SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
Prof. Rogério Simões 1
Exercícios Segunda Prova FTR
Dados gerais: g=9,81 m/s2
=32,2 ft/s2
ρH2O=999 kg/m3
=1,94 slug/ft3
1) Considere um escoamento permanente e incompressível, através do dispositivo mostrado.
Determine a magnitude e o sentido da vazão em massa através da passagem 3. (Resp:
Q3=-5,00ft3
/s para dentro do VC)
A1=1ft
2
A3=0,2ft
2
A2=0,5ft
2
v2=30ft/sv1=10ft/s
y
x
2) Num escoamento incompressível através do dispositivo mostrado, as velocidades podem ser
consideradas uniformes nas seções de entrada e saída. Se o fluído em escoamento for água,
obtenha uma expressão para a vazão em massa da seção 3. As seguintes condições são
conhecidas: A1=0,1m2
, A2=0,2m2
, A3=0,15m2
, v1=5m/s e v2=10+5cos(4πt)m/s. (Resp:
=2497,5+999cos(4πt)kg/s)3m&
escoamento
escoamento
1
2
3
3) Fluído com uma massa específica de 1050 kg/m3
escoa em regime permanente através de
uma caixa retangular, conforme mostrado. Dados A1=0,05m2
, A2=0,01m2
, A3=0,06m2
,
v1=4i m/s e v2=-8jm/s, determine a velocidade v3. (Resp: 3v
r
=4,04i
r
-2,33 j
r
m/s)
Prof. Rogério Simões 2
x
60°
A1
A2
A3
4) Fluído incompressível escoa através do dispositivo mostrado. Na entrada, o escoamento é
uniforme com velocidade v1=2,0 ft/s. O perfil de saída é linear, v2=ky. O dispositivo tem
largura w=1,25 ft. Determine k, considerando o escoamento permanente. (Resp: k=14,55s-1
)
h=0,275 ft
60°
y
x
5) Água entra num tubo bidimensional de largura constante, h, com velocidade uniforme, U. O
tubo faz uma curva de 90° que distorce o escoamento, de modo a produzir o perfil de
velocidade linear mostrado na saída, com vmax=2vmin. Avalie vmin, se U=7,5m/s. (Resp:
vmin=5m/s)
vmin
vmax
y
x
v=vmin[2 -x/h]
h
U
6) Considere um escoamento de água através do dispositivo mostrado. Sabendo que a seção 1 é
circular de diâmetro 7in, as seções 2 e 3 são quadradas de dimensões 4in e 5in
respectivamente. A seção 1 possui uma distribuição de velocidades na forma de um
parabolóide de equação:








−= 2
1
2
max11 1
R
r
vv , a seção 2 possui distribuição linear de
velocidades como apresentado na figura e a seção 3 a velocidade é uniforme ao longo da
Prof. Rogério Simões 3
seção. Dados v1max=12ft/s e v2max=15ft/s, determine as componentes de v3 em relação ao
sistema de coordenadas apresentado. Apresente as hipóteses necessárias para a solução do
problema.
v3
v2max=15ft/s
v1max=12ft/s
y
x
3
1
2
7) Um jato de água sai de uma tubulação a uma velocidade constante média de 6m/s, choca-se
com uma placa plana, que está em repouso e orientada normalmente a direção do jato. A
seção da área de saída da tubulação tem 7cm2
. Qual é a força horizontal total que os fluídos
em contato com a placa exercem sobre ela? (Resp: F=-2,57 kgf)
8) Um jato de água de vazão Q0 e velocidade v0, incide sobre uma placa e é defletido conforme
a figura. Se a placa está parada, calcule as componentes Fx e Fy da força devido ao jato
sobre a placa. Faça as hipóteses necessárias para a resolução do problema. (Resp:
Fx=-0,9ρv0Q0, Fy=31/2
ρv0Q0/10)
Q0
v0
Q1=0,6 Q0
Q2
60°
9) Um grande tanque está fixo a um carrinho, como mostrado. Água jorra do tanque através de
um bocal de 600 mm2
a uma velocidade de 10m/s. O nível da água no tanque é mantido
constante, por adição, mediante um tubo vertical. Determine a tração no cabo que mantém o
carrinho estacionário. (Resp: 59,94N)
Prof. Rogério Simões 4
v
10) Um jato de gasolina (DR=0,8) com seção de 0,08m2
e velocidade v0=50m/s, incide sobre
uma placa e é defletido conforme a figura, mantendo o valor das velocidades em ambas as
direções. Se a placa está em movimento contrário ao fluxo de gasolina com velocidade de
v=15m/s, calcule as componentes Fx e Fy da força devido ao jato sobre a placa. Faça as
hipóteses necessárias para a resolução do problema.
v0
Q1=0,7 Q0
Q2
50°
vy
x
11) Um jato de água que sai de um bocal estacionário a 15m/s (A=0,05m2
) atinge uma aleta
curva montada num carrinho, conforme mostrado. A aleta desvia o jato de um ângulo θ=50°.
Determine o valor de M, necessário para manter o carrinho estacionário. (Resp:
M=409,24kg)
v
=50°
M
12) Um jato de água de vazão Q0=3m3
/s e velocidade v0=15m/s, incide sobre uma placa e é
defletido conforme a figura. Se a placa está parada, calcule as componentes Fx e Fy da força
devido ao jato sobre a placa. Faça as hipóteses necessárias para a resolução do problema.
(Resp.: FRx=-40459,5N , FRy=7786,4N)
Prof. Rogério Simões 5
Q0
v0
Q1=0,6 Q0
Q2
60°
13) Um prato raso e circular tem um orifício de bordas vivas no seu centro. Um jato d’água, de
velocidade V, atinge o prato concentricamente. Obtenha uma expressão para a força externa
necessária a fim de manter o prato no lugar, se o jato que sai pelo orifício também tem
velocidade V. Avalie a força para V=5m/s, D=100mm e d=20mm. (Resp: F=-321,5i
r
N)
14) Um jato de água é dirigido contra uma aleta, que poderia ser uma pá de turbina ou de
qualquer outra máquina hidráulica. A água sai do bocal estacionário, de 50 mm de
diâmetro, com uma velocidade de 20m/s e entra na aleta tangente a superfície, em A. A
superfície interna da aleta, em B, faz um ângulo θ=150° com o sentido do x. Calcule a força
que deve ser aplicada para manter a velocidade da aleta constante em U=5m/s. (Resp.: F=-
823,56i
r
+220,67 j
r
N)
15) Água proveniente de um bocal estacionário atinge uma aleta móvel com curvatura de θ
=120°. A aleta move-se com velocidade constante, afastando-se do bocal, com velocidade
U=30ft/s, e recebe um jato que sai do bocal com velocidade V=100ft/s. O bocal tem uma
Prof. Rogério Simões 6
área de saída de 0,04ft2
. Determine a força que deve ser aplicada para manter a velocidade
da aleta constante. (Resp.: F=-570,36i
r
+329,30 j
r
lbf)
16) Um jato d’água saindo de um bocal estacionário, encontra uma aleta com curvatura θ=90°
que se move afastando-se do bocal a uma velocidade constante de 15m/s. O jato tem área de
seção de 600 mm2
a uma velocidade de 30m/s. Determine a força que deve ser aplicada para
manter a velocidade da aleta constante. (Resp.: F=-134,87i
r
+134,87 j
r
N)
17) Um jato de óleo (DR=0,8) atinge uma aleta que altera a direção do fluído de θ=180°. A área
do jato é 1200 mm2
e sua velocidade relativa ao bocal estacionário é 20m/s. A aleta move-se
aproximando do bocal a 10m/s. Determine a força que deve ser aplicada para manter a
velocidade da aleta constante. (Resp.: F=-1,726i
r
kN)
18) O disco circular, cuja seção reta é mostrada, tem um diâmetro externo de 0,15m. Um jato
d’água o atinge concentricamente e em seguida flui para fora, ao longo da superfície do
disco. A velocidade do jato é 45m/s e o disco move-se para a esquerda a 10m/s. Determine a
espessura da lâmina d’água no raio de 75mm a partir do eixo do jato. Que força horizontal é
necessária para manter esse movimento? (Resp.: t=4,17mm, F=4243,6
r
N)i
Prof. Rogério Simões 7
19) Um duto com área de 5ft2
se contrai gradualmente para uma área de 2,5ft2
conforme a figura
abaixo. A queda de pressão entre as duas seções é medida com um manômetro de mercúrio
com deflexão de h=20in. Calcule a vazão através do duto. (Resp: Q=106,16ft3
/s)
20) A água que flui através de um grande reservatório aberto, conforme indicado na figura
abaixo, descarrega-se horizontalmente na atmosfera. Calcule a velocidade v3 e a velocidade
v2. (Resp: v2=16,05ft/s, v3=4,01ft/s)
21) Uma tubulação inclinada de diâmetro igual a 6in é ligada por meio de um redutor a um tubo
de diâmetro igual a 4in. A água se escoa através do tubo, conforme indicado a figura abaixo.
Calcule a velocidade média v2. (Resp: v2=31,8ft/s)
Prof. Rogério Simões 8
22) Um bocal de 2in de diâmetro é instalado na extremidade de um tubo de 6in de diâmetro. Se
a pressão no tubo for de 20psig, calcule a descarga da água em pés por segundo. (Resp:
v=54,83ft/s)
23) Um sifão de 1in de diâmetro é usado para drenar gasolina (DR=0,75) de um grande tanque,
conforme ilustrado na figura abaixo. O ponto mais elevado do sifão está situado a 4ft acima
da superfície da gasolina e o sifão descarrega num ponto a 9ft abaixo da superfície. Calcule
a vazão em ft3
/s e a pressão no ponto mais elevado do sifão. (Resp: Q=0,131ft3
/s, p2=-
4,23psig)
24) Uma vazão de 5ft3
/s de água escoa sem atrito através da expansão indicada na figura abaixo.
A pressão na seção 1 é igual a 12psig. Suponha escoamento unidimensional. Encontre a
pressão em 2. (Resp: p2=12,22psig)

