SlideShare uma empresa Scribd logo
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
A/D Converters
Prof. Jader A. De Lima
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
A/D and D/A Converters
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
High-speed ADC applications
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Performance of recently published ADCs: resolution versus speed.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
ADC architectures trade-off
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
ADC static transfer characteristic
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Ex: 10-bit resolution ADC
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
A/D Converter (Nyquist Rate)
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Differential Non-Linearity (DNL) error is the difference between an actual
step width and the ideal value of 1LSB (or ± 0.5LSB);
• No missing codes: DNL should be less than 1LSB (+/- 0.5LSB)
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Integral Non-Linearity (INL) is defined as the maximum deviation
of the ADC transfer function from the ideal transfer
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Texas Instruments ADC104S021
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
fin = 39.9Khz
SNR ~80dB ~13 bits (ADC104S021)
SNR_IDEAL = 6.02 (N) +1.76 (only quantization noise!!)
(best-case: assumption that quantization noise is uniformly distributed)
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
ENOB (Effective Number of Bits): A measure of overall accuracy under real-
world conditions
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
overall noise picked up by A/D
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
generation of spurious second and third-order products
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Assumption:
quantization noise is uniformly distributed Real SFDR measurement
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
THD < 0.001%@1KHz
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
DC:
i)integral and differential nonlinearity errors: irreducible distortion, as
ADC output is not continuous , but quantized. Even perfect ADC exhibit
some integral and differential nonlinearity.
ii)noise:
a: quantization error - inherent to data conversion process
b: generated within the converter itself.
iii)channel-to-channel offset: difference in the characteristics of analog
input channels
Error (Distortion) Sources in ADCs
AC:
i)THD: ratio of all harmonics generated to the original signal frequency.
ii)channel crosstalk: signal interference analog input channels.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• 2N
– 1 comparators
• typically consume more power than other
ADC architectures
• generally limited to 8-bits resolution
• relatively low resolution and expensive
• ideal for applications requiring very large
bandwidth
• exceed giga-sample per second (Gsps)
conversion rates
• each comparator represents 1 LSB
• output code can be determined in one
compare cycle.
FLASH ADC
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Typical CMOS comparator
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Latch Regeneration
• exponential regeneration due to positive feedback of M7 and M8
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
(1) large differential input voltage
(2) small differential input voltage
(3) ≅ zero differential input voltage
ΔVIN: the differential input voltage at the time of latching,
A = the gain of the preamp at the time of latching,
τ = regeneration time constant of the latch,
t = the time that has elapsed after the comparator output is latched
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Interpolation A/D Converters
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Uniformly spaced zero-crossings in flash ADCs
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Resistive Interpolation
• Intermediate zero-crossings are recovered by interpolation.
• DNL is improved by voltage interpolation.
• Requires overlapped linear regions b/t adjacent preamps.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Interpolation Nonlinearity
• Nonlinear TF of preamps cause errors in the interpolated zero-crossings.
• Interpolation nonlinearity directly translates into DNL and INL.
• Impedance mismatch due to interpolation also causes dynamic errors.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
4-bit interpolating flash A/D Converter
2n
latches
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Integrating A/D Converter
• input voltage (-VIN) is integrated for a fixed
number of clock periods, 2n
.
• It then"de-integrates" Vmax by changing to
+VREF at input and counts the number of clock
cycles k until it crosses zero.
• since peak amplitudes of rising and falling
ramps are equal ⇒
ref
inn
V
V
2k =
• Single, dual and multi-slope ADCs can achieve high resolutions of 16-bits or more are
relatively inexpensive and dissipate materially less power.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Successive-approximation A/D
• quick convertion time and moderate complexity
• binary-search algorithm
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• The method uses one clock period for the S&H and one clock period
for the determination of every bit
⇒ (n + 1) clock intervals for an n-bit conversion
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Pipeline (sub-ranging, half-flash) A/D Converter
• it reduces the number of bits to be converted into smaller groups, which are then run
through a lower resolution flash converter.
• 100Msps at 8 to 14-bit resolutions
• compared to a flash converter, this approach reduces the number of comparators and
logic complexity
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Component Accuracy
•Digital error correction does not correct gain or linearity errors in the
individual DAC and gain amplifiers.
•The front-end S&Hs and DAC actually need about, say,12-bit
accuracy, whereas the components in subsequent stages require less
accuracy (for example, 10-bit accuracy for Stage 2, 8-bit for Stage 3,
and so forth).
•This need for reduced accuracy is because the later stages’ error
terms are divided down by the preceding interstage gain(s).
•This fact is often exploited to save additional power by making the
pipelined stages progressively smaller
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
2-bit stage:
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• each stage resolves a few bits quickly and transfers the residue to the following
