SlideShare uma empresa Scribd logo
MÁQUINAS
ELÉTRICAS
GIRANTES
INTRODUÇÃO
Máquinas elétricas são máquinas destinadas a transformar a energia elétrica em
energia mecânica e vice-versa. Como vimos anteriormente, elas podem ser
classificadas segundo a transformação da energia: geradora, motora ou
transformadora. As duas primeiras classificações são também chamadas de
"máquinas elétricas girantes ou rotativas", pela própria característica da
conversão eletromecânica.
Nestes tipos de máquinas girantes ou rotativas, suas operações podem ser
como operação MOTORA ou operação GERADORA. O que diferencia uma
máquina da outra é o sentido da energia empregada. Por exemplo: quando se
recebe energia mecânica rotacional pelo eixo da máquina e se converte em
energia elétrica, temos então um gerador. A mesma máquina, com algumas
adaptações, poderá receber energia elétrica e convertê-la em energia mecânica
rotacional. Neste caso, teremos um motor.
Possíveis operações de uma máquina elétrica rotativa.
Para que possam ser especificados corretamente, é necessário saber quais são
os tipos de máquinas existentes no mercado, seu princípio de funcionamento,
características construtivas e como realizar sua seleção. Teoricamente, todo
motor pode ser um gerador, visto que é apenas uma máquina conversora de
energia. O quadro seguinte mostra, de forma geral,os diversos tipos de
máquinas elétricas que podem funcionar como motor (principalmente) ou como
gerador.
Classificação simples das máquinas elétricas,conforme suas
características construtivas e sua aplicação.
Esta classificação é a mais conhecida e aceita, podendo as máquinas
elétricas também serem, classificadas segundo o critério de rotação, grau de
proteção, torque, rendimento etc.
DEFINIÇÕES
A máquina rotativa tem partes fixas e partes móveis. A parte fixa (estática)
chamamos de ESTATOR e a parte móvel, girante ou rotativa chamamos de
ROTOR. A figura a seguir mostra as várias partes de um motor elétrico
genérico, no caso um motor trifásico de indução.
O espaço entre o estator e o rotor é chamado de "entreferro“, em Inglês: air
gap, e tem papel fundamental no rendimento da máquina. O rotor
normalmente é montado sobre um eixo de aço que está apoiado sobre
mancais nas duas extremidades da carcaça. Este eixo normalmente recebe
tratamento térmico para evitar problemas de empenamento e fadiga. A
carcaça é a estrutura que suporta todo o conjunto e são geralmente de
construção robusta em ferro fundido, aço ou alumínio, dependendo da
aplicação.
O rotor pode ser um núcleo composto de chapas de material ferromagnético,
a fim de reduzir as perdas no ferro, ou de uma peça fundida em alumínio que
sustenta às chapas de ferro Neste último caso, estamos falando de um rotor
no formato de gaiola no as barras e anéis de Alumínio formam os condutores
do rotor em curto circuito.O rotor em formato de gaiola pode ser também
construído com barras anéis de cobre ou ligas de cobre. Na prática, o projeto
e a construção do rotor depende da sua aplicação e das características
necessárias para seu melhor funcionamento.
Fotografia de um motor de indução trifásico, em corte para mostrar suas partes internas.
Num gerador síncrono por exemplo, num turbogerador o rotor poderá ser
uma peça maciça ferromagnética, usinado de forma a se criar ranhuras,
slots, em sua superfície que permitam instalar os lados retos das bobinas de
campo, bobinas do rotor.
Rotor cilíndrico de pólos lisos de um turbogerador. Provavelmente um par de
pólos. Repare-se no tamanho da peça em relação ao homem à direita.
Já o rotor de um hidrogerador, normalmente tem-se um diâmetro muito
superior a de um turbogerador. Neste caso, nem todo material do rotor é
peça magnética,sendo o núcleo rotativo composto apenas de uma estrutura
metálica que dá suporte e escoramento ao núcleo magnético propriamente
dito. Nesta estrutura ficam engastadas as peças polares, que são os pólos
do rotor. Mais adiante veremos como é isto e a diferença entre os diversos
tipos de máquinas síncronas
Rotor de um hidrogerador. Repare-se no número de pólos salientes, peças
Polares, e no enrolamento de armadura da excitatriz, à esquerda..
No caso do rotor de um motor, o tipo de motor é que define as características
construtivas do rotor, podendo ser de indução (o mais comum), de corrente
contínua, síncrono bobinado, de ímã permanente etc.
Portanto, dependendo do tipo de máquina elétrica elas possuem características
bastantes diferentes, podendo acomodar bobinas, anéis de curto-circuito ou
ímãs permanentes.
Um outro dado importante é quando dizemos sobre a velocidade da
máquina. A "velocidade do eixo", "velocidade do rotor" ou "velocidade da
máquina" diz respeito sobre a mesma coisa, ou seja, a velocidade de rotação
do eixo da máquina. Pode parecer infundado o esclarecimento, mas este
tipo de dúvida tem provocado bastante confusão.
Tanto o rotor quanto o estator possuem três partes importantes: o núcleo
magnético, o enrolamento, bobinas, e o sistema de isolação. O propósito do
núcleo é de "canalizar" o fluxo magnético através das bobinas. Os
enrolamentos conduzem correntes elétricas que geram o fluxo magnético
necessário para a conversão da energia, seja de elétrica para mecânica ou
vice-versa. E o sistema de isolação que previne possíveis curto-circuitos nas
partes de contato.
A seguir, veremos mais alguns detalhes sobre o rotor, o estator, o sistema
de isolação e os enrolamentos amortecedores.
ROTOR
Em algumas máquinas, o rotor pode abrigar suas bobinas de duas maneiras
diferentes.Se expusermos os pólos magnéticos ao enrolamento do estator
chamaremos isto de rotor de "pólos salientes". Quando o núcleo do rotor
tem pólos salientes, núcleo polar, as bobinas do rotor são enroladas em
volta desta peça. O conjunto final do pólo é chamado de "sapata polar",
nome muito utilizado no meio industrial. Sua função é providenciar uma
correta distribuição da densidade de fluxo através do entreferro.
Rotor de pólos salientes. Fotografia do rotor de um grande motor esquerda. Repare-se nos detalhes
construtivos deste tipo de conjunto. À direita, desenho esquemático mostrando o rotor de 4 pólos e as
linhas de campo percorrendo seu caminho magnético. Observe-se as bobinas de campo, formato
retangular, envolvendo os pólos e o sentido das correntes.
Os pólos salientes são usados principalmente em máquinas síncronas de geração de
energia e também na parte estatórica das máquinas de corrente contínua Estas
máquinas geralmente trabalham com rotações baixas, devido à resistência do ar
elevado, ao conjunto mecânico não muito sólido e ao elevado número de pólos.
Na geração de energia hidrelétrica, a maioria das turbinas hidráulicas trabalham com
uma velocidade baixa de rotação,entre 50 e 300 RPM a fim de obter a máxima
performance do aproveitamento hidráulico. Como a freqüência elétrica é fixa 60 Hz, o
número de pólos será um número relativamente grande. Baixa rotação geralmente
caracteriza um diâmetro D de rotor elevado, de forma a fornecer espaço suficiente para
a colocação de todos estes pólos,e um comprimento L dos pólos pequeno em relação a
este diâmetro.
Rotor de pólos lisos. À esquerda temos detalhes das ranhuras do rotor de um turbogerador. À direita, um
desenho esquemático mostrando o rotor de pólos lisos e as linhas de campo percorrendo seu caminho
magnético.
A outra maneira de se abrigar as bobinas do rotor e produzir pólos magnéticos é
chamado de "pólos lisos". Neste caso, o bobinado do rotor está embutido nas
ranhuras, slots, da mesma. Como vimos anteriormente, os turbogeradores são
geradores que possuem este tipo de rotor. Sua energia mecânica, de rotação advém
