SlideShare uma empresa Scribd logo
1 de 36
Baixar para ler offline
Introdução à Estatística 1
Júlio Cesar de C. Balieiro 1
Introdução à Estatística
2
É a ciência que se preocupa com:
(i) Organização;
(ii) Descrição;
(iii) Análises;
(iv) Interpretações.
Estatística Descritiva
Estatística Indutiva ou
Estatística Inferencial
Estatística
Introdução à Estatística 2
3
População
Alguns Conceitos
• É o conjunto de elementos com pelo menos uma
característica em comum.
• Esta característica comum deve delimitar claramente
quais os elementos que pertencem à população e
quais os elementos que não pertencem.
Amostra
• É um subconjunto de uma população, onde todos os
seus elementos serão examinados para efeito da
realização do estudo estatístico desejado.
4
Alguns Conceitos
OBJETIVO DA ESTATÍSTICA: “tirar conclusões
sobre populações com base nos resultados
observados em amostras extraídas dessas
populações”.
Variável
• É a característica dos elementos da amostra que nos
interessa averiguar estatisticamente.
• Ex.: variável Idade - se houver “n” elementos
fisicamente considerados no estudo, esses elementos
fornecerão “n” valores da variável idade, os quais serão
tratados convenientemente pela Estatística Descritiva
e/ou pela Estatística Inferencial.
Introdução à Estatística 3
5
Tipos de Variáveis
As variáveis de interesse podem ser classificadas em:
(i) Qualitativas => quando resultar de uma classificação
por tipos ou atributos.
(ii) Quantitativas => quando seus valores forem
expressos em números. Podem ser
subdivididas:
(a) Discretas;
(b) Contínuas.
6
Tipos de Variáveis
Exemplos de Discretas:
População: Ovinos da raça Santa Inês da ASCCO;
Variável: número de cordeiros ao parto (1, 2 ou 3).
População: Bovinos Nelore da Agro-pecuária CFM Ltda.
Variável: Escores de Musculosidade (1, 2, 3, 4 ou 5).
População: Bovinos Nelore da Agro-pecuária CFM Ltda.
Variável: Prenhez aos 14 meses de idade (0 ou 1).
(a) Variáveis Quantitativas Discretas
Assumem apenas valores pertencentes a um conjunto
enumerável. São obtidos mediante alguma forma de
contagem.
Introdução à Estatística 4
7
Tipos de Variáveis
(b) Variáveis Quantitativas Contínuas
São aquelas, teoricamente, que podem assumir qualquer
valor em um certo intervalo de variação. Resultam, em
geral, de uma medição, sendo freqüentemente expressos
em alguma unidade.
Exemplos de Contínuas:
População: Bovinos Nelore da Agro-pecuária CFM Ltda.
Variável: PN (28,0; 28,5; 30,2; 32,58)
População: Bovinos Nelore da Agro-pecuária CFM Ltda.
Variável: Peso aos 18 meses, em kg (250,0 até 415,0 kg)
Júlio Cesar de C. Balieiro 8
Características Numéricas de
uma Distribuição de Dados
Introdução à Estatística 5
9
As vezes é necessário resumir certas características das
distribuições de dados (ou mesmo de freqüências dados)
por meio de certas quantidades.
Tais quantidades são usualmente denominadas de
MEDIDAS, por quantificarem alguns aspectos de nosso
interesse.
Nosso objetivo é apresentar algumas das chamadas
MEDIDAS DE POSIÇÃO, bem como, algumas MEDIDAS
DE DISPERSÃO, consideradas mais importantes no campo
da aplicabilidade prática do nosso dia a dia.
Tais medidas servem para:
(a) Localizar uma distribuição;
(b) Caracterizar sua variabilidade.
Introdução
10
Medidas de Posição (ou de
Tendência Central)
Servem para localizar a distribuição dos dados
brutos (ou das freqüências) sobre o eixo de
variação da variável em questão.
Veremos os três tipos principais de medidas de
posição:
(a) Média Aritmética;
(b) Mediana;
(c) Moda.
Introdução à Estatística 6
11
Medidas de Posição (ou de
Tendência Central)
ii
k
i
ii
k
i
pX
n
fX
'
1
1
mˆˆx
=
=
Σ=
Σ
=== µ
Média (Aritmética)
A notação internacional recomenda símbolos
específicos para a Média:
n
Xi
n
i 1
mˆˆx =
Σ
=== µ
(a) AMOSTRA:
Conjunto de Dados =>
Tabelas de Freqüência =>
=>
12
Medidas de Posição (ou de
Tendência Central)
ii
k
i
ii
k
i
pX
n
fX
m '
1
1
=
=
Σ=
Σ
==µ
Média (Aritmética)
Conjunto de Dados =>
Tabela de Freqüência =>
(b) POPULAÇÃO:
n
X
m
i
n
i 1=
Σ
==µ
Introdução à Estatística 7
13
Medidas de Posição (ou de
Tendência Central)
Exemplo 2: 50 determinações do tempo (em segundos)
gasto por um funcionário
5,54
50
725.2
mˆˆx 1
==
Σ
=== =
n
fX ii
k
i
µ
684
14
Medidas de Posição (ou de
Tendência Central)
Propriedades da Média
(a) Multiplicando todos os valores de uma variável
por uma constante, a média do conjunto fica
multiplicada por essa constante.
(b) Somando-se ou subtraindo-se uma constante a
todos os valores da variável, a média do conjunto
fica acrescida ou subtraída dessa constante.
Introdução à Estatística 8
15
Medidas de Posição (ou de
Tendência Central)
Mediana
A mediana é uma quantidade que, como a média,
também caracteriza o centro de uma distribuição
pertencente a um conjunto de dados.
dmˆ(a) AMOSTRA:
(b) POPULAÇÃO: md
=>
16
Medidas de Posição (ou de
Tendência Central)
Conjunto de Dados: Para obtenção da estimativa de
mediana de um conjunto de dados
são necessários os seguintes passos:
1º Passo: Ordenar de forma crescente os “n” valores da
variável em questão;
2º Passo: (i) Sendo “n” ímpar, a mediana será igual ao valor
de ordem ;
2
)1( +n
(ii) Sendo “n” par, a mediana será o valor médio
entre os valores de ordem e .
2
n
1
2
+
n
Introdução à Estatística 9
17
Medidas de Posição (ou de
Tendência Central)
md
md
a
i h
f
Fn
Ldm
−
+=
)2/(
ˆTabelas de Freqüência =>
Li = limite inferior da classe que contém a mediana;
n = números de elementos do conjunto da dados;
Fa = soma das freqüências das classes anteriores que
fmd = freqüência da classe que contém a mediana;
hmd= amplitude da classe que contém a mediana.
contém a mediana;
Mediana
18
Medidas de Posição (ou de
Tendência Central)
Exemplo 2: 50 determinações do tempo (em segundos)
gasto por um funcionário
Li = 49,5; n = 50; Fa = 11; fmd = 16; hmd = 5.
Mediana
md
md
a
i h
f
Fn
Ldm
−
+=
)2/(
ˆ
684
Introdução à Estatística 10
19
Medidas de Posição (ou de
Tendência Central)
875,535.
16
11)2/50(
5,49ˆ =
−
+=dm
Exemplo 2: 50 determinações do tempo (em segundos)
gasto por um funcionário
Li = 49,5; n = 50; Fa = 11; fmd = 16; hmd = 5.
Mediana
md
md
a
i h
f
Fn
Ldm
−
+=
)2/(
ˆ
20
Medidas de Posição (ou de
Tendência Central)
Moda
=> A moda (ou modas) de um conjunto de valores é
definida como o valor (ou valores) de máxima
freqüência.
É uma quantidade que, como a média, também
caracteriza o centro de uma distribuição, indicando a
região das máximas freqüências.
=>
Omˆ(a) AMOSTRA:
(b) POPULAÇÃO: Om
Introdução à Estatística 11
21
Medidas de Posição (ou de
Tendência Central)
Moda
h
dd
d
Lm io
21
1
ˆ
+
+=Tabelas de Freqüência =>
Li = limite inferior da classe modal;
d1 = diferença entre a classe modal e a da classe
h = amplitude das classes.
imediatamente anterior;
d2 = diferença entre a classe modal e a da classe
imediatamente seguinte;
22
Medidas de Posição (ou de
Tendência Central)
Moda
Exemplo 2: 50 determinações do tempo (em segundos)
gasto por um funcionário
Li = 49,5; d1 = 16 – 8 = 8; d2 = 16 – 12 = 4; h = 5.
h
dd
d
Lm io
21
1
ˆ
+
+=
684
Introdução à Estatística 12
23
Medidas de Posição (ou de
Tendência Central)
h
dd
d
Lm io
21
1
ˆ
+
+=
Moda
Exemplo 2: 50 determinações do tempo (em segundos)
gasto por um funcionário
Li = 49,5; d1 = 16 – 8 = 8; d2 = 16 – 12 = 4;h = 5.
833,525.
48
8
5,49ˆ =
+
+=om
24
Medidas de Dispersão (ou de
Variabilidade)
A informação fornecida pelas Medidas de Posição em geral
necessitam de ser complementas pelas Medidas de
Dispersão.
As Medidas de Dispersão servem para indicar o “quanto
os dados se apresentam dispersos em torno da região
central”.
Portanto caracterizam o grau de variação existente em um
conjunto de valores.
As Medidas de Dispersão que mais nos interessam são:
(a) Amplitude;
(b) Variância;
(c) Desvio Padrão;
(d) Coeficiente de Variação.
Introdução à Estatística 13
25
Medidas de Dispersão (ou de
Variabilidade)
MINMAX XXR −=ˆ
Vantagem e Desvantagem.
Amplitude
A amplitude, já mencionada, é definida como a diferença
entre o maior e o menor valores do conjunto de dados.
(a) AMOSTRA:
(b) POPULAÇÃO: MINMAX XXR −=
Salvo aplicações de Controle de Qualidade, a