stage so that the residue can be resolved further in the subsequent stages
• on each stage a DAC converts the output of the coarse ADC back to analog and subtracts from the
input. The residue is then amplified.
⇒ latency time increases with number of stages K. Delay = (K+1) clock cycles
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
two-step algorithm: two clock periods, one for converting the MSBs and
the
other for the LSBs.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
http://www.maximintegrated.com/app-notes/index.mvp/id/1023
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Charge-Redistribution Successive Approximation ADC
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Ex: 5-bit charge-redistribution A/D Converter
1. Sample Mode: in this first step, all capacitors are charged to Vin
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
2. Hold Mode: The comparator is activated by opening S2, and then all
capacitors are switched to ground ⇒ Vx = -Vin
S1 is switched, so that VREF is applied to the capacitor array, during next
step (bit cycling)
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
3. Bit cycling: The largest capacitor (16C in the example) is switched to
VREF ⇒ Vx = -Vin + VREF/2. If VX is negative, then Vin > VREF/2 and
MSB capacitor (16C) remains connected to VREF, with b1 considred now
=1. Otherwise, the MSC capacitor is reconnected to ground and b1 is taken
as 0. This process is repeated N times, with a smaller capacitor being
switched each time, until the conversion is finished.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Exercise: Find intermediate node voltages at Vx during the operation
of the 5-bit ADC below, when Vin = 1.15V and VREF = 2V.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Σ−∆ A/D
Converters
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
SNR = 6.02N + 1.76dB
noise energy spread over a wider frequency range
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• each factor-of-4 oversampling increases the SNR by 6dB, and each 6dB increase
is equivalent to gaining one bit.
•A 1-bit ADC with 24x oversampling achieves a resolution of four bits
• to achieve 16-bit resolution , one must oversample by a factor of 415
, which is not
realizable ⇒ noise shaping technique
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
( )OSRNSNR log1076.102.6 ++= dB
4x OSR → 6 dB = 1bit
oversampling alone is not efficient enough to improve SNR in the
band of interest.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Noise Shaping:
• Integrator has a high-pass response to quantization noise
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
with noise shaping (first-order loop):
( )OSRNSNR 2log03.917.576.102.6 +−+= dB
2x OSR → 1.5bit resolution
( )OSRNSNR 10log3017.576.102.6 +−+= dB
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
to prevent aliasing
• anti-alias filtering at ADC input
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Aliasing means that frequency components in ADC input signal higher
than half the sampling rate of the ADC, appear in the sampled signal
at a frequency below half the sampling rate.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Delta modulation and demodulation
Predictor of x(t)
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Delta modulation is based on quantizing the signal amplitude change
from sample to sample rather its absolute value (rate of change)
• since the integrator output tries to predict the input x(t), the integrator
works as a predictor.
• prediction-error term x(t) – x(t) is quantized and used to make the
next prediction.
• prediction error (delta modulation output) is integrated in the receiver
just as it is in the feedback loop ⇒ receiver predicts the input signals
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Σ−∆ modulatio
n
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Bitstream: one-bit serial signal with a very high bit rate - its average level represents
the average input signal level.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• the term Sigma-Delta comes from putting the integrator (sigma) in front of the
delta modulator. Σ−∆ modulator produces a bitstream, whose average level
represents the input signal level.
• input to the integrator is the difference between the input signal x(t) and the
quantized output value y(n), converted back to the predicted analog signal, x(t).
• difference x(t) - x(t) at the integrator input is equal to the quantization error.
• error is summed up in the integrator and then quantized by the 1-bit ADC
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• in each clock cycle, output of the modulator is either plus or minus full scale,
according to the results of the 1-bit A/D conversion
• when the sinusoidal x(t) is close to a plus full scale, the output is positive
during most clock cycles. Conversely, when x(t) is close to minus full scale,
output is mostly negative. In both cases, the local average of the modulator
output tracks the analog input.
• When x(t) is near zero, the modulator output varies rapidly between a plus and
a
minus full scale with approximately zero mean.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• if the analog input is 0V (ac), the integrator will have no tendency to ramp
either positive or negative, except in response to the feedback voltage
⇒ FF output will continually oscillate between "high" and "low," as the
feedback system goes back and forth, trying to maintain the integrator
output at 0V.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• averaging 4 samples gives 2 bits of resolution
• averaging 8 samples gives 3 bits of resolution
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Comparator (discretizer)
• loop integrates the error between the sampled signal and the input signal
• signal is low-passed and noise is high-passed
⇒ the signal is left unchanged as long as its bandwidth doesn’t exceed the filter’s
cutoff frequency, but the Σ−Δ loop pushes the noise into higher frequencies
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Spectrum of 2nd-order modulator
Ref: Schreirer and Temes, Understanding Delta-Sigma Data Converters, IEEE Press
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• 2nd
-order Σ−∆ modulator
• Continuous-Time (CT) Integrators
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• 2nd
-order Σ−∆ modulator
• Discrete-Time (DT) Integrators
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
( )( )
12
22
1212
2
3
+






