistura de matéria inorgânica que pode ou não conter
resíduos orgânicos decompostos e outras substâncias que cobrem a crosta
terrestre.
É formado por processos climáticos, representados pela desintegração e
decomposição das rochas e minerais na/ou próxima à superfície em partículas cada
vez menores sob a ação de agentes naturais físicos (e/ou mecânicos) e químicos.
Os dois últimos tipos de fatores sempre agem simultaneamente.
Os processos de formação dos solos são, pois complexos na medida em que
os fatores de erosão e transporte se combinam nas mais diferentes normas, as aqui
serão apenas encarados do ponto de vista dos seus efeitos sobre as propriedades
de interesse à engenharia dos Solos. A forma das partículas minerais é também
uma das características muito importantes que regem o comportamento mecânico
do solo.
2. FORMAÇÃO DOS SOLOS
As rochas sofrem alterações devidas a ações climáticas como oscilações de
temperatura, do vento e da água, ações químicas (oxidação, hidratação, hidrólise,
4
carbonatação, plantas e animais (fauna e flora)) que são provocadas pela água ou
microorganismos, especialmente quando contém ácidos carbônicos, agindo ao longo
do tempo. Todas as rochas que se encontram na litosfera (parte sólida da Terra)
estão sujeitas a estas ações.
As alterações isoladas ou simultâneas modificam e fragmentam as rochas
existentes, transportam e reúnem estes fragmentos para originar novos sedimentos.
Os processos que atuam na superfície da crosta terrestre são da maior importância
porque não só permitem interpretar e compreender a formação de um determinado
tipo de rochas (rochas sedimentares), mas são também responsáveis pelas
imposições naturais das formas da superfície terrestre. Utilizando o princípio da
uniformização, um dos conceitos fundamentais em Geologia, ou seja, rochas
semelhantes se formaram no passado por processos semelhantes aos atuais, pode-
se interpretar a história da evolução da amostra da rocha sedimentar em estudo e
reproduzir a evolução das formas terrestres.
2.1 processos de alteração
A alteração ou fragmentação das rochas pode ocorrer através de processos
físicos ou químicos. Nos processos físicos não há em geral alteração da composição
química ou mineralógica. O processo envolve apenas a fragmentação da rocha em
frações menores. No outro processo, a alteração química, ou seja, decomposição da
rocha ocorre por meio de reações químicas com possíveis alterações dos minerais
da rocha.
A alteração mecânica ou física se refere a intemperização das rochas por
agentes físicos, tais como variação cíclica da temperatura, ação do congelamento da
água que se infiltram nas juntas e fraturas das rochas, ação dos organismos,
plantas, etc. Através desses processos chegam a formar areias ou, em alguns siltes,
podendo até mesmo a formar argilas em situações muito especiais.
5
Figura 1. Processo de alteração das Rochas
Resumindo, os processos de alteração das rochas, representam a resposta a
uma mudança de ambiente que ocorre na interface atmosfera-litosfera. Com efeito,
os minerais e textura de muitas rochas podem se originar sob temperaturas muito
elevadas e ou a grandes profundidades, não se encontrando, portanto em equilíbrio
sob as condições de ambiente que prevalecem na superfície. Os processos de
alteração tendem então a restabelecer o equilíbrio sob o novo ambiente físico-
químico e assim podem até formar novos minerais com diferentes formas de
agrupamento.
Na maioria das condições climáticas atuais os processos de alteração física e
química se completam. A desagregação é maior na superfície do material exposto
ao ar ambiente e assim permitindo a aceleração do processo de alteração química.
As reações químicas produzem freqüentemente novos minerais cujo
desenvolvimento ajuda a fragmentar ainda mais as rochas podendo chegar a
dimensões que os processos mecânicos não conseguiriam alcançar.
A decomposição química significa ação de agentes que atacam as rochas
modificando sua composição mineralógica ou química. O principal agente é a água,
e os mecanismos de ataque mais importantes são a oxidação, a hidratação e a
carbonatação. Os efeitos químicos da vegetação têm também um papel de
destaque. Estes mecanismos geralmente produzem argilas como produto final da
6
decomposição. Todos os efeitos anteriores se acentuam com a mudança de
temperatura, onde se torna freqüente encontrar formações argilosas em zona
úmidas e quentes, enquanto que são formações arenosas e siltosas são típicas em
zonas mais frias. Nos desertos quentes, a falta de água torna o fenômeno de
decomposição não se desenvolverem, e neste caso predominam a formação de
areias; ali os efeitos de alternância entre tração e compressão sobre as rochas,
produzidos pela elevação e queda periódica e contínua de temperatura são os
mecanismos de ataque determinantes.
PROCESSO EXEMPLO TIPO E IMPORTANCIA
DOS EFEITOS
FISICO
• Decomposição
• Dilatação térmica
• Ação do gelo
• Expansão coloidal
Efeitos secundários
• Redução das dimensões
dos fragmentos e
aumento da área das
superfícies de ataque
• Permitem-se a composição
química
QUIMICO
• Oxidação
• Carbonatação
• Hidrólise
• Hidratação
• Dissolução
• Reconstituição química
• Alteração quase completa
das propriedades
físicas e químicas com
aumento sensível de
volume
BIOLÓGICO • Ação de cunha das raízes
• Ação dos ácidos orgânicos
• Ação de animais
• Efeitos secundários
• Combinação de efeitos
físicos e químicos
Tabela 1. Processos de alteração do solo
3. FORMA DAS PARTÍCULAS
Nos solos grossos a forma característica é equidimensional, o qual as três
dimensões da partícula são de magnitude semelhantes. Origina-se pela ação de
agentes mecânicos e químicos. Segundo a intensidade e o tempo em que estes
agentes mecânicos tenham atuado, se produzem variedades na forma
equidimensional, das quais podem ser arredondadas, sub-arredondadas, sub-
7
angulares, ou angulares, em escala decrescente dos efeitos do ataque dos agentes
mecânicos. A forma arredondada é praticamente esférica, enquanto que angulares é
a que apresenta arestas e vértices pontiagudos (por exemplo, pedra britada).
Quando estas arestas e vértices estão arredondados pelo efeito de rolamento e
abrasão mecânica, se tem a forma sub-angular, os quais por um processo mais
intenso da erosão podem obter a forma sub-arredondada final. As formas angulares
são típicas de areias residuais, e as areias vulcânicas apresentam essa forma em
partículas cristalizadas. As areias marinhas são geralmente angulares. A forma
arredondada é freqüente nas areias de rio e em algumas formações de praia, se
bem que no primeiro caso, predominam as formas sub-arredondada e sub-angular,
pois as partículas que não se arrastam, não sofrem o efeito da abrasão ou
rolamento; naturalmente que o anterior é mais certo em partículas de pequeno
tamanho, por sua maior facilidade para manter-se em suspensão. As areias eólicas
são de grão fino e arredondado.
Nos solos finos a forma das partículas tende a ser achatada, porque as
minerais argilas, em sua maior parte se adotam a forma laminar; com exceção de
alguns minerais que possuem forma fibrosa. Nestes materiais a influência da forma
é muito importante, pois a cada um dos dois mencionados corresponde a uma
diferente relação entre área e volume da partícula e, portanto, uma atividade
superficial muito distinta, no que se refere à absorção. a partícula de forma laminar
tem duas dimensões muito maiores que a terceira; na forma fibrosa uma dimensão
da partícula é muito maior que outras duas. A forma laminar é a mais freqüente nos
minerais de argila. A forma fibrosa é muito mais rara (haloisita, e algumas outras
formas mineralógicas não muito comuns).
A forma das partículas na mistura com dimensões de “argila” (< 2μ) depende
da sua composição química e da sua estrutura cristalina. Podem consistir em
quartzo muito fino ou de outros minerais de rochas, e ter formas arredondadas sub-
angulares ou angulares, dependendo da abrasão sofrida. Estas partículas
denominam-se de pó de pedra.
Quando as partículas de argila, dado que a sua estrutura cristalina, consiste
de uma sucessão de lâminas contendo sílica, alumina, oxigênio e hidrogênio a sua
forma corrente é de placas. É o caso das argilas pertencentes aos grupos da
caulinita, ilita e montmorilonita. A haloisita é uma exceção, pois as suas partículas
têm forma alongada.
8
A espessura das partículas de argila é da ordem de 10-6 mm, mas sua
largura é muitas vezes superior. Nas Figuras seguintes mostram-se
aproximadamente as formas das partículas da caulinita e de ilita.
Figura 2. Amostra vista do microscópio de partículas de argila
4. NATUREZA DAS PARTÍCULAS
Pode parecer à primeira vista que a composição das partículas de um solo é
uma característica muito importante deste. No entanto, não existem correlações
práticas entre a composição das partículas de um solo e os seus comportamentos.
