SlideShare uma empresa Scribd logo
1 de 11
 Divisibilidade por 2
Um número natural é divisível por 2 quando ele termina em 0, ou 2,
ou 4, ou 6, ou 8, ou seja, quando ele é par.
Exemplos:
1) 5040 é divisível por 2, pois termina em 0.
2) 237 não é divisível por 2, pois não é um número par.
 Divisibilidade por 3
Um número é divisível por 3 quando a soma dos valores absolutos
dos seus algarismos for divisível por 3.
Exemplo:
234 é divisível por 3, pois a soma de seus algarismos é igual
a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.
 Divisibilidade por 4
Um número é divisível por 4 quando termina em 00 ou quando o
número formado pelos dois últimos algarismos da direita for divisível
por 4.
Exemplo:
1800 é divisível por 4, pois termina em 00.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é
divisível por 4.
 Divisibilidade por 5
Um número natural é divisível por 5 quando ele termina em 0 ou 5.
Exemplos:
1) 55 é divisível por 5, pois termina em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5.
 Divisibilidade por 6
Um número é divisível por 6 quando é divisível por 2 e por 3.
Exemplos:
1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma:
6).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3
(soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por
3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível
por 2).
 Divisibilidade por 8
Um número é divisível por 8 quando termina em 000, ou quando o
número formado pelos três últimos algarismos da direita for divisível
por 8.
Exemplos:
1) 7000 é divisível por 8, pois termina em 000.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.
 Divisibilidade por 9
Um número é divisível por 9 quando a soma dos valores absolutos
dos seus algarismos for divisível por 9.
Exemplo:
2871 é divisível por 9, pois a soma de seus algarismos é igual a
2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por
9.
 Divisibilidade por 10
Um número natural é divisível por 10 quando ele termina em 0.
Exemplos:
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.
 Divisibilidade por 11
Um número é divisível por 11 quando a diferença entre as somas dos
valores absolutos dos algarismos de ordem ímpar e a dos de ordem
par é divisível por 11.
O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª
ordem, o das centenas de 3ª ordem, e assim sucessivamente.
Exemplos:
1) 87549
Si (soma das ordens ímpares) = 9+5+8 = 22
Sp (soma das ordens pares) = 4+7 = 11
Si-Sp = 22-11 = 11
Como 11 é divisível por 11, então o número 87549 é divisível por
11.
2) 439087
Si (soma das ordens ímpares) = 7+0+3 = 10
Sp (soma das ordens pares) = 8+9+4 = 21
Si-Sp = 10-21
Como a subtração não pode ser realizada, acrescenta-se o menor
múltiplo de 11 (diferente de zero) ao minuendo, para que a
subtração possa ser realizada: 10+11 = 21. Então temos a subtração
21-21 = 0.
Como zero é divisível por 11, o número 439087 é divisível por 11.
 Divisibilidade por 12
Um número é divisível por 12 quando é divisível por 3 e por 4.
Exemplos:
1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4
(dois últimos algarismos, 20).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível
por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível
por 3).
 Divisibilidade por 15
Um número é divisível por 15 quando é divisível por 3 e por 5.
Exemplos:
1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5
(termina em 5).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível
por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível
por 3).
 Divisibilidade por 25
Um número é divisível por 25 quando os dois algarismos finais forem
00, 25, 50 ou 75.
Exemplos:
200, 525, 850 e 975 são divisíveis por 25.
DÍZIMA PERIÓDICA
Em função da existência de um anteperíodo, neste caso a técnica é
ligeiramente diferente. Veja o exemplo abaixo:
0,171353535...
Veja abaixo mais alguns exemplos:
0,2333...
0,45222...
0,888313131...
0,32101230123...
17,16151515...
Frações, operações com frações.
Razão é uma forma de se realizar a comparação de duas grandezas,
no entanto, para isto é necessário que as duas estejam na mesma
unidade de medida.
A razão entre dois números a e b é obtida dividindo-se a por b.
Obviamente b deve ser diferente de zero.
