SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
Para que serve a trigonometria? Por exemplo, a trigonometria serve para resolver o seguinte
problema: O teodolito, é um instrumento capaz de medir ângulos, muito usado por agrimensores,
engenheiros e topógrafos no cálculo de distâncias inacessíveis. Este instrumento ótico mede
ângulos horizontais e verticais com suas duas escalas circulares graduadas em graus.
Para calcular a altura de um prédio, o topógrafo colocou seu teodolito na praça em frente. Ele
mediu a distância do prédio ao teodolito com uma trena e encontrou 27 m. Mirando o alto do
prédio, ele verificou, na escala do teodolito, que o ângulo formado por essa linha visual com a
horizontal é de 58 graus. Se a luneta do teodolito está a 1,55 m do chão, qual é a altura do prédio?
(Considere os valores aproximados: sen 58o
= 0,85 e cos 58o
= 0,53)
Solução: A trigonometria (trigono=triângulo + metria=medida) é o ramo da matemática que trata
das relações entre os lados e ângulos de triângulos.
Na figura a seguir, AB = CD = 1,55 é a altura do instrumento e CE = x + 1,55 é a altura do prédio.
No triângulo retângulo BDE formado, BE é a hipotenusa , DE = x é o cateto oposto ao ângulo de
58 graus, BD = 27 é o cateto adjacente ao ângulo de 58 graus.
Trabalhando com as razões trigonométricas seno, coseno (ou cosseno) e tangente, temos:
sen 58o
= DE / BE ; cos 58o
= BD / BE ; tg 58o
= DE / BD = x / 27.
Como, tg 58o
= sen 58o
/ cos 58o
= 0,85 / 0,53 = 85 / 53 = 1,6 aproximadamente, podemos ter a
proporção: x / 27 = 0,85 / 0,53 = 1,6.
Daí, vem que: x = 27 × 1,6 = 43,2. Logo a altura do prédio é : 43,2 + 1,55 = 44,75 m..
Uma torre vertical, construída sobre um plano horizontal tem 25 metros de altura. Um cabo de
aço, esticado, liga o topo da torre até o plano, formando com o mesmo, um angulo de 60°. Qual é o
comprimento do cabo?
Solução: Temos um triângulo retângulo de hipotenusa x e cateto de medida 25m oposto ao ângulo
de 60°.
Como o sen 60° = = 25 / x , segue que o comprimento (em metros) do cabo é :
x = 50/√3 = 50(√3)/3 .
Se considerarmos √3 = 1,7 , então x = 28,4m.
(UERJ) Um barco navega na direção AB, próximo a um farol P, conforme a figura abaixo.
(Adaptado de BONGIOVANNI, Vincenzo et
alli. Matemática e Vida. São Paulo, editora
Ática, 1990).
No ponto A, o navegador verifica que a reta AP, da embarcação ao farol, forma um ângulo de 30 o
com a direção AB. Após a embarcação percorrer 1.000 m, no ponto B, o navegador verifica que a
reta BP, da embarcação ao farol, forma um ângulo de 60 o
com a mesma direção AB. Seguindo
sempre a direção AB, a menor distância entre a embarcação e o farol será equivalente, em metros,
a:
(A) 500 (B) 500√3 (C) 1.000 (D) 1.000√3
Solução: A menor distância do barco ao farol é o segmento de reta perpendicular a direção AB que
forma os triângulos retângulos de hipotenusa BP e AP. Seja y a distância do barco ao farol e seja x a
distância do barco ao ponto B.
A razão trigonométrica y / x é a tangente do ângulo de 60 o
.
De modo análogo, a razão y / (1000 + x) é a tangente de 30 o
.
Como a tg60 o
= √3 e tg30 o
= (√3) / 3 , vem que, y = x√3 .
Então, (√3) / 3 = y / (1000 + x) = (x√3) / (1000 + x).
"Multiplicando em cruz" e depois divindindo ambos os membros da equação pela √3, ficamos com
1000 + x = 3x.
Segue que , 1000 = 2x , logo x = 500.
Assim, y = 500√3. A alternativa (B) é a correta.
Nota: Considerando √3 = 1,7, teremos para resultado y = 850 m.
(PRF) Os vértices do triângulo PRF da figura abaixo representam, respectivamente, uma
papelaria, uma relojoaria e uma farmácia, estando as distâncias representadas em metro:
A distância entre a papelaria e a farmácia, em km, é:
(A) 0,0007 (B) 0,007 (C) 0.07 (D) 0,7 (E) 7,0
Solução: Seja x a medida do segmento PF. Pela lei dos cossenos: x2
= 82
+ 32