O que é importante é que ajuda na interpretação e a compreensão desse
comportamento.
A natureza e arranjo dos átomos em uma partícula de solo, isto é, a sua
composição química, influencia de forma significativa na permeabilidade,
compressibilidade, resistência ao cisalhamento e na propagação de tensões nos
solos, especialmente aqueles de natureza mais fina.
Existem, com efeito, certos minerais que conferem propriedades especiais. Já
se referiu anteriormente que a montmorilonita dá grande expansibilidade ao solo.
Também a haloisita, com as suas formas alongadas, dá origem a solos com pesos
específicos muito baixos. Estas e muitas outras razões que serão referidas mais
tarde justificam que a base indispensável na compreensão dos fundamentos do
comportamento das argilas e em particular como evolui no tempo, é afetado pela
9
pressão e “ambiente”. Apresentar-se-ão alguns elementos de mineralogia das
argilas e descrever-se-ão alguns minerais de interesse para o engenheiro civil.
As partículas de solo podem ser orgânicas ou inorgânicas. As partículas
inorgânicas são minerais. Um mineral é um elemento ou um composto químico
natural (tem composição química que pode ser expressa por uma fórmula) formado
por processos naturais.
Os minerais classificam-se de acordo com a natureza e arranjo dos seus
átomos. Os mais importantes são os silicatos, pois que mais de 90% do peso dos
solos existentes na terra são minerais de silicatos.
4.1 Composições volumétrica dos solos minerais
Os solos minerais consistem de quatro grandes componentes principais:
substâncias minerais, matéria orgânica, água e ar, conforme figuras I e II. É
mostrada na figura 3 a proporção aproximada destes componentes num solo com
condições ótimas para crescimento vegetal. Note-se que este solo contém metade
de espaços sólidos e metade de espaços de poros (água e ar). Do volume total do
solo, cerca de metade é espaço sólido com 45% de substância mineral e 5 % de
matéria orgânica. Em condição ótima para crescimento vegetal, o espaço de poros
é, a grosso modo, dividido ao meio, 25% do volume é espaço com água e 25% com
ar. As proporções de ar e água estão sujeitas a grandes flutuações sob condições
naturais, na dependência do fator meteorológico e de outros.
Figura 3. Amostra de solo demonstrando seus poros
10
Figura 4. Composição de uma amostra de solo
A água contida no solo pode ser classificada em :
•Água de Constituição: é a que faz parte da estrutura molecular da partícula sólida;
•Água adesiva ou adsorvida: película de água que envolve e adere fortemente a
partícula sólida;
•Água livre : é a que se encontra em uma determinada zona do terreno, enchendo
todas os seus vazios;
•Água higroscópica : É a que ainda se encontra em um solo seco ao ar livre, em
função da água em vapor contida na atmosfera;
•Água capilar : é aquela que nos solos de grãos finos sobe pelos interstícios
capilares deixados pelas partículas sólidas.
•Água livre, higroscópica e capilar:- são as que podem ser totalmente vaporadas
pelo efeito do calor (>100º C).
•Fase gasosa:- constituída por ar, vapor d’água e carbono combinado.
Figura 5. Proporção aproximada das substâncias que compõem o solo
11
Calculando o peso total de uma amostra de solo:
Figura 6. Proporções das fases do solo
4.2 Texturas do solo
Textura é termo empregado para designar a proporção relativa das frações
argila, silte ou areias no solo. Existem triângulos para designar diversas classes
texturais (Figura 8), que são utilizados em classificação de solos. De uma forma
simples, uma amostra de solo é arenosa se contiver mais de 85% de areias;
argilosa, mais de 35% de argila é barrenta ou franca, menos de 35% de argila e
menos de 85% de areias. Solos limosos são raros no Brasil. Existem termos
populares para designar a textura dos solos. Assim, solos arenosos são
considerados "leves" ou de textura "grosseira", enquanto solos argilosos são
12
"pesados" ou de textura "fina". Os termos leve ou pesado decorrem da menor ou
maior resistência que solos oferecem à penetração dos implementos agrícolas
(arados, grades, subsoladores, etc.).
A granulometria dos solos é estabelecida fazendo-se a separação e a
determinação percentual de partículas de diferentes tamanhos. As partículas podem
ser classificadas pelos seus diâmetros, de acordo com a Tabela 2, utilizada pela
Sociedade Internacional de Ciência do solo. Conforme a dimensão, as partículas do
solo são denominadas pedras, cascalho, areia grossa, areia fma, limo (ou silte) e
argila.
Tabela 2. Escala internacional de classificação das frações TE
Fração Limites dos diâmetros
das partículas (mm)
Argila < 0,002
Silte ou limo 0,002 – 0,02
Areia fina 0,02 – 0,2
Areia grossa 0,2 – 2
Cascalho 2 – 20
Pedras > 20
4.2.1 Metodo análise da textura no laboratório
Para realização de uma análise de partículas por tamanho, na amostra de
TFSA é adicionado água e hidróxido de sódio, após agitação o material é deixado
em repouso para decantação das partículas mais grosseiras. Só então é
determinado o percentual de argila, silte e areia da amostra.
13
Figura 7. Método análise da textura do solo
Geralmente de acordo com o teor de argila temos:
Tabela 3. Classificação do tipo de textura de acordo com percentual de argila.
ARGILA
(%)
TEXTURA
60 – 100 Muita argilosa
35 – 60 Argilosa
15 – 35 Média
0 – 15 Arenosa
14
Figura 8. Porcentagem de areia, silte e argila nas principais classes texturais do solo.
Porcentagem de areia, silte e argila nas principais classes texturais do solo.
Para usar o diagrama, localize a porcentagem de areia, em primeiro lugar e projete
para dentro, como mostrado pela seta. Proceda de igual modo para o percentual de
silte (ou argila). O ponto em que as projeções se cruzarem, identificará o nome da
classe.
4.2.2 Classes texturais dos solos
Uma vez que os solos são compostos de partículas que variam
consideravelmente quanto ao tamanho e à forma, são necessários termos
específicos que exprimam algumas idéias sobre a sua textura e forneçam certas
indicações sobre suas propriedades físicas. Por isso, são usados nomes de classes
15
texturais de solo, tais como, areia, franco-arenoso, e franco-siltoso. Estes nomes se
firmaram ao longo de anos de estudo e classificação de solos e gradualmente se
tornaram padronizados. Acham-se identificados três grandes grupos fundamentais
de classes texturais de solo: areias, francos e argilas.
AREIAS – O grupo areia inclui todos os solos cujas frações granulorrtétricas
de areia totalizam pelo menos 70% e as frações granulométricas de argila 15% ou
menos do peso total do material. As propriedades de tais solos são portanto
caracteristicamente arenosas, em contraste com a natureza mais viscosa das
argilas. São reconhecidas duas classes texturais específicas: areia e areia franca.
ARGILAS – Para ser designado como argila, um solo deverá conter pelo
menos 35 % da fração granulométrica de argila e na maioria dos casos nunca
menos de 40%. Em tais solos, as características da fração granulométrica de argila
são eminentemente dominantes e as classes designam-se como argila, argila
arenosa e argila siltosa. Nota-se que as argilas arenosas poderão conter mais areia
do que argila. Do mesmo modo, a quantidade de silte nas argilas siltosas excede
normalmente a da própria fração da argila.
FRANCOS – O grupo dos francos, que contém muitas subdivisões, é mais
difícil de explicar. Um franco ideal poderá ser definido como uma mistura de
partículas de areia, silte e argila que apresentam propriedades leves e pesadas em
proporções equilibradas. A grosso modo, é uma mistura de características médias,
no que toca às suas propriedades.
4.3 Dureza
A dureza (D) de um mineral é a resistência que sua superfície oferece ao ser
riscada. É adotada a escala de dureza de MOHS, estabelecida em 1824, na qual
dez minerais comuns são ordenados em relação à resistência que oferecem ao
risco.
A escala de Mohs não é linear. Por exemplo, o diamante é cerca de 40 vezes mais
duro que o talco, enquanto o coríndon que está logo abaixo do diamante (dureza 9),
é da ordem de 9 vezes mais duro que o talco. A escala de Mohs é adimensional.
16
Figura 9. Escala de Mohs
4.4 Brilho
O brilho de um mineral é a capacidade de reflexão da luz incidente sobre sua
superfície. O brilho de um mineral pode ser dividido em:
• Metálico – brilho semelhante a um metal.
Ex.: pirita, hematita;
• Não metálico – outros tipos de brilhos observados nos minerais.
Exemplos:
vítreo – brilho semelhante ao vidro. Ex.: quartzo (hialino, ametista, fumê, etc);
sedoso – brilho semelhante a seda. Ex.: gipso
4.5 Cor
A cor de uma substância depende do comprimento de onda da luz que ela
absorve. Por exemplo, um mineral que apresenta cor verde absorve todos os
comprimentos de onda do espectro exceto aquele associado ao verde.
4.6 Solubilidade
A solubilidade dos minerais pode ser considerada em relação a diversos