−+=
L
x
OVR
BLASNR
π
π
• L : loop order
• B: no. of bits in discriminator
• Ax = 2B
- 1
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Ref: Kester, M. - Analog Devices, MT - 022 Tutorial
http://www.analog.com/static/imported-files/tutorials/MT-022.pdf
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
OL (overload level) : defined as the maximum input signal amplitude for
which A/D still operates correctly
Ref: Marques et al. “Optimal Parameters for Modulator Topologies”, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL
SIGNAL PROCESSING, VOL. 45, NO. 9, SEPTEMBER 1998
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
2nd
-order 1-bit SD; OSR = 1024MHz/(2 x 3.4Khz) = 150.5
Ref: Daubert et al. “A Transistor-Only Current-Mode C A Modulator”, IEEE JOURNAL
OF SOLID-STATE CIRCUITS, VOL. 27. NO. 5. MAY 1992
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Ref: Matlab + Simulink analysis, J A De Lima
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• decimation is used in a Σ−∆ ADC to
i)downsampling (eliminate redundant data at the output); re-sample
the signal at Nyquist rate.
ii)attenuate noise above baseband
• Nyquist theorem: sample rate only needs to be 2x the input-signal
bandwidth to reliably reconstruct the original signal
• However, the input signal was grossly oversampled to reduce the
quantization noise
⇒ there is redundant data that can be eliminated without introducing
distortion to the conversion result.
Decimation
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Decimation reduces the original sampling rate to a lower
rate, the opposite of interpolation.
Essentially, decimation is both an averaging filter function
and a rate reduction function performed simultaneously.
⇒ output sampling rate by ignoring all but every Mth sample
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• decimation comb filter
• programmable decimation ratio
• the digital filter is generally designed so that zeros occur at the
mains
frequencies of 50 Hz/60 Hz.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Σ∆ - ADC can also be viewed as a synchronous voltage-to-
frequency converter followed by a counter.
“If the number of "1"s in the output data stream is counted over
a sufficient number of samples, the counter output will represent
the digital value of the input”
•This method of averaging only works for dc or very slowly
changing input signals.
•2N
clock cycles must be counted in order to achieve N-bit
effective resolution, thereby severely limiting the effective
sampling rate.
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
SIGMA – DELTA
BLOCK
DECIMATION
FILTER
Analog input 1100000110000011 Avg.= (6/16 )= 0.375
0110
16 - one bit stream
One 4 - bit representation
16:1 Decimation
Over sampled
at 16 times
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
speed is exchanged for resolution
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
0 100 200 300 400 500 600 700 800 900 1000
-1
0
1
Input Decimation from fs' = 30720 Hz to fs = 1920 Hz (16:1)
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
SigmaDeltaOutput
0 10 20 30 40 50 60
-1
0
1
Decimatedoutput
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
http://www.triadsemi.com/2007/01/25/how-to-design-a-16-bit-sigma-delta-analog-
to-digital-converter/
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
• Both output transistors operate in push-pull mode
• bitstream is amplified to the high level of the power supply and is
available at the output with low impedance
Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
Σ∆ Merits
High resolution at Low cost
Very efficient noise handling
Less stringent Anti-aliasing filter requirements
Σ∆ Demerits
Several clock cycles settling time or latency due to delays in
digital filtering stage
Longer conversion time, typically 100000 samples/s for 16-bit
resolution and 1000 samples/s for 24-bit resolution
Limited to low frequency applications as over sampling becomes
tough for high frequency applications