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Fenômenos de transporte MecFlu.
Fenômenos de transporte MecFlu.Fenômenos de transporte MecFlu.
Fenômenos de transporte MecFlu.
 
Exercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basicExercicios resolvidos -_hidraulica_basic
Exercicios resolvidos -_hidraulica_basic
 
Relatório de física 3 lei de ohm
Relatório de física 3  lei de ohmRelatório de física 3  lei de ohm
Relatório de física 3 lei de ohm
 
Mecânica dos fluídos i capitulo 4
Mecânica dos fluídos i   capitulo 4Mecânica dos fluídos i   capitulo 4
Mecânica dos fluídos i capitulo 4
 
Relatório de Experimento: Perdas de Carga Localizada.
Relatório de Experimento: Perdas de Carga Localizada.Relatório de Experimento: Perdas de Carga Localizada.
Relatório de Experimento: Perdas de Carga Localizada.
 
Aula10 medidores vazao
Aula10 medidores vazaoAula10 medidores vazao
Aula10 medidores vazao
 
Bombas e Máquinas Hidráulicas
Bombas e Máquinas HidráulicasBombas e Máquinas Hidráulicas
Bombas e Máquinas Hidráulicas
 
Hidráulica apostila 1
Hidráulica   apostila 1Hidráulica   apostila 1
Hidráulica apostila 1
 
Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forças
 
capitulo7-cinematica dos fluidos
capitulo7-cinematica dos fluidoscapitulo7-cinematica dos fluidos
capitulo7-cinematica dos fluidos
 
Exercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulicaExercicios resolvidos de_hidraulica
Exercicios resolvidos de_hidraulica
 
Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)Lista exer ci_cios-equacao_energia_regime_permanente (1)
Lista exer ci_cios-equacao_energia_regime_permanente (1)
 
Lista de exercicios teorema de bernoulli
Lista de exercicios teorema de bernoulliLista de exercicios teorema de bernoulli
Lista de exercicios teorema de bernoulli
 
95850647 fenomenos-de-transporte-exerc-resolv-em-04-jun-2012
95850647 fenomenos-de-transporte-exerc-resolv-em-04-jun-201295850647 fenomenos-de-transporte-exerc-resolv-em-04-jun-2012
95850647 fenomenos-de-transporte-exerc-resolv-em-04-jun-2012
 
Relatório de física sobre a lei de hooke
Relatório de física sobre a lei de hookeRelatório de física sobre a lei de hooke
Relatório de física sobre a lei de hooke
 
4 exercícios de hidrodinâmica - 1 2014
4   exercícios de hidrodinâmica - 1  20144   exercícios de hidrodinâmica - 1  2014
4 exercícios de hidrodinâmica - 1 2014
 
Resolucao de-exercicios-cap 2 - franco-brunetti
Resolucao de-exercicios-cap 2 - franco-brunettiResolucao de-exercicios-cap 2 - franco-brunetti
Resolucao de-exercicios-cap 2 - franco-brunetti
 
Mec�nica dos fluidos
Mec�nica dos fluidosMec�nica dos fluidos
Mec�nica dos fluidos
 
Questões ri l1 selecionada-2017-1
Questões ri   l1 selecionada-2017-1Questões ri   l1 selecionada-2017-1
Questões ri l1 selecionada-2017-1
 
Ifsp dinâmica dos fluidos
Ifsp dinâmica dos fluidosIfsp dinâmica dos fluidos
Ifsp dinâmica dos fluidos
 

Semelhante a Exerc cios segunda_prova_ftr

Semelhante a Exerc cios segunda_prova_ftr (20)

381903674 questoes-cap12-1
381903674 questoes-cap12-1381903674 questoes-cap12-1
381903674 questoes-cap12-1
 
Formulas fisica
Formulas fisicaFormulas fisica
Formulas fisica
 
Exercicios de 1 a 6
Exercicios de 1 a 6Exercicios de 1 a 6
Exercicios de 1 a 6
 
Aula10
Aula10Aula10
Aula10
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001Unicamp2002 2fase 2dia_parte_001
Unicamp2002 2fase 2dia_parte_001
 
Fisicaresolucaoexerciciosgabaritocinematica20111serie 111218022908-phpapp01 (1)
Fisicaresolucaoexerciciosgabaritocinematica20111serie 111218022908-phpapp01 (1)Fisicaresolucaoexerciciosgabaritocinematica20111serie 111218022908-phpapp01 (1)
Fisicaresolucaoexerciciosgabaritocinematica20111serie 111218022908-phpapp01 (1)
 
Fuvest2004 2fase 4dia
Fuvest2004 2fase 4diaFuvest2004 2fase 4dia
Fuvest2004 2fase 4dia
 
Ita2006 1dia
Ita2006 1diaIta2006 1dia
Ita2006 1dia
 
Ita2006 1dia
Ita2006 1diaIta2006 1dia
Ita2006 1dia
 
Questõesdecinemática1
Questõesdecinemática1Questõesdecinemática1
Questõesdecinemática1
 
3 lista de_exercicios
3 lista de_exercicios3 lista de_exercicios
3 lista de_exercicios
 
Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001Unicamp2009 2fase 3dia_parte_001
Unicamp2009 2fase 3dia_parte_001
 
Cap5
Cap5Cap5
Cap5
 
Golpe ariete
Golpe ariete Golpe ariete
Golpe ariete
 
Fuvest2007 2fase 4dia
Fuvest2007 2fase 4diaFuvest2007 2fase 4dia
Fuvest2007 2fase 4dia
 