ácidos, tais como HCl, HNO3, H2SO4 e HF.
Para os minerais mais comuns e de maior interesse do curso a utilização do HCl
diluído é o suficiente. Utilizando-se HCl diluído é possível separar os minerais em:
• Insolúveis – aqueles que não reagem com HCl. Ex. quartzo, turmalina
17
• Pouco solúveis – aqueles que só se solubilizam com HCl aquecido ou
quando pulverizados. Ex.: dolomita
• Solúveis – aqueles que se solubilizam em condições normais, podendo
ser acompanhado por desprendimento de gás carbônico
(efervescência) (CaCO3 + 2HCl → CaCl2 + H2O + CO2). Ex.: calcita,
aragonita
5. PESO ESPECÍFICO DAS PARTICULAS
O peso específico (γg) de uma partícula sólida é, por definição, o peso da
substância que a forma, por unidade do volume que ocupa no espaço. O peso
específico da partícula é determinado pela razão entre seu peso (seco) e seu
volume.
γg = Ps / Vs
A massa específica (ρg) de uma partícula sólida é obtida pela razão entre sua
massa e seu volume.
ρg = Ms / Vs
Densidade (δ) ou densidade relativa de uma partícula é a razão entre seu
peso específico (γg) e o peso específico da água (γa) destilada e isenta de ar à 4º C
(ou entre a massa específica da partícula e a massa específica da água a 4ºC).
Como ρa = 1,000 g/cm3, a densidade e a massa específica têm mesmo valor
numérico.
δ = ρg / ρa = γg / γa
A densidade deve ser expressa com precisão de 0,001 %.
Como em um solo podem ocorrer partículas de natureza variada, em geral há
mais interesse em determinar o peso específico médio das partículas sólidas que o
compõem. Observe que a fração mais fina dos solos costuma ter natureza diversa
da de maior tamanho, já que é gerada mais por desintegração química (oxidação,
18
hidratação, carbonatação) que mecânica (ruptura e desgaste, causados por
temperatura, atrito, etc.). Por isso, as normas descrevem a determinação do peso
específico médio ou da densidade média das partículas menores que um tamanho
especificado, ou maiores que um tamanho fixado.
Não se pode confundir peso específico seco dos grãos ou massa específica
seca dos grãos com peso específico seco aparente ou massa específica seca
aparente de uma amostra. Estas últimas são obtidas pela razão entre o peso seco
da amostra e o volume total da amostra. Observe que desse volume faz parte o
volume de vazios, que tem de ser eliminado no cálculo do peso específico (ou
massa específica) dos grãos.
A ABNT adota o processo do PICNÔMETRO para a determinação da massa
específica das partículas menores que 4,8 mm, enquanto o DNIT (antigo DNER) o
faz para a determinação da densidade das partículas menores que 2,0 mm. Parece-
nos melhor empregar a norma NBR6508 (ABNT) quando o objetivo é o estudo dos
agregados miúdos, já que estes têm tamanho menor que 4,8 mm. Por outro lado,
será mais preciso o método de ensaio ME 093/94 (DNIT-DNER) quando o objetivo é
utilizar o valor da densidade nos cálculos da fase de sedimentação do ensaio de
granulometria, pois a amostra utilizada neste ensaio é obtida do material que passa
na peneira de 2,0 mm (fração fina do solo).
Método do Picnômetro:
Material utilizado:
1- Picnômetro (500 ml)
2- Termômetro
3- Bombas a vácuo
4- Balança
(4)
19
(1) (2) (3) (4)
Figura 10. Método do Picnômetro
Procedimento:
• pesa-se o Picnômetro vazio, seco e limpo (P1);
• coloca-se a amostra no Picnômetro (aprox. 80g para solos argiloso e 150g
para solos arenosos)
• pesa-se (P2);
• mexe-se o Picnômetro, visando eliminar possíveis vazios entre a amostra ;
• leva-se a bomba de vácuo pôr cerca de 10 minutos e continuamos mexendo
aleatoriamente,
• enche-se completamente o Picnômetro com água destilada, tampa-se o
Picnômetro;
• pesa se o Picnômetro (P3);
• medimos a temperatura no Picnômetro, pela temperatura , obtemos na curva
de calibração o peso do balão mais água (P4)
d = (P2 – P1)/((P4-P1) - (P3-P2)) = gg/ga
onde :
P1 - Balão seco e limpo
P2 - Balão + solo
P3 - Balão + solo + água
P4 - Balão + água
20
O grande inimigo da precisão dos resultados de ensaios para a determinação
é a presença de bolhas de ar em torrões, ou aderente aos grãos, ou na água. Do
valor da densidade dos grãos depende o cálculo de vários outros índices físicos. Daí
a necessidade de máxima acurácia no resultado de ensaios.
6. DENSIDADE DE GRÃOS DE MAIORES TAMANHOS
Na determinação da densidade de grãos de tamanhos maiores que um
tamanho especificado, o método mais popular utiliza a pesagem hidrostática, que
consiste em:
• Obter a massa da amostra seca (Ms);
• Obter a massa da amostra imersa em água destilada, na temperatura
4ºC (P imerso);
A diferença Ms-Mi será numericamente igual ao empuxo, e numericamente
igual ao volume dos grãos imersos, o que permitirá o cálculo imediato da massa
específica média dos grãos.
Observação:
Quando se faz a determinação da densidade (ou do peso específico) de
agregados graúdos ou de pedregulhos, aproveita-se o trabalho para determinar
também sua Absorção (S ou Dat), fazendo uma secagem superficial com um tecido
absorvente e obtendo sua massa úmida (M úmido).
Absorção = 100. (P úmido – Ps) / Ps
6.1 Processos do picnômetro para determinação da densidade dos grãos
A norma NBR 6508 (ABNT) descreve como determinar a massa específica
dos grãos de solo que passam na peneira de 4,8 mm, utilizando um picnômetro de
500 ml. As demais especificam a determinação da densidade dos grãos que passam
21
na peneira de 2,0 mm. Todas destacam a necessidade de executar pelo menos dois
ensaios. (A diferença na escolha da amostra pode ser explicada pelo objetivo de uso
da informação. O valor da densidade dos grãos menores que 2,0 mm deverá ser
preferido nos cálculos da fase de sedimentação do ensaio completo de
granulometria. No estudo de misturas de agregados é preciso lembrar os agregados
finos são menores que 4,8 mm.).
Convenções:
γg= Peso específico (em g/cm3) dos grãos de solo.
δ = Densidade real da fração fina de solos é a razão da massa, ao ar e a uma
temperatura entre 15°C e 30ºC, de um dado volume dessa fração, para a massa ao
ar e a 25°C de temperatura, de um igual volume de água destilada isenta de ar. É
adimensional e tem o mesmo valor numérico que a massa específica dos grãos do
solo (ρg).
Índice de Vazios (e)
É a razão entre o volume de vazio (Vv) e a volume da parte sólida do solo (Vs)
e = Vv / Vs
Grau de Compacidade (GC)
O estado natural de um solo não coesivo (areia, pedregulho) define-se pelo
chamado Grau de Compacidade ou Compacidade Relativa:
GC = (εmax - εnat) / (εmax - εmin)
εmax - obtido vertendo-se simplesmente o material seco num recipiente de volume
22
conhecido e pesando-se.
V – Ps ´
εmax = γ g
Ps ´ a
γ g
onde:
v = volume do recipiente;
P’s = peso do material seco;
γg = peso específico dos grãos.
εminx - compacta-se o material por vibração ou por socamento dentro do mesmo
recipiente.
V – Ps ´´
εminx = γ g
Ps ´´ a
γ g
Onde :
Ps´´ = peso do material seco compactado.
Pelo critério visualmente aceito, as areias se classificam em :
Fofas ou soltas 0 < GC < 1/3
Medianamente compactas 1/3 < GC < 2/3
Compactas 2/3 < GC < 1
Porosidade de um Solo (h)
É a relação entre o volume de vazios e o volume total de
uma amostra do solo.
h (%) = Vv / Vt (x100)
23
h = e / (e + 1)
Tabela 4. Porosidade do solo
Grau de Aeração
A (%) = Var / Vv (x100)
A = (Vv - Va) / Vv = 1 – S
Peso Específico de um Solo Saturado
gsat = (d + e ) ga / (1+ e)
Peso Específico de um Solo Submerso
Quando o solo é submerso, as partículas sólidas sofrem o empuxo da água, e então:
gsub = ( d - 1 ) ga / (1+ e)
gsub = gsat – ga
24
7. Conclusão
Os solos apresentam uma incrível rede de complexos físicos de superfícies sólidas,
poros, e interfaces que fornecem o ambiente para inúmeros processos químicos,
biológicos e físicos. Estes, por sua vez influenciam no crescimento das plantas,
hidrologia, manejo do ambiente, e usos do solo pela engenharia. A natureza e
propriedades das partículas individuais, sua distribuição de tamanhos, e seu arranjo
nos solos determinam o volume total do espaço poroso, bem como o tamanho de
poros, impactando desse modo nas relações de água e ar.
O tamanho das partículas, o conteúdo de água, e a plasticidade da fração coloidal
ajudam a determinar a estabilidade do solo em resposta a forças de carga do
tráfego, do cultivo, ou das fundações de construções. As propriedades físicas
apresentadas influenciam grandemente quase todas as outras propriedades do solo
e usos, como discutido ao longo deste trabalho.
25
8. REFERENCIAS BIBLIOGRÁFICAS
PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos, em 16 Aulas. 1 ed.
São Paulo: Oficina de Textos, 2000. 247 p.
CAPUTO, Homero Pinto. Mecânica dos Solos e suas Aplicações. 6 ed. Rio de
Janeiro: Livros Técnicos e Científicos Editora, 1988. 234 p.
VIOLANTE, Vitor Manuel. Apostila: Mecânica dos solos I. Marília: Unimar, 2009
VARGAS, Milton. Introdução à Mecânica dos solos. São Paulo: McGraw-Hill, 1977.
26