amplitude não é muito utilizada como Medida de
Dispersão.
=>
=>
=>
26
Medidas de Dispersão (ou de
Variabilidade)
222222
ˆ)(ˆˆ)( XXXSSS X σσσ =====
222
)( XX σσσ ==
Variância
A variância é definida como a “média dos quadrados
das diferenças entre os valores em relação a sua
própria média”.
(a) AMOSTRA:
(b) POPULAÇÃO:
Conjunto de Dados =>
Tabela de Freqüência =>
1
)(
)(
2
122
−
−Σ
== =
N
XX
SXS
i
n
i
X
Em se tratando de Amostra:
1
)(
)(
2
122
−
−Σ
== =
N
fXX
SXS
ii
k
i
X
=>
=>
Introdução à Estatística 14
27
Medidas de Dispersão (ou de
Variabilidade)
Variância
Conjunto de Dados =>
Tabela de Freqüência =>
N
XX
X
i
n
i
X
2
1222
)(
)(
−Σ
=== =
σσσ
Em se tratando de População:
N
fXX
X
ii
k
i
X
2
1222
)(
)(
−Σ
=== =
σσσ
(i) A variância calculada para dados agrupados deverá ser
superestimada em relação à variância exata dos “N”
dados originais.
OBS:
=>
28
Medidas de Dispersão (ou de
Variabilidade)
14mˆˆx 1
=
Σ
=== =
N
Xi
n
i
µ
Variância
Exemplo: Executar o cálculo da variância de um
conjunto pequeno de dados, formado pelos valores
seguinte: {15, 12, 10, 17, 16}
É fácil ver que:
1
)(
)(
2
122
−
−Σ
== =
N
XX
SXS
i
n
i
X
Logo:
Poderemos montar a seguinte Tabela Auxiliar nos
cálculos:
Introdução à Estatística 15
29
Medidas de Dispersão (ou de
Variabilidade)
1
)(
)(
2
122
−
−Σ
== =
N
XX
SXS
i
n
i
X
Variância
Exemplo: Cálculo da variância de um conjunto pequeno de
dados: {15, 12, 10, 17, 16}
5,8
4
34
)( 22
=== XSXS
Nota-se que as expressões apresentadas não são as mais
apropriadas para o cálculo da variância, pois a média é
quase sempre um valor fracionário, o que viria a dificultar o
cálculo dos desvios .
2
)( XXi −
30
Medidas de Dispersão (ou de
Variabilidade)
)2()( 222
XXXXXX iii +−Σ=−Σ
22
2 XNXXX ii +Σ−Σ=
2
2
2 ⎟
⎠
⎞
⎜
⎝
⎛ Σ
+Σ
Σ
−Σ=
N
X
NX
N
X
X i
i
i
i
N
X
N
X
X ii
i
22
2 )()(
2
Σ
+
Σ
−Σ=
Variância
Note que o numerador pode ser trabalhado:
1
)(
)(
2
122
−
−Σ
== =
n
XX
SXS
i
n
i
X
N
X
XXX i
ii
2
22 )(
)(
Σ
−Σ=−Σ
Introdução à Estatística 16
31
Medidas de Dispersão (ou de
Variabilidade)
Variância
Assim, para um conjunto com “N” dados:
11
)(
)(
2
12
1
2
122
−
⎟
⎠
⎞
⎜
⎝
⎛
Σ
−Σ
=
−
−Σ
==
=
==
N
N
X
X
N
XX
SXS
i
n
i
i
n
ii
n
i
X
Da mesma forma, para dados agrupados em Tabela de
freqüência, teremos:
11
)(
)(
2
12
1
2
122
−
⎟
⎠
⎞
⎜
⎝
⎛
Σ
−Σ
=
−
−Σ
==
=
==
N
N
fX
fX
N
fXX
SXS
ii
k
i
ii
k
iii
k
i
X
32
Medidas de Dispersão (ou de
Variabilidade)
Variância
( )
17,46
49
50
725.2
775.150
1
)(
2
2
12
122
=
−
=
−
⎟
⎠
⎞
⎜
⎝
⎛
Σ
−Σ
=
=
=
N
N
fX
fX
SXS
ii
k
i
ii
k
i
X
Exemplo: 50 determinações do tempo (em segundos)
gasto por um funcionário
684
Introdução à Estatística 17
33
Medidas de Dispersão (ou de
Variabilidade)
Propriedades da Variância
(a) Multiplicando-se todos os valores de uma variável por
uma constante, a variância do conjunto fica multiplicada
pelo quadrado dessa constante.
(b) Somando-se ou subtraindo-se uma constante a todos os
valores de uma variável, a variância não se altera.
(i) A variância é uma medida de dispersão importante na
teoria estatística;
OBS:
(ii) Do ponto de vista prático, ela tem o inconveniente de se
expressar em unidade quadrática em relação a variável em
questão.
34
Medidas de Dispersão (ou de
Variabilidade)
Desvio Padrão
Definimos desvio padrão como “a raiz quadrada positiva
da variância”.
O cálculo do desvio padrão é feito por meio da variância.
2
)( XX SSXS +==
XXXSSS X σσσ ˆ)(ˆˆ)( =====
XX σσσ == )(
(a) AMOSTRA:
(b) POPULAÇÃO:
Em se tratando de Amostra:
=>
=>
=>
Introdução à Estatística 18
35
Medidas de Dispersão (ou de
Variabilidade)
Desvio Padrão
(i) O desvio padrão se expressa na mesma unidade da
variável, sendo por isso, de maior interesse que a variância
nas aplicações práticas;
(ii) É mais realístico para efeito de comparação de dispersões.
OBS:
Exemplo: 50 determinações do tempo (em segundos) gasto
por um funcionário
( )
17,46
49
50
725.2
775.150
1
)(
2
2
12
122
=
−
=
−
⎟
⎠
⎞
⎜
⎝
⎛
Σ
−Σ
=
=
=
N
N
fX
fX
SXS
ii
k
i
ii
k
i
X
79,617,46)( === XSXS
36
Medidas de Dispersão (ou de
Variabilidade)
Coeficiente de Variação
O coeficiente de variação é definido como “o quociente
entre o desvio padrão e a média”, sendo
frequentemente expresso em porcentagem.
XCVXCV =)(
(a) AMOSTRA:
(b) POPULAÇÃO:
XCVXCV =)(^ ^
Em se tratando de Amostra:
X
S
CVXCV X
X ==)(^ ^
=>
=>
Introdução à Estatística 19
37
Medidas de Dispersão (ou de
Variabilidade)
Coeficiente de Variação
X
S
CVXCV X
X ==)(^ ^
Exemplo: 50 determinações do tempo (em segundos)
gasto por um funcionário
%46,12125,0
5,54
79,6
)( =====
X
S
CVXCV X
X
^ ^
38
Medidas de Dispersão (ou de
Variabilidade)
Coeficiente de Variação
(i) A vantagem é caracterizar a dispersão dos dados em
termos relativos ao seu valor médio;
OBS:
(ii) Pequena dispersão absoluta pode ser, na verdade
considerável, quando comparada com a ordem de
grandeza dos valores da variável. Quando consideramos o
CV, enganos de interpretações desse tipo não ocorrem;
(iii) Além disso, por ser adimensional, o CV fornece uma
maneira de se compararem as dispersões de variáveis
cujas medidas são irredutíveis.
Introdução à Estatística 20
Júlio Cesar de C. Balieiro 39
Momentos de uma
Distribuição de Dados
40
Momentos de uma Distribuição
Definimos o momento de ordem “t” de um conjunto de
dados como:
n
X
M
t
i
n
i
t
1=
Σ
=
Definimos o momento de ordem “t” centrado em relação a
uma constante “a” como:
n
aX
M
t
i
n
ia
t
)(
1
−Σ
= =
Alguns conceitos
Introdução à Estatística 21
41
Momentos de uma Distribuição de
Freqüências
Já vimos que temos interesse no caso de “momento centrado
em relação a média”, o qual designaremos simplesmente por
“momento centrado”, dado por:
Também sabemos que, nos casos da média e da variância,
as expressões podem ser reescritas levando-se em
consideração Tabelas de freqüências dos diferentes valores
existentes.
n
XX
m
t
i
n
i
t
)(
1
−Σ
= =
Alguns conceitos
42
Momentos de uma Distribuição de
Freqüências
Assim, para dados agrupados em Tabela de Freqüência,
teremos:
n
fXX
m
i
t
i
n
i
t
)(
1
−Σ
= =
Alguns conceitos
n
fX
M
i
t
i
k
i
t
1=
Σ
=
=> Para momento de ordem “t”
n
faX
M
i
t
i
k
ia
t
)(
1
−Σ
= =
=> Para momento de ordem
“t” centrado em relação a
uma constante “a”
=> Para momento de ordem “t”
centrado em relação a uma
constante “média”
Introdução à Estatística 22
43
Momentos de uma Distribuição de
Freqüências
Nos interessa particularmente saber calcular os momentos
centrados de terceira e quarta ordem.
Alguns conceitos
n
XX
m
t
i
n
i
t
)(
1
−Σ
= =
=
−Σ
= =
n
XX
m
i
n
i
3
1
3
)(
=
−Σ
= =
n
XX
m
i
n
i
4
1
4
)(
3
2
1
3
1
23 X
n
X
X
n
X i
n
i
i
n
i
+
Σ
−
Σ
==
4
2
12
3
1
4
1
364 X
n
X
X
n
X
X
n
X i
n
i
i
n
i
i
n
i
−
Σ
+
Σ
−
Σ
===
44
Momentos de uma Distribuição de
Freqüências
Havendo Tabelas de Freqüências com “k” classes a
considerar, as expressões equivalentes são:
Alguns conceitos
n
fXX
m
i
t
i
k
i
t
)(
1
−Σ
= =
3
2
1
3
1
3 23 X
n
fX
X
n
fX
m
ii
k
i
ii
k
i
+
Σ
−
Σ
= ==
4
2
12
3
1
4
1
4 364 X
n
fX
X
n
fX
X
n
fX
m
ii
n
i
ii
n
i
ii
n
i
−
Σ
+
Σ
−
Σ
= ===
Introdução à Estatística 23
45
Medidas de Assimetria
Essas medidas procuram caracterizar como e quanto a
distribuição dos Dados(ou freqüências) se afasta da condição
de simetria.
Distribuições alongadas a direita são ditas Positivamente
Assimétricas.
Distribuições alongadas a esquerda são ditas
Negativamente Assimétricas.
46
Medidas de Assimetria
Assim basta criamos uma
nova coluna com .ii fX 3
O momento centrado de terceira ordem pode ser usado
como medida de assimetria.
Entretanto é mais conveniente a utilização de uma medida
adimensional, definida como Coeficiente de Assimetria, dado
por:
3
3
3
)( XS
m
a =
3
2
1
3
1
3 23 X
n
fX
X
n
fX
m
ii
k
i
ii
k
i
+
Σ
−
Σ
= ==
E utilizarmos momento
centrado de 3ª ordem:684
Introdução à Estatística 24
47
Medidas de Assimetria
Desta forma, poderemos classificar o Coeficiente de
Assimetria (a3) da seguinte forma:
(i) Se a3 = 0 a distribuição é Simétrica;
(ii) Se a3 > 0 a distribuição é Assimétrica à direita
(Assimetria Positiva);
(iii) Se a3 < 0 a distribuição é Assimétrica à Esquerda
(Assimetria Negativa).
Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005.
664 p.
48
Medidas de Assimetria
