SlideShare uma empresa Scribd logo
1 de 87
Baixar para ler offline
ÁGUA NO SOLO

                                                           Paulo Leonel Libardi

            Descreve-se inicialmente os aspectos básicos da retenção da água no
solo, notadamente a teoria da capilaridade, visando principalmente a conceituação
do potencial mátrico e da curva de retenção da água no solo. Índices para
quantificar a água no solo, em especial a armazenagem da água, são definidos em
seguida. A energia da água, bem como o modelo dos potenciais e, então, as
equações de fluxo da água no solo, são tratados com certo detalhe. O texto termina
com uma discussão resumida a respeito do balanço de água no solo.



1 RETENÇÃO DA ÁGUA NO SOLO

            Nesse estudo, o solo será considerado simplesmente como um
conjunto de partículas sólidas de diversas formas e tamanhos, entremeadas por
poros, também de diversas formas e tamanhos, e interconectados. Pode-se dizer,
portanto, que o solo é composto, basicamente, de duas partes: uma sólida, também
chamada de sólidos do solo ou matriz do solo e a parte não ocupada pelos sólidos,
denominada espaço poroso ou poros do solo.

            Normalmente o espaço poroso do solo no campo é ocupado por
quantidades variáveis de uma solução aquosa denominada água no solo e de uma
solução gasosa denominada ar no solo; o solo nesta situação é dito estar não
saturado. Quando o espaço poroso do solo estiver totalmente cheio de água, o solo
é dito estar saturado.
2 |Paulo Leonel Libardi




            Dois são os processos que explicam a retenção da água num solo não-
saturado. No primeiro deles, a retenção ocorre nos chamados poros capilares do
solo e pode ser ilustrada, por isso, pelo fenômeno da capilaridade, o qual está
sempre associado a uma interface curva água-ar. No segundo processo, a retenção
ocorre nas superfícies dos sólidos do solo como filmes presos a ela, pelo fenômeno
da adsorção.

            Desses dois fenômenos, o mais relevante é o da capilaridade daí ser
devotado a ele um item especial, a seguir, sob o título tensão superficial e
capilaridade.

            Com relação ao processo de adsorção da água sobre as superfícies
sólidas, três são os mecanismos principais propostos para explicá-lo, a saber:

1. A superfície dos minerais de argila é coberta com átomos de oxigênio e grupos
   oxidrilas negativamente carregados devido à substituição isomorfa de cátions.
   Desse modo, cria-se ao redor das partículas desses minerais um campo elétrico
   cuja intensidade decresce com a distância da superfície da partícula. Devido à
   natureza dipolar das moléculas de água, elas se orientam neste campo elétrico e
   experimentam uma força na direção da superfície da partícula, a qual decresce
   gradualmente com a distância desta superfície até se tornar nula num ponto em
   que não há mais influência do campo.

2. Os pares de elétrons não compartilhados do átomo de oxigênio das moléculas
   de água podem ser eletricamente atraídos a cátions trocáveis que podem estar
   adsorvidos sobre a superfície da argila, ou seja, os cátions que são retidos à
   superfície negativamente carregada de argila (a concentração iônica é crescente




                                  Água no Solo
Paulo Leonel Libardi| 3




   na direção da superfície sólida) ocasionam também a adsorção das moléculas de
   água.

3. Finalmente, as moléculas de água podem ainda ser atraídas às superfícies
   sólidas pelas forças de London-van der Waals, que são forças de curto alcance e
   decrescem rapidamente com a distância da superfície, de modo que uma
   camada muito fina é adsorvida dessa maneira ao redor das partículas de solo.

            É importante reforçar que essa película de água adsorvida às
superfícies dos sólidos do solo possui, como resultado destas forças de adsorção,
uma energia potencial extra, uma vez que, se afastarmos uma determinada porção
dessa película a uma distância dentro do raio de ação destas forças e a
abandonarmos, ela volta à posição original realizando um trabalho.



1.1 Tensão superficial e capilaridade

            Ao se colocar uma das extremidades de um tubo capilar de vidro
dentro de um recipiente com água, observa-se que a água sobe no tubo e entra em
repouso a uma determinada altura acima da superfície da água no recipiente. Se
em vez de água for utilizado mercúrio, observa-se que o nível de mercúrio dentro
do tubo capilar se estabiliza a uma distância abaixo do seu nível no recipiente. No
primeiro caso, diz-se ter ocorrido uma ascensão capilar e no segundo uma
depressão capilar. A explicação destes fenômenos capilares é feita com base numa
propriedade associada com a superfície livre de qualquer líquido, denominada
tensão superficial.




                                  Água no Solo
4 |Paulo Leonel Libardi




            A tensão superficial resulta da existência de forças de atração de curto
alcance entre as moléculas do líquido chamadas forças moleculares de London-
van der Waals de coesão, forças moleculares de coesão ou simplesmente forças
de coesão. A distância limite de atuação dessas forças, isto é, a distância máxima
que uma molécula consegue exercer atração sobre as outras, delimita uma esfera
de raio r conhecida pelo nome de esfera de ação das forças moleculares ou
simplesmente esfera de ação molecular. Para a água, r não excede 0,05 µm.

            Nestas condições, moléculas como M1 ou M2 (Figura 1), cujas esferas
de ação molecular se encontram totalmente dentro do líquido, atraem e são
atraídas simetricamente por todas as moléculas vizinhas e a resultante sobre elas é
nula. Entretanto, em qualquer molécula, cuja esfera de ação não esteja
inteiramente no interior do líquido, como M3 por exemplo, as forças sobre ela não
se equilibram. Isso porque a calota inferior da esfera de ação (área hachurada,
Figura 1) está cheia de moléculas que         atraem tal molécula, mas a calota
correspondente superior, caindo fora do líquido, não está cheia de moléculas
como a inferior para atraí-la. Como consequência, esta molécula é atraída para o
interior do líquido pela resultante dessas forças de coesão não equilibradas.

            Esta resultante é então nula nas moléculas localizadas a partir de uma
distância r da superfície do líquido para baixo e aumenta nas localizadas a partir
desta distância para cima, atingindo um máximo nas moléculas da superfície
(molécula M4, Figura 1).




                                   Água no Solo
Paulo Leonel Libardi| 5




                                                    esfera de ação
                                              r       molecular
                 interface líquido-gás   M4
                                                           r
    camada
     ativa   {               r
                              M2
                                                           M3


                         F2 = 0
                                           F4            F3


                                              r

                                          M1

                                         F1 = 0

Figura 1 - Forças intermoleculares.

             Em todas as moléculas situadas na camada superficial de espessura r
ou “camada ativa” de um líquido, atuam, portanto, forças que tendem a puxá-las
para o interior do líquido causando, com isso, uma enorme pressão, dirigida para o
interior do líquido, chamada pressão interna P'. Assim, todo líquido, além da
pressão atmosférica, que atua externamente sobre sua superfície, está sujeito
também à pressão interna P' oriunda das forças moleculares de coesão não
equilibradas da camada ativa. Para a água, P' ≅ 1700 MPa.

             Além disso, pela ação dessas forças, a superfície do líquido se contrai,
minimizando sua área, e adquire uma energia potencial extra que se opõe a
qualquer tentativa de distendê-la, ou seja, ocorrendo uma distensão, a tendência da
superfície é sempre voltar a posição original. Em outras palavras, devido a essas
forças, a superfície do líquido se torna contrátil. A essa energia potencial extra




                                         Água no Solo
6 |Paulo Leonel Libardi




adquirida pela superfície do líquido, devido às forças moleculares de coesão não
equilibradas da camada ativa, dá-se o nome de energia potencial superficial.

             Esse fato mostra que a superfície de qualquer líquido está num estado
de constante tensão pelo que, se traçarmos uma linha arbitrária de comprimento L
sobre a superfície de um líquido, a superfície de cada lado da linha puxa a
superfície do lado oposto com uma força igual a F perpendicular à linha e paralela
à superfície (Figura 2). A razão F/L é definida como tensão superficial (σ) do
líquido, isto é:
                                            F
                                       σ=                                      (1)
                                            L


             A dimensão da tensão superficial é, portanto, força por unidade de
comprimento (N/m).
                                                      Superfície livre
                                                       de um líquido




                                      L
                          F                                 F




                                  Linha arbitrária
                                 de comprimento L


Figura 2 - Definição da tensão superficial de um líquido.




                                  Água no Solo
Paulo Leonel Libardi| 7




                Uma consequência importante dessa tensão superficial dos líquidos e
que é básica para o entendimento dos fenômenos capilares, é o fato de que se a
superfície de um líquido deixar de ser plana, surge uma nova pressão p que pode
atuar no mesmo sentido que a pressão P' que é o que ocorre numa superfície
convexa, ou opostamente a P' como numa superfície côncava. A primeira situação
(superfície convexa) está ilustrada na Figura 3 na qual: ABCD é uma pequena
porção        (infinitesimal) da superfície; R1 e R2 seus dois raios principais de
curvatura*; σdl1, duas forças de tensão superficial (ver equação 1), que atuam nos

arcos opostos e iguais AB e DC, de comprimento infinitesimal dl1; e σdl2, duas
forças de tensão superficial que atuam nos arcos opostos e iguais AD e BC, de
comprimento infinitesimal dl2.