Mais conteúdo relacionado

Mais procurados

Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)Amália Ribeiro
 
Relatório
RelatórioRelatório
Relatóriohenriq23
 
Exercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaExercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaSérgio Lessa
 
Interpolação - Parte II - @professorenan
Interpolação - Parte II - @professorenanInterpolação - Parte II - @professorenan
Interpolação - Parte II - @professorenanRenan Gustavo
 
Apostila hidraulica-2016 le e lp
Apostila hidraulica-2016 le e lpApostila hidraulica-2016 le e lp
Apostila hidraulica-2016 le e lptelmanm
 
Prova 3 - Recursos Hídricos (COPEL)
Prova 3 - Recursos Hídricos (COPEL)Prova 3 - Recursos Hídricos (COPEL)
Prova 3 - Recursos Hídricos (COPEL)Danilo Max
 
Classificação granulométrica do solo
Classificação granulométrica do soloClassificação granulométrica do solo
Classificação granulométrica do soloMariani Cancellier
 
Exercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicExercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicGerson Justino
 
Exercicios resolvidos hidraulica
Exercicios resolvidos hidraulicaExercicios resolvidos hidraulica
Exercicios resolvidos hidraulicafernando correa
 
Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com soluçãoMaíra Barros
 
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11Nelson Virgilio Carvalho Filho
 
Aula topografia 1 - módulo 2 - Engenharia civil
Aula topografia 1 - módulo 2 - Engenharia civilAula topografia 1 - módulo 2 - Engenharia civil
Aula topografia 1 - módulo 2 - Engenharia civildebvieir
 
Práticas de laboratório - Ensaios de Caracterização
Práticas de laboratório - Ensaios de CaracterizaçãoPráticas de laboratório - Ensaios de Caracterização
Práticas de laboratório - Ensaios de CaracterizaçãoJanaina AGUIAR PARK
 
Calculo da vazao projeto 2015.2
Calculo da vazao projeto 2015.2Calculo da vazao projeto 2015.2
Calculo da vazao projeto 2015.2marcosrei85
 
Unidade 3 Projeto de terraplenagem
Unidade 3   Projeto de terraplenagemUnidade 3   Projeto de terraplenagem
Unidade 3 Projeto de terraplenagemAlexandre Esmeraldo
 

Mais procurados (20)

Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)
 
Relatório
RelatórioRelatório
Relatório
 
Exercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaExercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulica
 
Interpolação - Parte II - @professorenan
Interpolação - Parte II - @professorenanInterpolação - Parte II - @professorenan
Interpolação - Parte II - @professorenan
 
Exercicios e respostas
Exercicios e respostasExercicios e respostas
Exercicios e respostas
 
Apostila hidraulica-2016 le e lp
Apostila hidraulica-2016 le e lpApostila hidraulica-2016 le e lp
Apostila hidraulica-2016 le e lp
 
Prova 3 - Recursos Hídricos (COPEL)
Prova 3 - Recursos Hídricos (COPEL)Prova 3 - Recursos Hídricos (COPEL)
Prova 3 - Recursos Hídricos (COPEL)
 
4 cinematica dos fluidos exercícios
4 cinematica dos fluidos exercícios4 cinematica dos fluidos exercícios
4 cinematica dos fluidos exercícios
 
Classificação granulométrica do solo
Classificação granulométrica do soloClassificação granulométrica do solo
Classificação granulométrica do solo
 
Coleta de amostra deformada
Coleta de amostra deformadaColeta de amostra deformada
Coleta de amostra deformada
 
Exercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicExercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basic
 
Exercicios resolvidos hidraulica
Exercicios resolvidos hidraulicaExercicios resolvidos hidraulica
Exercicios resolvidos hidraulica
 
Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com solução
 
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11Aula 13   balanço de massa - prof. nelson (area 1) - 29.04.11
Aula 13 balanço de massa - prof. nelson (area 1) - 29.04.11
 
Aula topografia 1 - módulo 2 - Engenharia civil
Aula topografia 1 - módulo 2 - Engenharia civilAula topografia 1 - módulo 2 - Engenharia civil
Aula topografia 1 - módulo 2 - Engenharia civil
 
Práticas de laboratório - Ensaios de Caracterização
Práticas de laboratório - Ensaios de CaracterizaçãoPráticas de laboratório - Ensaios de Caracterização
Práticas de laboratório - Ensaios de Caracterização
 
Calculo da vazao projeto 2015.2
Calculo da vazao projeto 2015.2Calculo da vazao projeto 2015.2
Calculo da vazao projeto 2015.2
 
Unidade 3 Projeto de terraplenagem
Unidade 3   Projeto de terraplenagemUnidade 3   Projeto de terraplenagem
Unidade 3 Projeto de terraplenagem
 
Pluviometria
PluviometriaPluviometria
Pluviometria
 
Drenagem urbana
Drenagem urbanaDrenagem urbana
Drenagem urbana
 

Semelhante a Trabalho de mecânica dos solos propriedade das particulas sólidas dos solos

O principio da alteração das rochas
O principio da alteração das rochasO principio da alteração das rochas
O principio da alteração das rochasCidinhoveronese
 
Apostila de Mecânica dos Solos
Apostila de Mecânica dos SolosApostila de Mecânica dos Solos
Apostila de Mecânica dos SolosBruno Castilho
 
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTES
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTESUNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTES
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTESRodrigo Andrade Brígido
 
Processose produtosdasedimentacao
Processose produtosdasedimentacaoProcessose produtosdasedimentacao
Processose produtosdasedimentacaoPetroleoecologia
 
Intemperismo e erosão
Intemperismo e erosãoIntemperismo e erosão
Intemperismo e erosãoMateus Ribeiro
 
Minerais e rochas
Minerais e rochasMinerais e rochas
Minerais e rochaskarolpoa
 
Aula 3 propriedades morfológicas
Aula 3 propriedades morfológicasAula 3 propriedades morfológicas
Aula 3 propriedades morfológicaskarolpoa
 
Aula propriedades morfológicas
Aula  propriedades morfológicasAula  propriedades morfológicas
Aula propriedades morfológicasCarolina Corrêa
 
