SlideShare uma empresa Scribd logo

Plano de aula

1 de 8
Baixar para ler offline
   
Trigonometria no triângulo retângulo
A palavra Trigonometria vem do grego TRI - três, GONO - ângulo e
METRIEN - medida, significando Medida de Triângulos.
Trata-se, assim, do estudo das relações entre os lados e os ângulos de um
triângulo retângulo.
Os seus princípios baseiam-se nas proporções fixas dos lados de
determinado ângulo num triângulo retângulo. As mais simples são conhecidas como
seno, cosseno e tangente(denominadas razões trigonométricas).
A trigonometria começou como uma área da Matemática eminentemente
prática, para determinar distâncias que não podiam ser medidas diretamente,
surgindo inicialmente para resolver problemas de astronomia. Atualmente têm
importância prática na navegação, topografia e movimento harmônico simples em
física.
Trigonometria no triângulo retângulo
Existem dois tipos de trigonometria, a Plana e a Esférica, que abordam,
a resolução de triângulos no plano e na esfera, respectivamente. A trigonometria
plana lida com figuras geométricas pertencentes a um único plano, enquanto a
trigonometria esférica trata dos triângulos que são uma secção da superfície de
uma esfera.
Tema: Grandezas e Medidas
- Conteúdo: Razões Trigonométricas no Triângulo Retângulo.
- Habilidades: H37 – Grupo II – Resolver problemas em diferentes
contextos, a partir da aplicação das razões trigonométricas dos
ângulos agudos.
- Série – 9° ano- Ensino Fundamental – ciclo II
- Período – 4° bimestre
- Tempo Previsto: 4 aulas
- Recursos: Softwares, data show, teodolito simplificado, Proposta
Curricular, Tabela Trigonométrica.
- O que se espera: Ao término das atividades espera-se que os alunos
tenham assimilado o conteúdo e compreendido a importância das
Razões trigonométricas no dia-a-dia e suas aplicações.
Etapa 1: Problematização/Contextualização
 A atividade proposta inicialmente será explanada pelo professor com o significado
palavra Trigonometria e sua história, ou seja, a narrativa do conteúdo.
 Através de um exercício de sensibilização, os alunos farão uma estimativa de
medidas de ângulos de elevação, visando introduzir a noção de razões
trigonométricas de um ângulo agudo, partindo de seus conhecimentos prévios.
 A contextualização será feita através de informações fornecidas pelo órgão que
regulamenta recomendações a respeito das inclinações máximas para estradas de
rodagens (DNIT – Departamento Nacional de Infraestrutura e Transporte), conforme
o exemplo:
Em uma estrada com inclinação 0,15 ou 15%, sobe-se 15m a cada 100m
de deslocamento horizontal. As inclinações máximas recomendadas pelo DNIT
dependem do tipo de estrada, mas variam de 5% nas estradas de maior volume de
tráfego; a 9% nas estradas com baixo volume de tráfego. Alguns trechos de
estradas podem, excepcionalmente atingir inclinações maiores do que as
recomendações, chegando a valores da ordem de 10%.
Etapa 2: Levantamento dos conhecimentos prévios
Levantar questões enumerando situações que observam no dia-a-dia ou na
natureza relacionados a: rampas/sombra/altura das árvores/prédios - ângulos/largura de
rios/telhado (oitão/tesouras) e registros das respostas relevantes na lousa conforme o
mapa de percurso abaixo:
Razões Trigonométricas no
Triângulo Retângulo
Sistema de
numeração
Conjunto dos
Números Reais
Positivos
Frações e
Decimais
Uso de letras
Operações:
Adição,
Multiplicação e
Divisão
Medidas e
Proporção
Expressões
Algébricas
Equação do 1º
Grau
Elementos do Triângulo
Retângulo:
catetos/hipotenusa
Etapa 3: Desenvolvimento metodológico
Após o levantamento prévio dos alunos, propor uma situação problema
dos conceitos citados anteriormente.
Problema 1:
Em determinada rua, um pedestre caminha 50m e percebe que se elevou
2m em relação ao ponto onde iniciou a caminhada. Qual é a inclinação percentual
dessa rua? E qual é a medida do ângulo de inclinação?
Neste momento formalizar as razões trigonométricas.
Partindo dessa discussão, definir razões seno, cosseno e tangente de um
ângulo agudo e relacionar os valores percentuais que obtiveram para as inclinações
da rua com a medida do ângulo correspondente, apresentado, para tanto, uma
tabela trigonométrica com os valores de 0 a 90°.