Mais conteúdo relacionado

Mais procurados

05 voltage & current references
05 voltage & current references05 voltage & current references
05 voltage & current references
Universidade Federal de Santa Catarina
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
Universidade Federal de Santa Catarina
 
Espelhos de corrente
Espelhos de correnteEspelhos de corrente
Circuitos básicos a diodos
Circuitos básicos a diodosCircuitos básicos a diodos
Circuitos básicos a diodos
Universidade Federal de Santa Catarina
 
Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)
Universidade Federal de Santa Catarina
 
Diodos especiais
Diodos especiaisDiodos especiais
Diodos especiais
Alan de Souza
 
Díodos
DíodosDíodos
Díodos
aless2056
 
Amplificador com o irs2092
Amplificador com o irs2092Amplificador com o irs2092
Amplificador com o irs2092
Luiz Clemente Pimenta
 
Cursofontes
CursofontesCursofontes
CASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MTCASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MT
Alexandre Grossi
 
Circuitos retificadores
Circuitos retificadoresCircuitos retificadores
Circuitos retificadores
Laiz Reis
 
Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
 Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
Alexandre Grossi
 
Aula3 retificadores
Aula3 retificadoresAula3 retificadores
Aula3 retificadores
betrovinc
 
Elétrica amplificador operacional - amp-op
Elétrica   amplificador operacional - amp-opElétrica   amplificador operacional - amp-op
Elétrica amplificador operacional - amp-op
TAG EQUIPAMENTOS & SOLUÇÕES LTDA
 
210615 art cybe simulação de impedancias
210615 art cybe simulação de impedancias210615 art cybe simulação de impedancias
210615 art cybe simulação de impedancias
Arthur Luiz
 
Sistema de aquisição de um sinal de ECG
Sistema de aquisição de um sinal de ECGSistema de aquisição de um sinal de ECG
Sistema de aquisição de um sinal de ECG
pjclima
 
Cap2 retificadores a diodo
Cap2 retificadores a diodoCap2 retificadores a diodo
Cap2 retificadores a diodo
diogenes werner
 
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
evandrogaio
 
Prova e gabarito comentado de engenharia elétrica
Prova e gabarito comentado de engenharia elétricaProva e gabarito comentado de engenharia elétrica
Prova e gabarito comentado de engenharia elétrica
Michele Gomes
 

Mais procurados (19)

05 voltage & current references
05 voltage & current references05 voltage & current references
05 voltage & current references
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
 
Espelhos de corrente
Espelhos de correnteEspelhos de corrente
Espelhos de corrente
 
Circuitos básicos a diodos
Circuitos básicos a diodosCircuitos básicos a diodos
Circuitos básicos a diodos
 
Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)Circuitos básicos a transistor bipolar (bjt)
Circuitos básicos a transistor bipolar (bjt)
 
Diodos especiais
Diodos especiaisDiodos especiais
Diodos especiais
 
Díodos
DíodosDíodos
Díodos
 
Amplificador com o irs2092
Amplificador com o irs2092Amplificador com o irs2092
Amplificador com o irs2092
 
Cursofontes
CursofontesCursofontes
Cursofontes
 
CASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MTCASE - Diagnóstico de Falhas em Cabos MT
CASE - Diagnóstico de Falhas em Cabos MT
 
Circuitos retificadores
Circuitos retificadoresCircuitos retificadores
Circuitos retificadores
 
Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
 Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
Técnicas de Inspeção e Procedimentos para Testes - Cabos Elétricos
 
Aula3 retificadores
Aula3 retificadoresAula3 retificadores
Aula3 retificadores
 
Elétrica amplificador operacional - amp-op
Elétrica   amplificador operacional - amp-opElétrica   amplificador operacional - amp-op
Elétrica amplificador operacional - amp-op
 
210615 art cybe simulação de impedancias
210615 art cybe simulação de impedancias210615 art cybe simulação de impedancias
210615 art cybe simulação de impedancias
 
Sistema de aquisição de um sinal de ECG
Sistema de aquisição de um sinal de ECGSistema de aquisição de um sinal de ECG
Sistema de aquisição de um sinal de ECG
 
Cap2 retificadores a diodo
Cap2 retificadores a diodoCap2 retificadores a diodo
Cap2 retificadores a diodo
 
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
Quinta parte do curso de eletrônica apresentado no Hackerspace Uberlândia - M...
 
Prova e gabarito comentado de engenharia elétrica
Prova e gabarito comentado de engenharia elétricaProva e gabarito comentado de engenharia elétrica
Prova e gabarito comentado de engenharia elétrica
 

Semelhante a Design of Mixed-Mode ICs - Module 3

Mixed mode ch4_v1
Mixed mode ch4_v1Mixed mode ch4_v1
Tutorial: Fly-Away, Drive-Away e DSNG
Tutorial: Fly-Away, Drive-Away e DSNGTutorial: Fly-Away, Drive-Away e DSNG
Tutorial: Fly-Away, Drive-Away e DSNG
Newtec
 
Medição Usando Cloud Computing
Medição Usando Cloud ComputingMedição Usando Cloud Computing
Medição Usando Cloud Computing
Willians de Almeida Vieira
 
Conversores analógico digital
Conversores analógico digitalConversores analógico digital
Conversores analógico digital
diogoflavia
 
Conversores analógico digital
Conversores analógico digitalConversores analógico digital
Conversores analógico digital
diogoflavia
 