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluição
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluiçãoCiências do Ambiente - Cap 4 - Meio terrestre: características e poluição
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluiçãoelonvila
 

Semelhante a Trabalho de mecânica dos solos propriedade das particulas sólidas dos solos (20)

Intemperismo e erosão
Intemperismo e erosãoIntemperismo e erosão
Intemperismo e erosão
 
Intemperismo apresentação
Intemperismo apresentaçãoIntemperismo apresentação
Intemperismo apresentação
 
Intemperismo químico
Intemperismo químicoIntemperismo químico
Intemperismo químico
 
Rochas sedimentares
Rochas sedimentaresRochas sedimentares
Rochas sedimentares
 
O principio da alteração das rochas
O principio da alteração das rochasO principio da alteração das rochas
O principio da alteração das rochas
 
Apostila de Mecânica dos Solos
Apostila de Mecânica dos SolosApostila de Mecânica dos Solos
Apostila de Mecânica dos Solos
 
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTES
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTESUNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTES
UNIDADE I - SOLOS, ORIGEM, FORMAÇÃO E MINERAis CONSTITUINTES
 
Solos aula 1
Solos   aula 1Solos   aula 1
Solos aula 1
 
Processose produtosdasedimentacao
Processose produtosdasedimentacaoProcessose produtosdasedimentacao
Processose produtosdasedimentacao
 
Guião apresentação
Guião   apresentaçãoGuião   apresentação
Guião apresentação
 
Intemperismo e erosão
Intemperismo e erosãoIntemperismo e erosão
Intemperismo e erosão
 
Minerais e rochas
Minerais e rochasMinerais e rochas
Minerais e rochas
 
Aula 3 propriedades morfológicas
Aula 3 propriedades morfológicasAula 3 propriedades morfológicas
Aula 3 propriedades morfológicas
 
Aula propriedades morfológicas
Aula  propriedades morfológicasAula  propriedades morfológicas
Aula propriedades morfológicas
 
Resumo geologia (1)
Resumo geologia (1)Resumo geologia (1)
Resumo geologia (1)
 
Intemperismo e Saibro
Intemperismo e SaibroIntemperismo e Saibro
Intemperismo e Saibro
 
Intemperismo
IntemperismoIntemperismo
Intemperismo
 
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluição
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluiçãoCiências do Ambiente - Cap 4 - Meio terrestre: características e poluição
Ciências do Ambiente - Cap 4 - Meio terrestre: características e poluição
 
Apostila solos
Apostila solosApostila solos
Apostila solos
 
Química Ambiental
Química AmbientalQuímica Ambiental
Química Ambiental
 

Mais de engenhar

Questionário
QuestionárioQuestionário
Questionárioengenhar
 
Trabalho particulas solidas do solo
Trabalho particulas solidas do soloTrabalho particulas solidas do solo
Trabalho particulas solidas do soloengenhar
 
Trabalho mecanica dos solos i
Trabalho mecanica dos solos iTrabalho mecanica dos solos i
Trabalho mecanica dos solos iengenhar
 
Questoes solo
Questoes soloQuestoes solo
Questoes soloengenhar
 
Questões mecânica dos solos i
Questões mecânica dos solos iQuestões mecânica dos solos i
Questões mecânica dos solos iengenhar
 
Propriedades das particulas sólidas
Propriedades das particulas sólidasPropriedades das particulas sólidas
Propriedades das particulas sólidasengenhar
 
Propriedade das partic._solidas
Propriedade das partic._solidasPropriedade das partic._solidas
Propriedade das partic._solidasengenhar
 
Propriedade das particulas sólidas dos solos apresentação
Propriedade das particulas sólidas dos solos   apresentaçãoPropriedade das particulas sólidas dos solos   apresentação
Propriedade das particulas sólidas dos solos apresentaçãoengenhar
 
Mecanica dos solos novo
Mecanica dos solos novoMecanica dos solos novo
Mecanica dos solos novoengenhar
 
Mecanica do solo. slide
Mecanica do solo. slideMecanica do solo. slide
Mecanica do solo. slideengenhar
 
Apresentação mecânica dos solos
Apresentação mecânica dos solosApresentação mecânica dos solos
Apresentação mecânica dos solosengenhar
 
Trabalho de mec. dos solos i
Trabalho de mec. dos solos iTrabalho de mec. dos solos i
Trabalho de mec. dos solos iengenhar
 

Mais de engenhar (12)

Questionário
QuestionárioQuestionário
Questionário
 
Trabalho particulas solidas do solo
Trabalho particulas solidas do soloTrabalho particulas solidas do solo
Trabalho particulas solidas do solo
 
Trabalho mecanica dos solos i
Trabalho mecanica dos solos iTrabalho mecanica dos solos i
Trabalho mecanica dos solos i
 
Questoes solo
Questoes soloQuestoes solo
Questoes solo
 
Questões mecânica dos solos i
Questões mecânica dos solos iQuestões mecânica dos solos i
Questões mecânica dos solos i
 
Propriedades das particulas sólidas
Propriedades das particulas sólidasPropriedades das particulas sólidas
Propriedades das particulas sólidas
 
Propriedade das partic._solidas
Propriedade das partic._solidasPropriedade das partic._solidas
Propriedade das partic._solidas
 
Propriedade das particulas sólidas dos solos apresentação
Propriedade das particulas sólidas dos solos   apresentaçãoPropriedade das particulas sólidas dos solos   apresentação
Propriedade das particulas sólidas dos solos apresentação
 
Mecanica dos solos novo
Mecanica dos solos novoMecanica dos solos novo
Mecanica dos solos novo
 
Mecanica do solo. slide
Mecanica do solo. slideMecanica do solo. slide
Mecanica do solo. slide
 
Apresentação mecânica dos solos
Apresentação mecânica dos solosApresentação mecânica dos solos
Apresentação mecânica dos solos
 
Trabalho de mec. dos solos i
Trabalho de mec. dos solos iTrabalho de mec. dos solos i
Trabalho de mec. dos solos i
 