de turbinas à vapor que trabalham em altíssimas rotações. É o caso típico encontrado
na co-geração em usinas de
açúcar e álcool. Esta rotação vai de 1500 a 3600 RPM, o que significa que o gerador
deverá dar conta desta velocidade. Como são máquinas síncronas, ou seja, trabalham
numa rotação sincronizada com a freqüência elétrica nominal, o número de pólos é
sempre muito baixo, não excedendo a 4. Portanto, as máquinas síncronas de geração
turbinada à vapor possuem 2 ou 4 pólos apenas.
Diferentemente das máquinas de pólos salientes, as de pólos lisos geralmente tem
diâmetro D pequeno e comprimento L grande, ou seja, a relação D / L sempre será
menor que 1. Ao contrário das de pólos salientes, onde esta relação sempre será maior
que 1.
Em resumo
Turbinas hidráulicas tipo, Kaplan ou Francis, oferecem rotações baixas no
seu eixo, exigindo uma máquina, hidrogerador, com vários pólos magnéticos,
de preferência pólos salientes, o que implica num diâmetro grande,
comparado ao seu menor comprimento.
Já as turbinas à vapor oferecem alta rotação, exigindo máquinas elétricas de
pouquíssimos pólos, no máximo 4, embutidos na própria peça rotórica pólos
lisos. Isto implica num diâmetro menor que o seu comprimento,
caracterizando um turbogerador.
ESTATOR
Como vimos anteriormente, o estator é a parte estática de uma máquina elétrica. É
composta pela carcaça, pelo núcleo magnético e pelos enrolamentos do estator. No
caso de um hidrogerador, a carcaça é fabricada em chapas de aço soldadas e podem
ser construídas em seções para facilitar o manuseio e o transporte. O núcleo do estator
é constituído de lâminas de 0,35 a 0,50 mm de espessura, de aço silício de alta
permeabilidade. São estampadas com a máxima precisão, isentas de rebarbas e
envernizadas em ambos os lados e curados a altas temperaturas.
No estator estão distribuídos, por suas ranhuras, os lados retos das bobinas de campo
(para motores) ou bobinas de armadura, para geradores, conforme mostra a figura. Do
ponto de vista elétrico, o estator de um gerador é idêntico ao estator de um motor de
indução trifásico.
Exemplo do estator de um motor
síncrono.Observe-se as cabeças das
bobinas de campo como estão
escamoteadas para fora do corpo
estatórico.
Exemplo de uma lâmina estatórica. A sua montagem
circular formará o núcleo magnético do estator.
Para grandes máquinas, geradora ou motora, o núcleo estatórico é formado
por uma combinação de chapas segmentadas, colocadas lado a lado, de tal
forma a constituir uma peça única Este tipo de construção é muito comum
na montagem de hidrogeradores.
ISOLAÇÃO
O sistema de isolação previne que possíveis curto-circuitos ocorram. Estão
em várias partes da máquina elétrica, estator e rotor como entre as espiras
de uma bobina, entre bobinas e o núcleo magnético, entre bobinas e a
carcaça, etc. As isolações protegem contra surtos de chaveamento e outros
tipos de defeitos. Também são elementos importantes na proteção térmica e
seus efeitos.
Alguns especialistas colocam o sistema de isolação como o principal
elemento de uma máquina elétrica. Seu funcionamento é fundamental no
desempenho e nas características de funcionamento de uma máquina
elétrica. Um sistema de isolação precário compromete não só o
funcionamento da mesma como também o sistema de alimentação de
energia como um todo.Existem diversos materiais de isolação que suportam
altas temperaturas sem perder suas principais características de isolação,
como por exemplo o papel Kraft, o MYLAR® e o NOMEX® da DuPont.
Exemplo de aplicação do NOMEX® nas ranhuras de um motor. Observe-se que ele isola
completamente os fios da bobina em relação ao anel estatórico.
ENROLAMENTO AMORTECEDOR
Como já vimos, uma máquina elétrica possui dois enrolamentos básicos, um
conjunto de enrolamentos do estator e um conjunto de enrolamentos do
rotor. Existe ainda um terceiro enrolamento colocado no rotor na máquina
síncrona de pólos salientes, formado por barras, em geral de cobre, que
estão curto-circuitadas através de dois anéis como se fosse uma gaiola de
esquilo e inseridas em ranhuras feitas na superfície dos pólos. Este
enrolamento especial chamamos de enrolamento amortecedor. Sua função é
a de amortecer oscilações de conjugado-mecânico do rotor que poderiam
provocar quebras de sincronismo e causar a saída da máquina, uma vez que
fora do sincronismo esta deixa de produzir torque útil. Além disso, o
enrolamento amortecedor pode reduzindo sobretensões momentâneas,
auxiliar na sincronização quando ocorre alguma falha na máquina ou no
sistema ao qual ela está ligada etc. Quando a máquina está como motor,
este enrolamento permite a partida dela como motor, funcionando como se
fosse um motor de indução normal
Desenho esquemático dos pólos salientes de um rotor.
Repare-se nos detalhes das barras amortecedoras na
cabeça dos pólos,curtocircuitadas por um par de
anéis.
Fotografia de um rotor que mostra, no detalhe, as barras
amortecedoras.
CONCEITOS ELEMENTARES
Para o bom entendimento das características e das funcionalidades das
máquinas elétricas, necessário se faz apresentar alguns conceitos
elementares que ajudarão a entender tais características e o funcionamento.
TORQUE OU CONJUGADO
O torque, também chamados de momento ou binário, é a medida do esforço
necessário para girar um eixo qualquer. Por definição, torque é o produto da
força aplicada, em newtons,pela distância perpendicular entre o eixo de
rotação e o ponto de aplicação desta força. A figura ajuda a entender melhor
esta definição.
O desenho mostra que se aplicarmos uma força F tangencial à roda, de
raio r, teremos um torque desenvolvido sobre a roda em seu eixo axial.
O torque ζ é dado por:
rF ⋅=τ
Onde: ζ = Torque, em N.m
F = Força tangencial, em newton
r = raio, em metros.
Exemplo
Um motor desenvolve um torque inicial de 350 Nm. Se a polia que está
engastada no seu eixo tem um diâmetro 1,5 m, calcule a força de frenagem
necessária para evitar a rotação do motor.
1,5m
67,466
2
5,1
350
F
r
FrF
==
=⇒⋅=
τ
τ
Nm
TRABALHO MECÂNICO
O trabalho mecânico existe sempre que uma força ´F´ aplicada sobre um
corpo provoca um deslocamento ´d´ na mesma direção de F.
Resposta
O trabalho mecânico W é dado por:
dFW ⋅=Onde:
W = Trabalho, em joule
F = Força, em newton
d = deslocamento, em metros
Exemplo
Uma massa de 45 kg foi erguida a uma altura de 15 metros. Calcule o trabalho
realizado.
15 m
Resposta
45,44181,945FgmF =⋅=→⋅= N
75,66211545,441WdFW =⋅=→⋅= J
POTÊNCIA MECÂNICA
A potência mecânica é o trabalho mecânico realizado numa determinada
quantidade de tempo. A unidade da potência mecânica, no sistema
internacional SI, é o watt W.
t
W
Pmec
∆
=
Onde:
W= Trabalho mecânico, em joule
t = tempo, em segundos.
Exemplo
Um motor elétrico ergue uma carga de 50 kg a uma altura de 20 metros em 7
segundos. Calcule o trabalho mecânico realizado e a potência mecânica
entregue pelo eixo do motor.
20 m
gmF ⋅=
Solução
e dFW ⋅=
98102081,950dgmW =⋅⋅=⋅⋅= Joules
43,1401
7
9810
t
W
Pmec ===
∆
watts
Usualmente, a potência mecânica pode ser expressa
em cavalo-vapor CV ou em horse-power HP. Desta
forma, a relação com a potência em watt é:
Watts736.......CV1 Watts746.......HP1e
Assim a potência mecânica no eixo do motor para o exemplo anterior seria,
CV2CV9,1
736
43,1401
Pmec ≈== ou HP2HP88,1
746
43,1401
Pmec ≈==
Se analisarmos as equações anteriores verificamos que:
A parcela d/Δt na verdade é a velocidade com que o deslocamento do
corpo ocorre Se supormos que no exemplo anterior o eixo do motor
contivesse uma polia de raio ´r´, girando a ´n´ RPM, teríamos uma
velocidade tangencial v na polia definida como:






⋅=
⋅
==
t
d
F
t
dF
t
W
Pmec
∆∆∆
rv ⋅= ω
Como
f2 ⋅⋅= πω e
60
n
f = para rotações por minuto
então n
3060
n
2 ⋅





=⋅⋅=
π
πω daqui rn
30
rv ⋅⋅





=⋅=
π
ω
Onde:
v = velocidade tangencial, em m/s
n = numero de rotações por minuto RPM
r = raio da polia, em metro
Neste caso, teremos para a potência mecânica Pmec a seguinte expressão:
vFP
t
d
FP mecmec ⋅=→





⋅=
∆
Exemplo
Um motor elétrico ergue uma carga de 50 kg a uma altura de 20 metros em 7
segundos,se o motor tem uma polia com Ø = 12 cm no seu eixo, qual seria a
rotação ideal para subir a carga no tempo prescrito ?
Solução:
A velocidade de subida da carga é igual a velocidade tangencial da corda
na polia
86,2
7
20
t
d
v === m/seg
73,454
06,0
30
86,2
r
30
v
nrn
30
v =
⋅





=
⋅





=→⋅⋅





=
ππ
π
RPM
POTÊNCIA ELÉTRICA
Um sistema elétrico compostos por cargas passivas, resistores, capacitores
e indutores,acoplado a uma fonte de tensão variável v(t), faz circular uma
corrente i(t) também variável.
Como sabemos, a potência instantânea num sistema elétrico é dado por:
)t(i)t(v)t(p ⋅= W
Pela convenção de sinais, uma potência com sinal positivo corresponde a
uma transferência de energia da fonte para a carga. Para uma potência com
sinal negativo ocorre o inverso, ou seja, um retorno de energia da carga para
a fonte.
No caso de uma carga puramente indutiva, uma tensão senoidal,
( )tcosV)t(v máx ω⋅=
aplicada à carga resulta numa corrente senoidal atrasada de 90º, ou
)º90tcos(I)t(i áxm −⋅= ω
Logo, a potência elétrica instantânea passa a ser:
)º90tcos()tcos(IV)t(i)t(v)t(p áxmmáx −⋅⋅⋅=⋅= ωω
)t2(senIV
2
1
)t(p áxmmáx ω⋅⋅⋅=
Potência Ativa
V
I
P
V
I
CIRCUITO RESISTIVO R
ϕcosIVP ⋅⋅=
V
Potência reativa
V II
CIRCUITO INDUTIVO L
ϕsenIVQ ⋅⋅=
V
I
Potência reativa
CIRCUITO CAPACITIVO C
ϕsenIVQ ⋅⋅=
V
I
Potência Aparente
Potência Ativa
Potência Reativa
PQ
CIRCUITO MISTO R L C
IVS ⋅=
ϕcosIVP ⋅⋅=
ϕsenIVQ ⋅⋅=
Gráfico de tensão e corrente senoidal.
Em vermelho a potência instantânea. Repare-se
que a potência possui o dobro da freqüência da
corrente.
Se analisarmos a figura veremos
que no intervalo entre 0< ωt < π/2,
a potência p(t) é positiva, pois a
tensão e a corrente tem os
mesmos sinais e portanto a fonte
está entregando potência para a
carga.
No intervalo π/2 < ωt < π a potência
é negativa,tensão e corrente tem
sinais contrários e aí a carga
fornece potência à fonte. Nesta
fase, significa que a carga indutiva
está descarregando sua energia
armazenada na fase anterior.
Observe-se que neste um ciclo de
0 a π a potência média é zero.
No caso mais geral, a carga ligada à fonte tem uma impedância Z = R +jX ou
Z = |z|. /θ , onde θ é o ângulo entre os vetores R e X, dado por arctg (X/R).
Neste caso, uma tensão v(t)= Vmax. cos(ωt) aplicada nesta carga resulta
numa corrente i(t)= Imax. cos(ωt - θ), onde θ pode ser positivo ou negativo,
correspondendo à impedância equivalente indutiva ou capacitiva.
Temos
θcosIVP efefef ⋅⋅=
Como sabemos que o produto da tensão eficaz Vef pela corrente eficaz Ief é
a Potência Aparente S. Então, temos que:
θθθ cosSPefcosScosIVP efefef ⋅=→⋅=⋅⋅=
Neste caso, a potência eficaz de um circuito qualquer é o que chama-se de
POTÊNCIA ATIVA.
Ao fazer uma relação de potências entre P e S veremos que isto dá o que
chama-se de fator de potência FP:
=→= θθ cos
S
P
cos
med
FATOR DE POTÊNCIA
Portanto, o fator de potência é dado pela relação dentre a potência média
potência Ativa P e a potência Aparente S.
Para um circuito trifásico qualquer, a potência aparente é a soma das
potências aparentes de cada fase, ou seja:
fasefase IV3S ⋅⋅=
Entretanto, como os sistemas trifásicos são ligados em delta Δ ou estrela Y,
as tensões e correntes são calculadas pelas suas tensões de linha ou
corrente de linha. Neste caso, a potência aparente passa a ser calculada
por:
linhalinha IV3S ⋅⋅=
RENDIMENTO DOS MOTORES ή
Um motor elétrico absorve energia elétrica da rede e a transforma em
energia mecânica disponível no eixo. O rendimento desta máquina define a
eficiência com que é feita esta transformação. Seu cálculo é dada pela
relação entre a potência útil entregue ao eixo potência mecânica e a
potência ativa retirada da rede potência elétrica:
ϕϕ
η
cosIV3
P1000
cosIV3
P736
P
P kWCV
Elétrica
Mecânica
⋅⋅⋅
⋅
=
⋅⋅⋅
⋅
==
RELAÇÃO ENTRE TORQUE OU CONJUGADO E POTÊNCIA
Quando a energia mecânica é aplicada sob a forma de movimento rotativo, a
potência desenvolvida depende do Torque ζ e da velocidade de rotação n.
As relações entre si são:
ω
τ
WattsP
= Newtons metro [Nm]
Onde:
P =Potência em watts
ω =Velocidade angular em Radianos/segundo
ζ = Torque em Newtons metro
Com a rotação n em rotações por minuto RPM,
60
2
n
π
ω
⋅
⋅= em Rad/seg
Assim:
)tcos()tcos(IV)t(i)t(v)t(p áxmmáx θωω −⋅⋅⋅=⋅=
( ) ( ){ }βαβαβα −++=⋅ coscos
2
1
coscosComo,
( ) ( ) ( ) ( ){ }θθωθωω cost2cos
2
1
tcostcos +−=−⋅⇒
Pode-se demonstrar que cos(2ωt – θ) tem um valor médio igual a zero.
Portanto,
: ( ) ( )θωω −⋅⋅⋅= tcostcosIV)t(p áxmmáx
Esta é a potência média para qualquer θ. Portanto:
θcosIV
2
1
)t(p áxmmáx ⋅⋅⋅=
θcosIV
2
1
P áxmmáxmed ⋅⋅⋅=
Como
efmáx V2V ⋅= e efáxm I2I ⋅=
Se a potência do motor está em CV e a rotação em RPM,
60
2
n
P736 CV
π
τ
⋅
⋅
⋅
=
A fração
28,7028
60
2
736
=
⋅π
daqui
n
28,7028PCV ⋅
=τ
Se a potência do motor está em kW e a rotação em RPM,
60
2
n
P1000 kW
π
τ
⋅
⋅
⋅
=
A fração
daqui
n
30,9549PkW ⋅
=τ30,9549
60
2
P1000 kW
=
⋅
⋅
π
A potência então relaciona-se com o torque,
ωτ ⋅=P
O torque em Nm e ω em Rad./seg →P resultará em Watts
28,7028
n
P
RPMNm
CV
⋅
=
τ
CV
30,9549
n
P
RPMNm
kW
⋅
=
τ
kW
EXEMPLO
Calcular o torque nominal de um motor de 10CV e 1750 RPM
16,40
1750
28,702810CV
=
⋅
=τ Nm
( ) 16,40
1750
30,9549736,010
=
⋅⋅
=τ Nm
16,40
60
2
1750
73610
=
⋅
⋅
⋅
=
π
τ Nm
ENERGIA CINÉTICA DE ROTAÇÃO E MOMENTO DE INÉRCIA
A queda de uma pedra ou o movimento de um carro possuem ambos energia
cinética,que é a energia devido ao movimento. A energia cinética é uma
forma de energia mecânica e é dada pela equação :
2
c vm
2
1
E ⋅⋅=
onde:
Ec = energia cinética, em Joule (J)
m = massa do corpo, em kg
v = velocidade do corpo, em m/s
Um corpo em rotação também possui energia cinética. Sua magnitude
depende também da velocidade de rotação e da massa corporal. Só que
neste caso, a forma do corpo influencia diretamente no resultado.
Para se determinar a energia cinética de um corpo em rotação, usa-se a
equação :
( ) J
1800
n
E
2
c ⋅
⋅
=
π
onde:
n = Velocidade rotacional, em RPM
J = Momento de inércia, em kg.m²
O momento de inércia J, ou simplesmente "inércia" depende da massa e do
formato do corpo, geometria para ser determinado. A relação a seguir
mostra algumas formas geométricas mais comuns para se determinar sua
inércia. Caso o corpo tenha uma estrutura mais complexa, segmenta-se esta
estrutura em estruturas mais conhecidas, conforme a relação anterior. O
momento de inércia total será a soma dos momentos de inércia de cada
corpo.
Eixo de
giro
Massa m que gira a uma distância r ao redor de eixo o
2
rmJ ⋅=
Disco sólido de massa m e rádio r
2
rm
J
2
⋅
=
Anel anular de massa m que tem uma seção retangular
( )2
2
2
1 RR
2
m
J +⋅=
Barra de massa m que gira no seu centro
12
Lm
J
2
⋅
=
Barra retangular de massa m que gira ao redor do eixo O
( )21
2
2
2
1 RRRR
3
m
J ⋅++⋅=
A inércia é um parâmetro importante das máquinas elétricas girantes daí a
necessidade da sua melhor compreensão
Exemplo
Um disco sólido de 1400 kg, diâmetro de 1,0 metro e espessura de 22,5 cm,
gira a 1800 RPM ininterruptamente. Determine seu momento de inércia e a
energia cinética do corpo.
Resposta
O momento de inércia do corpo com esta estrutura é calculada
por:
0,175
2
)5,0(1400
2
rm
J
22
=
⋅
=
⋅
= kgm²
E a energia cinética é então:
( ) ( ) 11,3175
1800
1800
J
1800
n
Ec
22
=⋅
⋅
=⋅
⋅
=
ππ
MJ
O SISTEMA POR UNIDADE p.u.NAS MÁQUINAS ELÉTRICAS
Muito freqüentemente, os cálculos relativos a máquinas, transformadores e
sistemas de potência são efetuados em forma de "por unidade" pu, ou seja,
todas as quantidades envolvidas num cálculo serão expressas como frações
decimais de valores de base convenientemente escolhidas. Portanto, todos
os cálculos serão efetuados em pu, em lugar dos usuais volts, ampéres,
ohms, watts, etc.
Há duas vantagens neste sistema. Uma é que as constantes de máquinas e
transformadores caem numa faixa numérica razoavelmente estreita quando
expressas em pu.
A outra é que este método de realizar os cálculos permite a ter uma concreta
sensação da ordem de grandeza do parâmetro, o que ajuda muito na hora de
emitir um juízo sobre um determinado comportamento da máquina.
Todas as grandezas como tensão, corrente, impedância, reatância, etc
podem ser transformadas em pu. Isto se dá da seguinte forma, que já foi
visto:
EXEMPLOS
Dado um valor de tensão-base = 110 V, quais são os valores pu para as
seguintes tensões:
0,4
110
440
440 =→ p.u.
45,3
110
380
380 =→ p.u.
15,1
110
127
127 =→ p.u.
55,0
110
60
60 =→ p.u.
120
110
13200
13200 =→ p.u.
64,103
110
11400
11400 =→ p.u
Dado IBASE = 10 A, determine os valores reais das as seguintes correntes
A8,31038,0i.u.p38,0i real =⋅=→=
A64104,6i.u.p4,6i real =⋅=→=
FIM

