SlideShare uma empresa Scribd logo
1 de 7
Universidade Federal do Ceará
Centro de Tecnologia
Departamento de Engenharia Metalúrgica e de Materiais
Física Experimental
7° Relatório - Velocidade do Som
Professor: Philipe
Aluno: Caio Ítalo Alves
Matrícula: 345552
Turma: 14A
Fortaleza
2012.1
1. Objetivo
- Determinação da velocidade do som no ar como uma aplicação de ressonância.
2. Material
- Cano de PVC com êmbolo;
- Diapasão de freqüência conhecida;
- Martelo de borracha;
- Fita métrica.
3. Introdução
Sabe-se que todo corpo possui uma ou mais frequências naturais e quando uma fonte
emite a mesma frequência do corpo ocorrem alguns fenômenos físicos como:
ressonância, onda estacionária e entre outras.
O conceito de ressonância está definido como quando uma fonte emite uma
frequência igual à de um corpo, tende a fazer com que o corpo vibre com uma
intensidade maior, consequentemente, fazendo com que a amplitude de vibração do
corpo aumente.
Um corpo possui uma frequência natural desta forma:
Recebe de uma fonte qualquer uma onda com amplitude diferente, porém com
mesma frequência:
A amplitude resultante será a soma das outras duas:
Em alguns casos esse fenômeno pode ser perigoso. Já houve casos de pontes que, por
causa de ventos que possuíam uma frequência bem próxima da frequência da ponte,
ocorreu uma ressonância e a vibração da ponte foi tão grande que foi totalmente
destruída.
Ponte Tacoma Narrows, 7 de Novembro de 1940. Estados Unidos.
A partir desta breve explicação podem-se retirar algumas ideias: como a amplitude
aumenta, no caso do som, a ressonância reforça o som produzido; no caso de um
balanço, a amplitude aumenta cada vez mais.
Assim, podemos determinar a velocidade do som, utilizando um tubo que possa sofrer
variações em seu comprimento e com um instrumento chamado diapasão que possui
uma frequência conhecida. As ondas sonoras que entram e as que saem produzem
uma onda estacionária com pontos de interferência construtivas e destrutivas
chamados nós e anti-nós, respectivamente.
Colocando o diapasão na boca do cano e variando o comprimento do cano e assim
variando a coluna de ar que entra no cano, haverá um momento que a intensidade do
som será máxima. Terá as seguintes características:
Se prosseguirmos aumentando, veremos que há outro máximo e percebe-se que a
intensidade do som é mais reforçada quando no êmbolo encontra-se um nó.
L’
Como podemos ver L’ - L = 1/2 λ e sabe-se que v = λ.f temos que:
v = 2 (L’ - L).f.
Assim, pode-se ser determinada a velocidade do som.
4.Procedimento
4.1 Anote a freqüência do diapasão. f = 440 Hz.
4.2 Golpeie o diapasão com o martelo de borracha e coloque-o vibrando próximo da
boca do cano de PVC, como mostra a fig. 7.2.
4.3 Mantendo o diapasão vibrando na boca do cano, movimente o êmbolo de modo a
aumentar o comprimento da coluna de ar no cano. Fique atento à intensidade sonora.
Quando a intensidade atingir um máximo meça o comprimento h1. Repita o
procedimento de modo a obter três medidas independentes e tire uma média.
h1(cm) h1(cm) h1(cm) Média(cm)
17,0 18,5 19,5 18,3
4.4 Mantendo o diapasão vibrando na boca do cano aumente o comprimento da