Trabalho de mecânica dos solos propriedade das particulas sólidas dos solos

  • 1. 1. INTRODUÇÃO A Mecânica dos Solos lida com várias propriedades e características dos solos, avaliadas por meios de ensaios e exames laboratoriais executados sobre amostras de solos. Nos problemas ideais, as grandes massas de solo são consideradas homogenias de forma que as propriedades físicas em qualquer ponto dessa massa sejam idênticas àquelas determinadas em laboratório com algumas amostras representativas do terreno. Mas como os solos infelizmente resultam de processos naturais complexos esse processo não pode ser considerado verdadeiro, pois a situação raramente corresponde à realidade, porque a maioria dos solos naturais é heterogênea. Assim para avaliar conscientemente as propriedades de uma extensa massa de solo a partir de ensaios laboratoriais executados com um número limitado de amostras é fundamental compreender os processos responsáveis pela formação dos solos e como estes influenciam nas respectivas propriedades. O solo é uma complexa mistura de matéria inorgânica que pode ou não conter resíduos orgânicos decompostos e outras substâncias que cobrem a crosta terrestre. É formado por processos climáticos, representados pela desintegração e decomposição das rochas e minerais na/ou próxima à superfície em partículas cada vez menores sob a ação de agentes naturais físicos (e/ou mecânicos) e químicos. Os dois últimos tipos de fatores sempre agem simultaneamente. Os processos de formação dos solos são, pois complexos na medida em que os fatores de erosão e transporte se combinam nas mais diferentes normas, as aqui serão apenas encarados do ponto de vista dos seus efeitos sobre as propriedades de interesse à engenharia dos Solos. A forma das partículas minerais é também uma das características muito importantes que regem o comportamento mecânico do solo. 2. FORMAÇÃO DOS SOLOS As rochas sofrem alterações devidas a ações climáticas como oscilações de temperatura, do vento e da água, ações químicas (oxidação, hidratação, hidrólise, 4
  • 2. carbonatação, plantas e animais (fauna e flora)) que são provocadas pela água ou microorganismos, especialmente quando contém ácidos carbônicos, agindo ao longo do tempo. Todas as rochas que se encontram na litosfera (parte sólida da Terra) estão sujeitas a estas ações. As alterações isoladas ou simultâneas modificam e fragmentam as rochas existentes, transportam e reúnem estes fragmentos para originar novos sedimentos. Os processos que atuam na superfície da crosta terrestre são da maior importância porque não só permitem interpretar e compreender a formação de um determinado tipo de rochas (rochas sedimentares), mas são também responsáveis pelas imposições naturais das formas da superfície terrestre. Utilizando o princípio da uniformização, um dos conceitos fundamentais em Geologia, ou seja, rochas semelhantes se formaram no passado por processos semelhantes aos atuais, pode- se interpretar a história da evolução da amostra da rocha sedimentar em estudo e reproduzir a evolução das formas terrestres. 2.1 processos de alteração A alteração ou fragmentação das rochas pode ocorrer através de processos físicos ou químicos. Nos processos físicos não há em geral alteração da composição química ou mineralógica. O processo envolve apenas a fragmentação da rocha em frações menores. No outro processo, a alteração química, ou seja, decomposição da rocha ocorre por meio de reações químicas com possíveis alterações dos minerais da rocha. A alteração mecânica ou física se refere a intemperização das rochas por agentes físicos, tais como variação cíclica da temperatura, ação do congelamento da água que se infiltram nas juntas e fraturas das rochas, ação dos organismos, plantas, etc. Através desses processos chegam a formar areias ou, em alguns siltes, podendo até mesmo a formar argilas em situações muito especiais. 5
  • 3. Figura 1. Processo de alteração das Rochas Resumindo, os processos de alteração das rochas, representam a resposta a uma mudança de ambiente que ocorre na interface atmosfera-litosfera. Com efeito, os minerais e textura de muitas rochas podem se originar sob temperaturas muito elevadas e ou a grandes profundidades, não se encontrando, portanto em equilíbrio sob as condições de ambiente que prevalecem na superfície. Os processos de alteração tendem então a restabelecer o equilíbrio sob o novo ambiente físico- químico e assim podem até formar novos minerais com diferentes formas de agrupamento. Na maioria das condições climáticas atuais os processos de alteração física e química se completam. A desagregação é maior na superfície do material exposto ao ar ambiente e assim permitindo a aceleração do processo de alteração química. As reações químicas produzem freqüentemente novos minerais cujo desenvolvimento ajuda a fragmentar ainda mais as rochas podendo chegar a dimensões que os processos mecânicos não conseguiriam alcançar. A decomposição química significa ação de agentes que atacam as rochas modificando sua composição mineralógica ou química. O principal agente é a água, e os mecanismos de ataque mais importantes são a oxidação, a hidratação e a carbonatação. Os efeitos químicos da vegetação têm também um papel de destaque. Estes mecanismos geralmente produzem argilas como produto final da 6
  • 4. decomposição. Todos os efeitos anteriores se acentuam com a mudança de temperatura, onde se torna freqüente encontrar formações argilosas em zona úmidas e quentes, enquanto que são formações arenosas e siltosas são típicas em zonas mais frias. Nos desertos quentes, a falta de água torna o fenômeno de decomposição não se desenvolverem, e neste caso predominam a formação de areias; ali os efeitos de alternância entre tração e compressão sobre as rochas, produzidos pela elevação e queda periódica e contínua de temperatura são os mecanismos de ataque determinantes. PROCESSO EXEMPLO TIPO E IMPORTANCIA DOS EFEITOS FISICO • Decomposição • Dilatação térmica • Ação do gelo • Expansão coloidal Efeitos secundários • Redução das dimensões dos fragmentos e aumento da área das superfícies de ataque • Permitem-se a composição química QUIMICO • Oxidação • Carbonatação • Hidrólise • Hidratação • Dissolução • Reconstituição química • Alteração quase completa das propriedades físicas e químicas com aumento sensível de volume BIOLÓGICO • Ação de cunha das raízes • Ação dos ácidos orgânicos • Ação de animais • Efeitos secundários • Combinação de efeitos físicos e químicos Tabela 1. Processos de alteração do solo 3. FORMA DAS PARTÍCULAS Nos solos grossos a forma característica é equidimensional, o qual as três dimensões da partícula são de magnitude semelhantes. Origina-se pela ação de agentes mecânicos e químicos. Segundo a intensidade e o tempo em que estes agentes mecânicos tenham atuado, se produzem variedades na forma equidimensional, das quais podem ser arredondadas, sub-arredondadas, sub- 7
  • 5. angulares, ou angulares, em escala decrescente dos efeitos do ataque dos agentes mecânicos. A forma arredondada é praticamente esférica, enquanto que angulares é a que apresenta arestas e vértices pontiagudos (por exemplo, pedra britada). Quando estas arestas e vértices estão arredondados pelo efeito de rolamento e abrasão mecânica, se tem a forma sub-angular, os quais por um processo mais intenso da erosão podem obter a forma sub-arredondada final. As formas angulares são típicas de areias residuais, e as areias vulcânicas apresentam essa forma em partículas cristalizadas. As areias marinhas são geralmente angulares. A forma arredondada é freqüente nas areias de rio e em algumas formações de praia, se bem que no primeiro caso, predominam as formas sub-arredondada e sub-angular, pois as partículas que não se arrastam, não sofrem o efeito da abrasão ou rolamento; naturalmente que o anterior é mais certo em partículas de pequeno tamanho, por sua maior facilidade para manter-se em suspensão. As areias eólicas são de grão fino e arredondado. Nos solos finos a forma das partículas tende a ser achatada, porque as minerais argilas, em sua maior parte se adotam a forma laminar; com exceção de alguns minerais que possuem forma fibrosa. Nestes materiais a influência da forma é muito importante, pois a cada um dos dois mencionados corresponde a uma diferente relação entre área e volume da partícula e, portanto, uma atividade superficial muito distinta, no que se refere à absorção. a partícula de forma laminar tem duas dimensões muito maiores que a terceira; na forma fibrosa uma dimensão da partícula é muito maior que outras duas. A forma laminar é a mais freqüente nos minerais de argila. A forma fibrosa é muito mais rara (haloisita, e algumas outras formas mineralógicas não muito comuns). A forma das partículas na mistura com dimensões de “argila” (< 2μ) depende da sua composição química e da sua estrutura cristalina. Podem consistir em quartzo muito fino ou de outros minerais de rochas, e ter formas arredondadas sub- angulares ou angulares, dependendo da abrasão sofrida. Estas partículas denominam-se de pó de pedra. Quando as partículas de argila, dado que a sua estrutura cristalina, consiste de uma sucessão de lâminas contendo sílica, alumina, oxigênio e hidrogênio a sua forma corrente é de placas. É o caso das argilas pertencentes aos grupos da caulinita, ilita e montmorilonita. A haloisita é uma exceção, pois as suas partículas têm forma alongada. 8