Cap4
Cap4Cap4
Cap4
 
Dilatação e escalas calor
Dilatação e escalas calorDilatação e escalas calor
Dilatação e escalas calor
 
Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001Unicamp2005 2fase 3dia_parte_001
Unicamp2005 2fase 3dia_parte_001
 
Caderno de provas do 2º dia de vestibular tradicional da UPE
Caderno de provas do 2º dia de vestibular tradicional da UPECaderno de provas do 2º dia de vestibular tradicional da UPE
Caderno de provas do 2º dia de vestibular tradicional da UPE
 

Último

8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
tatianehilda
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
TailsonSantos1
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
HELENO FAVACHO
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 

Último (20)

Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito8 Aula de predicado verbal e nominal - Predicativo do sujeito
8 Aula de predicado verbal e nominal - Predicativo do sujeito
 
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
Aula 25 - A america espanhola - colonização, exploraçãp e trabalho (mita e en...
 
6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx6ano variação linguística ensino fundamental.pptx
6ano variação linguística ensino fundamental.pptx
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptxTeoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
Teoria heterotrófica e autotrófica dos primeiros seres vivos..pptx
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
P P P 2024 - *CIEJA Santana / Tucuruvi*
P P P 2024  - *CIEJA Santana / Tucuruvi*P P P 2024  - *CIEJA Santana / Tucuruvi*
P P P 2024 - *CIEJA Santana / Tucuruvi*
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdfPROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
PROJETO DE EXTENSÃO I - TERAPIAS INTEGRATIVAS E COMPLEMENTARES.pdf
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVAEDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
EDUCAÇÃO ESPECIAL NA PERSPECTIVA INCLUSIVA
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 