coluna de ar no cano de modo a obter um 2º máximo sonoro. Quando a intensidade
atingir um máximo meça o comprimento h2. Repita o procedimento de modo a obter
três medidas independentes e tire uma média.
h2(cm) h2(cm) h2(cm) Média(cm)
57,0 56,0 59,0 57,3
4.5 Repita o procedimento anterior de modo a obter um 3º máximo. Faça três medidas
independentes de h3 e tire uma média.
h3(cm) h3(cm) h3(cm) Média(cm)
95,0 97,5 97,5 96,6
4.6 Anote a temperatura ambiente: ta = 25,4 °C.
4.7 Meça o comprimento máximo que a coluna de ar pode ter no cano utilizado: hmàx =
115,0 cm.
4.8 Meça o diâmetro interno do cano dint = 4,5 cm.
5. Questionário
5.1 Determine a velocidade do som:
V(m/s)
A partir de h1 (médio) sem considerar a “correção de extremidade” 322,1
A partir de h1 (médio) considerando a “correção de extremidade” 345,8
A partir dos valores médios de h1 e h2 343,2
A partir dos valores médios de h2 e h3 345,8
5.2 Calcule a velocidade teórica, utilizando a equação termodinâmica:
V = 331 + 2/3 T em m/s
onde T é a temperatura ambiente, em graus centesimais. (A velocidade do som no ar a
0° C é 331m/s. Para cada grau centígrado acima de 0°C, a velocidade do som aumenta
2/3 m/s).
V = 331 + (2.25,4)/3 = 347,9 m/s
5.3 Determine a velocidade do som pela média dos três últimos valores da questão 1.
337,0 m/s.
5.4 Calcule o erro percentual entre o valor da velocidade de propagação do som no ar
obtido experimentalmente e o calculando teórico.
EP =(347,9-337).100/347,9 = 3,1%
5.5 Quais as causas prováveis dos erros cometidos?
Erros no manuseio dos equipamentos, atrapalhando nas medições de comprimento, a
dificuldade de ouvir o som máximo, alterando os resultados e entre outras.
5.6 Será possível obterem-se novos máximos de intensidade sonora, além dos três
observados, para outros comprimentos da coluna de ar dentro do cano? Raciocine ou
experimente. Justifique.
Para a frequência de 440 Hz não haverá outro máximo sonora, pois pela equaçãov = 2
(L’ - L).f e considerando a média de h3 = L temos que:
347,9 = 2(L’ - 0,966).440 = 1,36 m.
Significa que o próximo máximo seria aos 1,36 m, porém o tubo sonoro só alcança os
1,15 m.
5.7 Quais seriam os valores de h1,h2,h3 se o diapasão tivesse a freqüência de 880 Hz?
(não considerar a correção de extremidade).
De v = λ.f temos:
347,9 = λ.880
λ = 0,395m. Como h1é igual a λ/4 temos que h1 = 0,099 m ou 9,9 cm.
Dev = 2(h2 - h1).f temos:
347,9/880 = 2h2 - 2.0,099
h2 = (0,395 + 0,198)/2 = 0,593/2 = 0,297 m ou 29,7 cm.
De v = 2(h3 - h2).f temos:
(0,395 + 2.0,297)/2 = h3 = 0,494 m ou 49,4 cm
6. Conclusão
Com o experimento foi possível determinar a velocidade do som. Utilizando os
conceitos de ressonância, onda estacionária e interferência. Foi possível concluir que o
som é influenciado pela temperatura e pelo meio de propagação. Quanto maior a
temperatura, maior a velocidade do som. Quanto mais próximas estiverem as
moléculas uma das outras, maior será a velocidade do som.
7. Bibliografia
http://www.infoescola.com/fisica/ressonancia/
http://www.sofisica.com.br/conteudos/Ondulatoria/Ondas/ressonancia.php
http://fisica.uc.pt/data/20032004/apontamentos/apnt_115_10.pdf