                Como se pode ver, devido única e exclusivamente à curvatura da
superfície, estas quatro forças, resultantes da tensão exercida pelo restante da
superfície ABCD nos arcos AB, DC, AD e BC, adquirem uma resultante
infinitesimal dF = dF1 + dF2 (Figura 3) que é, portanto, a causa do surgimento da
pressão p. Com base nessas informações, pode-se deduzir (Libardi, 2005) que:
                                               1 1 
                                         p =σ  +
                                               R R ,
                                                                                               (2)
                                               1  2 


isto é, a nova pressão p, causada pela curvatura da superfície, está relacionada com
a tensão superficial do líquido e os raios de curvatura da superfície curva.




*   Qualquer superfície curva pequena é caracterizada por dois raios principais de curvatura.




                                           Água no Solo
8 |Paulo Leonel Libardi




                                                                          N
                     N
                                                                                                                          N
                                  AR                               B                                                                 AR
              σdl1
                                                                                   AR
                           σdl1                                                                 σdl2               σdl2       σdl2
       H                                I     σdl1          H                          G                       E                          G
                      dF2                                                                                                 dF1
           LÍQUIDO                                                                                      σdl2                                  σdl2
σdl1                                        σdl1                          O                                        LÍQUIDO
                                                     A                                             C

                                                                   E                        I                                        R1
                                                                              dF
                                   R2                    LÍQUIDO


                                                                σdl2 R1                          σdl1
                                                                                   D
                                                                                       R2                                     O1
                                                                          O1


                         O2
                                                                              O2


                     (a)                                                                                              (b)
                                                                AB=DC=EG=dl1
                                                                AD=BC=HI=dl2




Figura 3 - Porção infinitesimal de uma superfície curva.

                A superfície da Figura 3, a qual tem ambos os raios de curvatura de um
mesmo lado, é chamada de superfície sinclástica e a pressão extra causada pela
curvatura da superfície é, como se acabou de mostrar, dada pela equação (2). Note-
se ainda que, pelo fato de a superfície ser convexa, portanto, com os dois raios no
lado do líquido, a resultante dF e, conseqüentemente p, atua a favor de P'. Com
isso, pode-se dizer que a pressão interna que atua numa superfície convexa de um
líquido é igual a P' + p (Figura 4b). Considerando a mesma superfície ABCD da
Figura 3 mas que ao invés de convexa seja côncava, chega-se ao mesmo resultado
para p (equação 2) porque esta superfície também é sinclástica; no entanto, neste
caso, pelo fato de os dois raios ficarem no lado do ar, verifica-se que a resultante
dF e, conseqüentemente, p, atua contra a pressão P' pelo que a pressão interna




                                                            Água no Solo
Paulo Leonel Libardi| 9




numa superfície côncava de um líquido é igual a P' - p (Figura 4c). Evidentemente,
se a superfície for plana dF = 0 e p = 0 e, portanto, a pressão interna é igual a P'
(Figura 4a).

                                                               p




                                        p




                                                             ...
                                                             ...
                                                             ...
                   ...
                   ...
                   ...




                                      ...

                                                               P' - p


                     P'                 P'                     P'


                                        P' + p



                   (a)                 (b)                    (c)
                 interface          interface              interface
                  plana             convexa                côncava


Figura 4 - Pressão interna numa superfície: plana (a), convexa (b) e côncava (c).

               Quando a superfície curva tem seus raios de curvatura em lados
opostos, isto é, um estendendo-se para o líquido e o outro para o ar (Figura 5), por
raciocínio semelhante chega-se à fórmula
                                     1 1 
                                p =σ −
                                    R R  ,
                                                                                 (3)
                                     1  2 


na qual, R1 < R2 e, portanto, dF1 > dF2 e o sentido da força dF1 é o inverso do
sentido da força dF2. Esta superfície é conhecida pelo nome de superfície




                                  Água no Solo
10 |Paulo Leonel Libardi




anticlástica e nela p pode atuar tanto contra como a favor de P' ou mesmo até ser
nula dependendo das magnitudes de dF1 e dF2.

            Para    uma    superfície    esférica,       R1 = R2 = R   e,   como   ela     é
obrigatoriamente sinclástica,
                                              2σ
                                        p=       .                                       (4)
                                               R

            As equações (2) ou (3) ou (4) são chamadas de equação de Laplace da
capilaridade.




                                                         AR


                                                          R2
                                                   dF2




                                             dF1

                            LÍQUIDO
                                        R1




Figura 5 - Superfície anticlástica.

            Após estas considerações a respeito das superfícies curvas dos
líquidos, surge, de imediato, a pergunta. Quais são as situações em que a superfície
livre de um líquido deixa de ser plana? Quando se coloca água pura num copo de




                                      Água no Solo
Paulo Leonel Libardi| 11




vidro limpo, nota-se que próximo da sua parede a superfície da água se encurva
para cima. No caso de colocar-se mercúrio no copo observa-se que a curvatura da
superfície é voltada para baixo. Observa-se também que, no caso da água, a
superfície se adere ao vidro ao passo que no caso do mercúrio existe uma
tendência para sua superfície se afastar do vidro. Estes fatos mostram que quando
se tem um líquido adjacente a uma parede sólida, não somente as forças
moleculares de London-van der Waals de atração coesiva entre as moléculas do
líquido são importantes, senão também as forças moleculares de London-van der
Waals de atração adesiva entre as moléculas do sólido e as do líquido.
Evidentemente, no caso da água em vidro as forças adesivas são dominantes
enquanto que no caso de mercúrio em vidro dominam as forças de coesão do
líquido.

           Pode-se, agora, explicar os fenômenos da capilaridade. Será visto o
caso da ascensão capilar, de maior interesse; no caso da depressão capilar o
raciocínio é o mesmo. Imagine-se, então, que um tubo capilar de vidro é colocado
verticalmente dentro de uma vasilha com água (Figura 6). Assim que o tubo toca
na superfície da água, as moléculas de sua parede interna atraem as moléculas da
superfície da água fazendo com que ela se curve para cima num menisco côncavo.
(Figura 6a). Esta curvatura para cima faz com que, de acordo com a fórmula de
Laplace, a pressão interna no menisco (côncavo) no tubo capilar se torne menor
do que a pressão interna na interface água-ar plana na vasilha.




                                  Água no Solo
12 |Paulo Leonel Libardi




                                                                           P0




                                                                            ...
                                                                    P'-p




                                                                                  h


                 P0          P0     P0                         P0                     P0
                              ...




         z            P'-p                                 z
                                         ...




                                                                                           ...
                                           P'                                                P'
                                                ...




                         A           B                                 A               B
                             (a)                                           (b)

Figura 6 -      Ascensão da água num tubo capilar: (a) formação do menisco
                côncavo, (b) ascensão.

             Sejam considerados dois pontos na água dentro da vasilha da Figura 6,
um abaixo do menisco côncavo recém formado no tubo capilar (ponto A) e outro
no mesmo plano horizontal do ponto A, mas abaixo da superfície plana (ponto B).
Percebe-se que, na situação da Figura 6a, o líquido não se encontra em equilíbrio
porque a pressão em B é maior do que em A e isso faz com que a água seja
empurrada para cima no tubo capilar até uma altura h (Figura 6b) quando a pressão
em A se iguala à pressão em B e o líquido atinge a situação de equilíbrio da Figura
6b. Portanto, na condição de equilíbrio da Figura 6b:




                                                Água no Solo
Paulo Leonel Libardi| 13




                     Po + P'+ ρ a gz = Po + ( P'− p) + ρ a gh + ρ a gz


ou
                                      p = ρ a gh ,                                    (5)

donde
                                             p
                                      h=         ,                                    (6)
                                            ρa g

sendo, evidentemente, h a altura da ascensão capilar da água, ρa a densidade da
água e g a aceleração da gravidade.

           No caso em que a superfície côncava é esférica e de raio R (Figura 7),
resulta, pela substituição da equação (4) na equação (6), que
                                            2σ
                                      h=          .                                   (7)
                                           ρ a gR

           Por outro lado, da Figura 7:
                                             r
                                      R=         ,                                    (8)
                                           cos α

em que r é o raio do tubo capilar e α o ângulo de contato, o qual, como se pode
ver, é o ângulo formado no líquido entre o plano tangente à superfície do líquido
na linha de contato e a parede do tubo. Linha de contato é a linha composta pelos
pontos comuns às três fases: sólida (vidro), líquida (água) e gasosa (ar) que em
corte define o ponto de contato P mostrado na Figura 7.

           Substituindo a equação (8) na equação (7):




                                   Água no Solo
14 |Paulo Leonel Libardi




                                        2σ cos α
                                   h=            .                               (9)
                                         ρ a gr

            As equações 6, 7 e 9 são chamadas indistintamente de equação de
Kelvin da capilaridade.




                                         r


                                         R
                                         α
                                              P
                                          α




Figura 7 - Detalhe da superfície líquida no capilar com o ângulo de contato α.

            Maiores detalhes deste assunto podem ser encontrados, por exemplo,
em Kirkham & Powers (1972) e Libardi (2005).

            Além dos mecanismos de retenção é também importante conhecer os
índices que são utilizados para quantificar a água no solo.