Alma 2003
Alma 2003Alma 2003
Alma 2003
Muniz Rodrigues
 
Religadores ou disjuntores
Religadores ou disjuntoresReligadores ou disjuntores
Religadores ou disjuntores
Edmilson José de Castro
 
C43 hardware
C43   hardwareC43   hardware
C43 hardware
Oswaldo Linhares
 
Aula 4 conversor ad e pwm
Aula 4   conversor ad e pwmAula 4   conversor ad e pwm
Aula 4 conversor ad e pwm
Francisco Fambrini
 
Conversores D/A
Conversores D/AConversores D/A
Conversores D/A
Juliane Silva
 
Cap2 pos ufpa
Cap2 pos ufpaCap2 pos ufpa
Cap2 pos ufpa
paulocesarfilho
 
Aula 11 condicionadores e transmissores
Aula 11   condicionadores e transmissoresAula 11   condicionadores e transmissores
Aula 11 condicionadores e transmissores
Joao Pedro Turibio
 
Amplificadores de instrumentacao veronica e andre
Amplificadores de instrumentacao   veronica e andreAmplificadores de instrumentacao   veronica e andre
Amplificadores de instrumentacao veronica e andre
Fernando Ortolano
 
Slides 9 erm
Slides 9 ermSlides 9 erm
Slides 9 erm
Francisco Fambrini
 
3 instrum osc-apres_3-2
3 instrum osc-apres_3-23 instrum osc-apres_3-2
3 instrum osc-apres_3-2
Adir Figueiredo
 
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
Haroldo Amaral
 
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
wagner1861
 
09 adc (1)
09 adc (1)09 adc (1)
09 adc (1)
YouTube TV
 
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdf
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdfAula_26-Projeto de Transformadores de Baixa frequencia-.pdf
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdf
JrBennitoBennito
 
Projeto – Transmissão de voz digital
Projeto – Transmissão de voz digitalProjeto – Transmissão de voz digital
Projeto – Transmissão de voz digital
Ciro Marcus
 

Semelhante a Design of Mixed-Mode ICs - Module 3 (20)

Mixed mode ch4_v1
Mixed mode ch4_v1Mixed mode ch4_v1
Mixed mode ch4_v1
 
Tutorial: Fly-Away, Drive-Away e DSNG
Tutorial: Fly-Away, Drive-Away e DSNGTutorial: Fly-Away, Drive-Away e DSNG
Tutorial: Fly-Away, Drive-Away e DSNG
 
Medição Usando Cloud Computing
Medição Usando Cloud ComputingMedição Usando Cloud Computing
Medição Usando Cloud Computing
 
Conversores analógico digital
Conversores analógico digitalConversores analógico digital
Conversores analógico digital
 
Conversores analógico digital
Conversores analógico digitalConversores analógico digital
Conversores analógico digital
 
Alma 2003
Alma 2003Alma 2003
Alma 2003
 
Religadores ou disjuntores
Religadores ou disjuntoresReligadores ou disjuntores
Religadores ou disjuntores
 
C43 hardware
C43   hardwareC43   hardware
C43 hardware
 
Aula 4 conversor ad e pwm
Aula 4   conversor ad e pwmAula 4   conversor ad e pwm
Aula 4 conversor ad e pwm
 
Conversores D/A
Conversores D/AConversores D/A
Conversores D/A
 
Cap2 pos ufpa
Cap2 pos ufpaCap2 pos ufpa
Cap2 pos ufpa
 
Aula 11 condicionadores e transmissores
Aula 11   condicionadores e transmissoresAula 11   condicionadores e transmissores
Aula 11 condicionadores e transmissores
 
Amplificadores de instrumentacao veronica e andre
Amplificadores de instrumentacao   veronica e andreAmplificadores de instrumentacao   veronica e andre
Amplificadores de instrumentacao veronica e andre
 
Slides 9 erm
Slides 9 ermSlides 9 erm
Slides 9 erm
 
3 instrum osc-apres_3-2
3 instrum osc-apres_3-23 instrum osc-apres_3-2
3 instrum osc-apres_3-2
 
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
Medição de Energia Elétrica - Jornada de Engenharia Elétrica 2015
 
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
Confiabilidade do canal em codificação turbo dscdma sujeito a desvanecimento ...
 