Mais conteúdo relacionado

Mais procurados

Relatório lei de hooke turma t5
Relatório lei de hooke   turma t5Relatório lei de hooke   turma t5
Relatório lei de hooke turma t5
Roberto Leao
 
Relatório densidade picnómetro
Relatório densidade picnómetroRelatório densidade picnómetro
Relatório densidade picnómetro
ct-esma
 
Leis fundamentais da dinâmica dos fluidos
Leis fundamentais da dinâmica dos fluidosLeis fundamentais da dinâmica dos fluidos
Leis fundamentais da dinâmica dos fluidos
Sérgio Rocha
 
Titulação ácido base
Titulação ácido baseTitulação ácido base
Titulação ácido base
Marco Bumba
 

Mais procurados (20)

Relatório de Experimento: Perdas de Carga Localizada.
Relatório de Experimento: Perdas de Carga Localizada.Relatório de Experimento: Perdas de Carga Localizada.
Relatório de Experimento: Perdas de Carga Localizada.
 
Capítulo 5 balanco com reaccao.pdf tina
Capítulo 5 balanco com reaccao.pdf tinaCapítulo 5 balanco com reaccao.pdf tina
Capítulo 5 balanco com reaccao.pdf tina
 
Escoamento Laminar e turbulento
Escoamento Laminar e turbulentoEscoamento Laminar e turbulento
Escoamento Laminar e turbulento
 
Física 2 relatório Circuito RC
Física 2  relatório Circuito RCFísica 2  relatório Circuito RC
Física 2 relatório Circuito RC
 
Relatório lei de hooke turma t5
Relatório lei de hooke   turma t5Relatório lei de hooke   turma t5
Relatório lei de hooke turma t5
 
Relatório densidade picnómetro
Relatório densidade picnómetroRelatório densidade picnómetro
Relatório densidade picnómetro
 
Relatório pêndulo simples turma t5
Relatório pêndulo simples   turma t5Relatório pêndulo simples   turma t5
Relatório pêndulo simples turma t5
 
Ondas Sonoras
Ondas SonorasOndas Sonoras
Ondas Sonoras
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Leis fundamentais da dinâmica dos fluidos
Leis fundamentais da dinâmica dos fluidosLeis fundamentais da dinâmica dos fluidos
Leis fundamentais da dinâmica dos fluidos
 
Fluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostosFluidos problemas resolvidos e propostos
Fluidos problemas resolvidos e propostos
 
Relatório p4 sedimentação
Relatório p4   sedimentaçãoRelatório p4   sedimentação
Relatório p4 sedimentação
 
Aula 4. balanço de massa com reação química
Aula 4. balanço de massa com reação químicaAula 4. balanço de massa com reação química
Aula 4. balanço de massa com reação química
 
Relatorio difração e interferência
Relatorio difração e interferênciaRelatorio difração e interferência
Relatorio difração e interferência
 
Relatório física experimental 1 associação de molas
Relatório física experimental 1 associação de molasRelatório física experimental 1 associação de molas
Relatório física experimental 1 associação de molas
 
Teorema de Nernst - terceira lei da termodinâmica
Teorema de Nernst - terceira lei da termodinâmicaTeorema de Nernst - terceira lei da termodinâmica
Teorema de Nernst - terceira lei da termodinâmica
 
Síntese de Aspirina
Síntese de AspirinaSíntese de Aspirina
Síntese de Aspirina
 
Unidade i física 12
Unidade i física 12Unidade i física 12
Unidade i física 12
 
formulas de fisica
formulas de fisicaformulas de fisica
formulas de fisica
 
Titulação ácido base
Titulação ácido baseTitulação ácido base
Titulação ácido base
 

Semelhante a relatório 7 velocidade do som -Universidade Federal do Ceará

Apostila do 2º aulão - Esquadrão do Conhecimento - 2013
Apostila do 2º aulão -  Esquadrão do Conhecimento - 2013Apostila do 2º aulão -  Esquadrão do Conhecimento - 2013
Apostila do 2º aulão - Esquadrão do Conhecimento - 2013
Esquadrão Do Conhecimento
 
Biofísica da Audição
Biofísica da AudiçãoBiofísica da Audição
Biofísica da Audição
Helena Amaral
 
Fisica 02 - Ondas Sonoras
Fisica 02 - Ondas SonorasFisica 02 - Ondas Sonoras
Fisica 02 - Ondas Sonoras
Walmor Godoi
 

Semelhante a relatório 7 velocidade do som -Universidade Federal do Ceará (20)