Outra medida de assimetria mais simples pode ser obtido pelo
Índice de Assimetria de Pearson:
XS
mX
A 0
ˆ−
=
O Índice de Assimetria de Pearson também pode ser
facilmente classificado:
15,0|| <A => Distribuição praticamente Simétrica;
0,1||15,0 << A => Distribuição moderadamente Assimétrica;
0,1|| >A => Distribuição fortemente Assimétrica.
Introdução à Estatística 25
49
5,54
50
725.2
mˆˆx 1
==
Σ
=== =
n
fX ii
k
i
µ
h
dd
d
Lm io
21
1
ˆ
+
+=
833,525
48
8
5,49ˆ =
+
+=om
17,46
1
2
12
12
=
−
⎟
⎠
⎞
⎜
⎝
⎛
Σ
−Σ
=
=
=
N
N
fX
fX
S
ii
k
i
ii
k
i
X
79,617,46 ==XS
Medidas de Assimetria
246,0
79,6
833,525,54ˆ0
=
−
=
−
=
XS
mX
A
Exemplo: 50 determinações do tempo (em segundos) gasto por
um funcionário
684
50
Medidas de Assimetria
Exemplo: 50 determinações do tempo (em segundos) gasto por
um funcionário
246,0
79,6
833,525,54ˆ0
=
−
=
−
=
XS
mX
A
Pelo Índice de Assimetria de Pearson essa distribuição seria
classificada como “Moderadamente Assimétrica”, pois
.0,1||15,0 << A
De fato isso ocorre, pois
quando utilizados uma
Técnica de Descrição
Gráfica para Variáveis
Quantitativas Contínuas,
detectamos a Assimetria
Moderada.
Introdução à Estatística 26
51
Medidas de Achatamento ou
Curtose
Essas medidas procuram caracterizar a forma da distribuição
quanto ao seu achatamento.
O termo médio de comparação é dado pela Distribuição
Normal, que é um modelo teórico de distribuição a ser
estudado no capítulo relacionado à Probabilidades.
Quanto ao achatamento, podemos ter as seguintes situações:
Platicúrticas, Mesocúrticas e Leptocúrticas.
52
Medidas de Achatamento ou
Curtose
A caracterização do achatamento de uma distribuição só tem
sentido, em termos práticos, se a distribuição for
aproximadamente Simétrica.
Entre as possíveis medidas de achatamento, destacamos o
Coeficiente de Curtose.
O Coeficiente de Curtose é obtido pelo quociente do momento
centrado de 4ª ordem pelo quadrado da variância, ou seja:
4
4
22
4
4
)( XX S
m
S
m
a ==
Introdução à Estatística 27
53
Medidas de Achatamento ou
Curtose
Trata-se de coeficiente adimensional, permitindo a sua
classificação:
0,34 <a => Distribuição Platicúrtica;
0,34 >a
0,34 =a => Distribuição Mesocúrtica;
=> Distribuição Leptocúrtica.
54
Medidas de Achatamento ou
Curtose
Assim, basta criamos
duas novas colunas
com: .ii fX 3
ii fX 4
e
E utilizarmos momento centrado de 4ª ordem:
4
2
12
3
1
4
1
4 364 X
n
fX
X
n
fX
X
n
fX
m
ii
n
i
ii
n
i
ii
n
i
−
Σ
+
Σ
−
Σ
= ===
Exemplo: 50 determinações do tempo (em segundos) gasto por
um funcionário
684
Introdução à Estatística 28
55
Medidas de Achatamento ou
Curtose
Exemplo: 50 determinações do tempo (em segundos) gasto por
um funcionário
21,2
)( 4
4
22
4
4 ≅==
XX S
m
S
m
a => Distribuição ligeiramente
Platicúrtica.
56
Medidas de Achatamento ou
Curtose
Outra medida de achatamento mais simples pode ser obtido
pelo Grau de Curtose, dado pelo coeficiente:
)(2 1090
13
PP
QQ
K
−
−
=
3Q = é o 3º Quartil;
1Q = é o 1º Quartil;
90P = é o 90º Percentil;
90P = é o 10º Percentil.
em que,
Introdução à Estatística 29
57
Medidas de Achatamento ou
Curtose
Quartis => dividem um conjunto de dados em quatro partes
iguais.
2Q1Q 3Q
0% 25% 50% 75% 100%
em que,
1Q = o 1º Quartil deixa 25% dos elementos;
2Q = o 2º Quartil deixa 50% dos elementos e coincide com a
Mediana;
3Q = o 3º Quartil deixa 75% dos elementos.
58
Medidas de Achatamento ou
Curtose
Fórmulas para cálculo de Q1 e Q3 para o caso de variáveis
quantitativas contínuas
(a) Determinação de Q1:
(ii) Identifica-se a classe de Q1 pela Fi (freq. acumulada);
(iii) Aplica-se a fórmula:
h
f
Fn
LQ
Q
a
Q
1
1
)4/(
1
−
+=
(i) Calcula-se: ;
4
N
Introdução à Estatística 30
59
Medidas de Achatamento ou
Curtose
Fórmulas para cálculo de Q1 e Q3 para o caso de variáveis
quantitativas contínuas (continuação)
h
f
Fn
LQ
Q
a
Q
3
3
)4/3(
3
−
+=
(b) Determinação de Q3:
(ii) Identifica-se a classe de Q3 pela Fi (freq. acumulada);
(iii) Aplica-se a fórmula:
(i) Calcula-se:
4
3N
60
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3)
e a mediana.
Classes fi Fi
7 – 17 6 6
17 – 27 15 21
27 – 37 20 41
37 – 47 10 51
47 – 57 5 56
Classe dmˆ
Classe 1Q
Classe 3Q
h
f
Fn
LQ
Q
a
Q
1
1
)4/(
1
−
+= h
f
Fn
LQ
Q
a
Q
3
3
)4/3(
3
−
+=md
md
a
i h
f
Fn
Ldm
−
+=
)2/(
ˆ
Introdução à Estatística 31
61
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3)
e a mediana.
e o29o28
2
1
2
56
2
56
2
1
22
ˆ =
⎟
⎠
⎞
⎜
⎝
⎛
++⎟
⎠
⎞
⎜
⎝
⎛
=
⎟
⎠
⎞
⎜
⎝
⎛
++⎟
⎠
⎞
⎜
⎝
⎛
=
nn
dm elementos
o42
4
56.3
4
3
3 ===
n
Q elemento
o14
4
56
4
1 ===
n
Q elemento
n = 56;Classes fi Fi
7 – 17 6 6
17 – 27 15 21
27 - 37 20 41
37 - 47 10 51
47 - 57 5 56
62
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3)
e a mediana.
Classes fi Fi
7 – 17 6 6
17 – 27 15 21
27 - 37 20 41
37 - 47 10 51
47 - 57 5 56
Para Q3 temos:
373
=QL ; 56=n ; 41=aF ;
;10=h 103 =Qf
Para Q1 temos:
171
=QL ; 56=n ; 6=aF ;
;10=h 151
=Qf
27=iL ; 56=n ; 21=aF ;
;10=h 20ˆ =dmf
Para temos:dmˆ
h
f
Fn
LQ
Q
a
Q
1
1
)4/(
1
−
+=
h
f
Fn
LQ
Q
a
Q
3
3
)4/3(
3
−
+=
md
md
a
i h
f
Fn
Ldm
−
+=
)2/(
ˆ
Introdução à Estatística 32
63
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3)
e a mediana.
33,2210.
15
6
2
56
17
)4/(
1
11 =
⎟
⎠
⎞
⎜
⎝
⎛
−
+=
−
+= h
f
Fn
LQ
Q
a
Q
00,3810.
10
41
4
56.3
37
)4/3(
3
33 =
⎟
⎠
⎞
⎜
⎝
⎛
−
+=
−
+= h
f
Fn
LQ
Q
a
Q
50,3010.
15
21
2
56
27
)2/(
ˆ =
⎟
⎠
⎞
⎜
⎝
⎛
−
+=
−
+= md
md
a
i h
f
Fn
Ldm
64
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3)
e a mediana.
25% 25% 25% 25%
50,3033,22 00,3800,7 00,57
2Q1Q 3Q
Introdução à Estatística 33
65
Medidas de Achatamento ou
Curtose
Decis => são os valores que dividem um conjunto de dados em
10 partes iguais.
0% 10% 50% 90% 100%20% 30% 40% 60% 70% 80%
1D 2D 3D 4D 5D 6D 7D 8D 9D
em que,
1D = o 1º Decil deixa 10% dos elementos;
2D = o 2º Decil deixa 20% dos elementos;
9D = o 9º Decil deixa 90% dos elementos.
... ...
66
Medidas de Achatamento ou
Curtose
Determinação de um Decil Di:
(ii) Identifica-se a classe de Di pela Fi (freq. acumulada);
(iii) Aplica-se a fórmula:
h
f
FNi
LD
Di
a
ii
−
+=
)10/.(
(i) Calcula-se: em que i = 1, 2, ..., 9;
10
.Ni
Li = limite inferior da classe Di ;
Fa = soma das freqüências das classes anteriores a que Di
;fDi= freqüência da classe Di;
h = amplitude da classe Di.
n = tamanho da amostra;
em que,
Introdução à Estatística 34
67
Medidas de Achatamento ou
Curtose
Percentis => são os valores que dividem um conjunto de dados
em 100 partes iguais.
0% 1% 50% 99% 100%2% 3% ... ... 97% 98%
1P 2P 3P ...
50P ...
97P 98P 99P
em que,
1P = o 1º Percentil deixa 1% dos elementos;
2P = o 2º Percentil deixa 2% dos elementos;
99P = o 99º Percentil deixa 99% dos elementos.
... ...
68
Medidas de Achatamento ou
Curtose
(ii) Identifica-se a classe de Pi pela Fi (freq. acumulada);
(iii) Aplica-se a fórmula:
h
f
FNi
LP
iP
a
ii
−
+=
)100/.(
Determinação de um Percentil Pi:
(i) Calcula-se: em que i = 1, 2, ..., 98, 99;
100
.Ni
Li = limite inferior da classe Pi;
Fa = soma das freqüências das classes anteriores a que Pi;
fPi= freqüência da classe Pi;
h = amplitude da classe Di.
n = tamanho da amostra;
em que,
Introdução à Estatística 35
69
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar o Grau de Curtose
(K).
Classes fi Fi
7 – 17 6 6
17 – 27 15 21
27 - 37 20 41
37 - 47 10 51
47 - 57 5 56
)(2 1090
13
PP
QQ
K
−
−
=
Para P10 temos:
710
=PL ; 56=n ; 0=aF ;
;10=h 610
=Pf
Já tínhamos obtidos:
33,221 =Q 00,383 =Qe
h
f
FNi
LP
iP
a
ii
−
+=
)100/.(
;3790
=PL ; 56=n ; 41=aF
;10=h 1090
=Pf
Para P90 temos:
33,1610 =P 40,4690 =P
70
Medidas de Achatamento ou
Curtose
Exemplo: Dada a distribuição, determinar o Grau de Curtose
(K).
Classes fi Fi
7 – 17 6 6
17 – 27 15 21
27 - 37 20 41
37 - 47 10 51
47 - 57 5 56
)(2 1090
13
PP
QQ
K
−
−
=
Agora temos tudo:
33,221 =Q 00,383 =Qe
33,1610 =P 40,4690 =Pe
2606,0
)33,1640,46(2
33,2200,38
)(2 1090
13
=
−
−
=
−
−
=
PP
QQ
K
Introdução à Estatística 36
71
Medidas de Achatamento ou
Curtose
263,0=K => Distribuição de freqüência Mesocúrtica;
263,0>K => Distribuição de freqüência Platicúrtica;
263,0<K => Distribuição de freqüência Leptocúrtica.
Assim o Grau de Curtose, de ser classificado da seguinte
forma:
)(2 1090
13
PP
QQ
K
−
−
=