                                   Água no Solo
Paulo Leonel Libardi| 15




1.2 Quantificação da água no solo

               Seja uma amostra de solo não-saturado cujo volume V é,
evidentemente, igual à soma do seu volume de sólidos Vs e o seu volume de poros
Vp, isto é,
                                    V = Vs + V p .                             (10)

Chamando de Va e Var os volumes de água (solução) e de ar, respectivamente,
presentes no interior do espaço poroso desta amostra, num determinado momento,
então
                                    V p = Va + Var                             (11)

e, portanto,
                                  V = Vs + Va + Var .                          (12)

Para solos de estrutura rígida (não-expansíveis), sempre Vp = Va + Var = constante
e, portanto, quando Va aumenta (ou diminui), Var diminui (ou aumenta) do mesmo
valor, ou seja, V e Vp não variam com Va. Para solos expansíveis, entretanto, Vp e,
portanto, também V variam com Va, ou seja, aumentam com o aumento de Va e
diminuem com a diminuição de Va; conseqüentemente, para estes solos, as
equações (10), (11) e (12) continuam válidas, mas sempre para um determinado
valor de Va.

               Igualmente, se for chamada de m a massa desta amostra de solo não-
saturado num dado momento, de ms a massa de seus sólidos e, no mesmo
momento, de ma e mar as massas de água e de ar presentes no interior do seu
espaço poroso, evidentemente,




                                   Água no Solo
16 |Paulo Leonel Libardi




                               m = ms + ma + mar .                          (13)

Entretanto, em comparação com a magnitude de ms e ma, mar pode ser considerada
sempre desprezível, pelo que
                                     m ≅ ms + ma .                          (14)

            A partir dessas informações pode-se, agora, definir os índices que
quantificam a água no solo:



- Conteúdo de água no solo à base de massa U

            É, por definição, o quociente da massa de água presente numa amostra
de solo num determinado instante e a massa de sólidos da amostra:
                                      ma
                               U=
                                      ms
                                            [
                                         → kg kg −1   ]                     (15)


ou, tendo em vista a equação (14),
                                   m − ms
                              U=
                                     ms
                                                [
                                          → kg kg −1 .    ]                 (16)


            É importante esclarecer que, pelo fato de U não ser uma fração (parte
de uma unidade), não deveria ser expressa em porcentagem, muito embora isso
seja muito comum! Observe-se, também, que não há necessidade de qualquer
informação adicional quando se utiliza U para quantificar a água de solos
expansíveis.




                                   Água no Solo
Paulo Leonel Libardi| 17




- Conteúdo de água no solo à base de volume θ

           É o quociente do volume de água presente numa amostra de solo, num
determinado instante, e o volume da amostra, ou seja,
                                    Va
                               θ=
                                    V
                                          [
                                       → m 3 m −3   ]                          (17)


ou, lembrando que a densidade da água ρa = ma/Va e tendo em vista a equação
(14),
                                 m − ms
                            θ=
                                  ρ aV
                                              [
                                        → m 3 m −3 .    ]                      (18)


Como θ é uma fração (parte de uma unidade), isto é, mostra quanto de V é Va
num determinado instante,        pode perfeitamente ser expressa também em
porcentagem, bastando para isso multiplicar por 100 o resultado obtido pelas
equações (17) ou (18).

           O conteúdo de água θ pode ser calculado a partir da determinação do
conteúdo de água U e da densidade do solo ρ. Como, por definição, densidade de
um corpo é a razão da massa pelo volume desse corpo, então, no caso, para nosso
corpo poroso solo = sólidos + poros de massa ms e volume V,
                                    ms
                               ρ=
                                    V
                                          [
                                       → kg m −3 .  ]                          (19)

Assim, dividindo a equação (17) pela equação (15) verifica-se facilmente que
                                         ρ
                                    θ=      U .                                (20)
                                         ρa

Normalmente se assume para a densidade da água ρa o valor 1000 kg m-3.




                                  Água no Solo
18 |Paulo Leonel Libardi




            É importante observar que, para solos expansivos, o valor de θ deve
sempre vir acompanhado do valor de ρ e o valor de ρ sempre acompanhado do
valor do conteúdo de água, no momento de amostragem.

            Dividindo ambos os membros da equação (11) por V,
                                 Vp        Va Var
                                       =     +    ,                        (21)
                                 V         V   V

verifica-se que a quantidade Vp/V é uma fração que mostra quanto do volume da
amostra de solo é volume de poros, sendo, por isso, denominada porosidade do
solo α:
                                      Vp
                               α=
                                      V
                                              [
                                           → m 3 m −3   ]                  (22)

e que a quantidade Var/V é uma fração que mostra quanto do volume da amostra de
solo é volume de ar, num dado instante, sendo denominada, por esse motivo,
porosidade de aeração αar:
                                      Var
                             α ar =
                                      V
                                              [
                                          → m 3 m −3 .  ]                  (23)

A substituição das equações (17), (22) e (23) na equação (21) mostra que
                                  α = θ + α ar .                           (24)

Por esta expressão (24) vê-se claramente que a) quando θ = 0, α = αar
(numericamente): solo completamente seco e b) quando αar = 0, α = θs
(numericamente), sendo θs = conteúdo de água à base de volume no solo saturado.




                                 Água no Solo
Paulo Leonel Libardi| 19




           Explicitando Vp da equação (10) e dividindo ambos os membros da
equação resultante por V, obtém-se
                                                  Vs
                                     α = 1−          .                         (25)
                                                  V

Sendo
                                     ms
                             ρs =
                                     Vs
                                              [
                                        → kg m −3 ,      ]                     (26)


a densidade dos sólidos do solo, também chamada densidade das partículas do
solo, percebe-se, facilmente, que, pela substituição das equações (19) e (26) na
equação (25),
                                              ρ
                                     α = 1−      .                             (27)
                                              ρs

           Será mostrado, a seguir, um outro modo de quantificar a água no solo
também muito utilizado quando se estuda água no solo.



- Armazenagem ou altura de água no solo

           Imagine-se um perfil de solo no campo e que, num determinado
momento, ao longo de sua profundidade Z, sejam obtidos valores de θ a distâncias
tão próximas entre si quanto possível de tal maneira que, num gráfico de θ em
função de Z, o conjunto dos pontos obtidos resulte numa curva contínua
representando uma dada função θ = θ (Z). Tal gráfico recebe o nome de perfil de
conteúdo de água no solo à base de volume (Figura 8).




                                 Água no Solo
20 |Paulo Leonel Libardi




                                                      θi*
                           zo = 0                                                     θ(m3 m-3)
         A                     z1
                                *
                               z1
                               z2
                                *




                 L ∆ zi
                              zi-1
                                zi*
                                                                 (Z   i
                                                                       *
                                                                           , θ i* )
                                zi




                           zn = L


                               Z(m)


Figura 8 – Perfil do conteúdo de água solo à base de volume.

             Pode-se obter a área aproximada sob a curva deste gráfico no intervalo
0 a L, dividindo-a em pequenos retângulos como mostra a Figura 8, tal que,
evidentemente,
                                                n
                           Área aproximada =   ∑ θ (Z
                                               i =1
                                                      i
                                                            *
                                                            i   )∆Z i ,                     (28)


sendo θ i ( Z i* ) e ∆Z i = Z i − Z i −1 , os conteúdos de água à base de volume e os
incrementos de profundidade i, respectivamente. Se n tender para o infinito (n →
∞) e o ∆Zi máximo tender para zero [(∆Zi)m → 0], obtém-se a área exata sob a
curva θ = θ (Z) de 0 a L,




                                      Água no Solo
Paulo Leonel Libardi| 21




                                                        n
                         Área exata =       lim
                                         n →∞
                                                      ∑θ (Z )∆Z
                                                              *
                                                              i   i                     (29)
                                         ( ∆Z i ) m →0 i =1


ou, com uma notação mais compacta,
                                                 L
                             Área exata =        ∫ θ ( Z )dZ
                                                 0
                                                                                        (30)


e lê-se integral de θ(Z) com relação a Z de 0 a L.

           Pela definição de conteúdo de água à base de volume θ (equação 17),
pode-se escrever o integrando da equação (30) como
                                  dVa      dVa     dV
                     θ (Z )dZ =       dZ =     dZ = a = dh .
                                  dV       AdZ      A

           Nesta expressão, A é uma área de solo arbitrária representativa do
perfil de conteúdo de água (Figura 8), dVa é o elemento de volume de água
existente no elemento de volume de solo dV = AdZ e dh é a altura de água
representada por dVa (dentro de dV) por unidade de área de solo (A). Portanto,
voltando à equação (30), verifica-se que
                                  L
                           hL = ∫ θ (Z )dZ → [m água] .                                 (31)
                                  0


Foi colocado o subíndice L em h para indicar que se trata do valor de h para a
camada 0 – L do perfil de solo.

           A quantidade hL, dada pela expressão (31), representa, portanto,
exatamente a área sob a curva do gráfico do conteúdo de água θ em função da
profundidade do solo Z e é igual a altura de água que a camada 0 – L m do perfil




                                      Água no Solo
22 |Paulo Leonel Libardi




de solo armazena, no momento de medida dos valores de θ para obtenção da
função θ(Z), sendo, por isso, denominada armazenagem ou altura de água no solo.

               Um aspecto importante a respeito da armazenagem de água é o que
será mostrado a seguir.