- 2(8)(3)cos 60o
= 64
+ 9 - 48×½ = 73 - 24 = 49. Como a raiz quadrada de 49 é 7 , vem que, x = 7 m = 0,007 km. Logo,
(B) é a alternativa correta.
De outra maneira, poderíamos usar a condição de existência do triângulo (desigualdade triangular):
|8-3| < x < |8+3|. Segue que: 5m < x < 11m. Isto implica em: 0,005km < x < 0,011km. Logo, (B) é a
opção correta.
(UEMA) Uma indústria que está se instalando às margens de uma rodovia precisa trazer energia
elétrica para as suas dependências. O local mais próximo onde há rede elétrica é um ponto
inacessível momentaneamente por meio terrestre; mas visível de onde se instalará a indústria. A
indústria contrata uma firma especializada para elaborar o projeto da linha de transmissão de
energia e essa firma, equipada com instrumentos, que possibilitam a medição de ângulos, e com
uma trena, efetua as medições constantes da figura abaixo, em que A é o ponto onde se localizará a
indústria e C é o ponto de ligação à rede elétrica já existente.
A distância em “linha reta” da indústria ao ponto de interligação à rede elétrica é ?
Solução: Construindo, no ∆ABC, a altura CH, relativa ao lado AB, temos:
1000 = AH + BH = x cos 45o
+ y cos 60o
= x√2/2 + y/2
CH = h = y sen 60o
= x sen 45o
, o que implica em y = x√2/√3
então, 2000 = x√2 + x√2/√3
Logo, o valor procurado, em metros, é x = (2000√3) / (√2)(√3 + 1) = (1000√6) / (√3 + 1).
Se considerarmos √6 = 2,45 e √3 = 1,732 , teremos x = 896 m.
(PUC-SP) Sabe-se que θ é a medida em graus de um dos ângulos internos de um triângulo
retângulo.
Se sen θ = k+1/2, cos θ = k e a hipotenusa do triângulo mede 20 cm, determine a sua área.
Solução: Sendo y o cateto oposto ao ângulo e x o cateto adjacente ao ângulo, temos que:
sen θ = y /20 = k + 1/2 e cos θ = x/20 = k
Então: y = 20k + 10 e x = 20k
Usando o Teorema de Pitágoras , ficamos com: sen2
θ + cos2
θ = 1 , ou seja, (k + 1/2)2
+ k2
= 1
O que implica em: 8k2
+ 4k - 3 = 0
Resolvendo esta equação encontramos:
k = -1/4 - (√7)/4 (não serve)
ou
k = -1/4 + (√7)/4
Logo: x = (-5 + 5√7) cm e y = (5 + 5√7) cm
Assim, a Área = xy/2 = 150/2 = 75 cm2
.
O ciclo trigonométrico é um círculo cujo centro está localizado na origem do plano cartesiano e seu
raio mede 1. É usado para ampliar os conceitos de seno, cosseno e tangente para arcos (ângulos)
com medidas quaisquer (maiores que 90°, por exemplo). Observe ciclo trigonométrico abaixo.
Calcule:
sen 150° = .....................
cos 225° = .....................
sen 1950° = ..........
Solução: A medida do raio do círculo trigonométrico é 1. Assim , as hipotenusas dos triângulos
retângulos formados pelos ângulos na figura mede 1. Como resultado, temos que o seno do ângulo
fica no eixo vertical e o cosseno fica no eixo horizontal.
Como π radianos (3,14 radianos aproximadamente) = 180 graus, fazendo uma regra de três, segue
que:
sen 150° = sen (5π/6) = 1/2
cos 225° = cos (5π/4) = (-√2) / 2
Como 1950° = 5×360° + 150°, descontando as voltas, temos:
sen 1950° = sen 150° = sen (5π/6) = 1/2.
(UERJ) Você sabia? Se o valor de x estiver expresso em radianos, os valores de sen x e cos x
podem ser representados, respectivamente, por : sen x ≅ x e cos x ≅ 1 - x2
/ 2.
A partir da informação acima, assinale a opção que contém o valor máximo da expressão: sen x +
cos x.
(A) 1 (B) -1 (C)3/2 (D)-3/2
Solução: Seja a função trigonométrica f(x) = sen x + cos x.
Se o valor de x está expresso em radianos, então podemos considerar, aproximadamente,
f(x) = x + 1 - x2
/ 2 = (-x2
/ 2 )+ x + 1 , que é uma função quadrática (polinômio do segundo grau).
Temos que o valor máximo de uma função f(x) = ax2
+ bx + c , é -∆ / 4a, onde ∆ = b2
- 4ac.
Calculando delta encontramos ∆ = (1)2
- 4(-1 / 2)(1) = 3.
Assim, o valor máximo da expressão é: (-3) / 4(-1 / 2) = (-3) / (-2) = 3 / 2. Logo, (C) é a alternativa
correta