Mais conteúdo relacionado

Mais procurados

Aula 02 - Estatística da vida cotidiana
Aula 02 - Estatística da vida cotidianaAula 02 - Estatística da vida cotidiana
Aula 02 - Estatística da vida cotidianaDalton Martins
 
Aula de exercícios compelmetares
Aula de exercícios compelmetaresAula de exercícios compelmetares
Aula de exercícios compelmetaresNilo Sampaio
 
Estatistica descritivaunivariada
Estatistica descritivaunivariadaEstatistica descritivaunivariada
Estatistica descritivaunivariadaCélia M. D. Sales
 
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...wilkerfilipel
 
Aula de Estatística Básica -Aula 4
Aula de Estatística Básica -Aula  4Aula de Estatística Básica -Aula  4
Aula de Estatística Básica -Aula 4Luiz Martins Souza
 
Estatística Descritiva - parte 1 (ISMT)
Estatística Descritiva - parte 1 (ISMT)Estatística Descritiva - parte 1 (ISMT)
Estatística Descritiva - parte 1 (ISMT)João Leal
 
3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)Thiago Apolinário
 
Probabilidade e estatística
Probabilidade e estatísticaProbabilidade e estatística
Probabilidade e estatísticaNeilton Pedro
 

Mais procurados (19)

Prática de Regressão no SPSS
Prática de Regressão no SPSSPrática de Regressão no SPSS
Prática de Regressão no SPSS
 