               Referindo-se novamente ao gráfico da Figura 8, pode-se obter o valor
médio aproximado de θ = θ (Z) no intervalo 0 a L, tirando a média dos valores
θ (Z 1* ), θ (Z 2 ), ... , θ (Z n ) de θ (Z):
                *               *



                                       θ (Z 1* ) + θ (Z 2 ) + ... + θ (Z n )
                                                        *                *
                                 θ ≅                                           .   (32)
                                                        n

Evidentemente, a aproximação (≅) será tanto melhor quanto maior o número de
pontos n tomados para tirar a média. Fazendo com que os pontos Z0, Z1, ..., Zn
distem um do outro de ∆Zi = ∆Z = constante e multiplicando o numerador e o
denominador do segundo membro da equação (32) por esse valor (∆Z), obtém-se:

                             θ ≅
                                      ( ) ( )                 *
                                                                  ( )
                                 [θ Z 1* + θ Z 2 + .... + θ Z n ]∆Z
                                               *
                                                                    .              (33)
                                                n∆Z

O denominador da equação (33), n ∆Z = L – 0 = L, é o comprimento do intervalo
(= camada de solo) ao longo do qual é tirada a média, independentemente do valor
de ∆Z e do número de pontos n. Se, agora, n → ∞ e ∆Z → 0, o numerador da
expressão (33) torna-se igual à integral da equação (30) e o sinal de aproximação
da equação (33) torna-se sinal de igualdade, ou seja,
                                                  L

                                                  ∫ θ (Z )dZ
                                                   0
                                            θ =                                    (34)
                                                        L




                                            Água no Solo
Paulo Leonel Libardi| 23




ou, tendo em conta a equação (31),
                                     hL = θ L .                                (35)

           Evidentemente, se medirmos hL em dois instantes diferentes, temos

que a variação de armazenagem da água no solo, ∆hL , é obtida por


                                 ∆hL = (θ f − θi ) L                           (36)

sendo θ f o conteúdo de água no solo à base de volume médio no instante final e

θ i o conteúdo de água no solo à base de volume médio no instante inicial, ambos
dados pela equação (34).


2 ENERGIA DA ÁGUA NO SOLO

           Todo corpo na natureza possui uma energia a qual é normalmente
subdividida em três formas principais: energia cinética, resultante da velocidade
instantânea do corpo em relação a algum referencial externo a ele, energia
potencial, resultante da posição instantânea do corpo em relação a campos de força
(gravitacional, elétrica, eletromagnética, etc) também externos a ele, e energia
interna, associada ao movimento e posição das moléculas, átomos, elétrons, etc. de
que se constitui a matéria do corpo, incluindo diversas formas como a energia
térmica, a energia química, a energia nuclear, etc.. É importante esclarecer que em
todo estudo com quaisquer destas formas de energia, nunca se trabalha com seu
valor absoluto (porque é praticamente impossível conhecê-lo), mas sempre com
uma diferença de energia entre duas situações, uma tomada como referência.




                                  Água no Solo
24 |Paulo Leonel Libardi




            A água no solo será aqui estudada, do ponto de vista energético,
segundo um modelo no qual se considera sempre duas situações com ela em
equilíbrio. Umas das situações é a água no solo propriamente dita, isto é, dentro do
solo. A outra situação é a mesma água (com a mesma energia interna que a água
no solo), mas fora do solo, denominada água padrão e definida como água livre,
de mesma energia interna que a água no solo e em cuja superfície plana,
coincidente com a referência gravitacional, atua a pressão atmosférica do local
onde a medida é feita. Portanto, em ambas as situações, assume-se que a energia
interna da água é a mesma, isto é, mesma temperatura, mesma concentração salina,
enfim tudo é igual no que diz respeito às condições energéticas internas da água.
De acordo com este modelo, portanto, a única diferença que existe entre as águas
nas duas situações de equilíbrio (no solo e padrão), são os campos de força
externos a elas. Como podem atuar concomitantemente mais de um campo de
força externo, resultando, portanto, em mais de um tipo de energia potencial, será
aqui utilizado o termo energia potencial total para indicar a soma dos diversos
tipos ou componentes de energia potencial atuantes.

            Se a energia potencial total de um corpo (com energia interna
constante) em equilíbrio for diferente em dois pontos de um determinado meio,
este corpo vai sempre se movimentar, se o meio permitir, do ponto onde sua
energia potencial total é maior para o ponto onde ela é menor. O raciocínio é o
mesmo quando o corpo é a água no solo mas, nesse caso, é mais conveniente
utilizar a energia potencial total da água por unidade de massa ou volume de água
ou energia potencial total específica da água como veremos no item a seguir.




                                  Água no Solo
Paulo Leonel Libardi| 25




2.1 Potencial total da água no solo

            Referindo-se ao modelo descrito no item anterior, o conceito de
potencial total da água foi introduzido com o intuito de estabelecer o sentido do
movimento da água entre dois pontos de um meio poroso, sem conhecer os valores
individuais da energia potencial total específica em cada ponto. Assim, por
exemplo, sendo ε a energia potencial total específica da água (em equilíbrio) num
solo e εo a energia potencial total específica da água (em equilíbrio) padrão, a

diferença ε – εo é, por definição, o potencial total da água no solo φt, isto é,

                  φt = ε − ε o [energia / massa ou volume de água] .                        (37)

Considerando, agora, dois pontos A e B no perfil do solo, nos quais,
evidentemente,

                                     φ t ( A) = ε A − ε o


e


                                        φt (B ) = ε B − ε o


então,

                    φt ( A) − φt (B ) = (ε A − ε o ) − (ε B − ε o ) = ε A − ε B .


Ou seja, como a energia potencial total específica da água padrão deve ser a
mesma para os dois pontos, medindo-se o potencial total nesses dois pontos
obtém-se o valor da diferença εA - εB por meio da diferença φt (A) - φt (B), sem a




                                       Água no Solo
26 |Paulo Leonel Libardi




necessidade de se conhecer individualmente εA e εB. Desse modo, se num
determinado momento φt(A) > φt(B), o movimento da água é de A para B porque

ε A > ε B e se φt (B) > φt (A), de B para A porque ε B > ε A . Quando φt (A) = φt (B),
tem-se, evidentemente, uma condição em que não há movimento entre A e B,
porque εA = εB (equilíbrio).

            Evidentemente, cada tipo (ou componente) de energia potencial que
estiver atuando na água dentro do solo, dá origem a um potencial componente do
potencial total da água no solo.

            Por outro lado, quando se expressa potencial (o total ou qualquer
componente) em unidade de energia/volume, verifica-se, imediatamente que esta é
idêntica à unidade de pressão porque, dimensionalmente,

                                   J    Nm   N
                                     3
                                       = 3 = 2 = Pa (Pascal).
                                   m    m   m


(Será considerado nesse estudo a energia potencial específica preferencialmente
como energia por unidade de volume; por unidade de massa o raciocínio é o
mesmo, muda apenas a unidade).

            Portanto, os valores de todos os potenciais da água no solo, tanto o
total como qualquer um dos seus componentes, podem ser considerados como
idênticos ao valor de uma diferença de pressão, isto é, diferença entre uma pressão
cujo valor é idêntico ao valor de ε e uma pressão cujo valor é idêntico ao valor de
εo.




                                   Água no Solo
Paulo Leonel Libardi| 27




           A seguir, serão estudados os potenciais componentes do potencial total
da água no solo.



2.2 Potencial gravitacional da água no solo

           Sabe-se da Mecânica que qualquer corpo num campo gravitacional
possui uma energia potencial gravitacional (Eg). A água no solo, estando dentro
do campo gravitacional terrestre possui, evidentemente, esta energia, cuja equação,
dado a necessidade de incluir neste contexto a água padrão anteriormente definida,
pode ser escrita como:
                                ∆E g = ma g (r1 − ro ) ,                                  (38)

sendo ma = massa da água no solo; g = aceleração da gravidade; r1 = distância do
centro da Terra ao ponto considerado no perfil do solo e ro = distância do centro da
Terra a um ponto arbitrário onde se deve imaginar localizada a superfície plana da
água padrão e que será denominada simplesmente referência gravitacional. ∆Eg,
evidentemente, é o incremento de energia potencial gravitacional que a água
adquire quando de seu deslocamento da posição r1 para a posição ro contra ou a
favor a força da gravidade.

           Considerando a existência apenas do campo gravitacional terrestre, o
potencial total, definido pela equação (37), torna-se apenas o                        potencial
gravitacional φg o qual, tendo em conta a equação (38), é dado por
                                          ∆E g
                         φg = ε − ε o =          = ρ a g (r1 − r0 ) ,                     (39)
                                          Va




                                   Água no Solo
28 |Paulo Leonel Libardi




em que ρa = ma/Va = densidade da água no solo, considerada constante.

            Chamando, então, o valor da distância vertical do ponto considerado à
posição da referência gravitacional, de Z, isto é,
                                      Z = r1 − ro ,                             (40)

reescreve-se a equação (39) como:
                           φ g = ± ρ a gZ [energia / volume] ,                  (41)

sendo que o sinal de Z e, portanto de φg dependerá da posição do ponto
considerado em relação à referência gravitacional, isto é, o sinal será positivo se o
ponto estiver acima da referência gravitacional (r1 > r0), negativo se estiver abaixo
(r1 < r0) e nulo se for coincidente com ela (r1 = r0).