Recomendados

Dados, tabelas e gráficos de barras
Dados, tabelas e gráficos de barrasDados, tabelas e gráficos de barras
Dados, tabelas e gráficos de barrasrubensdiasjr07
 
Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)Área e perímetro de figuras planas ( apresentação)
Área e perímetro de figuras planas ( apresentação)SirlenedeAPFinotti
 
Plano de trabalho – Razões trigonométricas
Plano de trabalho – Razões trigonométricasPlano de trabalho – Razões trigonométricas
Plano de trabalho – Razões trigonométricasLuciane Oliveira
 
Perímetro e área do circulo
Perímetro e área do circuloPerímetro e área do circulo
Perímetro e área do circuloAbel Mondlane
 
Plano de aula sobre Progressões
Plano de aula sobre ProgressõesPlano de aula sobre Progressões
Plano de aula sobre Progressõesxtganderson
 

Mais conteúdo relacionado

Mais procurados

MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34GernciadeProduodeMat
 
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34GernciadeProduodeMat
 
Trigonometria no Triângulo Retângulo 2011
Trigonometria no Triângulo Retângulo 2011Trigonometria no Triângulo Retângulo 2011
Trigonometria no Triângulo Retângulo 2011tioheraclito
 
Perímetros e áreas de figuras planas
Perímetros e áreas de figuras planasPerímetros e áreas de figuras planas
Perímetros e áreas de figuras planasedmildo
 
Área e Volume
Área e VolumeÁrea e Volume
Área e Volumebetontem
 
Projeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função QuadráticaProjeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função Quadráticamauriciocampos10mjcg
 
Função Afim e Linear.ppt
Função Afim e Linear.pptFunção Afim e Linear.ppt
Função Afim e Linear.pptRildo Borges
 
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)GernciadeProduodeMat
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)Hélio Rocha
 
6º aula congruência de triângulos
6º aula   congruência de triângulos6º aula   congruência de triângulos
6º aula congruência de triângulosjatobaesem
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)Ilton Bruno
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retânguloRosana Santos Quirino
 
Âgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversalÂgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversalAndréa Thees
 
Cevianas notáveis de um triângulo
Cevianas notáveis de um triânguloCevianas notáveis de um triângulo
Cevianas notáveis de um triânguloFABRÍCIO SANTOS
 
Area e perimetro exercicio de aprendizagem - com respostas
Area e perimetro   exercicio de aprendizagem - com respostasArea e perimetro   exercicio de aprendizagem - com respostas
Area e perimetro exercicio de aprendizagem - com respostasbluesky659
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)ProfCalazans
 

Mais procurados (20)

MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 01 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
 
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
MATEMÁTICA | 3ª SÉRIE | AULA 02 | HABILIDADE DA BNCC - (EM13MAT104) D16/D34
 
Trigonometria no Triângulo Retângulo 2011
Trigonometria no Triângulo Retângulo 2011Trigonometria no Triângulo Retângulo 2011
Trigonometria no Triângulo Retângulo 2011
 
Perímetros e áreas de figuras planas
Perímetros e áreas de figuras planasPerímetros e áreas de figuras planas
Perímetros e áreas de figuras planas
 
Área e Volume
Área e VolumeÁrea e Volume
Área e Volume
 
Projeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função QuadráticaProjeto de Planejamento - Função Quadrática
Projeto de Planejamento - Função Quadrática
 
Plano cartesiano animado
Plano cartesiano animadoPlano cartesiano animado
Plano cartesiano animado
 
âNgulos
âNgulosâNgulos
âNgulos
 
Função Afim e Linear.ppt
Função Afim e Linear.pptFunção Afim e Linear.ppt
Função Afim e Linear.ppt
 