O mecanismo da audição Propriedades do Som I
O mecanismo da audição Propriedades do Som IO mecanismo da audição Propriedades do Som I
O mecanismo da audição Propriedades do Som I
 
Manual som
Manual somManual som
Manual som
 
APRESENTAÇÃO ONDAS II - Física EXPERIMENTAL 3
APRESENTAÇÃO ONDAS II - Física EXPERIMENTAL 3APRESENTAÇÃO ONDAS II - Física EXPERIMENTAL 3
APRESENTAÇÃO ONDAS II - Física EXPERIMENTAL 3
 
Espectros sonoros
Espectros sonorosEspectros sonoros
Espectros sonoros
 
9-ano-ondas.pdf fsldovoiodododododddodvvo
9-ano-ondas.pdf fsldovoiodododododddodvvo9-ano-ondas.pdf fsldovoiodododododddodvvo
9-ano-ondas.pdf fsldovoiodododododddodvvo
 
Apostila sonoplastia
Apostila sonoplastiaApostila sonoplastia
Apostila sonoplastia
 
9-ano-ondas.pptx
9-ano-ondas.pptx9-ano-ondas.pptx
9-ano-ondas.pptx
 
Apostila do 2º aulão - Esquadrão do Conhecimento - 2013
Apostila do 2º aulão -  Esquadrão do Conhecimento - 2013Apostila do 2º aulão -  Esquadrão do Conhecimento - 2013
Apostila do 2º aulão - Esquadrão do Conhecimento - 2013
 
Som e ondas
Som e ondasSom e ondas
Som e ondas
 
A Física da Música - Uma análise do fenômeno acústico
A Física da Música - Uma análise do fenômeno acústicoA Física da Música - Uma análise do fenômeno acústico
A Física da Música - Uma análise do fenômeno acústico
 
Ondas estacionárias - Tubos Sonoros
Ondas estacionárias - Tubos SonorosOndas estacionárias - Tubos Sonoros
Ondas estacionárias - Tubos Sonoros
 
Ondas resumo
Ondas   resumoOndas   resumo
Ondas resumo
 
Biofísica da Audição
Biofísica da AudiçãoBiofísica da Audição
Biofísica da Audição
 
Acústica
AcústicaAcústica
Acústica
 
Fisica 02 - Ondas Sonoras
Fisica 02 - Ondas SonorasFisica 02 - Ondas Sonoras
Fisica 02 - Ondas Sonoras
 
Física - Módulo 9 - Propriedades das Ondas Sonoras - Resolução de Exercícios ...
Física - Módulo 9 - Propriedades das Ondas Sonoras - Resolução de Exercícios ...Física - Módulo 9 - Propriedades das Ondas Sonoras - Resolução de Exercícios ...
Física - Módulo 9 - Propriedades das Ondas Sonoras - Resolução de Exercícios ...
 
A121 s fision_pt_02
A121 s fision_pt_02A121 s fision_pt_02
A121 s fision_pt_02
 
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docxAE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
 
Curso de Ruído Ambiental - Espirito Santo do Pinhal
Curso de Ruído Ambiental - Espirito Santo do PinhalCurso de Ruído Ambiental - Espirito Santo do Pinhal
Curso de Ruído Ambiental - Espirito Santo do Pinhal
 
acustica.ppt
acustica.pptacustica.ppt
acustica.ppt
 

Último

ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
azulassessoria9
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
azulassessoria9
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
lenapinto
 

Último (20)

Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 2 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
ATIVIDADE 3 - DESENVOLVIMENTO E APRENDIZAGEM MOTORA - 52_2024
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
Introdução às Funções 9º ano: Diagrama de flexas, Valor numérico de uma funçã...
 
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...apostila filosofia 1 ano  1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
apostila filosofia 1 ano 1s (1).pdf 1 ANO DO ENSINO MEDIO . CONCEITOSE CARAC...
 
Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)Sopa de letras | Dia da Europa 2024 (nível 1)
Sopa de letras | Dia da Europa 2024 (nível 1)
 
LENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretaçãoLENDA DA MANDIOCA - leitura e interpretação
LENDA DA MANDIOCA - leitura e interpretação
 
Novena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João EudesNovena de Pentecostes com textos de São João Eudes
Novena de Pentecostes com textos de São João Eudes
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Falando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introdFalando de Física Quântica apresentação introd
Falando de Física Quântica apresentação introd
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
O estudo do controle motor nada mais é do que o estudo da natureza do movimen...
 
AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022AULÃO de Língua Portuguesa para o Saepe 2022
AULÃO de Língua Portuguesa para o Saepe 2022
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
 

relatório 7 velocidade do som -Universidade Federal do Ceará

  • 1. Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Metalúrgica e de Materiais Física Experimental 7° Relatório - Velocidade do Som Professor: Philipe Aluno: Caio Ítalo Alves Matrícula: 345552 Turma: 14A Fortaleza 2012.1
  • 2. 1. Objetivo - Determinação da velocidade do som no ar como uma aplicação de ressonância. 2. Material - Cano de PVC com êmbolo; - Diapasão de freqüência conhecida; - Martelo de borracha; - Fita métrica. 3. Introdução Sabe-se que todo corpo possui uma ou mais frequências naturais e quando uma fonte emite a mesma frequência do corpo ocorrem alguns fenômenos físicos como: ressonância, onda estacionária e entre outras. O conceito de ressonância está definido como quando uma fonte emite uma frequência igual à de um corpo, tende a fazer com que o corpo vibre com uma intensidade maior, consequentemente, fazendo com que a amplitude de vibração do corpo aumente. Um corpo possui uma frequência natural desta forma: Recebe de uma fonte qualquer uma onda com amplitude diferente, porém com mesma frequência:
  • 3. A amplitude resultante será a soma das outras duas: Em alguns casos esse fenômeno pode ser perigoso. Já houve casos de pontes que, por causa de ventos que possuíam uma frequência bem próxima da frequência da ponte, ocorreu uma ressonância e a vibração da ponte foi tão grande que foi totalmente destruída. Ponte Tacoma Narrows, 7 de Novembro de 1940. Estados Unidos. A partir desta breve explicação podem-se retirar algumas ideias: como a amplitude aumenta, no caso do som, a ressonância reforça o som produzido; no caso de um balanço, a amplitude aumenta cada vez mais. Assim, podemos determinar a velocidade do som, utilizando um tubo que possa sofrer variações em seu comprimento e com um instrumento chamado diapasão que possui uma frequência conhecida. As ondas sonoras que entram e as que saem produzem uma onda estacionária com pontos de interferência construtivas e destrutivas chamados nós e anti-nós, respectivamente.
  • 4. Colocando o diapasão na boca do cano e variando o comprimento do cano e assim variando a coluna de ar que entra no cano, haverá um momento que a intensidade do som será máxima. Terá as seguintes características: Se prosseguirmos aumentando, veremos que há outro máximo e percebe-se que a intensidade do som é mais reforçada quando no êmbolo encontra-se um nó. L’ Como podemos ver L’ - L = 1/2 λ e sabe-se que v = λ.f temos que: v = 2 (L’ - L).f. Assim, pode-se ser determinada a velocidade do som. 4.Procedimento 4.1 Anote a freqüência do diapasão. f = 440 Hz. 4.2 Golpeie o diapasão com o martelo de borracha e coloque-o vibrando próximo da boca do cano de PVC, como mostra a fig. 7.2. 4.3 Mantendo o diapasão vibrando na boca do cano, movimente o êmbolo de modo a aumentar o comprimento da coluna de ar no cano. Fique atento à intensidade sonora. Quando a intensidade atingir um máximo meça o comprimento h1. Repita o procedimento de modo a obter três medidas independentes e tire uma média. h1(cm) h1(cm) h1(cm) Média(cm) 17,0 18,5 19,5 18,3