Mais conteúdo relacionado

Mais procurados

Resistência dos Materiais - Torção
Resistência dos Materiais - TorçãoResistência dos Materiais - Torção
Resistência dos Materiais - Torção
Rodrigo Meireles
 
DESENHO TÉCNICO COTAGEM
DESENHO TÉCNICO COTAGEMDESENHO TÉCNICO COTAGEM
DESENHO TÉCNICO COTAGEM
ordenaelbass
 
Apostila - Mecanismos - Capítulo 3.pdf
Apostila - Mecanismos - Capítulo 3.pdfApostila - Mecanismos - Capítulo 3.pdf
Apostila - Mecanismos - Capítulo 3.pdf
Drive One
 
Sistema de Transmissão por Correntes - Projeto Interdisciplinar
Sistema de Transmissão por Correntes - Projeto InterdisciplinarSistema de Transmissão por Correntes - Projeto Interdisciplinar
Sistema de Transmissão por Correntes - Projeto Interdisciplinar
Luiz Amoras Jr
 
Viscosímetro rotativo
Viscosímetro rotativoViscosímetro rotativo
Viscosímetro rotativo
Izaura Nogueira
 
Triangulos de velocidades
Triangulos de velocidadesTriangulos de velocidades
Triangulos de velocidades
juniorvalente
 
51725631 caderno-de-exercicios-desenho-tecnico (1)
51725631 caderno-de-exercicios-desenho-tecnico (1)51725631 caderno-de-exercicios-desenho-tecnico (1)
51725631 caderno-de-exercicios-desenho-tecnico (1)
Heromo
 
Máquinas de Combustão Interna – Ciclo Otto
Máquinas de Combustão Interna – Ciclo OttoMáquinas de Combustão Interna – Ciclo Otto
Máquinas de Combustão Interna – Ciclo Otto
Albert Oliveira
 
02.medidas e conversões
02.medidas e conversões02.medidas e conversões
02.medidas e conversões
Edvaldo Viana
 
Apresentação elementos de máquinas
Apresentação  elementos de máquinasApresentação  elementos de máquinas
Apresentação elementos de máquinas
Amauri José de Souza Souza
 
Lista de exercicios elementos de máquinas
Lista de exercicios elementos de máquinasLista de exercicios elementos de máquinas
Lista de exercicios elementos de máquinas
Júlio César Droszczak
 
Redutor de velocidade - Relatório
Redutor de velocidade - RelatórioRedutor de velocidade - Relatório
Redutor de velocidade - Relatório
Matheus Souza
 
pneumatica
pneumaticapneumatica
pneumatica
Fernanda Andrade
 
Circulo+de+mohr+tensoes
Circulo+de+mohr+tensoesCirculo+de+mohr+tensoes
Circulo+de+mohr+tensoes
Thales Fanurio
 
1 motores de indução
1 motores de indução1 motores de indução
1 motores de indução
Dorival Brito
 
Induction motors casa
Induction motors casaInduction motors casa
Induction motors casa
Angelo Hafner
 
DESENHO TÉCNICO MEIO CORTE
DESENHO TÉCNICO  MEIO CORTEDESENHO TÉCNICO  MEIO CORTE
DESENHO TÉCNICO MEIO CORTE
ordenaelbass
 
Fórmulas de Eletromagnetismo
Fórmulas de EletromagnetismoFórmulas de Eletromagnetismo
Fórmulas de Eletromagnetismo
O mundo da FÍSICA
 
DESENHO TÉCNICO CORTE PARCIAL
DESENHO TÉCNICO CORTE PARCIALDESENHO TÉCNICO CORTE PARCIAL
DESENHO TÉCNICO CORTE PARCIAL
ordenaelbass
 
Torneamento mecânico
Torneamento mecânicoTorneamento mecânico
Torneamento mecânico
Pedro Veiga
 

Mais procurados (20)

Resistência dos Materiais - Torção
Resistência dos Materiais - TorçãoResistência dos Materiais - Torção
Resistência dos Materiais - Torção
 
DESENHO TÉCNICO COTAGEM
DESENHO TÉCNICO COTAGEMDESENHO TÉCNICO COTAGEM
DESENHO TÉCNICO COTAGEM
 
Apostila - Mecanismos - Capítulo 3.pdf
Apostila - Mecanismos - Capítulo 3.pdfApostila - Mecanismos - Capítulo 3.pdf
Apostila - Mecanismos - Capítulo 3.pdf
 
Sistema de Transmissão por Correntes - Projeto Interdisciplinar
Sistema de Transmissão por Correntes - Projeto InterdisciplinarSistema de Transmissão por Correntes - Projeto Interdisciplinar
Sistema de Transmissão por Correntes - Projeto Interdisciplinar
 
Viscosímetro rotativo
Viscosímetro rotativoViscosímetro rotativo
Viscosímetro rotativo
 
Triangulos de velocidades
Triangulos de velocidadesTriangulos de velocidades
Triangulos de velocidades
 
51725631 caderno-de-exercicios-desenho-tecnico (1)
51725631 caderno-de-exercicios-desenho-tecnico (1)51725631 caderno-de-exercicios-desenho-tecnico (1)
51725631 caderno-de-exercicios-desenho-tecnico (1)
 
Máquinas de Combustão Interna – Ciclo Otto
Máquinas de Combustão Interna – Ciclo OttoMáquinas de Combustão Interna – Ciclo Otto
Máquinas de Combustão Interna – Ciclo Otto
 
02.medidas e conversões
02.medidas e conversões02.medidas e conversões
02.medidas e conversões
 
Apresentação elementos de máquinas
Apresentação  elementos de máquinasApresentação  elementos de máquinas
Apresentação elementos de máquinas
 
Lista de exercicios elementos de máquinas
Lista de exercicios elementos de máquinasLista de exercicios elementos de máquinas
Lista de exercicios elementos de máquinas
 
Redutor de velocidade - Relatório
Redutor de velocidade - RelatórioRedutor de velocidade - Relatório
Redutor de velocidade - Relatório
 
pneumatica
pneumaticapneumatica
pneumatica
 
Circulo+de+mohr+tensoes
Circulo+de+mohr+tensoesCirculo+de+mohr+tensoes
Circulo+de+mohr+tensoes
 
1 motores de indução
1 motores de indução1 motores de indução
1 motores de indução
 
Induction motors casa
Induction motors casaInduction motors casa
Induction motors casa
 
DESENHO TÉCNICO MEIO CORTE
DESENHO TÉCNICO  MEIO CORTEDESENHO TÉCNICO  MEIO CORTE
DESENHO TÉCNICO MEIO CORTE
 
Fórmulas de Eletromagnetismo
Fórmulas de EletromagnetismoFórmulas de Eletromagnetismo
Fórmulas de Eletromagnetismo
 
DESENHO TÉCNICO CORTE PARCIAL
DESENHO TÉCNICO CORTE PARCIALDESENHO TÉCNICO CORTE PARCIAL
DESENHO TÉCNICO CORTE PARCIAL
 
Torneamento mecânico
Torneamento mecânicoTorneamento mecânico
Torneamento mecânico
 

Semelhante a Clic aqui

3.0 m quinas el tricas girantes
3.0 m quinas el tricas girantes3.0 m quinas el tricas girantes
3.0 m quinas el tricas girantes
William Andrade
 
Apresentação motores de indução
Apresentação motores de induçãoApresentação motores de indução
Apresentação motores de indução
Luiz Carlos Farkas
 