            Com base no que foi afirmado no item anterior, pode-se considerar
também o valor da energia/volume como idêntico ao valor da pressão de uma
coluna de água causada pelo campo gravitacional terrestre. Tal pressão é dada por:

                                        Pa = ρ a gh ,


em que Pa = pressão de água (N/m2, Pa), ρa = densidade da água (kg/m3),
g = aceleração da gravidade (m/s2) e h = altura da coluna de água (m).

            Desta maneira, a partir das equações (39) a (41):

                            φ g = ρ a g(r1 − r0 ) ≡ ρ a g(h1 − h0 )


ou




                                     Água no Solo
Paulo Leonel Libardi| 29




                    φ g = ± ρ a gZ ≡ ± ρ a gh [energia / volume] ,                (42)

sendo h = h1 − h0 , de modo que ρ a gh1 = valor da pressão de uma coluna de água
de altura h1 idêntico ao valor de ε da água no solo e ρ a gh0 = valor da pressão de

uma coluna de água de altura ho idêntico ao valor de εo da água padrão.

           Dividindo ambos os membros da equação (42) por ρa g:
                          φ g = ± Z ≡ ± h [altura de água] ,                      (43)

isto é, dividindo-se o valor de φg, expresso na unidade energia/volume, calculado a

partir da equação (41), pela quantidade ρ a g , obtém-se o valor de φg na unidade

altura de água ou carga hidráulica.

           Portanto, para se obter o valor de φg num determinado ponto no solo,
precisa-se apenas de uma régua para medir a distância vertical deste ponto à
posição tomada como referência gravitacional, que a unidade do resultado obtido
será em altura de água, ou seja, se a distância medida for, por exemplo, 1 m, o
valor de φg será 1 m de água se o ponto estiver acima da referência gravitacional e
-1 m de água, se o ponto estiver abaixo da referência gravitacional.



2.3 Potencial de pressão da água no solo

           Num solo com estrutura rígida, este componente do potencial total só
se manifesta sob a condição de saturação. Para defini-lo, considere-se o esquema
da Figura 9.




                                   Água no Solo
30 |Paulo Leonel Libardi




                   Po




                                                           Po
                    P’
    h


                  A                                        BB                  RG
                                                            P’
      Água com energia potencial
     Água com energia potencial
        total específica ε no ponto
     total ε (ponto considerado A,
               considerado A
     sob a pressão Po+P’+ρa gh.)



                                         Água padrão com energia potencial total
                                           Á
                                          Água padrão com energia potencial
                                            total ífica o (pontoεo (ponto B)
                                                             ε
                                               total específica sob
                                                   espec
                                         específica εo (ponto B,B) a pressão Po+P’).



Figura 9 - Definição do potencial de pressão.


            No ponto B, em equilíbrio no recipiente do lado direito desta
figura, tem-se água padrão (com energia potencial total específica εo) porque na
interface plana, coincidente com a referência gravitacional (RG) onde ele se
localiza, estão atuando a pressão atmosférica (Po) e a pressão interna (P’). Por
outro lado, o ponto A, em equilíbrio no recipiente do lado esquerdo da figura, é
diferente do primeiro apenas por nele atuar também a pressão da altura de água h.
Note, então, que a única diferença entre os dois pontos é a pressão de água Pa = ρa




                                      Água no Solo
Paulo Leonel Libardi| 31




gh que atua no ponto da esquerda. Conseqüentemente, esta pressão Pa torna a
energia potencial total específica ε no ponto à esquerda (considerado) maior do
que a energia potencial total específica εo no ponto à direita (água padrão): se for
permitida uma comunicação entre os dois pontos, a água, por ação desta pressão,
flui em direção à água padrão indicando que ε > εo.

           Pela definição de potencial (equação 37) e, no caso, pelo fato de a
única diferença entre a água padrão e a água no ponto considerado ser a pressão de
líquido no ponto considerado, tem-se que:
                    φ p = ε − ε o = ρ a gh → [energia / volume] ,                (44)

sendo φ p = potencial de pressão.

           De modo idêntico ao que vimos no caso do potencial gravitacional, em
termos de carga hidráulica,
                              φ p = h [altura de água] .                         (45)

Note-se, no entanto, que, no caso deste potencial de pressão, h é uma carga
hidráulica real que atua no ponto considerado.

           Como se pode ver pela equação (45), φp pode ser determinado
medindo o comprimento h da coluna de líquido que atua acima do ponto de
medida. No campo, isto é feito inserindo um piezômetro no solo, adjacente ao
ponto onde se deseja conhecer φp, e mede-se a profundidade h do ponto abaixo da
superfície livre de água no piezômetro (Figura 10). Portanto, o valor do potencial
de pressão é sempre positivo ou no mínimo igual a zero. Esta última situação (φp=
0) ocorre quando o ponto se localiza na superfície livre de água.




                                    Água no Solo
32 |Paulo Leonel Libardi




                                          piezômetro
                                                       superfície do solo




                                                         lençol freático




                                               h




                                                   ponto em
                                                    questão




Figura 10 - Ilustração da medida de φp num determinado ponto no solo abaixo de
            um lençol de água, por meio de um piezômetro.




2.4 Potencial mátrico da água no solo

            Seja um determinado volume, um torrão, de solo não saturado. É fácil
verificar que para retirar a quantidade de água nele em equilíbrio, é necessário
realizar trabalho sobre ela, o qual é tanto maior quanto mais seco estiver o solo.
Isso nos leva a concluir que o solo retém a água no seu espaço poroso com forças
cujas intensidades aumentam conforme o seu conteúdo de água diminui. Essas
forças, por se manifestarem devido à presença da matriz do solo, são denominadas




                                 Água no Solo
Paulo Leonel Libardi| 33




forças mátricas, relacionadas aos já mencionados fenômenos de capilaridade e
adsorção.

            Distinguem-se, assim, dois tipos de força mátrica: a) as forças
capilares, responsáveis pela retenção da água nos poros capilares dos agregados e
b) as forças de adsorção, responsáveis pela retenção da água nas superfícies das
partículas do solo. Quantificar a contribuição de cada um desses tipos de força no
potencial mátrico é praticamente impossível na faixa do conteúdo de água no solo
que as plantas normalmente se desenvolvem. O que se pode dizer, em termos
qualitativos, é que logo após a drenagem livre de um solo saturado no campo, as
forças capilares são dominantes e que, à medida que o solo seca a partir daí, a
adsorção vai adquirindo maior importância.

            Estes dois mecanismos de retenção da água no solo pelas forças
capilares e de adsorção reduzem a energia potencial total específica da água livre.
A veracidade desta afirmação pode ser demonstrada tanto pelo fato de se ter que
realizar trabalho sobre a água para retirá-la de um solo não-saturado, como
também pelo fato de que ao se colocar água livre (padrão) em contato com um
solo não saturado, num mesmo plano horizontal, a água flui naturalmente para o
solo, ou seja, de um local com maior para um local com menor energia potencial
total específica.

            Nesse caso, portanto, como a única causa da diferença entre a energia
potencial total específica da água no solo não-saturado ε (ponto A) e a energia
potencial total específica da água padrão εo (ponto B) é a existência das forças
mátricas que atuam para reter a água no solo não saturado (Figura 11), o potencial




                                  Água no Solo
34 |Paulo Leonel Libardi




total definido pela equação (37) torna-se apenas o potencial mátrico φm, o qual
pode ser interpretado como uma medida do trabalho realizado por um agente
externo para tornar livre a unidade de volume de água retida num solo não
saturado, isto é, ε + W/Va = εo ou
                                              W
                           φm = ε − ε o = −      .                                      (46)
                                              Va


                      Po                                         Po
        W




                      A                                          BB               RG
                                                            V
                                                             a


                                                                  P’
     Água com energia potencial total               Água padrão com energia
    específica ε (ponto considerado A         potencial total específica εo (ponto B)
            do solo não saturado.
                        saturado).


Figura 11 - Definição do potencial mátrico.


            Pela equação (46), percebe-se que, a não ser no caso particular de uma
interface água-ar plana como num lençol freático na qual ε = εo e então φm = 0, o

potencial mátrico é sempre uma quantidade negativa (ε < εo), sendo, por isso,




                                     Água no Solo
Paulo Leonel Libardi| 35




comum a utilização do termo tensão da água no solo τ para eliminar o sinal
negativo, isto é, em vez de se dizer, por exemplo, que o potencial mátrico da água
no solo φm = -30 kPa, diz-se que a tensão da água no solo τ = 30 kPa.




3 CURVA DE RETENÇÃO

            Como acabamos de ver, o potencial mátrico pode ser avaliado pelo
trabalho que se deve realizar à unidade de volume de água retida num solo não-
saturado pelas forças mátricas, para torná-la livre como a água padrão.

            Devido à heterogeneidade dos poros         dos solos, com formas e
tamanhos muito variáveis de um solo para outro, não é possível se obter uma
equação teórica para o potencial mátrico como no caso dos potenciais
gravitacional e de pressão. Entretanto, como este potencial varia com o conteúdo
de água no solo, sendo tanto menor quanto mais seco estiver o solo, foram
desenvolvidos aparelhos por meio dos quais se pudesse buscar uma correlação
entre ele e o conteúdo de água no solo. A curva resultante dessa correlação
recebeu o nome de curva de retenção da água no solo ou simplesmente curva de
retenção.