Aula 02 - Estatística da vida cotidiana
Aula 02 - Estatística da vida cotidianaAula 02 - Estatística da vida cotidiana
Aula 02 - Estatística da vida cotidiana
 
Estatistica completo revisado
Estatistica completo revisadoEstatistica completo revisado
Estatistica completo revisado
 
Bioestatistica
BioestatisticaBioestatistica
Bioestatistica
 
Apostila de estatistica
Apostila de estatisticaApostila de estatistica
Apostila de estatistica
 
Estdescr
EstdescrEstdescr
Estdescr
 
Aula de exercícios compelmetares
Aula de exercícios compelmetaresAula de exercícios compelmetares
Aula de exercícios compelmetares
 
Introdução à Estatística
Introdução à EstatísticaIntrodução à Estatística
Introdução à Estatística
 
Conceitos Básicos de Estatística II
Conceitos Básicos de Estatística IIConceitos Básicos de Estatística II
Conceitos Básicos de Estatística II
 
Conceitos Básicos de Estatística I
Conceitos Básicos de Estatística IConceitos Básicos de Estatística I
Conceitos Básicos de Estatística I
 
Estatistica descritivaunivariada
Estatistica descritivaunivariadaEstatistica descritivaunivariada
Estatistica descritivaunivariada
 
Distrib probab
Distrib probabDistrib probab
Distrib probab
 
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...
Estatística descritiva 3º ano. Inclui exercícios não resovidos e exemplos ao ...
 
Aula de Estatística Básica -Aula 4
Aula de Estatística Básica -Aula  4Aula de Estatística Básica -Aula  4
Aula de Estatística Básica -Aula 4
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
Estatística Descritiva - parte 1 (ISMT)
Estatística Descritiva - parte 1 (ISMT)Estatística Descritiva - parte 1 (ISMT)
Estatística Descritiva - parte 1 (ISMT)
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)3. medidas de posição e dispersão (1)
3. medidas de posição e dispersão (1)
 
Probabilidade e estatística
Probabilidade e estatísticaProbabilidade e estatística
Probabilidade e estatística
 

Semelhante a Introdução à Estatística

Aula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptxAula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptxJoel Júnior
 
Apostila de estatistica
Apostila de estatisticaApostila de estatistica
Apostila de estatisticaPedro Kangombe
 
Apostila de estatistica
Apostila de estatisticaApostila de estatistica
Apostila de estatisticaAna
 
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]Dafmet Ufpel
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
1 estatística descritiva, distribuição de frequência v discreta e continua
1   estatística descritiva, distribuição de frequência v discreta e continua1   estatística descritiva, distribuição de frequência v discreta e continua
1 estatística descritiva, distribuição de frequência v discreta e continuaNilson Costa
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 
Tópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfTópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfCarlosMahumane1
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...RaquelSilva604657
 
Ficha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaFicha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaAna Colaco
 
Serie aula03 estatistica
Serie aula03 estatisticaSerie aula03 estatistica
Serie aula03 estatisticaPsicologia_2015
 
Vizualização de dados Gráficos e Dashboards Aula 2.pdf
Vizualização de dados Gráficos e Dashboards Aula 2.pdfVizualização de dados Gráficos e Dashboards Aula 2.pdf
Vizualização de dados Gráficos e Dashboards Aula 2.pdfCelso Paquete Cellso
 

Semelhante a Introdução à Estatística (20)

aula1_slides.pdf
aula1_slides.pdfaula1_slides.pdf
aula1_slides.pdf
 
Introdução a Estatistica 2.pdf
Introdução a Estatistica 2.pdfIntrodução a Estatistica 2.pdf
Introdução a Estatistica 2.pdf
 
Aula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptxAula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptx
 
Estatisticas petrobras
Estatisticas petrobrasEstatisticas petrobras
Estatisticas petrobras
 
Apostila de estatistica
Apostila de estatisticaApostila de estatistica
Apostila de estatistica
 
Apostila de estatistica
Apostila de estatisticaApostila de estatistica
Apostila de estatistica
 
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
XVII SAMET -2ª feira - Mini-curso [Dra. Simone Ferraz]
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
1 estatística descritiva, distribuição de frequência v discreta e continua
1   estatística descritiva, distribuição de frequência v discreta e continua1   estatística descritiva, distribuição de frequência v discreta e continua
1 estatística descritiva, distribuição de frequência v discreta e continua
 
Estatistica exercicios resolvidos
Estatistica exercicios resolvidosEstatistica exercicios resolvidos
Estatistica exercicios resolvidos
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Tópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdfTópico 1 - Estatistica Descritiva.pdf
Tópico 1 - Estatistica Descritiva.pdf
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
dokumen.tips_estatistica-aplicada-exercicios-resolvidos-manual-tecnico-forman...
 
23126 estatisticaaplicada manualtecnicoformando
23126 estatisticaaplicada manualtecnicoformando23126 estatisticaaplicada manualtecnicoformando
23126 estatisticaaplicada manualtecnicoformando
 
Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Ficha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatisticaFicha de-trabalho-sobre-estatistica
Ficha de-trabalho-sobre-estatistica
 
Serie aula03 estatistica
Serie aula03 estatisticaSerie aula03 estatistica
Serie aula03 estatistica
 
Aula7
Aula7Aula7
Aula7
 
Vizualização de dados Gráficos e Dashboards Aula 2.pdf
Vizualização de dados Gráficos e Dashboards Aula 2.pdfVizualização de dados Gráficos e Dashboards Aula 2.pdf
Vizualização de dados Gráficos e Dashboards Aula 2.pdf
 