Exerc cios segunda_prova_ftr

  • 1. Prof. Rogério Simões 1 Exercícios Segunda Prova FTR Dados gerais: g=9,81 m/s2 =32,2 ft/s2 ρH2O=999 kg/m3 =1,94 slug/ft3 1) Considere um escoamento permanente e incompressível, através do dispositivo mostrado. Determine a magnitude e o sentido da vazão em massa através da passagem 3. (Resp: Q3=-5,00ft3 /s para dentro do VC) A1=1ft 2 A3=0,2ft 2 A2=0,5ft 2 v2=30ft/sv1=10ft/s y x 2) Num escoamento incompressível através do dispositivo mostrado, as velocidades podem ser consideradas uniformes nas seções de entrada e saída. Se o fluído em escoamento for água, obtenha uma expressão para a vazão em massa da seção 3. As seguintes condições são conhecidas: A1=0,1m2 , A2=0,2m2 , A3=0,15m2 , v1=5m/s e v2=10+5cos(4πt)m/s. (Resp: =2497,5+999cos(4πt)kg/s)3m& escoamento escoamento 1 2 3 3) Fluído com uma massa específica de 1050 kg/m3 escoa em regime permanente através de uma caixa retangular, conforme mostrado. Dados A1=0,05m2 , A2=0,01m2 , A3=0,06m2 , v1=4i m/s e v2=-8jm/s, determine a velocidade v3. (Resp: 3v r =4,04i r -2,33 j r m/s)
  • 2. Prof. Rogério Simões 2 x 60° A1 A2 A3 4) Fluído incompressível escoa através do dispositivo mostrado. Na entrada, o escoamento é uniforme com velocidade v1=2,0 ft/s. O perfil de saída é linear, v2=ky. O dispositivo tem largura w=1,25 ft. Determine k, considerando o escoamento permanente. (Resp: k=14,55s-1 ) h=0,275 ft 60° y x 5) Água entra num tubo bidimensional de largura constante, h, com velocidade uniforme, U. O tubo faz uma curva de 90° que distorce o escoamento, de modo a produzir o perfil de velocidade linear mostrado na saída, com vmax=2vmin. Avalie vmin, se U=7,5m/s. (Resp: vmin=5m/s) vmin vmax y x v=vmin[2 -x/h] h U 6) Considere um escoamento de água através do dispositivo mostrado. Sabendo que a seção 1 é circular de diâmetro 7in, as seções 2 e 3 são quadradas de dimensões 4in e 5in respectivamente. A seção 1 possui uma distribuição de velocidades na forma de um parabolóide de equação:         −= 2 1 2 max11 1 R r vv , a seção 2 possui distribuição linear de velocidades como apresentado na figura e a seção 3 a velocidade é uniforme ao longo da
  • 3. Prof. Rogério Simões 3 seção. Dados v1max=12ft/s e v2max=15ft/s, determine as componentes de v3 em relação ao sistema de coordenadas apresentado. Apresente as hipóteses necessárias para a solução do problema. v3 v2max=15ft/s v1max=12ft/s y x 3 1 2 7) Um jato de água sai de uma tubulação a uma velocidade constante média de 6m/s, choca-se com uma placa plana, que está em repouso e orientada normalmente a direção do jato. A seção da área de saída da tubulação tem 7cm2 . Qual é a força horizontal total que os fluídos em contato com a placa exercem sobre ela? (Resp: F=-2,57 kgf) 8) Um jato de água de vazão Q0 e velocidade v0, incide sobre uma placa e é defletido conforme a figura. Se a placa está parada, calcule as componentes Fx e Fy da força devido ao jato sobre a placa. Faça as hipóteses necessárias para a resolução do problema. (Resp: Fx=-0,9ρv0Q0, Fy=31/2 ρv0Q0/10) Q0 v0 Q1=0,6 Q0 Q2 60° 9) Um grande tanque está fixo a um carrinho, como mostrado. Água jorra do tanque através de um bocal de 600 mm2 a uma velocidade de 10m/s. O nível da água no tanque é mantido constante, por adição, mediante um tubo vertical. Determine a tração no cabo que mantém o carrinho estacionário. (Resp: 59,94N)
  • 4. Prof. Rogério Simões 4 v 10) Um jato de gasolina (DR=0,8) com seção de 0,08m2 e velocidade v0=50m/s, incide sobre uma placa e é defletido conforme a figura, mantendo o valor das velocidades em ambas as direções. Se a placa está em movimento contrário ao fluxo de gasolina com velocidade de v=15m/s, calcule as componentes Fx e Fy da força devido ao jato sobre a placa. Faça as hipóteses necessárias para a resolução do problema. v0 Q1=0,7 Q0 Q2 50° vy x 11) Um jato de água que sai de um bocal estacionário a 15m/s (A=0,05m2 ) atinge uma aleta curva montada num carrinho, conforme mostrado. A aleta desvia o jato de um ângulo θ=50°. Determine o valor de M, necessário para manter o carrinho estacionário. (Resp: M=409,24kg) v =50° M 12) Um jato de água de vazão Q0=3m3 /s e velocidade v0=15m/s, incide sobre uma placa e é defletido conforme a figura. Se a placa está parada, calcule as componentes Fx e Fy da força devido ao jato sobre a placa. Faça as hipóteses necessárias para a resolução do problema. (Resp.: FRx=-40459,5N , FRy=7786,4N)