            Os aparelhos tradicionais desenvolvidos para a determinação dessa
curva são os funis de placa porosa (Haines, 1930) e as câmaras de pressão com
placa porosa (Richards, 1941, 1947, 1948), os quais têm a teoria da capilaridade
como base de seu funcionamento.




                                  Água no Solo
36 |Paulo Leonel Libardi




3.1 Funil de placa porosa

            A Figura 12 representa o experimento tradicional de demonstração da
ascensão capilar com tubos de diversas formas. Assim, enquanto no tubo A desta
figura, capilar em todo o seu comprimento, o desnível h se forma naturalmente,
nos tubos B e C isso não é possível por causa das suas partes não capilares. No
entanto, se forem preenchidas as partes não capilares destes tubos, elevando o
nível da superfície da água na cuba até a altura h', isto é, até que a porção capilar
seja atinjida, o menisco é formado e a coluna é mantida em h, sem a necessidade
de que o nível permaneça em h' o qual pode, então, ser rebaixado à posição
original esgotando-se a água através da torneira T (Figura 12). Imagine-se, no
entanto, que o nível da superfície da água na cuba da Figura 12 seja mantido a
altura h' . Pela equação de Kelvin, o valor da ascensão é h, mas, como há um
comprimento de tubo igual a H-h', menor do que h, acima da superfície da água na
cuba, evidentemente, a água sobe até o fim deste comprimento e adquire um
menisco mais plano, cujo raio de curvatura deve ser exatamente igual a h/(H-h')
vezes aquele que ela adquiriria normalmente, isto é, se houvesse um comprimento
mínimo h de capilar acima da superfície plana da água na cuba. Por exemplo, se
H-h'=h/2, o valor do raio de curvatura do menisco na extremidade do tubo A será o
dobro do valor normal. Este fato é depreendido facilmente da equação (7) de
Kelvin pela qual, uma vez que 2σ/ρag é constante, o fator de diminuição de h é
igual ao fator de aumento de R.

            Analisando, agora, o tubo C da Figura 12, observa-se que há cinco
pequenos tubos capilares. Ao invés de cinco, poderiam haver dez, vinte, cem, ou
muito mais. Uma maneira prática de obter o maior número possível de capilares




                                  Água no Solo
Paulo Leonel Libardi| 37




como no tubo C, consiste em utilizar uma placa porosa (de cerâmica, por exemplo)
conforme o tubo D da figura. Evidentemente, no caso da placa porosa, os
diâmetros dos seus capilares não são todos iguais e nem uniformes como no tubo
C, mas sendo pequena a espessura da placa (da ordem de 5 mm) e considerando
que o valor de h deve ser sempre menor do que o valor máximo calculado pela
equação (47) a seguir, pode-se dizer que os meniscos nos capilares da placa se
localizam, praticamente, na sua superfície para qualquer valor de h (Figura 12).

                                                                Placa porosa




                h                                                     h
  h'   H


                                                                               T



           A            B               C                   D




Figura 12 - Tubos capilares com diferentes volumes de água.

           O tubo D da Figura 12 pode ser confeccionado de tal maneira a se
tornar um funil de haste prolongada e flexível por meio da qual se pode aumentar
ou diminuir h pelo abaixamento ou elevação do nível de água mantido constante
em sua extremidade por um dispositivo simples (Figura 13).




                                  Água no Solo
38 |Paulo Leonel Libardi




             Por ser um funil munido de uma placa porosa na parte inferior do seu
corpo, recebe a denominação de funil de placa porosa.



                    Po           Po                    Po

                                                                  placa porosa
      funil de
        placa
       porosa

                                                                     Po          h




                                              tubo
                                            flexível




                                                                      dispositivo para
                                                                      manter o nível de
                           (a)                              (b)        água constante


Figura 13 - Funil de placa porosa adaptado com uma haste flexível: (a) placa
             porosa com a superfície dos meniscos nos seus poros, plana e (b)
             placa porosa com a superfície dos meniscos nos seus poros, côncava,
             com p = ρagh.



             Como já se viu, o aumento de h faz com que os raios de curvatura dos
meniscos nos capilares da placa porosa decresçam, isto é, suas interfaces sejam




                                      Água no Solo
Paulo Leonel Libardi| 39




“puxadas” para baixo. Isto, entretanto, acontece até o limite máximo quando o raio
de curvatura do menisco no maior poro da placa se torna igual ao raio r’ deste
poro. Nessa situação limite, a equação de Kelvin se torna, portanto,
                                            2σ
                                   hmax =         .                            (47)
                                            ρgr '

           Um valor maior do que o hmax da placa, resultará em rompimento do
menisco e passagem de ar através da placa. Portanto, quanto menor r’ maior hmax,
que também é denominado valor de entrada de ar da placa porosa. Entretanto,
praticamente, o valor máximo de h que se consegue é ≅ 8,5 m, mesmo que o valor
de r’ permita um hmax maior, devido ao fenômeno da cavitação. Resumidamente,
este fenômeno consiste no seguinte: à medida que se aumenta a altura h, a pressão
interna no menisco diminui (lembre-se que a pressão interna no menisco é P’ - p e
p = ρagh = incremento da pressão interna devido à curvatura da superfície); esta
diminuição da pressão interna faz com que ar e vapor de água saiam do líquido ou
passem através das paredes da tubulação usada e concentre-se sob a placa,
quebrando a continuidade da coluna de água que então se desprende da placa,
normalmente quando h ≅ 8,5 m.

           Considerando qualquer um dos poros da placa porosa do funil da
Figura 13 tem-se, como ilustra a Figura 14, (a) à esquerda (correspondente a
situação da Figura 13a) a água padrão com sua interface plana e (b) à direita
(correspondente a situação da Figura 13b) a água no mesmo poro capilar com sua
interface côncava (ponto considerado).




                                  Água no Solo
40 |Paulo Leonel Libardi




              Note-se que a única diferença entre as duas situações é a curvatura
côncava da interface água-ar no ponto considerado causada pela matriz (= placa
porosa) ao se abaixar, de h, o dispositivo de manutenção do nível da água. Pode-se
observar que, devido a esta curvatura causada pela matriz, a energia potencial total
específica da água retida pela placa (ponto A, logo abaixo da camada ativa) é
menor do que a energia potencial total específica da água padrão (ponto B,
também logo abaixo da camada ativa), porque a pressão que atua em A (interface
côncava) é Po+ P' - p e a pressão que atua em B (interface plana da água padrão) é
Po+ P' (Figura 14). Logo, a semelhança do que vimos para o φp:


                           φ m = ε − ε o = − p → [energia/volume]                                (48)

                 Po                                                    Po



                                                                                                RG
                   B                                                 A
                                                                        ...




                                      (a)                                                 (b)
                  ...




                                                                      P'-p
                 P'
       Água padrão com energia                                 Água com energia
      potencial total específica εo                        potencial total específica ε
              (ponto B)                                     no ponto considerado A.

Figura 14 - Medida do potencial mátrico

ou, tendo em conta o valor de p = ρagh:




                                            Água no Solo
Paulo Leonel Libardi| 41




                        φ m = − ρ g h → [energia / volume]                     (49)

ou ainda

                            φm = −h → [altura de água]                         (50)

           Considere-se, agora, a colocação de uma amostra de solo na superfície
da placa porosa do funil, que ela seja saturada elevando o nível de água no tubo
flexível até torná-lo coincidente com o seu topo (Figura 15a) e, depois de um certo
tempo, quando se tem certeza que foi bem saturada, seja abaixado o nível de água
no tubo flexível a uma altura h (Figura 15b). Ao se fazer isso, os poros da amostra
de solo de raio maior do que o calculado pela equação

                                           2σ
                                     r=                                        (51)
                                          ρ a gh

são esvaziados, o que pode ser observado pelo gotejamento de água através da
pequena saída do dispositivo que mantém o nível de água constante na
extremidade do tubo flexível. Note-se que a equação (51) é a equação (9) com o r
explicitado, para α=0. Atingido o equilíbrio, isto é, assim que o gotejamento parar,
a situação da Figura 15 é idêntica à da Figura 13, com a diferença de que se tem
uma amostra de solo (ponto considerado A) em perfeito contato com a placa
porosa. Logo, as mesmas equações (48, 49 e 50) se aplicam, ou seja, a altura de
água h (agora a distância do centro da amostra de solo ao nível de água mantido
constante na extremidade da haste do funil), com o sinal trocado, representa o
potencial mátrico da água no solo após o equilíbrio.




                                  Água no Solo
42 |Paulo Leonel Libardi




                             Po           Po           Po
                                                            A
                                                                       amostra de solo
           amostra de solo                                            com uma tensão h
             saturado



                                                                                 h
                                                                          Po


                                                            RG
                                                                      C




                                  (a)                           (b)
Figura 15 - Procedimento para medida de φm com o funil de placa porosa:
              (a) saturação do solo, (b) aplicação da tensão h, com consequente
              dessaturação da amostra de solo.



            A equação (50) pode ser obtida de outra maneira. Considere-se a
amostra de solo (ponto A) e a água padrão (ponto C) da Figura 15b. Quando pára
o gotejamento, a amostra de solo torna-se não saturada, portanto com um
determinado φm. Como no equilíbrio, φt(A)=φt(C) e, pela Figura 15b,
φt(A)=φm(A)+φg(A)=φm+h m água e φt(C)=φm(C)+φg(C)=0+0, então, φm= -h m
água.