09 adc (1)
09 adc (1)09 adc (1)
09 adc (1)
 
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdf
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdfAula_26-Projeto de Transformadores de Baixa frequencia-.pdf
Aula_26-Projeto de Transformadores de Baixa frequencia-.pdf
 
Projeto – Transmissão de voz digital
Projeto – Transmissão de voz digitalProjeto – Transmissão de voz digital
Projeto – Transmissão de voz digital
 

Design of Mixed-Mode ICs - Module 3

  • 1. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 A/D Converters Prof. Jader A. De Lima
  • 2. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 A/D and D/A Converters
  • 3. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 High-speed ADC applications
  • 4. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Performance of recently published ADCs: resolution versus speed.
  • 5. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 ADC architectures trade-off
  • 6. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 7. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 8. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 ADC static transfer characteristic
  • 9. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Ex: 10-bit resolution ADC
  • 10. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 A/D Converter (Nyquist Rate)
  • 11. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 12. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 13. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 14. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Differential Non-Linearity (DNL) error is the difference between an actual step width and the ideal value of 1LSB (or ± 0.5LSB); • No missing codes: DNL should be less than 1LSB (+/- 0.5LSB)
  • 15. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 16. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Integral Non-Linearity (INL) is defined as the maximum deviation of the ADC transfer function from the ideal transfer
  • 17. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Texas Instruments ADC104S021
  • 18. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 19. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 20. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 21. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 22. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 fin = 39.9Khz SNR ~80dB ~13 bits (ADC104S021) SNR_IDEAL = 6.02 (N) +1.76 (only quantization noise!!) (best-case: assumption that quantization noise is uniformly distributed)
  • 23. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 ENOB (Effective Number of Bits): A measure of overall accuracy under real- world conditions
  • 24. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 overall noise picked up by A/D
  • 25. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 generation of spurious second and third-order products
  • 26. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Assumption: quantization noise is uniformly distributed Real SFDR measurement
  • 27. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 28. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 THD < 0.001%@1KHz
  • 29. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 DC: i)integral and differential nonlinearity errors: irreducible distortion, as ADC output is not continuous , but quantized. Even perfect ADC exhibit some integral and differential nonlinearity. ii)noise: a: quantization error - inherent to data conversion process b: generated within the converter itself. iii)channel-to-channel offset: difference in the characteristics of analog input channels Error (Distortion) Sources in ADCs AC: i)THD: ratio of all harmonics generated to the original signal frequency. ii)channel crosstalk: signal interference analog input channels.
  • 30. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 31. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 32. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • 2N – 1 comparators • typically consume more power than other ADC architectures • generally limited to 8-bits resolution • relatively low resolution and expensive • ideal for applications requiring very large bandwidth • exceed giga-sample per second (Gsps) conversion rates • each comparator represents 1 LSB • output code can be determined in one compare cycle. FLASH ADC
  • 33. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 34. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 35. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 36. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 37. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Typical CMOS comparator
  • 38. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Latch Regeneration • exponential regeneration due to positive feedback of M7 and M8
  • 39. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 (1) large differential input voltage (2) small differential input voltage (3) ≅ zero differential input voltage ΔVIN: the differential input voltage at the time of latching, A = the gain of the preamp at the time of latching, τ = regeneration time constant of the latch, t = the time that has elapsed after the comparator output is latched
  • 40. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 41. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Interpolation A/D Converters
  • 42. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Uniformly spaced zero-crossings in flash ADCs
  • 43. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Resistive Interpolation • Intermediate zero-crossings are recovered by interpolation. • DNL is improved by voltage interpolation. • Requires overlapped linear regions b/t adjacent preamps.
  • 44. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Interpolation Nonlinearity • Nonlinear TF of preamps cause errors in the interpolated zero-crossings. • Interpolation nonlinearity directly translates into DNL and INL. • Impedance mismatch due to interpolation also causes dynamic errors.
  • 45. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 46. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 47. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 4-bit interpolating flash A/D Converter 2n latches
  • 48. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Integrating A/D Converter • input voltage (-VIN) is integrated for a fixed number of clock periods, 2n . • It then"de-integrates" Vmax by changing to +VREF at input and counts the number of clock cycles k until it crosses zero. • since peak amplitudes of rising and falling ramps are equal ⇒ ref inn V V 2k = • Single, dual and multi-slope ADCs can achieve high resolutions of 16-bits or more are relatively inexpensive and dissipate materially less power.
  • 49. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 50. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Successive-approximation A/D • quick convertion time and moderate complexity • binary-search algorithm