Mais conteúdo relacionado

Mais procurados

Trigonometria triângulo retângulo - questoes respondidas
Trigonometria triângulo retângulo - questoes respondidasTrigonometria triângulo retângulo - questoes respondidas
Trigonometria triângulo retângulo - questoes respondidasgil junior
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica planaevandrovv
 
Resolução matemática 001
Resolução matemática  001Resolução matemática  001
Resolução matemática 001comentada
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001trigono_metria
 
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
Prof.calazans(geom.plana)   questões resolvidas(ficha 01)Prof.calazans(geom.plana)   questões resolvidas(ficha 01)
Prof.calazans(geom.plana) questões resolvidas(ficha 01)ProfCalazans
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01ProfCalazans
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de TrigonometriaClarice Leclaire
 
Gabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometriaGabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometriaProfessor Carlinhos
 
Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01ProfCalazans
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1rangel freitas
 
Atividade bonus 4º bim
Atividade bonus 4º bimAtividade bonus 4º bim
Atividade bonus 4º bimCelio José
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01ProfCalazans
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008Erick Fernandes
 
Provas essa matematica
Provas essa matematicaProvas essa matematica
Provas essa matematicaAntony Franc
 
TriâNgulo RetâNgulo
TriâNgulo RetâNguloTriâNgulo RetâNgulo
TriâNgulo RetâNguloguest4b9715
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01ProfCalazans
 
Lista semelhança 2011
Lista semelhança 2011Lista semelhança 2011
Lista semelhança 2011fernandanocchi
 
Gabarito e resolução da lista de exercícios correta
Gabarito e resolução da lista de exercícios corretaGabarito e resolução da lista de exercícios correta
Gabarito e resolução da lista de exercícios corretaPablo Nunes
 

Mais procurados (20)

Trigonometria triângulo retângulo - questoes respondidas
Trigonometria triângulo retângulo - questoes respondidasTrigonometria triângulo retângulo - questoes respondidas
Trigonometria triângulo retângulo - questoes respondidas
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
 
Exercicios de trigonometria
Exercicios de trigonometriaExercicios de trigonometria
Exercicios de trigonometria
 
Resolução matemática 001
Resolução matemática  001Resolução matemática  001
Resolução matemática 001
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001
 
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
Prof.calazans(geom.plana)   questões resolvidas(ficha 01)Prof.calazans(geom.plana)   questões resolvidas(ficha 01)
Prof.calazans(geom.plana) questões resolvidas(ficha 01)
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Exercício de Trigonometria
 
Gabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometriaGabarito da 8ª lista de geometria
Gabarito da 8ª lista de geometria
 
Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01Prof.calazans(Geom.plana) - Questões resolvidas 01
Prof.calazans(Geom.plana) - Questões resolvidas 01
 
Triângulo retângulo1
Triângulo retângulo1Triângulo retângulo1
Triângulo retângulo1
 
Atividade bonus 4º bim
Atividade bonus 4º bimAtividade bonus 4º bim
Atividade bonus 4º bim
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
 
Gabarito exercícios do livro praticando matemática
Gabarito exercícios do livro praticando matemáticaGabarito exercícios do livro praticando matemática
Gabarito exercícios do livro praticando matemática
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
 
Provas essa matematica
Provas essa matematicaProvas essa matematica
Provas essa matematica
 