32 : 16 é um exemplo de razão cujo valor é 2, isto é, a razão de 32
para 16 é igual a 2.
Você só poderá obter a razão entre o comprimento de duas avenidas,
se as duas medidas estiverem, por exemplo, em quilômetros, mas
não poderá obtê-la caso uma das medidas esteja em metros e a
outra em quilômetros ou qualquer outra unidade de medida que não
seja o metro. Neste caso seria necessário que fosse eleita uma
unidade de medida e se convertesse para ela, a grandeza que
estivesse em desacordo.
Na razão, o número a é chamado de antecedente e o b tem o nome
de consequente.
Porcentagem ou razão centesimal são as razões cujo
termo consequente é igual a 100. Representamos a porcentagem
através do símbolo "%".
10% é o mesmo que 0,10 (10 centésimos).
Proporção nada mais é que a igualdade entre razões.
Digamos que em determinada escola, na sala A temos três meninos
para cada quatro meninas, ou seja, temos a razão de 3 para 4, cuja
divisão de 3 por 4 é igual 0,75. Suponhamos que na sala B,
tenhamos seis meninos para cada oito meninas, então a razão é 6
para 8, que também é igual 0,75. Neste caso a igualdade entre estas
duas razões vem a ser o que chamamos de proporção, já que ambas
as razões são iguais a 0,75.
Regra de três é um método de resolução de problemas que
envolvem grandezas proporcionais.
"Um automóvel viajando a 80km faz determinado percurso em 2
horas. Se a viagem fosse realizada à velocidade de 120km, qual seria
o tempo gasto?". Este é um exemplo de problema que pode ser
resolvido via regra de três, no caso uma regra de três simples
inversa.
A solução dos problemas de regra de três tem como base a utilização
da "propriedade fundamental das proporções" e a "quarta
proporcional".
PROPORCIONALIDADE E REGRA DE TRÊS
Regra de três simples
Regra de três simples é um processo prático para resolver
problemas que envolvam quatro valores dos quais conhecemos três
deles. Devemos, portanto, determinar um valor a partir dos três já
conhecidos.
Passos utilizados numa regra de três simples:
1º) Construir uma tabela, agrupando as grandezas da mesma
espécie em colunas e mantendo na mesma linha as grandezas de
espécies diferentes em correspondência.
2º) Identificar se as grandezas são diretamente ou
inversamente proporcionais.
3º) Montar a proporção e resolver a equação.
Exemplos:
1) Com uma área de absorção de raios solares de 1,2m2, uma
lancha com motor movido a energia solar consegue produzir 400
watts por hora de energia. Aumentando-se essa área para 1,5m2,
qual será a energia produzida?
Solução: montando a tabela:
Área (m2) Energia (Wh)
1,2 400
1,5 x
Identificação do tipo de relação:
Inicialmente colocamos uma seta para baixo na coluna que
contém o x (2ª coluna).
Observe que: Aumentando a área de absorção, a energia
solar aumenta.
Como as palavras correspondem (aumentando - aumenta),
podemos afirmar que as grandezas são diretamente
proporcionais. Assim sendo, colocamos uma outra seta no mesmo
sentido (para baixo) na 1ª coluna. Montando a proporção e
resolvendo a equação temos:
Logo, a energia produzida será de 500 watts por hora.
2) Um trem, deslocando-se a uma velocidade média de
400Km/h, faz um determinado percurso em 3 horas. Em quanto
tempo faria esse mesmo percurso, se a velocidade utilizada fosse de
480km/h?
Solução: montando a tabela:
Velocidade
(Km/h)
Tempo (h)
400 3
480 x
Identificação do tipo de relação:
Inicialmente colocamos uma seta para baixo na coluna que
contém o x (2ª coluna).
Observe que: Aumentando a velocidade, o tempo do
percurso diminui.
Como as palavras são contrárias (aumentando - diminui),
podemos afirmar que as grandezas são inversamente
proporcionais. Assim sendo, colocamos uma outra seta no sentido
contrário (para cima) na 1ª coluna. Montando a proporção e
resolvendo a equação temos:
Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30
minutos.
3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela
pagaria se comprasse 5 camisetas do mesmo tipo e preço?
Solução: montando a tabela:
Camisetas Preço (R$)
3 120
5 x
Observe que: Aumentando o número de camisetas, o
preço aumenta.
Como as palavras correspondem (aumentando - aumenta),
podemos afirmar que as grandezas são diretamente
proporcionais. Montando a proporção e resolvendo a equação