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
MATEMÁTICA | 1ª SÉRIE | HABILIDADE DA BNCC | (EM13MAT101)
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
6º aula congruência de triângulos
6º aula   congruência de triângulos6º aula   congruência de triângulos
6º aula congruência de triângulos
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retângulo
 
Âgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversalÂgulos formados por duas retas paralelas e uma transversal
Âgulos formados por duas retas paralelas e uma transversal
 
Cevianas notáveis de um triângulo
Cevianas notáveis de um triânguloCevianas notáveis de um triângulo
Cevianas notáveis de um triângulo
 
Anagramas
AnagramasAnagramas
Anagramas
 
Area e perimetro exercicio de aprendizagem - com respostas
Area e perimetro   exercicio de aprendizagem - com respostasArea e perimetro   exercicio de aprendizagem - com respostas
Area e perimetro exercicio de aprendizagem - com respostas
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
 

Semelhante a Plano de aula

Encontro presencial: Mapa de percurso e sequência didática
Encontro presencial: Mapa de percurso e sequência didáticaEncontro presencial: Mapa de percurso e sequência didática
Encontro presencial: Mapa de percurso e sequência didáticaMarcia Duran
 
Mapa de percurso e sequência didática encontro presencial
Mapa de percurso e sequência didática  encontro presencialMapa de percurso e sequência didática  encontro presencial
Mapa de percurso e sequência didática encontro presencialValdelice Garcia
 
Projeto Trigonometria Cristiane Maciel E Marcia Cristina
Projeto Trigonometria   Cristiane Maciel E Marcia CristinaProjeto Trigonometria   Cristiane Maciel E Marcia Cristina
Projeto Trigonometria Cristiane Maciel E Marcia Cristinacristtm
 
O que estuda a trigonometria
O que estuda a trigonometriaO que estuda a trigonometria
O que estuda a trigonometriaisabelrorig
 
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloTrigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloVera Gonçalves
 
RecuperaçãO 9o. Ano 2009
RecuperaçãO   9o. Ano   2009RecuperaçãO   9o. Ano   2009
RecuperaçãO 9o. Ano 2009Andréa Thees
 
Trigonometria(soares)
Trigonometria(soares)Trigonometria(soares)
Trigonometria(soares)Antonio Filho
 
Matemática O teodolito e as distâncias inacessíveis
Matemática  O teodolito e as distâncias inacessíveis Matemática  O teodolito e as distâncias inacessíveis
Matemática O teodolito e as distâncias inacessíveis Editora Moderna
 
Universidade do estado da bahia – uneb
Universidade do estado da bahia – unebUniversidade do estado da bahia – uneb
Universidade do estado da bahia – unebDiego Sampaio
 
Apostila trigonometria no triângulo retângulo
Apostila trigonometria no triângulo retânguloApostila trigonometria no triângulo retângulo
Apostila trigonometria no triângulo retânguloCristiane Trevisani
 
Trigonometria exercicios resolvidos
Trigonometria exercicios resolvidosTrigonometria exercicios resolvidos
Trigonometria exercicios resolvidostrigono_metria
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retânguloClaudia Dutra
 
Trigonometria- Básica
Trigonometria- BásicaTrigonometria- Básica
Trigonometria- BásicaIsabele Félix
 
Cinara de azevedo trigonometria
Cinara de azevedo trigonometriaCinara de azevedo trigonometria
Cinara de azevedo trigonometriacinaraapertille
 
TRIGONOMETRIA DIVERTIDA
TRIGONOMETRIA DIVERTIDATRIGONOMETRIA DIVERTIDA
TRIGONOMETRIA DIVERTIDAvulcabelinho
 

Semelhante a Plano de aula (20)

Encontro presencial: Mapa de percurso e sequência didática
Encontro presencial: Mapa de percurso e sequência didáticaEncontro presencial: Mapa de percurso e sequência didática
Encontro presencial: Mapa de percurso e sequência didática
 
Mapa de percurso e sequência didática encontro presencial
Mapa de percurso e sequência didática  encontro presencialMapa de percurso e sequência didática  encontro presencial
Mapa de percurso e sequência didática encontro presencial
 