            Para a elaboração da curva de retenção da água no solo com o funil de
placa porosa, repete-se para diversos valores de h, o procedimento indicado na




                                        Água no Solo
Paulo Leonel Libardi| 43




Figura 15 determinando-se, depois de atingido o equilíbrio com cada valor de h
selecionado, o valor do conteúdo de água no solo correspondente. Evidentemente,
de um modo geral, quanto maior h (ou menor φm), sempre menor deve ser o
conteúdo de água no solo depois do equilíbrio.

           O funil da placa porosa é normalmente utilizado para valores de h
menores do que 2 m.


3.2 Câmaras de Pressão

           Para valores de φm menores do que ≅ -2,0 m de água até o limite de -
150 m de água, pode-se completar a curva de retenção no laboratório, utilizando
câmaras de ar comprimido munidas de placa porosa (Figura 16). Como se pode ver
por esta figura, a placa porosa separa a água no solo (ponto A) da água padrão
(ponto B). Estando a amostra de solo saturada, ao se aplicar uma pressão P na
câmara, toda unidade de volume de água retida no solo com uma energia menor do
que a pressão P aplicada, é dele retirada e goteja no tubo de saída. Portanto,
enquanto o tubo de saída estiver gotejando, o valor do potencial mátrico estará
diminuindo, uma vez que o solo estará sendo dessaturado. Quando parar de gotejar
(equilíbrio), o valor de φm é tal que compensa a pressão aplicada, ou seja,
ε + P = ε o e então

                               φm = ε − ε o = − P .                          (52)

           Resumidamente, o procedimento de utilização da câmara consiste em
saturar a amostra de solo, aplicar a pressão de interesse P e, após o equilíbrio,
quando o tubo de saída parar de gotejar, medir o valor do conteúdo de água com




                                 Água no Solo
44 |Paulo Leonel Libardi




que ficou a amostra; repete-se o procedimento para vários valores de P e elabora-
se a curva.


                                                                medidor de
                                                                 pressão
                             câmara de pressão de ar                  P

                                   Po + P
                                                                               Po + P
                                            amostra                          compressor
           Po                               de solo                             de ar

                                      A                RG
              B
                                                            placa porosa

              P’                   P’- p    água
        tubo de saída
           de água



Figura 16 - Câmara de pressão de ar com placa porosa para elaboração da curva
              de retenção.


              A explicação do porquê φm = -P com a câmara de pressão pode
também ser dada de outra maneira como a seguir. A amostra de solo, depois que
pára o gotejamento através do tubo de saída, torna-se não-saturada e, portanto,
com determinado φm; mas fica sujeita também à pressão de ar P, portanto com um
potencial de pressão φp = P que, neste caso, por tratar-se de pressão de ar, alguns
autores chamam de potencial pneumático. Portanto (ver Figura 16) na amostra
(ponto A),




                                  Água no Solo
Paulo Leonel Libardi| 45




                                    φ t ( A) = φ m + P


e na água padrão (ponto B)

                                       φt (B ) = 0


Como no equilíbrio φt ( A) = φt (B ) , resulta imediatamente que

                        φm = − P      →          [energia/volume]                 (53)

           Um ponto importante a ser considerado é que, com a aplicação da
pressão P, cria-se nos capilares não esvasiados da amostra de solo (ponto A), e nos
capilares da placa, um menisco côncavo no qual atua a pressão Po+P+P’-p e,
como no ponto B atua a pressão Po+P’, então, no equilíbrio, Po+P+P’-p = Po+P’,
resultando que P = p . Assumindo que o menisco côncavo seja esférico, tem-se,
com base nas equações (4) e (8) e no resultado acima (P=p), que


                                          2σ cos α
                                     r=                                           (54)
                                             P

e, à semelhança do que ocorre com o funil de placa porosa, quando se aplica a
pressão P, pode-se dizer que, de acordo com a teoria da capilaridade, todos os
poros da amostra de solo cujos raios são maiores do que o raio r calculado pela
equação


                                            2σ
                                       r=                                         (55)
                                             P




                                   Água no Solo
46 |Paulo Leonel Libardi




são esvaziados. Note-se aqui também que a equação (55) é a equação (54), para
α=0. Comparando as equações (51) e (55), pode-se verificar que são idênticas na
forma, visto que P = p = ρ a gh ; o que muda é a maneira de retirar a água do solo.
Como no caso do funil para a aplicação de h, o que limita o valor de P a ser
aplicado é a porosidade da placa. Placas com poros pequenos, evidentemente,
suportam uma pressão maior P sem rompimento do menisco nos seus poros
capilares. O valor máximo de pressão que a placa suporta é denominada de pressão
de borbulhamento da placa porosa e o valor do raio correspondente a esta pressão
pode ser calculado pela equção (55).

              No comércio, encontram-se placas porosas com pressão de
borbulhamento de 100, 300, 500 e 1500 kPa. Para valores de pressão de 10 a 400
kPa, utiliza-se uma câmara de pressão também conhecida pelo nome popular de
“panela de pressão”, pela semelhança na forma com a panela de uso doméstico.
Para valores de pressão de 500 a 2000 kPa, utiliza-se uma outra câmara, de
constituição mais robusta e forma mais achatada para suportar estes altos valores
de pressão.

              Também no caso das câmaras de pressão, o bom contato entre a placa
porosa e a amostra de solo é primordial, a fim de que o contato hidráulico entre
ambas seja sempre mantido.

              Foi mostrado, portanto, que o potencial mátrico (φm) ou a tensão (τ) da
água no solo se relaciona com a curvatura das interfaces água-ar no solo não
saturado. Isto foi feito assumindo que estas interfaces na amostra de solo, tanto no
funil como na câmara de pressão, se acomodavam num capilar de secção




                                    Água no Solo
Paulo Leonel Libardi| 47




transversal circular de raio r sob uma tensão de água h (equação 9), no caso dos
funis de placa porosa, ou P (equação 54), no caso das câmaras de pressão. O solo,
como sabemos, não é um simples tubo capilar, mas uma composição irregular de
poros e canais formados por seus sólidos. Conseqüentemente, é claro que as
interfaces não são iguais em todos os pontos do solo mas, como vimos, as
curvaturas estão todas com o mesmo valor de tensão h ou P, no equilíbrio. Isso nos
leva a concluir que o valor de r que se obtém pelas equações da capilaridade só
pode ser considerado com um “raio equivalente” sem qualquer tentativa de
quantificação do raio real do poro. De qualquer maneira, o cálculo do raio r por
meio das equações (51) e (55) para as diversas tensões, depois de determinada a
curva de retenção de um solo (Figura 17), não deixa de ser uma maneira válida
para avaliar o tamanho dos poros do solo e sua distribuição, como mostraremos a
seguir. Outra maneira válida para isso, mas que exige a visualização do poro é a)
pelo raio da maior esfera inscrita no poro, se o tamanho dos tres eixos principais
deste poro for comparável ou b) pelo raio do círculo inscrito, se a forma do poro
for tubular (Kutílek e Nielsen, 1994).

            Será, agora, visto como se pode determinar a distribuição do tamanho
dos poros do solo com base na curva de retenção, pelo cálculo do “raio
equivalente” a cada tensão, pela teoria da capilaridade. Na abordagem, será
considerada a determinação da curva de retenção por secagem. Na determinação
por molhagem, a abordagem é a mesma apenas invertendo-se o sentido do
processo de determinação, isto é, enquanto na curva por secagem os poros são
esvaziados por aumento de tensão, na por molhagem os poros são preenchidos
com água por diminuição de tensão.




                                  Água no Solo
48 |Paulo Leonel Libardi



       r (µm)
                           1000    100   50       15    10              1              0,1
                                                                                                   θ/α
       θ (m3 m-3)

                                          r1       r2
                    0,55                                                                            1,00
                                                             Macroporosidade (0,043   m3   m-3)
θ1= 0,507                                                                                                 0,92
                    0,50



                    0,45                                     Mesoporosidade (0,124 m3 m-3)

                                                                                                    0,75
                    0,40
θ2 = 0,383                                                                                                0,70

                    0,35


                    0,30                                     Microporosidade (0,383 m3 m-3)
                                                                                                    0,50
                                         τ1        τ2


                      0,01        0,1    0,3       1               10             100             τ (m)


Figura 17 – Curva de retenção da água no solo em papel semi-log.

                     A determinação é iniciada pela elaboração do gráfico da curva de
retenção utilizando a saturação relativa θ/α no eixo das ordenadas e no eixo das
abscissas a tensão τ em escala decimal (Figura 18). A curva de retenção da Figura
18 é, portanto, o gráfico da equação (θ/α)=F(τ) no plano (τ,θ/α). Se a equação
(θ/α)=F(τ) for diferenciada com relação a τ, obtém-se a inclinação da tangente à
curva de retenção no ponto (τ,θ/α), a qual é também função de τ, isto é,
(dθ/αdτ)=f(τ), cuja unidade é portanto o inverso da unidade de tensão. É
conveniente elaborar também o gráfico da curva de −dθ/αdτ em função de τ
denominada curva diferencial da curva de retenção (Figura 19).