temos:
Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.
4) Uma equipe de operários, trabalhando 8 horas por dia,
realizou determinada obra em 20 dias. Se o número de horas de
serviço for reduzido para 5 horas, em que prazo essa equipe fará o
mesmo trabalho?
Solução: montando a tabela:
Horas por
dia
Prazo para término
(dias)
8 20
5 x
Observe que: Diminuindo o número de horas trabalhadas por
dia, o prazo para término aumenta.
Como as palavras são contrárias (diminuindo - aumenta),
podemos afirmar que as grandezas são inversamente
proporcionais. Montando a proporção e resolvendo a equação
temos:
GRANDEZAS INVERSAMENTE PROPORCIONAIS
Se 5 operários levantam um muro em 10 dias, quantos operários
serão necessários para levantar o mesmo muro em 2 dias?
Regra de três composta
A regra de três composta é utilizada em problemas com mais de duas
grandezas, direta ou inversamente proporcionais.
Exemplos:
1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em
5 horas, quantos caminhões serão necessários para descarregar
125m3?
Solução: montando a tabela, colocando em cada coluna as
grandezas de mesma espécie e, em cada linha, as grandezas de
espécies diferentes que se correspondem:
HorasCaminhõesVolume
8 20 160
5 x 125
Identificação dos tipos de relação:
Inicialmente colocamos uma seta para baixo na coluna que
contém o x (2ª coluna).
A seguir, devemos comparar cada grandeza com aquela onde
está o x.
Observe que:
Aumentando o número de horas de trabalho,
podemos diminuir o número de caminhões. Portanto a relação
éinversamente proporcional (seta para cima na 1ª coluna).
Aumentando o volume de areia, devemos aumentar o
número de caminhões. Portanto a relação é diretamente
proporcional (seta para baixo na 3ª coluna). Devemos igualar
a razão que contém o termo x com o produto das outras
razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:
Logo, serão necessários 25 caminhões.
2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos
em 5 dias. Quantos carrinhos serão montados por 4 homens em 16
dias?
Solução: montando a tabela:
Homens Carrinhos Dias
8 20 5
4 x 16
Observe que:
Aumentando o número de homens, a produção de
carrinhos aumenta. Portanto a relação é diretamente
proporcional(não precisamos inverter a razão).
Aumentando o número de dias, a produção de
carrinhos aumenta. Portanto a relação também é diretamente
proporcional (não precisamos inverter a razão). Devemos igualar
a razão que contém o termo x com o produto das outras razões.
Montando a proporção e resolvendo a equação temos:
Logo, serão montados 32 carrinhos.
3) Dois pedreiros levam 9 dias para construir um muro com 2m
de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m,
qual será o tempo necessário para completar esse muro?
Inicialmente colocamos uma seta para baixo na coluna que
contém o x. Depois colocam-se flechas concordantes para as
grandezas diretamente proporcionais com a incógnita
e discordantes para as inversamente proporcionais, como mostra
a figura abaixo:
Montando a proporção e resolvendo a equação temos:
Logo, para completar o muro serão necessários 12 dias.
Exercícios complementares
Agora chegou a sua vez de tentar. Pratique tentando fazer esses
exercícios:
1) Três torneiras enchem uma piscina em 10 horas. Quantas
horas levarão 10 torneiras para encher 2 piscinas? Resposta: 6
horas.
2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6
toneladas de carvão. Se for aumentada para 20 homens, em quantos
dias conseguirão extrair 5,6 toneladas de carvão? Resposta: 35
dias.
3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias
para construir um muro de 300m. Quanto tempo levará umaturma de
16 operários, trabalhando 9 horas por dia, para construir um muro de
225m? Resposta: 15 dias.
4) Um caminhoneiro entrega uma carga em um mês, viajando 8
horas por dia, a uma velocidade média de 50 km/h. Quantas horas
por dia ele deveria viajar para entregar essa carga em 20 dias, a
uma velocidade média de 60 km/h? Resposta: 10 horas por dia.
5) Com uma certa quantidade de fio, uma fábrica produz 5400m
de tecido com 90cm de largura em 50 minutos. Quantosmetros de
tecido, com 1 metro e 20 centímetros de largura, seriam produzidos
em 25 minutos? Resposta: 2025 metros.