Projeto Trigonometria Cristiane Maciel E Marcia Cristina
Projeto Trigonometria   Cristiane Maciel E Marcia CristinaProjeto Trigonometria   Cristiane Maciel E Marcia Cristina
Projeto Trigonometria Cristiane Maciel E Marcia Cristina
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
O que estuda a trigonometria
O que estuda a trigonometriaO que estuda a trigonometria
O que estuda a trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria no Triângulo Retângulo
Trigonometria no Triângulo RetânguloTrigonometria no Triângulo Retângulo
Trigonometria no Triângulo Retângulo
 
RecuperaçãO 9o. Ano 2009
RecuperaçãO   9o. Ano   2009RecuperaçãO   9o. Ano   2009
RecuperaçãO 9o. Ano 2009
 
Trigonometria(soares)
Trigonometria(soares)Trigonometria(soares)
Trigonometria(soares)
 
Matemática O teodolito e as distâncias inacessíveis
Matemática  O teodolito e as distâncias inacessíveis Matemática  O teodolito e as distâncias inacessíveis
Matemática O teodolito e as distâncias inacessíveis
 
Universidade do estado da bahia – uneb
Universidade do estado da bahia – unebUniversidade do estado da bahia – uneb
Universidade do estado da bahia – uneb
 
Apostila trigonometria no triângulo retângulo
Apostila trigonometria no triângulo retânguloApostila trigonometria no triângulo retângulo
Apostila trigonometria no triângulo retângulo
 
Exercicios de trigonometria
Exercicios de trigonometriaExercicios de trigonometria
Exercicios de trigonometria
 
Trigonometria exercicios resolvidos
Trigonometria exercicios resolvidosTrigonometria exercicios resolvidos
Trigonometria exercicios resolvidos
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Apostila mecânica t
Apostila mecânica tApostila mecânica t
Apostila mecânica t
 
Trigonometria- Básica
Trigonometria- BásicaTrigonometria- Básica
Trigonometria- Básica
 
Cinara de azevedo trigonometria
Cinara de azevedo trigonometriaCinara de azevedo trigonometria
Cinara de azevedo trigonometria
 