  • 51. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • The method uses one clock period for the S&H and one clock period for the determination of every bit ⇒ (n + 1) clock intervals for an n-bit conversion
  • 52. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Pipeline (sub-ranging, half-flash) A/D Converter • it reduces the number of bits to be converted into smaller groups, which are then run through a lower resolution flash converter. • 100Msps at 8 to 14-bit resolutions • compared to a flash converter, this approach reduces the number of comparators and logic complexity
  • 53. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Component Accuracy •Digital error correction does not correct gain or linearity errors in the individual DAC and gain amplifiers. •The front-end S&Hs and DAC actually need about, say,12-bit accuracy, whereas the components in subsequent stages require less accuracy (for example, 10-bit accuracy for Stage 2, 8-bit for Stage 3, and so forth). •This need for reduced accuracy is because the later stages’ error terms are divided down by the preceding interstage gain(s). •This fact is often exploited to save additional power by making the pipelined stages progressively smaller
  • 54. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 2-bit stage:
  • 55. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • each stage resolves a few bits quickly and transfers the residue to the following stage so that the residue can be resolved further in the subsequent stages • on each stage a DAC converts the output of the coarse ADC back to analog and subtracts from the input. The residue is then amplified. ⇒ latency time increases with number of stages K. Delay = (K+1) clock cycles
  • 56. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 two-step algorithm: two clock periods, one for converting the MSBs and the other for the LSBs.
  • 57. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 58. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 http://www.maximintegrated.com/app-notes/index.mvp/id/1023
  • 59. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Charge-Redistribution Successive Approximation ADC
  • 60. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Ex: 5-bit charge-redistribution A/D Converter 1. Sample Mode: in this first step, all capacitors are charged to Vin
  • 61. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 2. Hold Mode: The comparator is activated by opening S2, and then all capacitors are switched to ground ⇒ Vx = -Vin S1 is switched, so that VREF is applied to the capacitor array, during next step (bit cycling)
  • 62. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 3. Bit cycling: The largest capacitor (16C in the example) is switched to VREF ⇒ Vx = -Vin + VREF/2. If VX is negative, then Vin > VREF/2 and MSB capacitor (16C) remains connected to VREF, with b1 considred now =1. Otherwise, the MSC capacitor is reconnected to ground and b1 is taken as 0. This process is repeated N times, with a smaller capacitor being switched each time, until the conversion is finished.
  • 63. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 64. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Exercise: Find intermediate node voltages at Vx during the operation of the 5-bit ADC below, when Vin = 1.15V and VREF = 2V.
  • 65. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Σ−∆ A/D Converters
  • 66. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 SNR = 6.02N + 1.76dB noise energy spread over a wider frequency range
  • 67. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 68. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 69. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • each factor-of-4 oversampling increases the SNR by 6dB, and each 6dB increase is equivalent to gaining one bit. •A 1-bit ADC with 24x oversampling achieves a resolution of four bits • to achieve 16-bit resolution , one must oversample by a factor of 415 , which is not realizable ⇒ noise shaping technique
  • 70. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 ( )OSRNSNR log1076.102.6 ++= dB 4x OSR → 6 dB = 1bit oversampling alone is not efficient enough to improve SNR in the band of interest.
  • 71. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Noise Shaping: • Integrator has a high-pass response to quantization noise
  • 72. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 73. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 with noise shaping (first-order loop): ( )OSRNSNR 2log03.917.576.102.6 +−+= dB 2x OSR → 1.5bit resolution ( )OSRNSNR 10log3017.576.102.6 +−+= dB
  • 74. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 to prevent aliasing • anti-alias filtering at ADC input
  • 75. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Aliasing means that frequency components in ADC input signal higher than half the sampling rate of the ADC, appear in the sampled signal at a frequency below half the sampling rate.
  • 76. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Delta modulation and demodulation Predictor of x(t)
  • 77. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Delta modulation is based on quantizing the signal amplitude change from sample to sample rather its absolute value (rate of change) • since the integrator output tries to predict the input x(t), the integrator works as a predictor. • prediction-error term x(t) – x(t) is quantized and used to make the next prediction. • prediction error (delta modulation output) is integrated in the receiver just as it is in the feedback loop ⇒ receiver predicts the input signals
  • 78. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 79. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Σ−∆ modulatio n
  • 80. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 81. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Bitstream: one-bit serial signal with a very high bit rate - its average level represents the average input signal level.
  • 82. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 83. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • the term Sigma-Delta comes from putting the integrator (sigma) in front of the delta modulator. Σ−∆ modulator produces a bitstream, whose average level represents the input signal level. • input to the integrator is the difference between the input signal x(t) and the quantized output value y(n), converted back to the predicted analog signal, x(t). • difference x(t) - x(t) at the integrator input is equal to the quantization error. • error is summed up in the integrator and then quantized by the 1-bit ADC