Mais conteúdo relacionado

Mais procurados (20)

Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
 
Sobme psn a-2019
Sobme psn a-2019Sobme psn a-2019
Sobme psn a-2019
 
Sf2n2 2011
Sf2n2 2011Sf2n2 2011
Sf2n2 2011
 
Exame mat6º revisões; preparação
Exame mat6º revisões; preparaçãoExame mat6º revisões; preparação
Exame mat6º revisões; preparação
 
Exercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturaisExercícios resolvidos numeros naturais
Exercícios resolvidos numeros naturais
 
Fracoes- bateria de exercicios
Fracoes- bateria de exerciciosFracoes- bateria de exercicios
Fracoes- bateria de exercicios
 
números decimais
números decimaisnúmeros decimais
números decimais
 
Mat divisibilidade
Mat divisibilidadeMat divisibilidade
Mat divisibilidade
 
Mat exercicios resolvidos e comentados 010
Mat exercicios resolvidos e comentados  010Mat exercicios resolvidos e comentados  010
Mat exercicios resolvidos e comentados 010
 
Frações e Decimais
Frações e DecimaisFrações e Decimais
Frações e Decimais
 
Aula 01 sequências
Aula 01   sequênciasAula 01   sequências
Aula 01 sequências
 
Proporcionalidade directa,Andreia,TPF
Proporcionalidade directa,Andreia,TPFProporcionalidade directa,Andreia,TPF
Proporcionalidade directa,Andreia,TPF
 
Obmep2 2
Obmep2 2Obmep2 2
Obmep2 2
 
Obmep3 3
Obmep3 3Obmep3 3
Obmep3 3
 
Divisibilidade
DivisibilidadeDivisibilidade
Divisibilidade
 
Sol 1afase2010 n1
Sol 1afase2010 n1Sol 1afase2010 n1
Sol 1afase2010 n1
 
Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)
 
Caderno matematica
Caderno matematicaCaderno matematica
Caderno matematica
 
Sobme psf1n3 2019
Sobme psf1n3 2019Sobme psf1n3 2019
Sobme psf1n3 2019
 
Números racionais
Números racionaisNúmeros racionais
Números racionais
 

Semelhante a Matemática básica.

Divisibilidade
DivisibilidadeDivisibilidade
Divisibilidade
con_seguir
 
Razão e proporção
Razão e proporçãoRazão e proporção
Razão e proporção
walissongbs
 

Semelhante a Matemática básica. (20)

Divisibilidade
DivisibilidadeDivisibilidade
Divisibilidade
 
Critérios de divisibilidade
Critérios de divisibilidadeCritérios de divisibilidade
Critérios de divisibilidade
 
Apostila teoria - 2013 - 60
Apostila   teoria - 2013 - 60Apostila   teoria - 2013 - 60
Apostila teoria - 2013 - 60
 
Operacoes numeros decimais
Operacoes numeros decimaisOperacoes numeros decimais
Operacoes numeros decimais
 
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdfisoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
isoladas-matematica-do-zero-aula-2-dudan-resolvido.pdf
 
ApresentacaoRaciocinioLogicoMatematica.pptx
ApresentacaoRaciocinioLogicoMatematica.pptxApresentacaoRaciocinioLogicoMatematica.pptx
ApresentacaoRaciocinioLogicoMatematica.pptx
 
Nm
NmNm
Nm
 
Sf1n1 2010
Sf1n1 2010Sf1n1 2010
Sf1n1 2010
 
Polícia científica pr ibfc 2017
Polícia científica pr ibfc  2017Polícia científica pr ibfc  2017
Polícia científica pr ibfc 2017
 
Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014Matemática – notação científica 01 – 2014
Matemática – notação científica 01 – 2014
 
OBMEP 2 2013
OBMEP 2  2013OBMEP 2  2013
OBMEP 2 2013
 
Apostila análise combinatória
Apostila   análise combinatóriaApostila   análise combinatória
Apostila análise combinatória
 
Apostila análise combinatória
Apostila   análise combinatóriaApostila   análise combinatória
Apostila análise combinatória
 
24052014
2405201424052014
24052014
 
Matematica aulas 1, 2 e 3
Matematica   aulas 1, 2 e 3Matematica   aulas 1, 2 e 3
Matematica aulas 1, 2 e 3
 
Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)Porques na-matematica-basica-4 (1)
Porques na-matematica-basica-4 (1)
 