Motor de inducao_parte_teorica
Motor de inducao_parte_teoricaMotor de inducao_parte_teorica
Motor de inducao_parte_teorica
Daniel Ferrari
 
motores e geradores
motores e geradoresmotores e geradores
motores e geradores
Gabriela Lopes
 
xcxc
xcxcxcxc
xcxc
Josy Noel
 
motores trifasicos de ca
  motores trifasicos de ca  motores trifasicos de ca
motores trifasicos de ca
Renato Campos
 
Maquinas sincronas
Maquinas sincronasMaquinas sincronas
Maquinas sincronas
janderson paixão dos santos
 
aula_11.pdf
aula_11.pdfaula_11.pdf
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
DMC Engenharia e Sistemas Ibéricos Lda
 
Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007
DeyvidDacoregio
 
Motores elétricos de ca
Motores elétricos de caMotores elétricos de ca
Motores elétricos de ca
Claudio Queiroz Nascimento
 
Máquinas síncronas
Máquinas síncronasMáquinas síncronas
Máquinas síncronas
eselco
 
te344 aula 30 - motores eletricos.pdf
te344 aula 30 - motores eletricos.pdfte344 aula 30 - motores eletricos.pdf
te344 aula 30 - motores eletricos.pdf
Tomaz13
 
te039 aula 19 - motores eletricos (1).pdf
te039 aula 19 - motores eletricos (1).pdfte039 aula 19 - motores eletricos (1).pdf
te039 aula 19 - motores eletricos (1).pdf
antoniogff
 
Como funcionam os motores elétricos
Como funcionam os motores elétricosComo funcionam os motores elétricos
Como funcionam os motores elétricos
Everton Moura
 
Introdu+º+úo te+¦rica
Introdu+º+úo te+¦ricaIntrodu+º+úo te+¦rica
Introdu+º+úo te+¦rica
Ana Paula Reis
 
Máquinas elétricas rotativas
Máquinas elétricas rotativas Máquinas elétricas rotativas
Máquinas elétricas rotativas
Manuel Augusto Jr.
 
Relatório Motor Casseiro de Corrente Contínua
Relatório Motor Casseiro de Corrente ContínuaRelatório Motor Casseiro de Corrente Contínua
Relatório Motor Casseiro de Corrente Contínua
Fernando Filho
 
Motores de Indução 2023.pptx
Motores de Indução 2023.pptxMotores de Indução 2023.pptx
Motores de Indução 2023.pptx
joelson37
 
Curso (MÁQUINAS ELÉTRICAS).pptx
Curso (MÁQUINAS ELÉTRICAS).pptxCurso (MÁQUINAS ELÉTRICAS).pptx
Curso (MÁQUINAS ELÉTRICAS).pptx
mmessiasamaral
 

Semelhante a Clic aqui (20)

3.0 m quinas el tricas girantes
3.0 m quinas el tricas girantes3.0 m quinas el tricas girantes
3.0 m quinas el tricas girantes
 
Apresentação motores de indução
Apresentação motores de induçãoApresentação motores de indução
Apresentação motores de indução
 
Motor de inducao_parte_teorica
Motor de inducao_parte_teoricaMotor de inducao_parte_teorica
Motor de inducao_parte_teorica
 
motores e geradores
motores e geradoresmotores e geradores
motores e geradores
 
xcxc
xcxcxcxc
xcxc
 
motores trifasicos de ca
  motores trifasicos de ca  motores trifasicos de ca
motores trifasicos de ca
 
Maquinas sincronas
Maquinas sincronasMaquinas sincronas
Maquinas sincronas
 
aula_11.pdf
aula_11.pdfaula_11.pdf
aula_11.pdf
 
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
02 Diagnóstico de Motores Eléctricos - Princípio de Funcionamento
 
Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007
 
Motores elétricos de ca
Motores elétricos de caMotores elétricos de ca
Motores elétricos de ca
 
Máquinas síncronas
Máquinas síncronasMáquinas síncronas
Máquinas síncronas
 
te344 aula 30 - motores eletricos.pdf
te344 aula 30 - motores eletricos.pdfte344 aula 30 - motores eletricos.pdf
te344 aula 30 - motores eletricos.pdf
 
te039 aula 19 - motores eletricos (1).pdf
te039 aula 19 - motores eletricos (1).pdfte039 aula 19 - motores eletricos (1).pdf
te039 aula 19 - motores eletricos (1).pdf
 
Como funcionam os motores elétricos
Como funcionam os motores elétricosComo funcionam os motores elétricos
Como funcionam os motores elétricos
 
Introdu+º+úo te+¦rica
Introdu+º+úo te+¦ricaIntrodu+º+úo te+¦rica
Introdu+º+úo te+¦rica
 
Máquinas elétricas rotativas
Máquinas elétricas rotativas Máquinas elétricas rotativas
Máquinas elétricas rotativas
 
Relatório Motor Casseiro de Corrente Contínua
Relatório Motor Casseiro de Corrente ContínuaRelatório Motor Casseiro de Corrente Contínua
Relatório Motor Casseiro de Corrente Contínua
 
Motores de Indução 2023.pptx
Motores de Indução 2023.pptxMotores de Indução 2023.pptx
Motores de Indução 2023.pptx
 
Curso (MÁQUINAS ELÉTRICAS).pptx
Curso (MÁQUINAS ELÉTRICAS).pptxCurso (MÁQUINAS ELÉTRICAS).pptx
Curso (MÁQUINAS ELÉTRICAS).pptx
 

Mais de Henrique Farias

Simbologia isa
Simbologia isaSimbologia isa
Simbologia isa
Henrique Farias
 
Apostila de cabeamento estruturado
Apostila de cabeamento estruturadoApostila de cabeamento estruturado
Apostila de cabeamento estruturado
Henrique Farias
 
Atalhos no teclado do windows
Atalhos no teclado do windowsAtalhos no teclado do windows
Atalhos no teclado do windows
Henrique Farias
 
1019 3558-2-pb
1019 3558-2-pb1019 3558-2-pb
1019 3558-2-pb
Henrique Farias
 
101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas
Henrique Farias
 
1 prova 7_ecaa conversão energia cezar
1 prova  7_ecaa conversão energia cezar1 prova  7_ecaa conversão energia cezar
1 prova 7_ecaa conversão energia cezar
Henrique Farias
 

Mais de Henrique Farias (6)

Simbologia isa
Simbologia isaSimbologia isa
Simbologia isa
 
Apostila de cabeamento estruturado
Apostila de cabeamento estruturadoApostila de cabeamento estruturado
Apostila de cabeamento estruturado
 
Atalhos no teclado do windows
Atalhos no teclado do windowsAtalhos no teclado do windows
Atalhos no teclado do windows
 
1019 3558-2-pb
1019 3558-2-pb1019 3558-2-pb
1019 3558-2-pb
 
101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas101545233 exercicios-resolvidos-de-sinais-e-sistemas
101545233 exercicios-resolvidos-de-sinais-e-sistemas
 
1 prova 7_ecaa conversão energia cezar
1 prova  7_ecaa conversão energia cezar1 prova  7_ecaa conversão energia cezar
1 prova 7_ecaa conversão energia cezar
 

Último

Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
carlos silva Rotersan
 
Manual de Instalação para Placa Proteco Q60A
Manual de Instalação para Placa Proteco Q60AManual de Instalação para Placa Proteco Q60A
Manual de Instalação para Placa Proteco Q60A
Tronicline Automatismos
 
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
Consultoria Acadêmica
 
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptxMAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
Vilson Stollmeier
 
Aula 4 - 3D laser scanning para bim em engenharia
Aula 4 - 3D laser scanning para bim em engenhariaAula 4 - 3D laser scanning para bim em engenharia
Aula 4 - 3D laser scanning para bim em engenharia
JosAtila
 
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
Consultoria Acadêmica
 

Último (6)

Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
Grau TÉCNICO EM SEGURANÇA DO TRABALHO I - LEGISLAÇÃO APLICADA À SAÚDE E SEGUR...
 
Manual de Instalação para Placa Proteco Q60A
Manual de Instalação para Placa Proteco Q60AManual de Instalação para Placa Proteco Q60A
Manual de Instalação para Placa Proteco Q60A
 
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
AE02 - SINAIS E SISTEMAS LINEARES UNICESUMAR 52/2024
 
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptxMAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
MAQUINAS-EQUIPAMENTOS-E-FERRAMENTAS.pptx
 
Aula 4 - 3D laser scanning para bim em engenharia
Aula 4 - 3D laser scanning para bim em engenhariaAula 4 - 3D laser scanning para bim em engenharia
Aula 4 - 3D laser scanning para bim em engenharia
 
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
AE02 - ESTUDO CONTEMPORÂNEO E TRANSVERSAL COMUNICAÇÃO ASSERTIVA E INTERPESSOA...
 