  • 5. Prof. Rogério Simões 5 Q0 v0 Q1=0,6 Q0 Q2 60° 13) Um prato raso e circular tem um orifício de bordas vivas no seu centro. Um jato d’água, de velocidade V, atinge o prato concentricamente. Obtenha uma expressão para a força externa necessária a fim de manter o prato no lugar, se o jato que sai pelo orifício também tem velocidade V. Avalie a força para V=5m/s, D=100mm e d=20mm. (Resp: F=-321,5i r N) 14) Um jato de água é dirigido contra uma aleta, que poderia ser uma pá de turbina ou de qualquer outra máquina hidráulica. A água sai do bocal estacionário, de 50 mm de diâmetro, com uma velocidade de 20m/s e entra na aleta tangente a superfície, em A. A superfície interna da aleta, em B, faz um ângulo θ=150° com o sentido do x. Calcule a força que deve ser aplicada para manter a velocidade da aleta constante em U=5m/s. (Resp.: F=- 823,56i r +220,67 j r N) 15) Água proveniente de um bocal estacionário atinge uma aleta móvel com curvatura de θ =120°. A aleta move-se com velocidade constante, afastando-se do bocal, com velocidade U=30ft/s, e recebe um jato que sai do bocal com velocidade V=100ft/s. O bocal tem uma
  • 6. Prof. Rogério Simões 6 área de saída de 0,04ft2 . Determine a força que deve ser aplicada para manter a velocidade da aleta constante. (Resp.: F=-570,36i r +329,30 j r lbf) 16) Um jato d’água saindo de um bocal estacionário, encontra uma aleta com curvatura θ=90° que se move afastando-se do bocal a uma velocidade constante de 15m/s. O jato tem área de seção de 600 mm2 a uma velocidade de 30m/s. Determine a força que deve ser aplicada para manter a velocidade da aleta constante. (Resp.: F=-134,87i r +134,87 j r N) 17) Um jato de óleo (DR=0,8) atinge uma aleta que altera a direção do fluído de θ=180°. A área do jato é 1200 mm2 e sua velocidade relativa ao bocal estacionário é 20m/s. A aleta move-se aproximando do bocal a 10m/s. Determine a força que deve ser aplicada para manter a velocidade da aleta constante. (Resp.: F=-1,726i r kN) 18) O disco circular, cuja seção reta é mostrada, tem um diâmetro externo de 0,15m. Um jato d’água o atinge concentricamente e em seguida flui para fora, ao longo da superfície do disco. A velocidade do jato é 45m/s e o disco move-se para a esquerda a 10m/s. Determine a espessura da lâmina d’água no raio de 75mm a partir do eixo do jato. Que força horizontal é necessária para manter esse movimento? (Resp.: t=4,17mm, F=4243,6 r N)i
  • 7. Prof. Rogério Simões 7 19) Um duto com área de 5ft2 se contrai gradualmente para uma área de 2,5ft2 conforme a figura abaixo. A queda de pressão entre as duas seções é medida com um manômetro de mercúrio com deflexão de h=20in. Calcule a vazão através do duto. (Resp: Q=106,16ft3 /s) 20) A água que flui através de um grande reservatório aberto, conforme indicado na figura abaixo, descarrega-se horizontalmente na atmosfera. Calcule a velocidade v3 e a velocidade v2. (Resp: v2=16,05ft/s, v3=4,01ft/s) 21) Uma tubulação inclinada de diâmetro igual a 6in é ligada por meio de um redutor a um tubo de diâmetro igual a 4in. A água se escoa através do tubo, conforme indicado a figura abaixo. Calcule a velocidade média v2. (Resp: v2=31,8ft/s)
  • 8. Prof. Rogério Simões 8 22) Um bocal de 2in de diâmetro é instalado na extremidade de um tubo de 6in de diâmetro. Se a pressão no tubo for de 20psig, calcule a descarga da água em pés por segundo. (Resp: v=54,83ft/s) 23) Um sifão de 1in de diâmetro é usado para drenar gasolina (DR=0,75) de um grande tanque, conforme ilustrado na figura abaixo. O ponto mais elevado do sifão está situado a 4ft acima da superfície da gasolina e o sifão descarrega num ponto a 9ft abaixo da superfície. Calcule a vazão em ft3 /s e a pressão no ponto mais elevado do sifão. (Resp: Q=0,131ft3 /s, p2=- 4,23psig) 24) Uma vazão de 5ft3 /s de água escoa sem atrito através da expansão indicada na figura abaixo. A pressão na seção 1 é igual a 12psig. Suponha escoamento unidimensional. Encontre a pressão em 2. (Resp: p2=12,22psig)