Notação científica completo
Notação científica   completoNotação científica   completo
Notação científica completo
 
Razão e proporção
Razão e proporçãoRazão e proporção
Razão e proporção
 
Dica mat
Dica matDica mat
Dica mat
 
Dica mat
Dica matDica mat
Dica mat
 

Mais de Ajudar Pessoas

Mais de Ajudar Pessoas (20)

Tabela f 95% unilateral
Tabela f 95% unilateralTabela f 95% unilateral
Tabela f 95% unilateral
 
Tabela f 95% bilateral
Tabela f 95% bilateralTabela f 95% bilateral
Tabela f 95% bilateral
 
Educação e Capitalismo uma Certa Economia Política
Educação e Capitalismo uma Certa Economia PolíticaEducação e Capitalismo uma Certa Economia Política
Educação e Capitalismo uma Certa Economia Política
 
Posicionamento Filosofico e Base de Aprendizagem
Posicionamento Filosofico e Base de AprendizagemPosicionamento Filosofico e Base de Aprendizagem
Posicionamento Filosofico e Base de Aprendizagem
 
Evolucao historica da avaliacao em geracões
Evolucao historica da avaliacao em geracõesEvolucao historica da avaliacao em geracões
Evolucao historica da avaliacao em geracões
 
Exercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasExercícios do Teorema de Pitágoras
Exercícios do Teorema de Pitágoras
 
Matriz Curricular : Licenciatura em Química IFPE 2015
Matriz Curricular : Licenciatura em Química IFPE 2015Matriz Curricular : Licenciatura em Química IFPE 2015
Matriz Curricular : Licenciatura em Química IFPE 2015
 
Funções Orgânicas Nitrogenadas.
Funções Orgânicas Nitrogenadas.Funções Orgânicas Nitrogenadas.
Funções Orgânicas Nitrogenadas.
 
Correção da prova de física ifpe 2015 parte 1.
Correção da prova de física ifpe 2015 parte 1.Correção da prova de física ifpe 2015 parte 1.
Correção da prova de física ifpe 2015 parte 1.
 
formulas de fisica
formulas de fisicaformulas de fisica
formulas de fisica
 
Biologia.
Biologia.Biologia.
Biologia.
 
Saude pública.
Saude pública.Saude pública.
Saude pública.
 
Exerc carboidratos.
Exerc   carboidratos.Exerc   carboidratos.
Exerc carboidratos.
 
Biologia compostos organicos_exercícios.
Biologia compostos organicos_exercícios.Biologia compostos organicos_exercícios.
Biologia compostos organicos_exercícios.
 
Concordância.
Concordância.Concordância.
Concordância.
 
.Biologia.
.Biologia..Biologia.
.Biologia.
 
Proteínas funções.
Proteínas        funções.Proteínas        funções.
Proteínas funções.
 
Avaliação diagnóstica de matemática.
Avaliação diagnóstica de matemática.Avaliação diagnóstica de matemática.
Avaliação diagnóstica de matemática.
 
Aulão prevupe história.
Aulão prevupe   história.Aulão prevupe   história.
Aulão prevupe história.
 
Aulão prevupe geografia.
Aulão prevupe   geografia.Aulão prevupe   geografia.
Aulão prevupe geografia.
 

Último

ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 

Último (20)

Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de LedAula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
Aula 67 e 68 Robótica 8º ano Experimentando variações da matriz de Led
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
Questões de Língua Portuguesa - gincana da LP
Questões de Língua Portuguesa - gincana da LPQuestões de Língua Portuguesa - gincana da LP
Questões de Língua Portuguesa - gincana da LP
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
tensoes-etnicas-na-europa-template-1.pptx
tensoes-etnicas-na-europa-template-1.pptxtensoes-etnicas-na-europa-template-1.pptx
tensoes-etnicas-na-europa-template-1.pptx
 
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptxSlides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
Slides Lição 6, Betel, Ordenança para uma vida de obediência e submissão.pptx
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
Missa catequese para o dia da mãe 2025.pdf
Missa catequese para o dia da mãe 2025.pdfMissa catequese para o dia da mãe 2025.pdf
Missa catequese para o dia da mãe 2025.pdf
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Acessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidadeAcessibilidade, inclusão e valorização da diversidade
Acessibilidade, inclusão e valorização da diversidade
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Caderno de exercícios Revisão para o ENEM (1).pdf
Caderno de exercícios Revisão para o ENEM (1).pdfCaderno de exercícios Revisão para o ENEM (1).pdf
Caderno de exercícios Revisão para o ENEM (1).pdf
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 
INTERTEXTUALIDADE atividade muito boa para
INTERTEXTUALIDADE   atividade muito boa paraINTERTEXTUALIDADE   atividade muito boa para
INTERTEXTUALIDADE atividade muito boa para
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 

Matemática básica.