TRIGONOMETRIA DIVERTIDA
TRIGONOMETRIA DIVERTIDATRIGONOMETRIA DIVERTIDA
TRIGONOMETRIA DIVERTIDA
 
Trigonometria y
Trigonometria yTrigonometria y
Trigonometria y
 

Plano de aula

  • 1.     Trigonometria no triângulo retângulo A palavra Trigonometria vem do grego TRI - três, GONO - ângulo e METRIEN - medida, significando Medida de Triângulos. Trata-se, assim, do estudo das relações entre os lados e os ângulos de um triângulo retângulo. Os seus princípios baseiam-se nas proporções fixas dos lados de determinado ângulo num triângulo retângulo. As mais simples são conhecidas como seno, cosseno e tangente(denominadas razões trigonométricas). A trigonometria começou como uma área da Matemática eminentemente prática, para determinar distâncias que não podiam ser medidas diretamente, surgindo inicialmente para resolver problemas de astronomia. Atualmente têm importância prática na navegação, topografia e movimento harmônico simples em física.
  • 2. Trigonometria no triângulo retângulo Existem dois tipos de trigonometria, a Plana e a Esférica, que abordam, a resolução de triângulos no plano e na esfera, respectivamente. A trigonometria plana lida com figuras geométricas pertencentes a um único plano, enquanto a trigonometria esférica trata dos triângulos que são uma secção da superfície de uma esfera.
  • 3. Tema: Grandezas e Medidas - Conteúdo: Razões Trigonométricas no Triângulo Retângulo. - Habilidades: H37 – Grupo II – Resolver problemas em diferentes contextos, a partir da aplicação das razões trigonométricas dos ângulos agudos. - Série – 9° ano- Ensino Fundamental – ciclo II - Período – 4° bimestre - Tempo Previsto: 4 aulas - Recursos: Softwares, data show, teodolito simplificado, Proposta Curricular, Tabela Trigonométrica. - O que se espera: Ao término das atividades espera-se que os alunos tenham assimilado o conteúdo e compreendido a importância das Razões trigonométricas no dia-a-dia e suas aplicações.
  • 4. Etapa 1: Problematização/Contextualização  A atividade proposta inicialmente será explanada pelo professor com o significado palavra Trigonometria e sua história, ou seja, a narrativa do conteúdo.  Através de um exercício de sensibilização, os alunos farão uma estimativa de medidas de ângulos de elevação, visando introduzir a noção de razões trigonométricas de um ângulo agudo, partindo de seus conhecimentos prévios.  A contextualização será feita através de informações fornecidas pelo órgão que regulamenta recomendações a respeito das inclinações máximas para estradas de rodagens (DNIT – Departamento Nacional de Infraestrutura e Transporte), conforme o exemplo: Em uma estrada com inclinação 0,15 ou 15%, sobe-se 15m a cada 100m de deslocamento horizontal. As inclinações máximas recomendadas pelo DNIT dependem do tipo de estrada, mas variam de 5% nas estradas de maior volume de tráfego; a 9% nas estradas com baixo volume de tráfego. Alguns trechos de estradas podem, excepcionalmente atingir inclinações maiores do que as recomendações, chegando a valores da ordem de 10%.
  • 5. Etapa 2: Levantamento dos conhecimentos prévios Levantar questões enumerando situações que observam no dia-a-dia ou na natureza relacionados a: rampas/sombra/altura das árvores/prédios - ângulos/largura de rios/telhado (oitão/tesouras) e registros das respostas relevantes na lousa conforme o mapa de percurso abaixo: Razões Trigonométricas no Triângulo Retângulo Sistema de numeração Conjunto dos Números Reais Positivos Frações e Decimais Uso de letras Operações: Adição, Multiplicação e Divisão Medidas e Proporção Expressões Algébricas Equação do 1º Grau Elementos do Triângulo Retângulo: catetos/hipotenusa
  • 6. Etapa 3: Desenvolvimento metodológico Após o levantamento prévio dos alunos, propor uma situação problema dos conceitos citados anteriormente. Problema 1: Em determinada rua, um pedestre caminha 50m e percebe que se elevou 2m em relação ao ponto onde iniciou a caminhada. Qual é a inclinação percentual dessa rua? E qual é a medida do ângulo de inclinação? Neste momento formalizar as razões trigonométricas. Partindo dessa discussão, definir razões seno, cosseno e tangente de um ângulo agudo e relacionar os valores percentuais que obtiveram para as inclinações da rua com a medida do ângulo correspondente, apresentado, para tanto, uma tabela trigonométrica com os valores de 0 a 90°.
  • 7. Etapa 3: Desenvolvimento metodológico Utilizar o exercício a seguir para chegar ao resultado satisfatório dividindo a classe em grupos de 3. Para determinar a altura da árvore maior, dois garotos fizeram a observação do seu topo, conforme está descrita na imagem abaixo. Considerando que João Paulo e Daniel, tem uma altura até seus olhos de 1,50m. João Paulo observa o topo da árvore maior, tendo como inclinação de 37º no seu campo de visão no topo da árvore menor. Daniel observa o topo da árvore maior, tendo como inclinação de 25º no seu campo de visão no topo da árvore menor.Dados: tangente de 25º (aproximadamente 0,47) e de 37º (aproximadamente 0,75) - Qual a altura da árvore maior que João Paulo e Daniel descobriram? Houve divergência na altura da árvore maior que cada um encontrou?
  • 8. Etapa 4: Recuperação e Avaliação 1) Solicitar aos alunos que redijam aquilo que foi mais significativo para ele. 2) Solicitar uma nova lista de exercícios complementares aumentando o grau de complexidade. 3) Finalizar com prova escrita com questões objetivas e discursivas. 4) Avaliação procedimental e comportamental relativa à realização da tarefas mínimas. 5) Aplicação de conhecimentos matemáticos adquiridos anteriormente 6) Uso de terminologia e simbologia adequada 7) Avaliação contínua e formativa. 8) Recuperação Contínua