  • 6. A espessura das partículas de argila é da ordem de 10-6 mm, mas sua largura é muitas vezes superior. Nas Figuras seguintes mostram-se aproximadamente as formas das partículas da caulinita e de ilita. Figura 2. Amostra vista do microscópio de partículas de argila 4. NATUREZA DAS PARTÍCULAS Pode parecer à primeira vista que a composição das partículas de um solo é uma característica muito importante deste. No entanto, não existem correlações práticas entre a composição das partículas de um solo e os seus comportamentos. O que é importante é que ajuda na interpretação e a compreensão desse comportamento. A natureza e arranjo dos átomos em uma partícula de solo, isto é, a sua composição química, influencia de forma significativa na permeabilidade, compressibilidade, resistência ao cisalhamento e na propagação de tensões nos solos, especialmente aqueles de natureza mais fina. Existem, com efeito, certos minerais que conferem propriedades especiais. Já se referiu anteriormente que a montmorilonita dá grande expansibilidade ao solo. Também a haloisita, com as suas formas alongadas, dá origem a solos com pesos específicos muito baixos. Estas e muitas outras razões que serão referidas mais tarde justificam que a base indispensável na compreensão dos fundamentos do comportamento das argilas e em particular como evolui no tempo, é afetado pela 9
  • 7. pressão e “ambiente”. Apresentar-se-ão alguns elementos de mineralogia das argilas e descrever-se-ão alguns minerais de interesse para o engenheiro civil. As partículas de solo podem ser orgânicas ou inorgânicas. As partículas inorgânicas são minerais. Um mineral é um elemento ou um composto químico natural (tem composição química que pode ser expressa por uma fórmula) formado por processos naturais. Os minerais classificam-se de acordo com a natureza e arranjo dos seus átomos. Os mais importantes são os silicatos, pois que mais de 90% do peso dos solos existentes na terra são minerais de silicatos. 4.1 Composições volumétrica dos solos minerais Os solos minerais consistem de quatro grandes componentes principais: substâncias minerais, matéria orgânica, água e ar, conforme figuras I e II. É mostrada na figura 3 a proporção aproximada destes componentes num solo com condições ótimas para crescimento vegetal. Note-se que este solo contém metade de espaços sólidos e metade de espaços de poros (água e ar). Do volume total do solo, cerca de metade é espaço sólido com 45% de substância mineral e 5 % de matéria orgânica. Em condição ótima para crescimento vegetal, o espaço de poros é, a grosso modo, dividido ao meio, 25% do volume é espaço com água e 25% com ar. As proporções de ar e água estão sujeitas a grandes flutuações sob condições naturais, na dependência do fator meteorológico e de outros. Figura 3. Amostra de solo demonstrando seus poros 10
  • 8. Figura 4. Composição de uma amostra de solo A água contida no solo pode ser classificada em : •Água de Constituição: é a que faz parte da estrutura molecular da partícula sólida; •Água adesiva ou adsorvida: película de água que envolve e adere fortemente a partícula sólida; •Água livre : é a que se encontra em uma determinada zona do terreno, enchendo todas os seus vazios; •Água higroscópica : É a que ainda se encontra em um solo seco ao ar livre, em função da água em vapor contida na atmosfera; •Água capilar : é aquela que nos solos de grãos finos sobe pelos interstícios capilares deixados pelas partículas sólidas. •Água livre, higroscópica e capilar:- são as que podem ser totalmente vaporadas pelo efeito do calor (>100º C). •Fase gasosa:- constituída por ar, vapor d’água e carbono combinado. Figura 5. Proporção aproximada das substâncias que compõem o solo 11
  • 9. Calculando o peso total de uma amostra de solo: Figura 6. Proporções das fases do solo 4.2 Texturas do solo Textura é termo empregado para designar a proporção relativa das frações argila, silte ou areias no solo. Existem triângulos para designar diversas classes texturais (Figura 8), que são utilizados em classificação de solos. De uma forma simples, uma amostra de solo é arenosa se contiver mais de 85% de areias; argilosa, mais de 35% de argila é barrenta ou franca, menos de 35% de argila e menos de 85% de areias. Solos limosos são raros no Brasil. Existem termos populares para designar a textura dos solos. Assim, solos arenosos são considerados "leves" ou de textura "grosseira", enquanto solos argilosos são 12
  • 10. "pesados" ou de textura "fina". Os termos leve ou pesado decorrem da menor ou maior resistência que solos oferecem à penetração dos implementos agrícolas (arados, grades, subsoladores, etc.). A granulometria dos solos é estabelecida fazendo-se a separação e a determinação percentual de partículas de diferentes tamanhos. As partículas podem ser classificadas pelos seus diâmetros, de acordo com a Tabela 2, utilizada pela Sociedade Internacional de Ciência do solo. Conforme a dimensão, as partículas do solo são denominadas pedras, cascalho, areia grossa, areia fma, limo (ou silte) e argila. Tabela 2. Escala internacional de classificação das frações TE Fração Limites dos diâmetros das partículas (mm) Argila < 0,002 Silte ou limo 0,002 – 0,02 Areia fina 0,02 – 0,2 Areia grossa 0,2 – 2 Cascalho 2 – 20 Pedras > 20 4.2.1 Metodo análise da textura no laboratório Para realização de uma análise de partículas por tamanho, na amostra de TFSA é adicionado água e hidróxido de sódio, após agitação o material é deixado em repouso para decantação das partículas mais grosseiras. Só então é determinado o percentual de argila, silte e areia da amostra. 13
  • 11. Figura 7. Método análise da textura do solo Geralmente de acordo com o teor de argila temos: Tabela 3. Classificação do tipo de textura de acordo com percentual de argila. ARGILA (%) TEXTURA 60 – 100 Muita argilosa 35 – 60 Argilosa 15 – 35 Média 0 – 15 Arenosa 14
  • 12. Figura 8. Porcentagem de areia, silte e argila nas principais classes texturais do solo. Porcentagem de areia, silte e argila nas principais classes texturais do solo. Para usar o diagrama, localize a porcentagem de areia, em primeiro lugar e projete para dentro, como mostrado pela seta. Proceda de igual modo para o percentual de silte (ou argila). O ponto em que as projeções se cruzarem, identificará o nome da classe. 4.2.2 Classes texturais dos solos Uma vez que os solos são compostos de partículas que variam consideravelmente quanto ao tamanho e à forma, são necessários termos específicos que exprimam algumas idéias sobre a sua textura e forneçam certas indicações sobre suas propriedades físicas. Por isso, são usados nomes de classes 15
  • 13. texturais de solo, tais como, areia, franco-arenoso, e franco-siltoso. Estes nomes se firmaram ao longo de anos de estudo e classificação de solos e gradualmente se tornaram padronizados. Acham-se identificados três grandes grupos fundamentais de classes texturais de solo: areias, francos e argilas. AREIAS – O grupo areia inclui todos os solos cujas frações granulorrtétricas de areia totalizam pelo menos 70% e as frações granulométricas de argila 15% ou menos do peso total do material. As propriedades de tais solos são portanto caracteristicamente arenosas, em contraste com a natureza mais viscosa das argilas. São reconhecidas duas classes texturais específicas: areia e areia franca. ARGILAS – Para ser designado como argila, um solo deverá conter pelo menos 35 % da fração granulométrica de argila e na maioria dos casos nunca menos de 40%. Em tais solos, as características da fração granulométrica de argila são eminentemente dominantes e as classes designam-se como argila, argila arenosa e argila siltosa. Nota-se que as argilas arenosas poderão conter mais areia do que argila. Do mesmo modo, a quantidade de silte nas argilas siltosas excede normalmente a da própria fração da argila. FRANCOS – O grupo dos francos, que contém muitas subdivisões, é mais difícil de explicar. Um franco ideal poderá ser definido como uma mistura de partículas de areia, silte e argila que apresentam propriedades leves e pesadas em proporções equilibradas. A grosso modo, é uma mistura de características médias, no que toca às suas propriedades. 4.3 Dureza A dureza (D) de um mineral é a resistência que sua superfície oferece ao ser riscada. É adotada a escala de dureza de MOHS, estabelecida em 1824, na qual dez minerais comuns são ordenados em relação à resistência que oferecem ao risco. A escala de Mohs não é linear. Por exemplo, o diamante é cerca de 40 vezes mais duro que o talco, enquanto o coríndon que está logo abaixo do diamante (dureza 9), é da ordem de 9 vezes mais duro que o talco. A escala de Mohs é adimensional. 16