Introdução à Estatística

  • 1. Introdução à Estatística 1 Júlio Cesar de C. Balieiro 1 Introdução à Estatística 2 É a ciência que se preocupa com: (i) Organização; (ii) Descrição; (iii) Análises; (iv) Interpretações. Estatística Descritiva Estatística Indutiva ou Estatística Inferencial Estatística
  • 2. Introdução à Estatística 2 3 População Alguns Conceitos • É o conjunto de elementos com pelo menos uma característica em comum. • Esta característica comum deve delimitar claramente quais os elementos que pertencem à população e quais os elementos que não pertencem. Amostra • É um subconjunto de uma população, onde todos os seus elementos serão examinados para efeito da realização do estudo estatístico desejado. 4 Alguns Conceitos OBJETIVO DA ESTATÍSTICA: “tirar conclusões sobre populações com base nos resultados observados em amostras extraídas dessas populações”. Variável • É a característica dos elementos da amostra que nos interessa averiguar estatisticamente. • Ex.: variável Idade - se houver “n” elementos fisicamente considerados no estudo, esses elementos fornecerão “n” valores da variável idade, os quais serão tratados convenientemente pela Estatística Descritiva e/ou pela Estatística Inferencial.
  • 3. Introdução à Estatística 3 5 Tipos de Variáveis As variáveis de interesse podem ser classificadas em: (i) Qualitativas => quando resultar de uma classificação por tipos ou atributos. (ii) Quantitativas => quando seus valores forem expressos em números. Podem ser subdivididas: (a) Discretas; (b) Contínuas. 6 Tipos de Variáveis Exemplos de Discretas: População: Ovinos da raça Santa Inês da ASCCO; Variável: número de cordeiros ao parto (1, 2 ou 3). População: Bovinos Nelore da Agro-pecuária CFM Ltda. Variável: Escores de Musculosidade (1, 2, 3, 4 ou 5). População: Bovinos Nelore da Agro-pecuária CFM Ltda. Variável: Prenhez aos 14 meses de idade (0 ou 1). (a) Variáveis Quantitativas Discretas Assumem apenas valores pertencentes a um conjunto enumerável. São obtidos mediante alguma forma de contagem.
  • 4. Introdução à Estatística 4 7 Tipos de Variáveis (b) Variáveis Quantitativas Contínuas São aquelas, teoricamente, que podem assumir qualquer valor em um certo intervalo de variação. Resultam, em geral, de uma medição, sendo freqüentemente expressos em alguma unidade. Exemplos de Contínuas: População: Bovinos Nelore da Agro-pecuária CFM Ltda. Variável: PN (28,0; 28,5; 30,2; 32,58) População: Bovinos Nelore da Agro-pecuária CFM Ltda. Variável: Peso aos 18 meses, em kg (250,0 até 415,0 kg) Júlio Cesar de C. Balieiro 8 Características Numéricas de uma Distribuição de Dados
  • 5. Introdução à Estatística 5 9 As vezes é necessário resumir certas características das distribuições de dados (ou mesmo de freqüências dados) por meio de certas quantidades. Tais quantidades são usualmente denominadas de MEDIDAS, por quantificarem alguns aspectos de nosso interesse. Nosso objetivo é apresentar algumas das chamadas MEDIDAS DE POSIÇÃO, bem como, algumas MEDIDAS DE DISPERSÃO, consideradas mais importantes no campo da aplicabilidade prática do nosso dia a dia. Tais medidas servem para: (a) Localizar uma distribuição; (b) Caracterizar sua variabilidade. Introdução 10 Medidas de Posição (ou de Tendência Central) Servem para localizar a distribuição dos dados brutos (ou das freqüências) sobre o eixo de variação da variável em questão. Veremos os três tipos principais de medidas de posição: (a) Média Aritmética; (b) Mediana; (c) Moda.
  • 6. Introdução à Estatística 6 11 Medidas de Posição (ou de Tendência Central) ii k i ii k i pX n fX ' 1 1 mˆˆx = = Σ= Σ === µ Média (Aritmética) A notação internacional recomenda símbolos específicos para a Média: n Xi n i 1 mˆˆx = Σ === µ (a) AMOSTRA: Conjunto de Dados => Tabelas de Freqüência => => 12 Medidas de Posição (ou de Tendência Central) ii k i ii k i pX n fX m ' 1 1 = = Σ= Σ ==µ Média (Aritmética) Conjunto de Dados => Tabela de Freqüência => (b) POPULAÇÃO: n X m i n i 1= Σ ==µ
  • 7. Introdução à Estatística 7 13 Medidas de Posição (ou de Tendência Central) Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário 5,54 50 725.2 mˆˆx 1 == Σ === = n fX ii k i µ 684 14 Medidas de Posição (ou de Tendência Central) Propriedades da Média (a) Multiplicando todos os valores de uma variável por uma constante, a média do conjunto fica multiplicada por essa constante. (b) Somando-se ou subtraindo-se uma constante a todos os valores da variável, a média do conjunto fica acrescida ou subtraída dessa constante.
  • 8. Introdução à Estatística 8 15 Medidas de Posição (ou de Tendência Central) Mediana A mediana é uma quantidade que, como a média, também caracteriza o centro de uma distribuição pertencente a um conjunto de dados. dmˆ(a) AMOSTRA: (b) POPULAÇÃO: md => 16 Medidas de Posição (ou de Tendência Central) Conjunto de Dados: Para obtenção da estimativa de mediana de um conjunto de dados são necessários os seguintes passos: 1º Passo: Ordenar de forma crescente os “n” valores da variável em questão; 2º Passo: (i) Sendo “n” ímpar, a mediana será igual ao valor de ordem ; 2 )1( +n (ii) Sendo “n” par, a mediana será o valor médio entre os valores de ordem e . 2 n 1 2 + n
  • 9. Introdução à Estatística 9 17 Medidas de Posição (ou de Tendência Central) md md a i h f Fn Ldm − += )2/( ˆTabelas de Freqüência => Li = limite inferior da classe que contém a mediana; n = números de elementos do conjunto da dados; Fa = soma das freqüências das classes anteriores que fmd = freqüência da classe que contém a mediana; hmd= amplitude da classe que contém a mediana. contém a mediana; Mediana 18 Medidas de Posição (ou de Tendência Central) Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário Li = 49,5; n = 50; Fa = 11; fmd = 16; hmd = 5. Mediana md md a i h f Fn Ldm − += )2/( ˆ 684
  • 10. Introdução à Estatística 10 19 Medidas de Posição (ou de Tendência Central) 875,535. 16 11)2/50( 5,49ˆ = − +=dm Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário Li = 49,5; n = 50; Fa = 11; fmd = 16; hmd = 5. Mediana md md a i h f Fn Ldm − += )2/( ˆ 20 Medidas de Posição (ou de Tendência Central) Moda => A moda (ou modas) de um conjunto de valores é definida como o valor (ou valores) de máxima freqüência. É uma quantidade que, como a média, também caracteriza o centro de uma distribuição, indicando a região das máximas freqüências. => Omˆ(a) AMOSTRA: (b) POPULAÇÃO: Om
  • 11. Introdução à Estatística 11 21 Medidas de Posição (ou de Tendência Central) Moda h dd d Lm io 21 1 ˆ + +=Tabelas de Freqüência => Li = limite inferior da classe modal; d1 = diferença entre a classe modal e a da classe h = amplitude das classes. imediatamente anterior; d2 = diferença entre a classe modal e a da classe imediatamente seguinte; 22 Medidas de Posição (ou de Tendência Central) Moda Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário Li = 49,5; d1 = 16 – 8 = 8; d2 = 16 – 12 = 4; h = 5. h dd d Lm io 21 1 ˆ + += 684
  • 12. Introdução à Estatística 12 23 Medidas de Posição (ou de Tendência Central) h dd d Lm io 21 1 ˆ + += Moda Exemplo 2: 50 determinações do tempo (em segundos) gasto por um funcionário Li = 49,5; d1 = 16 – 8 = 8; d2 = 16 – 12 = 4;h = 5. 833,525. 48 8 5,49ˆ = + +=om 24 Medidas de Dispersão (ou de Variabilidade) A informação fornecida pelas Medidas de Posição em geral necessitam de ser complementas pelas Medidas de Dispersão. As Medidas de Dispersão servem para indicar o “quanto os dados se apresentam dispersos em torno da região central”. Portanto caracterizam o grau de variação existente em um conjunto de valores. As Medidas de Dispersão que mais nos interessam são: (a) Amplitude; (b) Variância; (c) Desvio Padrão; (d) Coeficiente de Variação.
  • 13. Introdução à Estatística 13 25 Medidas de Dispersão (ou de Variabilidade) MINMAX XXR −=ˆ Vantagem e Desvantagem. Amplitude A amplitude, já mencionada, é definida como a diferença entre o maior e o menor valores do conjunto de dados. (a) AMOSTRA: (b) POPULAÇÃO: MINMAX XXR −= Salvo aplicações de Controle de Qualidade, a amplitude não é muito utilizada como Medida de Dispersão. => => => 26 Medidas de Dispersão (ou de Variabilidade) 222222 ˆ)(ˆˆ)( XXXSSS X σσσ ===== 222 )( XX σσσ == Variância A variância é definida como a “média dos quadrados das diferenças entre os valores em relação a sua própria média”. (a) AMOSTRA: (b) POPULAÇÃO: Conjunto de Dados => Tabela de Freqüência => 1 )( )( 2 122 − −Σ == = N XX SXS i n i X Em se tratando de Amostra: 1 )( )( 2 122 − −Σ == = N fXX SXS ii k i X => =>