Clic aqui

  • 2. INTRODUÇÃO Máquinas elétricas são máquinas destinadas a transformar a energia elétrica em energia mecânica e vice-versa. Como vimos anteriormente, elas podem ser classificadas segundo a transformação da energia: geradora, motora ou transformadora. As duas primeiras classificações são também chamadas de "máquinas elétricas girantes ou rotativas", pela própria característica da conversão eletromecânica. Nestes tipos de máquinas girantes ou rotativas, suas operações podem ser como operação MOTORA ou operação GERADORA. O que diferencia uma máquina da outra é o sentido da energia empregada. Por exemplo: quando se recebe energia mecânica rotacional pelo eixo da máquina e se converte em energia elétrica, temos então um gerador. A mesma máquina, com algumas adaptações, poderá receber energia elétrica e convertê-la em energia mecânica rotacional. Neste caso, teremos um motor. Possíveis operações de uma máquina elétrica rotativa.
  • 3. Para que possam ser especificados corretamente, é necessário saber quais são os tipos de máquinas existentes no mercado, seu princípio de funcionamento, características construtivas e como realizar sua seleção. Teoricamente, todo motor pode ser um gerador, visto que é apenas uma máquina conversora de energia. O quadro seguinte mostra, de forma geral,os diversos tipos de máquinas elétricas que podem funcionar como motor (principalmente) ou como gerador. Classificação simples das máquinas elétricas,conforme suas características construtivas e sua aplicação.
  • 4. Esta classificação é a mais conhecida e aceita, podendo as máquinas elétricas também serem, classificadas segundo o critério de rotação, grau de proteção, torque, rendimento etc. DEFINIÇÕES A máquina rotativa tem partes fixas e partes móveis. A parte fixa (estática) chamamos de ESTATOR e a parte móvel, girante ou rotativa chamamos de ROTOR. A figura a seguir mostra as várias partes de um motor elétrico genérico, no caso um motor trifásico de indução. O espaço entre o estator e o rotor é chamado de "entreferro“, em Inglês: air gap, e tem papel fundamental no rendimento da máquina. O rotor normalmente é montado sobre um eixo de aço que está apoiado sobre mancais nas duas extremidades da carcaça. Este eixo normalmente recebe tratamento térmico para evitar problemas de empenamento e fadiga. A carcaça é a estrutura que suporta todo o conjunto e são geralmente de construção robusta em ferro fundido, aço ou alumínio, dependendo da aplicação. O rotor pode ser um núcleo composto de chapas de material ferromagnético, a fim de reduzir as perdas no ferro, ou de uma peça fundida em alumínio que sustenta às chapas de ferro Neste último caso, estamos falando de um rotor no formato de gaiola no as barras e anéis de Alumínio formam os condutores do rotor em curto circuito.O rotor em formato de gaiola pode ser também construído com barras anéis de cobre ou ligas de cobre. Na prática, o projeto e a construção do rotor depende da sua aplicação e das características necessárias para seu melhor funcionamento.
  • 5. Fotografia de um motor de indução trifásico, em corte para mostrar suas partes internas.
  • 6. Num gerador síncrono por exemplo, num turbogerador o rotor poderá ser uma peça maciça ferromagnética, usinado de forma a se criar ranhuras, slots, em sua superfície que permitam instalar os lados retos das bobinas de campo, bobinas do rotor. Rotor cilíndrico de pólos lisos de um turbogerador. Provavelmente um par de pólos. Repare-se no tamanho da peça em relação ao homem à direita. Já o rotor de um hidrogerador, normalmente tem-se um diâmetro muito superior a de um turbogerador. Neste caso, nem todo material do rotor é peça magnética,sendo o núcleo rotativo composto apenas de uma estrutura metálica que dá suporte e escoramento ao núcleo magnético propriamente dito. Nesta estrutura ficam engastadas as peças polares, que são os pólos do rotor. Mais adiante veremos como é isto e a diferença entre os diversos tipos de máquinas síncronas
  • 7. Rotor de um hidrogerador. Repare-se no número de pólos salientes, peças Polares, e no enrolamento de armadura da excitatriz, à esquerda.. No caso do rotor de um motor, o tipo de motor é que define as características construtivas do rotor, podendo ser de indução (o mais comum), de corrente contínua, síncrono bobinado, de ímã permanente etc. Portanto, dependendo do tipo de máquina elétrica elas possuem características bastantes diferentes, podendo acomodar bobinas, anéis de curto-circuito ou ímãs permanentes.
  • 8. Um outro dado importante é quando dizemos sobre a velocidade da máquina. A "velocidade do eixo", "velocidade do rotor" ou "velocidade da máquina" diz respeito sobre a mesma coisa, ou seja, a velocidade de rotação do eixo da máquina. Pode parecer infundado o esclarecimento, mas este tipo de dúvida tem provocado bastante confusão. Tanto o rotor quanto o estator possuem três partes importantes: o núcleo magnético, o enrolamento, bobinas, e o sistema de isolação. O propósito do núcleo é de "canalizar" o fluxo magnético através das bobinas. Os enrolamentos conduzem correntes elétricas que geram o fluxo magnético necessário para a conversão da energia, seja de elétrica para mecânica ou vice-versa. E o sistema de isolação que previne possíveis curto-circuitos nas partes de contato. A seguir, veremos mais alguns detalhes sobre o rotor, o estator, o sistema de isolação e os enrolamentos amortecedores. ROTOR Em algumas máquinas, o rotor pode abrigar suas bobinas de duas maneiras diferentes.Se expusermos os pólos magnéticos ao enrolamento do estator chamaremos isto de rotor de "pólos salientes". Quando o núcleo do rotor tem pólos salientes, núcleo polar, as bobinas do rotor são enroladas em volta desta peça. O conjunto final do pólo é chamado de "sapata polar", nome muito utilizado no meio industrial. Sua função é providenciar uma correta distribuição da densidade de fluxo através do entreferro.
  • 9. Rotor de pólos salientes. Fotografia do rotor de um grande motor esquerda. Repare-se nos detalhes construtivos deste tipo de conjunto. À direita, desenho esquemático mostrando o rotor de 4 pólos e as linhas de campo percorrendo seu caminho magnético. Observe-se as bobinas de campo, formato retangular, envolvendo os pólos e o sentido das correntes. Os pólos salientes são usados principalmente em máquinas síncronas de geração de energia e também na parte estatórica das máquinas de corrente contínua Estas máquinas geralmente trabalham com rotações baixas, devido à resistência do ar elevado, ao conjunto mecânico não muito sólido e ao elevado número de pólos. Na geração de energia hidrelétrica, a maioria das turbinas hidráulicas trabalham com uma velocidade baixa de rotação,entre 50 e 300 RPM a fim de obter a máxima performance do aproveitamento hidráulico. Como a freqüência elétrica é fixa 60 Hz, o número de pólos será um número relativamente grande. Baixa rotação geralmente caracteriza um diâmetro D de rotor elevado, de forma a fornecer espaço suficiente para a colocação de todos estes pólos,e um comprimento L dos pólos pequeno em relação a este diâmetro.
  • 10. Rotor de pólos lisos. À esquerda temos detalhes das ranhuras do rotor de um turbogerador. À direita, um desenho esquemático mostrando o rotor de pólos lisos e as linhas de campo percorrendo seu caminho magnético. A outra maneira de se abrigar as bobinas do rotor e produzir pólos magnéticos é chamado de "pólos lisos". Neste caso, o bobinado do rotor está embutido nas ranhuras, slots, da mesma. Como vimos anteriormente, os turbogeradores são geradores que possuem este tipo de rotor. Sua energia mecânica, de rotação advém de turbinas à vapor que trabalham em altíssimas rotações. É o caso típico encontrado na co-geração em usinas de açúcar e álcool. Esta rotação vai de 1500 a 3600 RPM, o que significa que o gerador deverá dar conta desta velocidade. Como são máquinas síncronas, ou seja, trabalham numa rotação sincronizada com a freqüência elétrica nominal, o número de pólos é sempre muito baixo, não excedendo a 4. Portanto, as máquinas síncronas de geração turbinada à vapor possuem 2 ou 4 pólos apenas.