  • 1.  Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par. Exemplos: 1) 5040 é divisível por 2, pois termina em 0. 2) 237 não é divisível por 2, pois não é um número par.  Divisibilidade por 3 Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.  Divisibilidade por 4 Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4. Exemplo: 1800 é divisível por 4, pois termina em 00. 4116 é divisível por 4, pois 16 é divisível por 4. 1324 é divisível por 4, pois 24 é divisível por 4. 3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.  Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5. Exemplos: 1) 55 é divisível por 5, pois termina em 5. 2) 90 é divisível por 5, pois termina em 0. 3) 87 não é divisível por 5, pois não termina em 0 nem em 5.
  • 2.  Divisibilidade por 6 Um número é divisível por 6 quando é divisível por 2 e por 3. Exemplos: 1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6). 2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12). 3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3). 4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).  Divisibilidade por 8 Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 1) 7000 é divisível por 8, pois termina em 000. 2) 56104 é divisível por 8, pois 104 é divisível por 8. 3) 61112 é divisível por 8, pois 112 é divisível por 8. 4) 78164 não é divisível por 8, pois 164 não é divisível por 8.  Divisibilidade por 9 Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.  Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 1) 4150 é divisível por 10, pois termina em 0. 2) 2106 não é divisível por 10, pois não termina em 0.
  • 3.  Divisibilidade por 11 Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11. O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente. Exemplos: 1) 87549 Si (soma das ordens ímpares) = 9+5+8 = 22 Sp (soma das ordens pares) = 4+7 = 11 Si-Sp = 22-11 = 11 Como 11 é divisível por 11, então o número 87549 é divisível por 11. 2) 439087 Si (soma das ordens ímpares) = 7+0+3 = 10 Sp (soma das ordens pares) = 8+9+4 = 21 Si-Sp = 10-21 Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0. Como zero é divisível por 11, o número 439087 é divisível por 11.  Divisibilidade por 12 Um número é divisível por 12 quando é divisível por 3 e por 4. Exemplos: 1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20). 2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4). 3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).  Divisibilidade por 15 Um número é divisível por 15 quando é divisível por 3 e por 5. Exemplos: 1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5). 2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5). 3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).
  • 4.  Divisibilidade por 25 Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75. Exemplos: 200, 525, 850 e 975 são divisíveis por 25. DÍZIMA PERIÓDICA Em função da existência de um anteperíodo, neste caso a técnica é ligeiramente diferente. Veja o exemplo abaixo: 0,171353535... Veja abaixo mais alguns exemplos: 0,2333... 0,45222... 0,888313131... 0,32101230123... 17,16151515... Frações, operações com frações. Razão é uma forma de se realizar a comparação de duas grandezas, no entanto, para isto é necessário que as duas estejam na mesma unidade de medida. A razão entre dois números a e b é obtida dividindo-se a por b. Obviamente b deve ser diferente de zero. 32 : 16 é um exemplo de razão cujo valor é 2, isto é, a razão de 32 para 16 é igual a 2. Você só poderá obter a razão entre o comprimento de duas avenidas, se as duas medidas estiverem, por exemplo, em quilômetros, mas não poderá obtê-la caso uma das medidas esteja em metros e a outra em quilômetros ou qualquer outra unidade de medida que não seja o metro. Neste caso seria necessário que fosse eleita uma unidade de medida e se convertesse para ela, a grandeza que estivesse em desacordo. Na razão, o número a é chamado de antecedente e o b tem o nome de consequente.
  • 5. Porcentagem ou razão centesimal são as razões cujo termo consequente é igual a 100. Representamos a porcentagem através do símbolo "%". 10% é o mesmo que 0,10 (10 centésimos). Proporção nada mais é que a igualdade entre razões. Digamos que em determinada escola, na sala A temos três meninos para cada quatro meninas, ou seja, temos a razão de 3 para 4, cuja divisão de 3 por 4 é igual 0,75. Suponhamos que na sala B, tenhamos seis meninos para cada oito meninas, então a razão é 6 para 8, que também é igual 0,75. Neste caso a igualdade entre estas duas razões vem a ser o que chamamos de proporção, já que ambas as razões são iguais a 0,75. Regra de três é um método de resolução de problemas que envolvem grandezas proporcionais. "Um automóvel viajando a 80km faz determinado percurso em 2 horas. Se a viagem fosse realizada à velocidade de 120km, qual seria o tempo gasto?". Este é um exemplo de problema que pode ser resolvido via regra de três, no caso uma regra de três simples inversa. A solução dos problemas de regra de três tem como base a utilização da "propriedade fundamental das proporções" e a "quarta proporcional".