  • 14. Introdução à Estatística 14 27 Medidas de Dispersão (ou de Variabilidade) Variância Conjunto de Dados => Tabela de Freqüência => N XX X i n i X 2 1222 )( )( −Σ === = σσσ Em se tratando de População: N fXX X ii k i X 2 1222 )( )( −Σ === = σσσ (i) A variância calculada para dados agrupados deverá ser superestimada em relação à variância exata dos “N” dados originais. OBS: => 28 Medidas de Dispersão (ou de Variabilidade) 14mˆˆx 1 = Σ === = N Xi n i µ Variância Exemplo: Executar o cálculo da variância de um conjunto pequeno de dados, formado pelos valores seguinte: {15, 12, 10, 17, 16} É fácil ver que: 1 )( )( 2 122 − −Σ == = N XX SXS i n i X Logo: Poderemos montar a seguinte Tabela Auxiliar nos cálculos:
  • 15. Introdução à Estatística 15 29 Medidas de Dispersão (ou de Variabilidade) 1 )( )( 2 122 − −Σ == = N XX SXS i n i X Variância Exemplo: Cálculo da variância de um conjunto pequeno de dados: {15, 12, 10, 17, 16} 5,8 4 34 )( 22 === XSXS Nota-se que as expressões apresentadas não são as mais apropriadas para o cálculo da variância, pois a média é quase sempre um valor fracionário, o que viria a dificultar o cálculo dos desvios . 2 )( XXi − 30 Medidas de Dispersão (ou de Variabilidade) )2()( 222 XXXXXX iii +−Σ=−Σ 22 2 XNXXX ii +Σ−Σ= 2 2 2 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ +Σ Σ −Σ= N X NX N X X i i i i N X N X X ii i 22 2 )()( 2 Σ + Σ −Σ= Variância Note que o numerador pode ser trabalhado: 1 )( )( 2 122 − −Σ == = n XX SXS i n i X N X XXX i ii 2 22 )( )( Σ −Σ=−Σ
  • 16. Introdução à Estatística 16 31 Medidas de Dispersão (ou de Variabilidade) Variância Assim, para um conjunto com “N” dados: 11 )( )( 2 12 1 2 122 − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ −Σ = − −Σ == = == N N X X N XX SXS i n i i n ii n i X Da mesma forma, para dados agrupados em Tabela de freqüência, teremos: 11 )( )( 2 12 1 2 122 − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ −Σ = − −Σ == = == N N fX fX N fXX SXS ii k i ii k iii k i X 32 Medidas de Dispersão (ou de Variabilidade) Variância ( ) 17,46 49 50 725.2 775.150 1 )( 2 2 12 122 = − = − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ −Σ = = = N N fX fX SXS ii k i ii k i X Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário 684
  • 17. Introdução à Estatística 17 33 Medidas de Dispersão (ou de Variabilidade) Propriedades da Variância (a) Multiplicando-se todos os valores de uma variável por uma constante, a variância do conjunto fica multiplicada pelo quadrado dessa constante. (b) Somando-se ou subtraindo-se uma constante a todos os valores de uma variável, a variância não se altera. (i) A variância é uma medida de dispersão importante na teoria estatística; OBS: (ii) Do ponto de vista prático, ela tem o inconveniente de se expressar em unidade quadrática em relação a variável em questão. 34 Medidas de Dispersão (ou de Variabilidade) Desvio Padrão Definimos desvio padrão como “a raiz quadrada positiva da variância”. O cálculo do desvio padrão é feito por meio da variância. 2 )( XX SSXS +== XXXSSS X σσσ ˆ)(ˆˆ)( ===== XX σσσ == )( (a) AMOSTRA: (b) POPULAÇÃO: Em se tratando de Amostra: => => =>
  • 18. Introdução à Estatística 18 35 Medidas de Dispersão (ou de Variabilidade) Desvio Padrão (i) O desvio padrão se expressa na mesma unidade da variável, sendo por isso, de maior interesse que a variância nas aplicações práticas; (ii) É mais realístico para efeito de comparação de dispersões. OBS: Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário ( ) 17,46 49 50 725.2 775.150 1 )( 2 2 12 122 = − = − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ −Σ = = = N N fX fX SXS ii k i ii k i X 79,617,46)( === XSXS 36 Medidas de Dispersão (ou de Variabilidade) Coeficiente de Variação O coeficiente de variação é definido como “o quociente entre o desvio padrão e a média”, sendo frequentemente expresso em porcentagem. XCVXCV =)( (a) AMOSTRA: (b) POPULAÇÃO: XCVXCV =)(^ ^ Em se tratando de Amostra: X S CVXCV X X ==)(^ ^ => =>
  • 19. Introdução à Estatística 19 37 Medidas de Dispersão (ou de Variabilidade) Coeficiente de Variação X S CVXCV X X ==)(^ ^ Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário %46,12125,0 5,54 79,6 )( ===== X S CVXCV X X ^ ^ 38 Medidas de Dispersão (ou de Variabilidade) Coeficiente de Variação (i) A vantagem é caracterizar a dispersão dos dados em termos relativos ao seu valor médio; OBS: (ii) Pequena dispersão absoluta pode ser, na verdade considerável, quando comparada com a ordem de grandeza dos valores da variável. Quando consideramos o CV, enganos de interpretações desse tipo não ocorrem; (iii) Além disso, por ser adimensional, o CV fornece uma maneira de se compararem as dispersões de variáveis cujas medidas são irredutíveis.
  • 20. Introdução à Estatística 20 Júlio Cesar de C. Balieiro 39 Momentos de uma Distribuição de Dados 40 Momentos de uma Distribuição Definimos o momento de ordem “t” de um conjunto de dados como: n X M t i n i t 1= Σ = Definimos o momento de ordem “t” centrado em relação a uma constante “a” como: n aX M t i n ia t )( 1 −Σ = = Alguns conceitos
  • 21. Introdução à Estatística 21 41 Momentos de uma Distribuição de Freqüências Já vimos que temos interesse no caso de “momento centrado em relação a média”, o qual designaremos simplesmente por “momento centrado”, dado por: Também sabemos que, nos casos da média e da variância, as expressões podem ser reescritas levando-se em consideração Tabelas de freqüências dos diferentes valores existentes. n XX m t i n i t )( 1 −Σ = = Alguns conceitos 42 Momentos de uma Distribuição de Freqüências Assim, para dados agrupados em Tabela de Freqüência, teremos: n fXX m i t i n i t )( 1 −Σ = = Alguns conceitos n fX M i t i k i t 1= Σ = => Para momento de ordem “t” n faX M i t i k ia t )( 1 −Σ = = => Para momento de ordem “t” centrado em relação a uma constante “a” => Para momento de ordem “t” centrado em relação a uma constante “média”
  • 22. Introdução à Estatística 22 43 Momentos de uma Distribuição de Freqüências Nos interessa particularmente saber calcular os momentos centrados de terceira e quarta ordem. Alguns conceitos n XX m t i n i t )( 1 −Σ = = = −Σ = = n XX m i n i 3 1 3 )( = −Σ = = n XX m i n i 4 1 4 )( 3 2 1 3 1 23 X n X X n X i n i i n i + Σ − Σ == 4 2 12 3 1 4 1 364 X n X X n X X n X i n i i n i i n i − Σ + Σ − Σ === 44 Momentos de uma Distribuição de Freqüências Havendo Tabelas de Freqüências com “k” classes a considerar, as expressões equivalentes são: Alguns conceitos n fXX m i t i k i t )( 1 −Σ = = 3 2 1 3 1 3 23 X n fX X n fX m ii k i ii k i + Σ − Σ = == 4 2 12 3 1 4 1 4 364 X n fX X n fX X n fX m ii n i ii n i ii n i − Σ + Σ − Σ = ===
  • 23. Introdução à Estatística 23 45 Medidas de Assimetria Essas medidas procuram caracterizar como e quanto a distribuição dos Dados(ou freqüências) se afasta da condição de simetria. Distribuições alongadas a direita são ditas Positivamente Assimétricas. Distribuições alongadas a esquerda são ditas Negativamente Assimétricas. 46 Medidas de Assimetria Assim basta criamos uma nova coluna com .ii fX 3 O momento centrado de terceira ordem pode ser usado como medida de assimetria. Entretanto é mais conveniente a utilização de uma medida adimensional, definida como Coeficiente de Assimetria, dado por: 3 3 3 )( XS m a = 3 2 1 3 1 3 23 X n fX X n fX m ii k i ii k i + Σ − Σ = == E utilizarmos momento centrado de 3ª ordem:684
  • 24. Introdução à Estatística 24 47 Medidas de Assimetria Desta forma, poderemos classificar o Coeficiente de Assimetria (a3) da seguinte forma: (i) Se a3 = 0 a distribuição é Simétrica; (ii) Se a3 > 0 a distribuição é Assimétrica à direita (Assimetria Positiva); (iii) Se a3 < 0 a distribuição é Assimétrica à Esquerda (Assimetria Negativa). Fonte: Ferreira, D. F. Estatística Básica. Ed. UFLA, 2005. 664 p. 48 Medidas de Assimetria Outra medida de assimetria mais simples pode ser obtido pelo Índice de Assimetria de Pearson: XS mX A 0 ˆ− = O Índice de Assimetria de Pearson também pode ser facilmente classificado: 15,0|| <A => Distribuição praticamente Simétrica; 0,1||15,0 << A => Distribuição moderadamente Assimétrica; 0,1|| >A => Distribuição fortemente Assimétrica.