  • 11. Diferentemente das máquinas de pólos salientes, as de pólos lisos geralmente tem diâmetro D pequeno e comprimento L grande, ou seja, a relação D / L sempre será menor que 1. Ao contrário das de pólos salientes, onde esta relação sempre será maior que 1. Em resumo Turbinas hidráulicas tipo, Kaplan ou Francis, oferecem rotações baixas no seu eixo, exigindo uma máquina, hidrogerador, com vários pólos magnéticos, de preferência pólos salientes, o que implica num diâmetro grande, comparado ao seu menor comprimento. Já as turbinas à vapor oferecem alta rotação, exigindo máquinas elétricas de pouquíssimos pólos, no máximo 4, embutidos na própria peça rotórica pólos lisos. Isto implica num diâmetro menor que o seu comprimento, caracterizando um turbogerador. ESTATOR Como vimos anteriormente, o estator é a parte estática de uma máquina elétrica. É composta pela carcaça, pelo núcleo magnético e pelos enrolamentos do estator. No caso de um hidrogerador, a carcaça é fabricada em chapas de aço soldadas e podem ser construídas em seções para facilitar o manuseio e o transporte. O núcleo do estator é constituído de lâminas de 0,35 a 0,50 mm de espessura, de aço silício de alta permeabilidade. São estampadas com a máxima precisão, isentas de rebarbas e envernizadas em ambos os lados e curados a altas temperaturas. No estator estão distribuídos, por suas ranhuras, os lados retos das bobinas de campo (para motores) ou bobinas de armadura, para geradores, conforme mostra a figura. Do ponto de vista elétrico, o estator de um gerador é idêntico ao estator de um motor de indução trifásico.
  • 12. Exemplo do estator de um motor síncrono.Observe-se as cabeças das bobinas de campo como estão escamoteadas para fora do corpo estatórico. Exemplo de uma lâmina estatórica. A sua montagem circular formará o núcleo magnético do estator. Para grandes máquinas, geradora ou motora, o núcleo estatórico é formado por uma combinação de chapas segmentadas, colocadas lado a lado, de tal forma a constituir uma peça única Este tipo de construção é muito comum na montagem de hidrogeradores. ISOLAÇÃO O sistema de isolação previne que possíveis curto-circuitos ocorram. Estão em várias partes da máquina elétrica, estator e rotor como entre as espiras de uma bobina, entre bobinas e o núcleo magnético, entre bobinas e a carcaça, etc. As isolações protegem contra surtos de chaveamento e outros tipos de defeitos. Também são elementos importantes na proteção térmica e seus efeitos.
  • 13. Alguns especialistas colocam o sistema de isolação como o principal elemento de uma máquina elétrica. Seu funcionamento é fundamental no desempenho e nas características de funcionamento de uma máquina elétrica. Um sistema de isolação precário compromete não só o funcionamento da mesma como também o sistema de alimentação de energia como um todo.Existem diversos materiais de isolação que suportam altas temperaturas sem perder suas principais características de isolação, como por exemplo o papel Kraft, o MYLAR® e o NOMEX® da DuPont. Exemplo de aplicação do NOMEX® nas ranhuras de um motor. Observe-se que ele isola completamente os fios da bobina em relação ao anel estatórico.
  • 14. ENROLAMENTO AMORTECEDOR Como já vimos, uma máquina elétrica possui dois enrolamentos básicos, um conjunto de enrolamentos do estator e um conjunto de enrolamentos do rotor. Existe ainda um terceiro enrolamento colocado no rotor na máquina síncrona de pólos salientes, formado por barras, em geral de cobre, que estão curto-circuitadas através de dois anéis como se fosse uma gaiola de esquilo e inseridas em ranhuras feitas na superfície dos pólos. Este enrolamento especial chamamos de enrolamento amortecedor. Sua função é a de amortecer oscilações de conjugado-mecânico do rotor que poderiam provocar quebras de sincronismo e causar a saída da máquina, uma vez que fora do sincronismo esta deixa de produzir torque útil. Além disso, o enrolamento amortecedor pode reduzindo sobretensões momentâneas, auxiliar na sincronização quando ocorre alguma falha na máquina ou no sistema ao qual ela está ligada etc. Quando a máquina está como motor, este enrolamento permite a partida dela como motor, funcionando como se fosse um motor de indução normal Desenho esquemático dos pólos salientes de um rotor. Repare-se nos detalhes das barras amortecedoras na cabeça dos pólos,curtocircuitadas por um par de anéis. Fotografia de um rotor que mostra, no detalhe, as barras amortecedoras.
  • 15. CONCEITOS ELEMENTARES Para o bom entendimento das características e das funcionalidades das máquinas elétricas, necessário se faz apresentar alguns conceitos elementares que ajudarão a entender tais características e o funcionamento. TORQUE OU CONJUGADO O torque, também chamados de momento ou binário, é a medida do esforço necessário para girar um eixo qualquer. Por definição, torque é o produto da força aplicada, em newtons,pela distância perpendicular entre o eixo de rotação e o ponto de aplicação desta força. A figura ajuda a entender melhor esta definição. O desenho mostra que se aplicarmos uma força F tangencial à roda, de raio r, teremos um torque desenvolvido sobre a roda em seu eixo axial. O torque ζ é dado por: rF ⋅=τ Onde: ζ = Torque, em N.m F = Força tangencial, em newton r = raio, em metros.
  • 16. Exemplo Um motor desenvolve um torque inicial de 350 Nm. Se a polia que está engastada no seu eixo tem um diâmetro 1,5 m, calcule a força de frenagem necessária para evitar a rotação do motor. 1,5m 67,466 2 5,1 350 F r FrF == =⇒⋅= τ τ Nm TRABALHO MECÂNICO O trabalho mecânico existe sempre que uma força ´F´ aplicada sobre um corpo provoca um deslocamento ´d´ na mesma direção de F. Resposta
  • 17. O trabalho mecânico W é dado por: dFW ⋅=Onde: W = Trabalho, em joule F = Força, em newton d = deslocamento, em metros Exemplo Uma massa de 45 kg foi erguida a uma altura de 15 metros. Calcule o trabalho realizado. 15 m Resposta 45,44181,945FgmF =⋅=→⋅= N 75,66211545,441WdFW =⋅=→⋅= J POTÊNCIA MECÂNICA A potência mecânica é o trabalho mecânico realizado numa determinada quantidade de tempo. A unidade da potência mecânica, no sistema internacional SI, é o watt W.
  • 18. t W Pmec ∆ = Onde: W= Trabalho mecânico, em joule t = tempo, em segundos. Exemplo Um motor elétrico ergue uma carga de 50 kg a uma altura de 20 metros em 7 segundos. Calcule o trabalho mecânico realizado e a potência mecânica entregue pelo eixo do motor. 20 m gmF ⋅= Solução e dFW ⋅= 98102081,950dgmW =⋅⋅=⋅⋅= Joules 43,1401 7 9810 t W Pmec === ∆ watts Usualmente, a potência mecânica pode ser expressa em cavalo-vapor CV ou em horse-power HP. Desta forma, a relação com a potência em watt é: Watts736.......CV1 Watts746.......HP1e
  • 19. Assim a potência mecânica no eixo do motor para o exemplo anterior seria, CV2CV9,1 736 43,1401 Pmec ≈== ou HP2HP88,1 746 43,1401 Pmec ≈== Se analisarmos as equações anteriores verificamos que: A parcela d/Δt na verdade é a velocidade com que o deslocamento do corpo ocorre Se supormos que no exemplo anterior o eixo do motor contivesse uma polia de raio ´r´, girando a ´n´ RPM, teríamos uma velocidade tangencial v na polia definida como:       ⋅= ⋅ == t d F t dF t W Pmec ∆∆∆ rv ⋅= ω Como f2 ⋅⋅= πω e 60 n f = para rotações por minuto então n 3060 n 2 ⋅      =⋅⋅= π πω daqui rn 30 rv ⋅⋅      =⋅= π ω Onde: v = velocidade tangencial, em m/s n = numero de rotações por minuto RPM r = raio da polia, em metro
  • 20. Neste caso, teremos para a potência mecânica Pmec a seguinte expressão: vFP t d FP mecmec ⋅=→      ⋅= ∆ Exemplo Um motor elétrico ergue uma carga de 50 kg a uma altura de 20 metros em 7 segundos,se o motor tem uma polia com Ø = 12 cm no seu eixo, qual seria a rotação ideal para subir a carga no tempo prescrito ? Solução: A velocidade de subida da carga é igual a velocidade tangencial da corda na polia 86,2 7 20 t d v === m/seg 73,454 06,0 30 86,2 r 30 v nrn 30 v = ⋅      = ⋅      =→⋅⋅      = ππ π RPM