TriâNgulo RetâNgulo
TriâNgulo RetâNguloTriâNgulo RetâNgulo
TriâNgulo RetâNgulo
 
Prof.calazans (geom.plana) questões resolvidas 01
Prof.calazans (geom.plana)   questões resolvidas 01Prof.calazans (geom.plana)   questões resolvidas 01
Prof.calazans (geom.plana) questões resolvidas 01
 
Lista semelhança 2011
Lista semelhança 2011Lista semelhança 2011
Lista semelhança 2011
 
Gabarito e resolução da lista de exercícios correta
Gabarito e resolução da lista de exercícios corretaGabarito e resolução da lista de exercícios correta
Gabarito e resolução da lista de exercícios correta
 

Semelhante a Exercicios trigonometria

Semelhante a Exercicios trigonometria (20)

Exercicios de trigonometria
Exercicios de trigonometriaExercicios de trigonometria
Exercicios de trigonometria
 
Teorema de pitágoras
Teorema de pitágorasTeorema de pitágoras
Teorema de pitágoras
 
Ciclo trigonometrico
Ciclo trigonometricoCiclo trigonometrico
Ciclo trigonometrico
 
Exercicios extras-9-ano-relacoes-metricas-e-trigonometria
Exercicios extras-9-ano-relacoes-metricas-e-trigonometriaExercicios extras-9-ano-relacoes-metricas-e-trigonometria
Exercicios extras-9-ano-relacoes-metricas-e-trigonometria
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Trigonometra
TrigonometraTrigonometra
Trigonometra
 
fisica exercicios
fisica exerciciosfisica exercicios
fisica exercicios
 
Proxima postagem
Proxima postagemProxima postagem
Proxima postagem
 
Ficha nº18 trigonometria
Ficha nº18 trigonometriaFicha nº18 trigonometria
Ficha nº18 trigonometria
 
Ficha nº18 trigonometria
Ficha nº18 trigonometriaFicha nº18 trigonometria
Ficha nº18 trigonometria
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
 
Mat semelhança de triangulos tales
Mat semelhança de triangulos   talesMat semelhança de triangulos   tales
Mat semelhança de triangulos tales
 
Mat triangulo 003
Mat triangulo  003Mat triangulo  003
Mat triangulo 003
 
Trigonometria- Básica
Trigonometria- BásicaTrigonometria- Básica
Trigonometria- Básica
 
Atividades de matemática trigonometria no triângulo retângulo
Atividades de matemática trigonometria no triângulo retânguloAtividades de matemática trigonometria no triângulo retângulo
Atividades de matemática trigonometria no triângulo retângulo
 
trigonometria.pdf
trigonometria.pdftrigonometria.pdf
trigonometria.pdf
 
Lei dos cossenos
Lei dos cossenosLei dos cossenos
Lei dos cossenos
 
Alguns tópicos de geometria
Alguns tópicos de geometriaAlguns tópicos de geometria
Alguns tópicos de geometria
 
Integral de linha
Integral de linhaIntegral de linha
Integral de linha
 

Último

TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxFlvioDadinhoNNhamizi
 
Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06AndressaTenreiro
 
NR10 - Treinamento LOTO - 2023.pp tx
NR10 - Treinamento LOTO - 2023.pp     txNR10 - Treinamento LOTO - 2023.pp     tx
NR10 - Treinamento LOTO - 2023.pp txrafaelacushman21
 
apresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaapresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaWilliamCruz402522
 
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptxVagner Soares da Costa
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptxVagner Soares da Costa
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMdiminutcasamentos
 

Último (7)

TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
 
Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06
 
NR10 - Treinamento LOTO - 2023.pp tx
NR10 - Treinamento LOTO - 2023.pp     txNR10 - Treinamento LOTO - 2023.pp     tx
NR10 - Treinamento LOTO - 2023.pp tx
 
apresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaapresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aula
 