  • 14. Figura 9. Escala de Mohs 4.4 Brilho O brilho de um mineral é a capacidade de reflexão da luz incidente sobre sua superfície. O brilho de um mineral pode ser dividido em: • Metálico – brilho semelhante a um metal. Ex.: pirita, hematita; • Não metálico – outros tipos de brilhos observados nos minerais. Exemplos: vítreo – brilho semelhante ao vidro. Ex.: quartzo (hialino, ametista, fumê, etc); sedoso – brilho semelhante a seda. Ex.: gipso 4.5 Cor A cor de uma substância depende do comprimento de onda da luz que ela absorve. Por exemplo, um mineral que apresenta cor verde absorve todos os comprimentos de onda do espectro exceto aquele associado ao verde. 4.6 Solubilidade A solubilidade dos minerais pode ser considerada em relação a diversos ácidos, tais como HCl, HNO3, H2SO4 e HF. Para os minerais mais comuns e de maior interesse do curso a utilização do HCl diluído é o suficiente. Utilizando-se HCl diluído é possível separar os minerais em: • Insolúveis – aqueles que não reagem com HCl. Ex. quartzo, turmalina 17
  • 15. • Pouco solúveis – aqueles que só se solubilizam com HCl aquecido ou quando pulverizados. Ex.: dolomita • Solúveis – aqueles que se solubilizam em condições normais, podendo ser acompanhado por desprendimento de gás carbônico (efervescência) (CaCO3 + 2HCl → CaCl2 + H2O + CO2). Ex.: calcita, aragonita 5. PESO ESPECÍFICO DAS PARTICULAS O peso específico (γg) de uma partícula sólida é, por definição, o peso da substância que a forma, por unidade do volume que ocupa no espaço. O peso específico da partícula é determinado pela razão entre seu peso (seco) e seu volume. γg = Ps / Vs A massa específica (ρg) de uma partícula sólida é obtida pela razão entre sua massa e seu volume. ρg = Ms / Vs Densidade (δ) ou densidade relativa de uma partícula é a razão entre seu peso específico (γg) e o peso específico da água (γa) destilada e isenta de ar à 4º C (ou entre a massa específica da partícula e a massa específica da água a 4ºC). Como ρa = 1,000 g/cm3, a densidade e a massa específica têm mesmo valor numérico. δ = ρg / ρa = γg / γa A densidade deve ser expressa com precisão de 0,001 %. Como em um solo podem ocorrer partículas de natureza variada, em geral há mais interesse em determinar o peso específico médio das partículas sólidas que o compõem. Observe que a fração mais fina dos solos costuma ter natureza diversa da de maior tamanho, já que é gerada mais por desintegração química (oxidação, 18
  • 16. hidratação, carbonatação) que mecânica (ruptura e desgaste, causados por temperatura, atrito, etc.). Por isso, as normas descrevem a determinação do peso específico médio ou da densidade média das partículas menores que um tamanho especificado, ou maiores que um tamanho fixado. Não se pode confundir peso específico seco dos grãos ou massa específica seca dos grãos com peso específico seco aparente ou massa específica seca aparente de uma amostra. Estas últimas são obtidas pela razão entre o peso seco da amostra e o volume total da amostra. Observe que desse volume faz parte o volume de vazios, que tem de ser eliminado no cálculo do peso específico (ou massa específica) dos grãos. A ABNT adota o processo do PICNÔMETRO para a determinação da massa específica das partículas menores que 4,8 mm, enquanto o DNIT (antigo DNER) o faz para a determinação da densidade das partículas menores que 2,0 mm. Parece- nos melhor empregar a norma NBR6508 (ABNT) quando o objetivo é o estudo dos agregados miúdos, já que estes têm tamanho menor que 4,8 mm. Por outro lado, será mais preciso o método de ensaio ME 093/94 (DNIT-DNER) quando o objetivo é utilizar o valor da densidade nos cálculos da fase de sedimentação do ensaio de granulometria, pois a amostra utilizada neste ensaio é obtida do material que passa na peneira de 2,0 mm (fração fina do solo). Método do Picnômetro: Material utilizado: 1- Picnômetro (500 ml) 2- Termômetro 3- Bombas a vácuo 4- Balança (4) 19
  • 17. (1) (2) (3) (4) Figura 10. Método do Picnômetro Procedimento: • pesa-se o Picnômetro vazio, seco e limpo (P1); • coloca-se a amostra no Picnômetro (aprox. 80g para solos argiloso e 150g para solos arenosos) • pesa-se (P2); • mexe-se o Picnômetro, visando eliminar possíveis vazios entre a amostra ; • leva-se a bomba de vácuo pôr cerca de 10 minutos e continuamos mexendo aleatoriamente, • enche-se completamente o Picnômetro com água destilada, tampa-se o Picnômetro; • pesa se o Picnômetro (P3); • medimos a temperatura no Picnômetro, pela temperatura , obtemos na curva de calibração o peso do balão mais água (P4) d = (P2 – P1)/((P4-P1) - (P3-P2)) = gg/ga onde : P1 - Balão seco e limpo P2 - Balão + solo P3 - Balão + solo + água P4 - Balão + água 20
  • 18. O grande inimigo da precisão dos resultados de ensaios para a determinação é a presença de bolhas de ar em torrões, ou aderente aos grãos, ou na água. Do valor da densidade dos grãos depende o cálculo de vários outros índices físicos. Daí a necessidade de máxima acurácia no resultado de ensaios. 6. DENSIDADE DE GRÃOS DE MAIORES TAMANHOS Na determinação da densidade de grãos de tamanhos maiores que um tamanho especificado, o método mais popular utiliza a pesagem hidrostática, que consiste em: • Obter a massa da amostra seca (Ms); • Obter a massa da amostra imersa em água destilada, na temperatura 4ºC (P imerso); A diferença Ms-Mi será numericamente igual ao empuxo, e numericamente igual ao volume dos grãos imersos, o que permitirá o cálculo imediato da massa específica média dos grãos. Observação: Quando se faz a determinação da densidade (ou do peso específico) de agregados graúdos ou de pedregulhos, aproveita-se o trabalho para determinar também sua Absorção (S ou Dat), fazendo uma secagem superficial com um tecido absorvente e obtendo sua massa úmida (M úmido). Absorção = 100. (P úmido – Ps) / Ps 6.1 Processos do picnômetro para determinação da densidade dos grãos A norma NBR 6508 (ABNT) descreve como determinar a massa específica dos grãos de solo que passam na peneira de 4,8 mm, utilizando um picnômetro de 500 ml. As demais especificam a determinação da densidade dos grãos que passam 21
  • 19. na peneira de 2,0 mm. Todas destacam a necessidade de executar pelo menos dois ensaios. (A diferença na escolha da amostra pode ser explicada pelo objetivo de uso da informação. O valor da densidade dos grãos menores que 2,0 mm deverá ser preferido nos cálculos da fase de sedimentação do ensaio completo de granulometria. No estudo de misturas de agregados é preciso lembrar os agregados finos são menores que 4,8 mm.). Convenções: γg= Peso específico (em g/cm3) dos grãos de solo. δ = Densidade real da fração fina de solos é a razão da massa, ao ar e a uma temperatura entre 15°C e 30ºC, de um dado volume dessa fração, para a massa ao ar e a 25°C de temperatura, de um igual volume de água destilada isenta de ar. É adimensional e tem o mesmo valor numérico que a massa específica dos grãos do solo (ρg). Índice de Vazios (e) É a razão entre o volume de vazio (Vv) e a volume da parte sólida do solo (Vs) e = Vv / Vs Grau de Compacidade (GC) O estado natural de um solo não coesivo (areia, pedregulho) define-se pelo chamado Grau de Compacidade ou Compacidade Relativa: GC = (εmax - εnat) / (εmax - εmin) εmax - obtido vertendo-se simplesmente o material seco num recipiente de volume 22
  • 20. conhecido e pesando-se. V – Ps ´ εmax = γ g Ps ´ a γ g onde: v = volume do recipiente; P’s = peso do material seco; γg = peso específico dos grãos. εminx - compacta-se o material por vibração ou por socamento dentro do mesmo recipiente. V – Ps ´´ εminx = γ g Ps ´´ a γ g Onde : Ps´´ = peso do material seco compactado. Pelo critério visualmente aceito, as areias se classificam em : Fofas ou soltas 0 < GC < 1/3 Medianamente compactas 1/3 < GC < 2/3 Compactas 2/3 < GC < 1 Porosidade de um Solo (h) É a relação entre o volume de vazios e o volume total de uma amostra do solo. h (%) = Vv / Vt (x100) 23
  • 21. h = e / (e + 1) Tabela 4. Porosidade do solo Grau de Aeração A (%) = Var / Vv (x100) A = (Vv - Va) / Vv = 1 – S Peso Específico de um Solo Saturado gsat = (d + e ) ga / (1+ e) Peso Específico de um Solo Submerso Quando o solo é submerso, as partículas sólidas sofrem o empuxo da água, e então: gsub = ( d - 1 ) ga / (1+ e) gsub = gsat – ga 24
  • 22. 7. Conclusão Os solos apresentam uma incrível rede de complexos físicos de superfícies sólidas, poros, e interfaces que fornecem o ambiente para inúmeros processos químicos, biológicos e físicos. Estes, por sua vez influenciam no crescimento das plantas, hidrologia, manejo do ambiente, e usos do solo pela engenharia. A natureza e propriedades das partículas individuais, sua distribuição de tamanhos, e seu arranjo nos solos determinam o volume total do espaço poroso, bem como o tamanho de poros, impactando desse modo nas relações de água e ar. O tamanho das partículas, o conteúdo de água, e a plasticidade da fração coloidal ajudam a determinar a estabilidade do solo em resposta a forças de carga do tráfego, do cultivo, ou das fundações de construções. As propriedades físicas apresentadas influenciam grandemente quase todas as outras propriedades do solo e usos, como discutido ao longo deste trabalho. 25
  • 23. 8. REFERENCIAS BIBLIOGRÁFICAS PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos, em 16 Aulas. 1 ed. São Paulo: Oficina de Textos, 2000. 247 p. CAPUTO, Homero Pinto. Mecânica dos Solos e suas Aplicações. 6 ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, 1988. 234 p. VIOLANTE, Vitor Manuel. Apostila: Mecânica dos solos I. Marília: Unimar, 2009 VARGAS, Milton. Introdução à Mecânica dos solos. São Paulo: McGraw-Hill, 1977. 26