  • 21. POTÊNCIA ELÉTRICA Um sistema elétrico compostos por cargas passivas, resistores, capacitores e indutores,acoplado a uma fonte de tensão variável v(t), faz circular uma corrente i(t) também variável. Como sabemos, a potência instantânea num sistema elétrico é dado por: )t(i)t(v)t(p ⋅= W Pela convenção de sinais, uma potência com sinal positivo corresponde a uma transferência de energia da fonte para a carga. Para uma potência com sinal negativo ocorre o inverso, ou seja, um retorno de energia da carga para a fonte. No caso de uma carga puramente indutiva, uma tensão senoidal, ( )tcosV)t(v máx ω⋅= aplicada à carga resulta numa corrente senoidal atrasada de 90º, ou )º90tcos(I)t(i áxm −⋅= ω Logo, a potência elétrica instantânea passa a ser: )º90tcos()tcos(IV)t(i)t(v)t(p áxmmáx −⋅⋅⋅=⋅= ωω )t2(senIV 2 1 )t(p áxmmáx ω⋅⋅⋅=
  • 23. V Potência reativa V II CIRCUITO INDUTIVO L ϕsenIVQ ⋅⋅=
  • 25. V I Potência Aparente Potência Ativa Potência Reativa PQ CIRCUITO MISTO R L C IVS ⋅= ϕcosIVP ⋅⋅= ϕsenIVQ ⋅⋅=
  • 26. Gráfico de tensão e corrente senoidal. Em vermelho a potência instantânea. Repare-se que a potência possui o dobro da freqüência da corrente. Se analisarmos a figura veremos que no intervalo entre 0< ωt < π/2, a potência p(t) é positiva, pois a tensão e a corrente tem os mesmos sinais e portanto a fonte está entregando potência para a carga. No intervalo π/2 < ωt < π a potência é negativa,tensão e corrente tem sinais contrários e aí a carga fornece potência à fonte. Nesta fase, significa que a carga indutiva está descarregando sua energia armazenada na fase anterior. Observe-se que neste um ciclo de 0 a π a potência média é zero. No caso mais geral, a carga ligada à fonte tem uma impedância Z = R +jX ou Z = |z|. /θ , onde θ é o ângulo entre os vetores R e X, dado por arctg (X/R). Neste caso, uma tensão v(t)= Vmax. cos(ωt) aplicada nesta carga resulta numa corrente i(t)= Imax. cos(ωt - θ), onde θ pode ser positivo ou negativo, correspondendo à impedância equivalente indutiva ou capacitiva.
  • 27. Temos θcosIVP efefef ⋅⋅= Como sabemos que o produto da tensão eficaz Vef pela corrente eficaz Ief é a Potência Aparente S. Então, temos que: θθθ cosSPefcosScosIVP efefef ⋅=→⋅=⋅⋅= Neste caso, a potência eficaz de um circuito qualquer é o que chama-se de POTÊNCIA ATIVA. Ao fazer uma relação de potências entre P e S veremos que isto dá o que chama-se de fator de potência FP: =→= θθ cos S P cos med FATOR DE POTÊNCIA Portanto, o fator de potência é dado pela relação dentre a potência média potência Ativa P e a potência Aparente S. Para um circuito trifásico qualquer, a potência aparente é a soma das potências aparentes de cada fase, ou seja: fasefase IV3S ⋅⋅= Entretanto, como os sistemas trifásicos são ligados em delta Δ ou estrela Y, as tensões e correntes são calculadas pelas suas tensões de linha ou corrente de linha. Neste caso, a potência aparente passa a ser calculada por: linhalinha IV3S ⋅⋅=
  • 28. RENDIMENTO DOS MOTORES ή Um motor elétrico absorve energia elétrica da rede e a transforma em energia mecânica disponível no eixo. O rendimento desta máquina define a eficiência com que é feita esta transformação. Seu cálculo é dada pela relação entre a potência útil entregue ao eixo potência mecânica e a potência ativa retirada da rede potência elétrica: ϕϕ η cosIV3 P1000 cosIV3 P736 P P kWCV Elétrica Mecânica ⋅⋅⋅ ⋅ = ⋅⋅⋅ ⋅ == RELAÇÃO ENTRE TORQUE OU CONJUGADO E POTÊNCIA Quando a energia mecânica é aplicada sob a forma de movimento rotativo, a potência desenvolvida depende do Torque ζ e da velocidade de rotação n. As relações entre si são: ω τ WattsP = Newtons metro [Nm] Onde: P =Potência em watts ω =Velocidade angular em Radianos/segundo ζ = Torque em Newtons metro Com a rotação n em rotações por minuto RPM, 60 2 n π ω ⋅ ⋅= em Rad/seg
  • 29. Assim: )tcos()tcos(IV)t(i)t(v)t(p áxmmáx θωω −⋅⋅⋅=⋅= ( ) ( ){ }βαβαβα −++=⋅ coscos 2 1 coscosComo, ( ) ( ) ( ) ( ){ }θθωθωω cost2cos 2 1 tcostcos +−=−⋅⇒ Pode-se demonstrar que cos(2ωt – θ) tem um valor médio igual a zero. Portanto, : ( ) ( )θωω −⋅⋅⋅= tcostcosIV)t(p áxmmáx Esta é a potência média para qualquer θ. Portanto: θcosIV 2 1 )t(p áxmmáx ⋅⋅⋅= θcosIV 2 1 P áxmmáxmed ⋅⋅⋅= Como efmáx V2V ⋅= e efáxm I2I ⋅=
  • 30. Se a potência do motor está em CV e a rotação em RPM, 60 2 n P736 CV π τ ⋅ ⋅ ⋅ = A fração 28,7028 60 2 736 = ⋅π daqui n 28,7028PCV ⋅ =τ Se a potência do motor está em kW e a rotação em RPM, 60 2 n P1000 kW π τ ⋅ ⋅ ⋅ = A fração daqui n 30,9549PkW ⋅ =τ30,9549 60 2 P1000 kW = ⋅ ⋅ π
  • 31. A potência então relaciona-se com o torque, ωτ ⋅=P O torque em Nm e ω em Rad./seg →P resultará em Watts 28,7028 n P RPMNm CV ⋅ = τ CV 30,9549 n P RPMNm kW ⋅ = τ kW EXEMPLO Calcular o torque nominal de um motor de 10CV e 1750 RPM 16,40 1750 28,702810CV = ⋅ =τ Nm ( ) 16,40 1750 30,9549736,010 = ⋅⋅ =τ Nm 16,40 60 2 1750 73610 = ⋅ ⋅ ⋅ = π τ Nm
  • 32. ENERGIA CINÉTICA DE ROTAÇÃO E MOMENTO DE INÉRCIA A queda de uma pedra ou o movimento de um carro possuem ambos energia cinética,que é a energia devido ao movimento. A energia cinética é uma forma de energia mecânica e é dada pela equação : 2 c vm 2 1 E ⋅⋅= onde: Ec = energia cinética, em Joule (J) m = massa do corpo, em kg v = velocidade do corpo, em m/s Um corpo em rotação também possui energia cinética. Sua magnitude depende também da velocidade de rotação e da massa corporal. Só que neste caso, a forma do corpo influencia diretamente no resultado. Para se determinar a energia cinética de um corpo em rotação, usa-se a equação : ( ) J 1800 n E 2 c ⋅ ⋅ = π onde: n = Velocidade rotacional, em RPM J = Momento de inércia, em kg.m²
  • 33. O momento de inércia J, ou simplesmente "inércia" depende da massa e do formato do corpo, geometria para ser determinado. A relação a seguir mostra algumas formas geométricas mais comuns para se determinar sua inércia. Caso o corpo tenha uma estrutura mais complexa, segmenta-se esta estrutura em estruturas mais conhecidas, conforme a relação anterior. O momento de inércia total será a soma dos momentos de inércia de cada corpo. Eixo de giro Massa m que gira a uma distância r ao redor de eixo o 2 rmJ ⋅= Disco sólido de massa m e rádio r 2 rm J 2 ⋅ =
  • 34. Anel anular de massa m que tem uma seção retangular ( )2 2 2 1 RR 2 m J +⋅= Barra de massa m que gira no seu centro 12 Lm J 2 ⋅ = Barra retangular de massa m que gira ao redor do eixo O ( )21 2 2 2 1 RRRR 3 m J ⋅++⋅=
  • 35. A inércia é um parâmetro importante das máquinas elétricas girantes daí a necessidade da sua melhor compreensão Exemplo Um disco sólido de 1400 kg, diâmetro de 1,0 metro e espessura de 22,5 cm, gira a 1800 RPM ininterruptamente. Determine seu momento de inércia e a energia cinética do corpo. Resposta O momento de inércia do corpo com esta estrutura é calculada por: 0,175 2 )5,0(1400 2 rm J 22 = ⋅ = ⋅ = kgm² E a energia cinética é então: ( ) ( ) 11,3175 1800 1800 J 1800 n Ec 22 =⋅ ⋅ =⋅ ⋅ = ππ MJ O SISTEMA POR UNIDADE p.u.NAS MÁQUINAS ELÉTRICAS Muito freqüentemente, os cálculos relativos a máquinas, transformadores e sistemas de potência são efetuados em forma de "por unidade" pu, ou seja, todas as quantidades envolvidas num cálculo serão expressas como frações decimais de valores de base convenientemente escolhidas. Portanto, todos os cálculos serão efetuados em pu, em lugar dos usuais volts, ampéres, ohms, watts, etc.
  • 36. Há duas vantagens neste sistema. Uma é que as constantes de máquinas e transformadores caem numa faixa numérica razoavelmente estreita quando expressas em pu. A outra é que este método de realizar os cálculos permite a ter uma concreta sensação da ordem de grandeza do parâmetro, o que ajuda muito na hora de emitir um juízo sobre um determinado comportamento da máquina. Todas as grandezas como tensão, corrente, impedância, reatância, etc podem ser transformadas em pu. Isto se dá da seguinte forma, que já foi visto: EXEMPLOS Dado um valor de tensão-base = 110 V, quais são os valores pu para as seguintes tensões: 0,4 110 440 440 =→ p.u. 45,3 110 380 380 =→ p.u. 15,1 110 127 127 =→ p.u. 55,0 110 60 60 =→ p.u. 120 110 13200 13200 =→ p.u. 64,103 110 11400 11400 =→ p.u
  • 37. Dado IBASE = 10 A, determine os valores reais das as seguintes correntes A8,31038,0i.u.p38,0i real =⋅=→= A64104,6i.u.p4,6i real =⋅=→=
  • 38. FIM

Notas do Editor

  1. Uma simples classificação das máquinas elétricas, conforme suas características construtivas e sua aplicação.