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPM
 

Exercicios trigonometria

  • 1. Para que serve a trigonometria? Por exemplo, a trigonometria serve para resolver o seguinte problema: O teodolito, é um instrumento capaz de medir ângulos, muito usado por agrimensores, engenheiros e topógrafos no cálculo de distâncias inacessíveis. Este instrumento ótico mede ângulos horizontais e verticais com suas duas escalas circulares graduadas em graus. Para calcular a altura de um prédio, o topógrafo colocou seu teodolito na praça em frente. Ele mediu a distância do prédio ao teodolito com uma trena e encontrou 27 m. Mirando o alto do prédio, ele verificou, na escala do teodolito, que o ângulo formado por essa linha visual com a horizontal é de 58 graus. Se a luneta do teodolito está a 1,55 m do chão, qual é a altura do prédio? (Considere os valores aproximados: sen 58o = 0,85 e cos 58o = 0,53) Solução: A trigonometria (trigono=triângulo + metria=medida) é o ramo da matemática que trata das relações entre os lados e ângulos de triângulos. Na figura a seguir, AB = CD = 1,55 é a altura do instrumento e CE = x + 1,55 é a altura do prédio. No triângulo retângulo BDE formado, BE é a hipotenusa , DE = x é o cateto oposto ao ângulo de 58 graus, BD = 27 é o cateto adjacente ao ângulo de 58 graus. Trabalhando com as razões trigonométricas seno, coseno (ou cosseno) e tangente, temos: sen 58o = DE / BE ; cos 58o = BD / BE ; tg 58o = DE / BD = x / 27. Como, tg 58o = sen 58o / cos 58o = 0,85 / 0,53 = 85 / 53 = 1,6 aproximadamente, podemos ter a proporção: x / 27 = 0,85 / 0,53 = 1,6. Daí, vem que: x = 27 × 1,6 = 43,2. Logo a altura do prédio é : 43,2 + 1,55 = 44,75 m.. Uma torre vertical, construída sobre um plano horizontal tem 25 metros de altura. Um cabo de aço, esticado, liga o topo da torre até o plano, formando com o mesmo, um angulo de 60°. Qual é o comprimento do cabo? Solução: Temos um triângulo retângulo de hipotenusa x e cateto de medida 25m oposto ao ângulo de 60°. Como o sen 60° = = 25 / x , segue que o comprimento (em metros) do cabo é : x = 50/√3 = 50(√3)/3 . Se considerarmos √3 = 1,7 , então x = 28,4m. (UERJ) Um barco navega na direção AB, próximo a um farol P, conforme a figura abaixo.
  • 2. (Adaptado de BONGIOVANNI, Vincenzo et alli. Matemática e Vida. São Paulo, editora Ática, 1990). No ponto A, o navegador verifica que a reta AP, da embarcação ao farol, forma um ângulo de 30 o com a direção AB. Após a embarcação percorrer 1.000 m, no ponto B, o navegador verifica que a reta BP, da embarcação ao farol, forma um ângulo de 60 o com a mesma direção AB. Seguindo sempre a direção AB, a menor distância entre a embarcação e o farol será equivalente, em metros, a: (A) 500 (B) 500√3 (C) 1.000 (D) 1.000√3 Solução: A menor distância do barco ao farol é o segmento de reta perpendicular a direção AB que forma os triângulos retângulos de hipotenusa BP e AP. Seja y a distância do barco ao farol e seja x a distância do barco ao ponto B. A razão trigonométrica y / x é a tangente do ângulo de 60 o . De modo análogo, a razão y / (1000 + x) é a tangente de 30 o . Como a tg60 o = √3 e tg30 o = (√3) / 3 , vem que, y = x√3 . Então, (√3) / 3 = y / (1000 + x) = (x√3) / (1000 + x). "Multiplicando em cruz" e depois divindindo ambos os membros da equação pela √3, ficamos com 1000 + x = 3x. Segue que , 1000 = 2x , logo x = 500. Assim, y = 500√3. A alternativa (B) é a correta. Nota: Considerando √3 = 1,7, teremos para resultado y = 850 m. (PRF) Os vértices do triângulo PRF da figura abaixo representam, respectivamente, uma papelaria, uma relojoaria e uma farmácia, estando as distâncias representadas em metro: A distância entre a papelaria e a farmácia, em km, é: (A) 0,0007 (B) 0,007 (C) 0.07 (D) 0,7 (E) 7,0 Solução: Seja x a medida do segmento PF. Pela lei dos cossenos: x2 = 82 + 32 - 2(8)(3)cos 60o = 64 + 9 - 48×½ = 73 - 24 = 49. Como a raiz quadrada de 49 é 7 , vem que, x = 7 m = 0,007 km. Logo, (B) é a alternativa correta. De outra maneira, poderíamos usar a condição de existência do triângulo (desigualdade triangular): |8-3| < x < |8+3|. Segue que: 5m < x < 11m. Isto implica em: 0,005km < x < 0,011km. Logo, (B) é a opção correta.