  • 5. 4.4 Mantendo o diapasão vibrando na boca do cano aumente o comprimento da coluna de ar no cano de modo a obter um 2º máximo sonoro. Quando a intensidade atingir um máximo meça o comprimento h2. Repita o procedimento de modo a obter três medidas independentes e tire uma média. h2(cm) h2(cm) h2(cm) Média(cm) 57,0 56,0 59,0 57,3 4.5 Repita o procedimento anterior de modo a obter um 3º máximo. Faça três medidas independentes de h3 e tire uma média. h3(cm) h3(cm) h3(cm) Média(cm) 95,0 97,5 97,5 96,6 4.6 Anote a temperatura ambiente: ta = 25,4 °C. 4.7 Meça o comprimento máximo que a coluna de ar pode ter no cano utilizado: hmàx = 115,0 cm. 4.8 Meça o diâmetro interno do cano dint = 4,5 cm. 5. Questionário 5.1 Determine a velocidade do som: V(m/s) A partir de h1 (médio) sem considerar a “correção de extremidade” 322,1 A partir de h1 (médio) considerando a “correção de extremidade” 345,8 A partir dos valores médios de h1 e h2 343,2 A partir dos valores médios de h2 e h3 345,8 5.2 Calcule a velocidade teórica, utilizando a equação termodinâmica: V = 331 + 2/3 T em m/s onde T é a temperatura ambiente, em graus centesimais. (A velocidade do som no ar a 0° C é 331m/s. Para cada grau centígrado acima de 0°C, a velocidade do som aumenta 2/3 m/s). V = 331 + (2.25,4)/3 = 347,9 m/s 5.3 Determine a velocidade do som pela média dos três últimos valores da questão 1. 337,0 m/s.
  • 6. 5.4 Calcule o erro percentual entre o valor da velocidade de propagação do som no ar obtido experimentalmente e o calculando teórico. EP =(347,9-337).100/347,9 = 3,1% 5.5 Quais as causas prováveis dos erros cometidos? Erros no manuseio dos equipamentos, atrapalhando nas medições de comprimento, a dificuldade de ouvir o som máximo, alterando os resultados e entre outras. 5.6 Será possível obterem-se novos máximos de intensidade sonora, além dos três observados, para outros comprimentos da coluna de ar dentro do cano? Raciocine ou experimente. Justifique. Para a frequência de 440 Hz não haverá outro máximo sonora, pois pela equaçãov = 2 (L’ - L).f e considerando a média de h3 = L temos que: 347,9 = 2(L’ - 0,966).440 = 1,36 m. Significa que o próximo máximo seria aos 1,36 m, porém o tubo sonoro só alcança os 1,15 m. 5.7 Quais seriam os valores de h1,h2,h3 se o diapasão tivesse a freqüência de 880 Hz? (não considerar a correção de extremidade). De v = λ.f temos: 347,9 = λ.880 λ = 0,395m. Como h1é igual a λ/4 temos que h1 = 0,099 m ou 9,9 cm. Dev = 2(h2 - h1).f temos: 347,9/880 = 2h2 - 2.0,099 h2 = (0,395 + 0,198)/2 = 0,593/2 = 0,297 m ou 29,7 cm. De v = 2(h3 - h2).f temos: (0,395 + 2.0,297)/2 = h3 = 0,494 m ou 49,4 cm
  • 7. 6. Conclusão Com o experimento foi possível determinar a velocidade do som. Utilizando os conceitos de ressonância, onda estacionária e interferência. Foi possível concluir que o som é influenciado pela temperatura e pelo meio de propagação. Quanto maior a temperatura, maior a velocidade do som. Quanto mais próximas estiverem as moléculas uma das outras, maior será a velocidade do som. 7. Bibliografia http://www.infoescola.com/fisica/ressonancia/ http://www.sofisica.com.br/conteudos/Ondulatoria/Ondas/ressonancia.php http://fisica.uc.pt/data/20032004/apontamentos/apnt_115_10.pdf