  • 25. Introdução à Estatística 25 49 5,54 50 725.2 mˆˆx 1 == Σ === = n fX ii k i µ h dd d Lm io 21 1 ˆ + += 833,525 48 8 5,49ˆ = + +=om 17,46 1 2 12 12 = − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ Σ −Σ = = = N N fX fX S ii k i ii k i X 79,617,46 ==XS Medidas de Assimetria 246,0 79,6 833,525,54ˆ0 = − = − = XS mX A Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário 684 50 Medidas de Assimetria Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário 246,0 79,6 833,525,54ˆ0 = − = − = XS mX A Pelo Índice de Assimetria de Pearson essa distribuição seria classificada como “Moderadamente Assimétrica”, pois .0,1||15,0 << A De fato isso ocorre, pois quando utilizados uma Técnica de Descrição Gráfica para Variáveis Quantitativas Contínuas, detectamos a Assimetria Moderada.
  • 26. Introdução à Estatística 26 51 Medidas de Achatamento ou Curtose Essas medidas procuram caracterizar a forma da distribuição quanto ao seu achatamento. O termo médio de comparação é dado pela Distribuição Normal, que é um modelo teórico de distribuição a ser estudado no capítulo relacionado à Probabilidades. Quanto ao achatamento, podemos ter as seguintes situações: Platicúrticas, Mesocúrticas e Leptocúrticas. 52 Medidas de Achatamento ou Curtose A caracterização do achatamento de uma distribuição só tem sentido, em termos práticos, se a distribuição for aproximadamente Simétrica. Entre as possíveis medidas de achatamento, destacamos o Coeficiente de Curtose. O Coeficiente de Curtose é obtido pelo quociente do momento centrado de 4ª ordem pelo quadrado da variância, ou seja: 4 4 22 4 4 )( XX S m S m a ==
  • 27. Introdução à Estatística 27 53 Medidas de Achatamento ou Curtose Trata-se de coeficiente adimensional, permitindo a sua classificação: 0,34 <a => Distribuição Platicúrtica; 0,34 >a 0,34 =a => Distribuição Mesocúrtica; => Distribuição Leptocúrtica. 54 Medidas de Achatamento ou Curtose Assim, basta criamos duas novas colunas com: .ii fX 3 ii fX 4 e E utilizarmos momento centrado de 4ª ordem: 4 2 12 3 1 4 1 4 364 X n fX X n fX X n fX m ii n i ii n i ii n i − Σ + Σ − Σ = === Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário 684
  • 28. Introdução à Estatística 28 55 Medidas de Achatamento ou Curtose Exemplo: 50 determinações do tempo (em segundos) gasto por um funcionário 21,2 )( 4 4 22 4 4 ≅== XX S m S m a => Distribuição ligeiramente Platicúrtica. 56 Medidas de Achatamento ou Curtose Outra medida de achatamento mais simples pode ser obtido pelo Grau de Curtose, dado pelo coeficiente: )(2 1090 13 PP QQ K − − = 3Q = é o 3º Quartil; 1Q = é o 1º Quartil; 90P = é o 90º Percentil; 90P = é o 10º Percentil. em que,
  • 29. Introdução à Estatística 29 57 Medidas de Achatamento ou Curtose Quartis => dividem um conjunto de dados em quatro partes iguais. 2Q1Q 3Q 0% 25% 50% 75% 100% em que, 1Q = o 1º Quartil deixa 25% dos elementos; 2Q = o 2º Quartil deixa 50% dos elementos e coincide com a Mediana; 3Q = o 3º Quartil deixa 75% dos elementos. 58 Medidas de Achatamento ou Curtose Fórmulas para cálculo de Q1 e Q3 para o caso de variáveis quantitativas contínuas (a) Determinação de Q1: (ii) Identifica-se a classe de Q1 pela Fi (freq. acumulada); (iii) Aplica-se a fórmula: h f Fn LQ Q a Q 1 1 )4/( 1 − += (i) Calcula-se: ; 4 N
  • 30. Introdução à Estatística 30 59 Medidas de Achatamento ou Curtose Fórmulas para cálculo de Q1 e Q3 para o caso de variáveis quantitativas contínuas (continuação) h f Fn LQ Q a Q 3 3 )4/3( 3 − += (b) Determinação de Q3: (ii) Identifica-se a classe de Q3 pela Fi (freq. acumulada); (iii) Aplica-se a fórmula: (i) Calcula-se: 4 3N 60 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3) e a mediana. Classes fi Fi 7 – 17 6 6 17 – 27 15 21 27 – 37 20 41 37 – 47 10 51 47 – 57 5 56 Classe dmˆ Classe 1Q Classe 3Q h f Fn LQ Q a Q 1 1 )4/( 1 − += h f Fn LQ Q a Q 3 3 )4/3( 3 − +=md md a i h f Fn Ldm − += )2/( ˆ
  • 31. Introdução à Estatística 31 61 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3) e a mediana. e o29o28 2 1 2 56 2 56 2 1 22 ˆ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ++⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ++⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = nn dm elementos o42 4 56.3 4 3 3 === n Q elemento o14 4 56 4 1 === n Q elemento n = 56;Classes fi Fi 7 – 17 6 6 17 – 27 15 21 27 - 37 20 41 37 - 47 10 51 47 - 57 5 56 62 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3) e a mediana. Classes fi Fi 7 – 17 6 6 17 – 27 15 21 27 - 37 20 41 37 - 47 10 51 47 - 57 5 56 Para Q3 temos: 373 =QL ; 56=n ; 41=aF ; ;10=h 103 =Qf Para Q1 temos: 171 =QL ; 56=n ; 6=aF ; ;10=h 151 =Qf 27=iL ; 56=n ; 21=aF ; ;10=h 20ˆ =dmf Para temos:dmˆ h f Fn LQ Q a Q 1 1 )4/( 1 − += h f Fn LQ Q a Q 3 3 )4/3( 3 − += md md a i h f Fn Ldm − += )2/( ˆ
  • 32. Introdução à Estatística 32 63 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3) e a mediana. 33,2210. 15 6 2 56 17 )4/( 1 11 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − += − += h f Fn LQ Q a Q 00,3810. 10 41 4 56.3 37 )4/3( 3 33 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − += − += h f Fn LQ Q a Q 50,3010. 15 21 2 56 27 )2/( ˆ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − += − += md md a i h f Fn Ldm 64 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar os Quartis (Q1 e Q3) e a mediana. 25% 25% 25% 25% 50,3033,22 00,3800,7 00,57 2Q1Q 3Q
  • 33. Introdução à Estatística 33 65 Medidas de Achatamento ou Curtose Decis => são os valores que dividem um conjunto de dados em 10 partes iguais. 0% 10% 50% 90% 100%20% 30% 40% 60% 70% 80% 1D 2D 3D 4D 5D 6D 7D 8D 9D em que, 1D = o 1º Decil deixa 10% dos elementos; 2D = o 2º Decil deixa 20% dos elementos; 9D = o 9º Decil deixa 90% dos elementos. ... ... 66 Medidas de Achatamento ou Curtose Determinação de um Decil Di: (ii) Identifica-se a classe de Di pela Fi (freq. acumulada); (iii) Aplica-se a fórmula: h f FNi LD Di a ii − += )10/.( (i) Calcula-se: em que i = 1, 2, ..., 9; 10 .Ni Li = limite inferior da classe Di ; Fa = soma das freqüências das classes anteriores a que Di ;fDi= freqüência da classe Di; h = amplitude da classe Di. n = tamanho da amostra; em que,
  • 34. Introdução à Estatística 34 67 Medidas de Achatamento ou Curtose Percentis => são os valores que dividem um conjunto de dados em 100 partes iguais. 0% 1% 50% 99% 100%2% 3% ... ... 97% 98% 1P 2P 3P ... 50P ... 97P 98P 99P em que, 1P = o 1º Percentil deixa 1% dos elementos; 2P = o 2º Percentil deixa 2% dos elementos; 99P = o 99º Percentil deixa 99% dos elementos. ... ... 68 Medidas de Achatamento ou Curtose (ii) Identifica-se a classe de Pi pela Fi (freq. acumulada); (iii) Aplica-se a fórmula: h f FNi LP iP a ii − += )100/.( Determinação de um Percentil Pi: (i) Calcula-se: em que i = 1, 2, ..., 98, 99; 100 .Ni Li = limite inferior da classe Pi; Fa = soma das freqüências das classes anteriores a que Pi; fPi= freqüência da classe Pi; h = amplitude da classe Di. n = tamanho da amostra; em que,
  • 35. Introdução à Estatística 35 69 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar o Grau de Curtose (K). Classes fi Fi 7 – 17 6 6 17 – 27 15 21 27 - 37 20 41 37 - 47 10 51 47 - 57 5 56 )(2 1090 13 PP QQ K − − = Para P10 temos: 710 =PL ; 56=n ; 0=aF ; ;10=h 610 =Pf Já tínhamos obtidos: 33,221 =Q 00,383 =Qe h f FNi LP iP a ii − += )100/.( ;3790 =PL ; 56=n ; 41=aF ;10=h 1090 =Pf Para P90 temos: 33,1610 =P 40,4690 =P 70 Medidas de Achatamento ou Curtose Exemplo: Dada a distribuição, determinar o Grau de Curtose (K). Classes fi Fi 7 – 17 6 6 17 – 27 15 21 27 - 37 20 41 37 - 47 10 51 47 - 57 5 56 )(2 1090 13 PP QQ K − − = Agora temos tudo: 33,221 =Q 00,383 =Qe 33,1610 =P 40,4690 =Pe 2606,0 )33,1640,46(2 33,2200,38 )(2 1090 13 = − − = − − = PP QQ K
  • 36. Introdução à Estatística 36 71 Medidas de Achatamento ou Curtose 263,0=K => Distribuição de freqüência Mesocúrtica; 263,0>K => Distribuição de freqüência Platicúrtica; 263,0<K => Distribuição de freqüência Leptocúrtica. Assim o Grau de Curtose, de ser classificado da seguinte forma: )(2 1090 13 PP QQ K − − =