  • 3. (UEMA) Uma indústria que está se instalando às margens de uma rodovia precisa trazer energia elétrica para as suas dependências. O local mais próximo onde há rede elétrica é um ponto inacessível momentaneamente por meio terrestre; mas visível de onde se instalará a indústria. A indústria contrata uma firma especializada para elaborar o projeto da linha de transmissão de energia e essa firma, equipada com instrumentos, que possibilitam a medição de ângulos, e com uma trena, efetua as medições constantes da figura abaixo, em que A é o ponto onde se localizará a indústria e C é o ponto de ligação à rede elétrica já existente. A distância em “linha reta” da indústria ao ponto de interligação à rede elétrica é ? Solução: Construindo, no ∆ABC, a altura CH, relativa ao lado AB, temos: 1000 = AH + BH = x cos 45o + y cos 60o = x√2/2 + y/2 CH = h = y sen 60o = x sen 45o , o que implica em y = x√2/√3 então, 2000 = x√2 + x√2/√3 Logo, o valor procurado, em metros, é x = (2000√3) / (√2)(√3 + 1) = (1000√6) / (√3 + 1). Se considerarmos √6 = 2,45 e √3 = 1,732 , teremos x = 896 m. (PUC-SP) Sabe-se que θ é a medida em graus de um dos ângulos internos de um triângulo retângulo. Se sen θ = k+1/2, cos θ = k e a hipotenusa do triângulo mede 20 cm, determine a sua área. Solução: Sendo y o cateto oposto ao ângulo e x o cateto adjacente ao ângulo, temos que: sen θ = y /20 = k + 1/2 e cos θ = x/20 = k Então: y = 20k + 10 e x = 20k Usando o Teorema de Pitágoras , ficamos com: sen2 θ + cos2 θ = 1 , ou seja, (k + 1/2)2 + k2 = 1 O que implica em: 8k2 + 4k - 3 = 0 Resolvendo esta equação encontramos:
  • 4. k = -1/4 - (√7)/4 (não serve) ou k = -1/4 + (√7)/4 Logo: x = (-5 + 5√7) cm e y = (5 + 5√7) cm Assim, a Área = xy/2 = 150/2 = 75 cm2 . O ciclo trigonométrico é um círculo cujo centro está localizado na origem do plano cartesiano e seu raio mede 1. É usado para ampliar os conceitos de seno, cosseno e tangente para arcos (ângulos) com medidas quaisquer (maiores que 90°, por exemplo). Observe ciclo trigonométrico abaixo. Calcule: sen 150° = ..................... cos 225° = ..................... sen 1950° = .......... Solução: A medida do raio do círculo trigonométrico é 1. Assim , as hipotenusas dos triângulos retângulos formados pelos ângulos na figura mede 1. Como resultado, temos que o seno do ângulo fica no eixo vertical e o cosseno fica no eixo horizontal. Como π radianos (3,14 radianos aproximadamente) = 180 graus, fazendo uma regra de três, segue que: sen 150° = sen (5π/6) = 1/2 cos 225° = cos (5π/4) = (-√2) / 2 Como 1950° = 5×360° + 150°, descontando as voltas, temos: sen 1950° = sen 150° = sen (5π/6) = 1/2. (UERJ) Você sabia? Se o valor de x estiver expresso em radianos, os valores de sen x e cos x podem ser representados, respectivamente, por : sen x ≅ x e cos x ≅ 1 - x2 / 2. A partir da informação acima, assinale a opção que contém o valor máximo da expressão: sen x + cos x.
  • 5. (A) 1 (B) -1 (C)3/2 (D)-3/2 Solução: Seja a função trigonométrica f(x) = sen x + cos x. Se o valor de x está expresso em radianos, então podemos considerar, aproximadamente, f(x) = x + 1 - x2 / 2 = (-x2 / 2 )+ x + 1 , que é uma função quadrática (polinômio do segundo grau). Temos que o valor máximo de uma função f(x) = ax2 + bx + c , é -∆ / 4a, onde ∆ = b2 - 4ac. Calculando delta encontramos ∆ = (1)2 - 4(-1 / 2)(1) = 3. Assim, o valor máximo da expressão é: (-3) / 4(-1 / 2) = (-3) / (-2) = 3 / 2. Logo, (C) é a alternativa correta