  • 6. PROPORCIONALIDADE E REGRA DE TRÊS Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos. Passos utilizados numa regra de três simples: 1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência. 2º) Identificar se as grandezas são diretamente ou inversamente proporcionais. 3º) Montar a proporção e resolver a equação. Exemplos: 1) Com uma área de absorção de raios solares de 1,2m2, uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m2, qual será a energia produzida? Solução: montando a tabela: Área (m2) Energia (Wh) 1,2 400 1,5 x Identificação do tipo de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que: Aumentando a área de absorção, a energia solar aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos:
  • 7. Logo, a energia produzida será de 500 watts por hora. 2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo percurso, se a velocidade utilizada fosse de 480km/h? Solução: montando a tabela: Velocidade (Km/h) Tempo (h) 400 3 480 x Identificação do tipo de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que: Aumentando a velocidade, o tempo do percurso diminui. Como as palavras são contrárias (aumentando - diminui), podemos afirmar que as grandezas são inversamente proporcionais. Assim sendo, colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos. 3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria se comprasse 5 camisetas do mesmo tipo e preço? Solução: montando a tabela: Camisetas Preço (R$) 3 120 5 x Observe que: Aumentando o número de camisetas, o preço aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Montando a proporção e resolvendo a equação temos:
  • 8. Logo, a Bianca pagaria R$200,00 pelas 5 camisetas. 4) Uma equipe de operários, trabalhando 8 horas por dia, realizou determinada obra em 20 dias. Se o número de horas de serviço for reduzido para 5 horas, em que prazo essa equipe fará o mesmo trabalho? Solução: montando a tabela: Horas por dia Prazo para término (dias) 8 20 5 x Observe que: Diminuindo o número de horas trabalhadas por dia, o prazo para término aumenta. Como as palavras são contrárias (diminuindo - aumenta), podemos afirmar que as grandezas são inversamente proporcionais. Montando a proporção e resolvendo a equação temos: GRANDEZAS INVERSAMENTE PROPORCIONAIS Se 5 operários levantam um muro em 10 dias, quantos operários serão necessários para levantar o mesmo muro em 2 dias? Regra de três composta A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais. Exemplos: 1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3? Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:
  • 9. HorasCaminhõesVolume 8 20 160 5 x 125 Identificação dos tipos de relação: Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). A seguir, devemos comparar cada grandeza com aquela onde está o x. Observe que: Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação éinversamente proporcional (seta para cima na 1ª coluna). Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas. Montando a proporção e resolvendo a equação temos: Logo, serão necessários 25 caminhões. 2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias? Solução: montando a tabela: Homens Carrinhos Dias 8 20 5 4 x 16 Observe que: Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional(não precisamos inverter a razão).
  • 10. Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões. Montando a proporção e resolvendo a equação temos: Logo, serão montados 32 carrinhos. 3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro? Inicialmente colocamos uma seta para baixo na coluna que contém o x. Depois colocam-se flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostra a figura abaixo: Montando a proporção e resolvendo a equação temos: Logo, para completar o muro serão necessários 12 dias. Exercícios complementares Agora chegou a sua vez de tentar. Pratique tentando fazer esses exercícios: 1) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas? Resposta: 6 horas. 2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão? Resposta: 35 dias. 3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará umaturma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m? Resposta: 15 dias.
  • 11. 4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h? Resposta: 10 horas por dia. 5) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantosmetros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos? Resposta: 2025 metros.