  • 84. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 85. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 86. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 87. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • in each clock cycle, output of the modulator is either plus or minus full scale, according to the results of the 1-bit A/D conversion • when the sinusoidal x(t) is close to a plus full scale, the output is positive during most clock cycles. Conversely, when x(t) is close to minus full scale, output is mostly negative. In both cases, the local average of the modulator output tracks the analog input. • When x(t) is near zero, the modulator output varies rapidly between a plus and a minus full scale with approximately zero mean.
  • 88. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • if the analog input is 0V (ac), the integrator will have no tendency to ramp either positive or negative, except in response to the feedback voltage ⇒ FF output will continually oscillate between "high" and "low," as the feedback system goes back and forth, trying to maintain the integrator output at 0V.
  • 89. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • averaging 4 samples gives 2 bits of resolution • averaging 8 samples gives 3 bits of resolution
  • 90. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 91. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 92. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Comparator (discretizer) • loop integrates the error between the sampled signal and the input signal • signal is low-passed and noise is high-passed ⇒ the signal is left unchanged as long as its bandwidth doesn’t exceed the filter’s cutoff frequency, but the Σ−Δ loop pushes the noise into higher frequencies
  • 93. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 94. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 95. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 96. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 97. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Spectrum of 2nd-order modulator Ref: Schreirer and Temes, Understanding Delta-Sigma Data Converters, IEEE Press
  • 98. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • 2nd -order Σ−∆ modulator • Continuous-Time (CT) Integrators
  • 99. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • 2nd -order Σ−∆ modulator • Discrete-Time (DT) Integrators
  • 100. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 101. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 ( )( ) 12 22 1212 2 3 +       −+= L x OVR BLASNR π π • L : loop order • B: no. of bits in discriminator • Ax = 2B - 1
  • 102. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 103. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 104. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Ref: Kester, M. - Analog Devices, MT - 022 Tutorial http://www.analog.com/static/imported-files/tutorials/MT-022.pdf
  • 105. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 OL (overload level) : defined as the maximum input signal amplitude for which A/D still operates correctly Ref: Marques et al. “Optimal Parameters for Modulator Topologies”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 45, NO. 9, SEPTEMBER 1998
  • 106. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 2nd -order 1-bit SD; OSR = 1024MHz/(2 x 3.4Khz) = 150.5 Ref: Daubert et al. “A Transistor-Only Current-Mode C A Modulator”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27. NO. 5. MAY 1992
  • 107. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Ref: Matlab + Simulink analysis, J A De Lima
  • 108. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • decimation is used in a Σ−∆ ADC to i)downsampling (eliminate redundant data at the output); re-sample the signal at Nyquist rate. ii)attenuate noise above baseband • Nyquist theorem: sample rate only needs to be 2x the input-signal bandwidth to reliably reconstruct the original signal • However, the input signal was grossly oversampled to reduce the quantization noise ⇒ there is redundant data that can be eliminated without introducing distortion to the conversion result. Decimation
  • 109. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Decimation reduces the original sampling rate to a lower rate, the opposite of interpolation. Essentially, decimation is both an averaging filter function and a rate reduction function performed simultaneously. ⇒ output sampling rate by ignoring all but every Mth sample
  • 110. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 111. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 112. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 113. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • decimation comb filter • programmable decimation ratio • the digital filter is generally designed so that zeros occur at the mains frequencies of 50 Hz/60 Hz.
  • 114. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 115. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Σ∆ - ADC can also be viewed as a synchronous voltage-to- frequency converter followed by a counter. “If the number of "1"s in the output data stream is counted over a sufficient number of samples, the counter output will represent the digital value of the input” •This method of averaging only works for dc or very slowly changing input signals. •2N clock cycles must be counted in order to achieve N-bit effective resolution, thereby severely limiting the effective sampling rate.
  • 116. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 117. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 118. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 SIGMA – DELTA BLOCK DECIMATION FILTER Analog input 1100000110000011 Avg.= (6/16 )= 0.375 0110 16 - one bit stream One 4 - bit representation 16:1 Decimation Over sampled at 16 times
  • 119. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 speed is exchanged for resolution
  • 120. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 0 100 200 300 400 500 600 700 800 900 1000 -1 0 1 Input Decimation from fs' = 30720 Hz to fs = 1920 Hz (16:1) 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 SigmaDeltaOutput 0 10 20 30 40 50 60 -1 0 1 Decimatedoutput
  • 121. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 http://www.triadsemi.com/2007/01/25/how-to-design-a-16-bit-sigma-delta-analog- to-digital-converter/
  • 122. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 123. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 124. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013
  • 125. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 • Both output transistors operate in push-pull mode • bitstream is amplified to the high level of the power supply and is available at the output with low impedance
  • 126. Introdução ao Projeto de CI´s de Sinais MistosJader A. De Lima UFSC, 2013 Σ∆ Merits High resolution at Low cost Very efficient noise handling Less stringent Anti-aliasing filter requirements Σ∆ Demerits Several clock cycles settling time or latency due to delays in digital filtering stage Longer conversion time, typically 100000 samples/s for 16-bit resolution and 1000 samples/s for 24-bit resolution Limited to low frequency applications as over sampling becomes tough for high frequency applications