                                              Água no Solo
Paulo Leonel Libardi| 49



                    θ/α
                              1,0
                                                                                                               Macroporos (8%)

 θ1/α = 0,92 dτ
                                     θ 
                              0,9   d 
                                     α 



                                               dτ                                                              Mesoporos (22%)
                              0,8


                                                                    θ 
    θ2/α = 0,7                                                     d 
                                                                    α 

                                                                             dτ
                                                                                                                Microporos (70%)
                              0,6
                                             τ1                                  τ2
                                            0,300,360,5                      1,0                       1,5           2,0           τ (m)
                                    r1 = 50 µm                              r2 = 15 µm
                                             41 µm


Figura 18 – Curva de retenção da água no solo (θ/α em função deτ).



                              0,4
             - dθ/αdτ (m-1)




                              0,3



                              0,2
                                                        τ2
                                                  −   ∫τ   1
                                                               f (τ )dτ = 0,22


                              0,1
                                                                                           τ*

                                              τ1τmax                             τ2
                                                                                      −   ∫τ   2
                                                                                                   f (τ )dτ = 0,7

                              0,0           0,30 0,36
                                                      0,5                    1,0                       1,5           2,0          τ (m)
        τ1                   r = 50 µm
−   ∫
    0
             f (τ )dτ = 0,08 1     rmax = 41 µm                            r2 = 15 µm


Figura 19 – Curva diferencial da curva de retenção da Figura 18.


                                                                       Água no Solo
50 |Paulo Leonel Libardi




            Observe-se que, enquanto na Figura 17 o eixo das abscissas está em
escala logarítmica (gráfico semi-log), nas Figuras 18 e 19 está em escala decimal.
Isso foi feito porque, como se pode notar pela Figura 17, para tensões acima de
aproximadamente 2 m água o conteúdo de água θ é sempre decrescente e já
tendendo para um valor constante e para algumas explicações no presente estudo é
didaticamente mais conveniente trabalhar em escala decimal.

            Lembrando que θ = (Va / V) e α = (Vp / V), é fácil verificar que (θ /α)
= (Va / Vp), isto é, a saturação relativa é um índice que mede a fração cheia de água
do volume de poros de uma amostra de solo. No entanto, como ordenada da curva
de retenção, ela está vinculada à tensão τ e como tal representa, em associação
com a teoria da capilaridade, a fração do volume de poros de uma amostra de solo
correspondente aos poros (cheios de água) de raio menor do que r=2σ/ρagτ.
Observe ainda que, teoricamente, para τ =0, θ/α=1 (todos os poros cheios de água)
e, para uma τ =τ* muito alta, θ/α=0 (nenhum poro com água), pelo que a fração
θ/α também pode ser expressa em porcentagem, bastando para isso multiplicá-la
por 100.

            Por outro lado, do Cálculo, se

                                                  dF (τ )
                                     f (τ ) =             ,
                                                   dτ

então
                           τ2                 F (τ 2 )

                           ∫
                           τ1
                                f (τ ) dτ =     ∫ dF (τ ) = F (τ
                                              F (τ 1 )
                                                                   2   ) − F (τ 1 ).




                                              Água no Solo
Paulo Leonel Libardi| 51




Como F(τ1)=(θ1/α) e F(τ2)=(θ2/α) (Figura 18), resulta que
                                  τ2
                                                  θ1 θ 2
                                − ∫ f (τ ) dτ =     − .                        (56)
                                 τ1
                                                  α α

O primeiro membro da equação (56) está representado pela área hachurada da
Figura 19. Com relação ao segundo membro desta equação, percebe-se que


                          θ1 θ 2 θ1 − θ 2 ∆Va δVP
                            −   =        =    ≡                                 (57)
                          α α       α      VP   VP

em que ∆Va é a diferença entre o volume de água existente na amostra de solo

com conteúdo de água θ1 e o volume de água existente na amostra com conteúdo

de água θ2, portanto, igual ao volume de água liberado da amostra quando o seu

conteúdo de água decresce de θ1 para θ2 pelo aumento da tensão τ de τ1 a τ2. Tal

volume, evidentemente, é idêntico ao volume de poros esvaziados δVP quando do

aumento da tensão de τ1 a τ2.

           Logo, a fração δVP/VP, medida por (θ1/α)−(θ2/α) (equação 57),

representa a fração do volume de poros da amostra correspondente aos poros de

raio menor do que r1 e maior do que r2 que são esvaziados quando se aumenta a

tensão de τ1 para τ2, visto que, pelo modelo em estudo, quando se aumenta a

tensão de 0 a τ1 são esvaziados os poros de raio maior do que r1 e quando se

aumenta a tensão de 0 a τ2 são esvaziados os poros de raio maior do que r2.




                                       Água no Solo
52 |Paulo Leonel Libardi




            Exemplificando, para σ =0,072 N m-1, ρa=1000 kg m-3 e g=9,8 m s-2
na equação 51 ou 55, tem-se, para a tensão τ1= 0,3 m água (r1=50µm), que
(θ1/α)=0,92 (Figura 17 ou 18), significando que o volume de poros correspondente
aos poros de raio menor do que 50 µm é igual a 0,92 vezes o volume de poros da
amostra. Para a tensão τ2= 1,0 m água (r2=15 µm), o valor de θ2/α é
evidentemente menor, no caso 0,70 (Figura 17 ou 18), significando que 0,70 vezes
o volume de poros da amostra é igual ao volume dos poros de raio menor do que
15 µm. Como para τ0=0 m água, (θs/α)=1 e para τ =τ* m água, (θ0/α)=0, sendo θs
o conteúdo de água no solo saturado e θ0 o conteúdo de água no solo
completamente seco, então a) (θs/α)-(θ1/α)=1,00-0,92=0,08 é a fração do volume
de poros da amostra correspondente aos poros de raio maior do que r1=50 µm
(área sob a curva da Figura 19 à esquerda da área hachurada), b) (θ1/α)-
(θ2/α)=0,92-0,70=0,22 é a fração do volume de poros da amostra correspondente
aos poros de raio menor do que r1=50 µm e maior do que r2=15 µm (área
hachurada sob a curva da Figura 19) e c) (θ2/α)-(θ0/α)=0,70-0,00=0,70 é a fração
do volume de poros da amostra correspondente aos poros de raio menor do que
r2= 15µm (área sob a curva da Figura 19 à direita da área hachurada).

            Empiricamente, os poros do solo têm sido classificados por meio dos
seus raios em, por exemplo (Koorevaar et al, 1983), a) macroporos: poros de raio
maior do que 50 µm, cuja principal função é a aeração do solo e a condução de
água durante o processo de infiltração, b) mesoporos: poros de raio entre 15 e
50 µm, com a função principal de conduzir a água durante o processo de




                                 Água no Solo
Paulo Leonel Libardi| 53




redistribuição, isto é, após o esvaziamento dos macroporos e c) microporos: poros
de raio menor do que 15 µm que atuam, principalmente, na armazenagem da água.

           Assim, pode-se dizer que, pelo modelo da capilaridade associado à
curva de retenção, 8% dos poros do solo do exemplo em estudo são macroporos,
22% são mesoporos e 70% são microporos (Figura 17, 18 ou 19). Além disso,
sendo θs = 0,55 m3m-3, θ1 = 0,507 m3m-3 e θ2 = 0,383 m3m-3 (Figura 17), pode-se
dizer também que a macroporosidade deste solo é 0,550-0,507=0,043 m3m-3, sua
mesoporosidade é 0,507-0,383=0,124 m3m-3 e sua microporosidade é 0,383-
0,000=0,383 m3m-3.

           Observe-se ainda que, como para a tensão de 0,36 m água (ou o raio de
41 µm) o valor de dθ/αdτ é máximo neste solo (Figura 19), então para um dado
valor de dτ, o valor de dθ/α também é máximo à tensão de 0,36 m água (Figura
18). Consequentemente, os poros em maior porcentagem neste solo são aqueles
cujos raios estão em torno do valor de 41 µm.

           Finalmente, não é demais lembrar que a colocação do eixo dos raios na
Figura 17 em comparação ao eixo das tensões, só pode ser feita quando se utiliza a
escala logarítmica nestes eixos, porque log r varia inversamente mas também
linearmente com log τ. Se fosse utilizada a escala decimal, o eixo dos raios não
poderia ser colocado em comparação ao eixo das tensões na figura, porque nessa
escala r varia inversamente mas não linearmente com τ.




                                 Água no Solo
54 |Paulo Leonel Libardi




3.3 O tensiômetro

            O princípio de funcionamento do tensiômetro é muito semelhante ao
do funil de placa porosa, residindo a diferença fundamental no fato de que, no caso
do tensiômetro, ao invés de se trazer a amostra de solo para junto da placa porosa,
leva-se a placa porosa para junto da amostra, uma vez que o objetivo principal do
tensiômetro, ao contrário do funil, não é a elaboração da curva de retenção e, sim,
a medida de φm no local de interesse. Como o material poroso deve ser introduzido
no solo, é confeccionado, por esse motivo, numa forma cilíndrica, conhecida como
cápsula porosa.

            O procedimento com o funil de placa porosa de se trazer o solo á
saturação e depois colocá-lo à tensão de interesse não se faz no caso do
tensiômetro. O importante, no caso do tensiômetro, é que o solo esteja o mais
úmido possível, quando da sua instalação, a fim de que haja o bom contato
necessário entre a cápsula porosa e o solo ou, em outras palavras, para que, através
dos poros da parede da cápsula, a água no tensiômetro entre em contato e se
equilibre com a água no solo. Após o estabelecimento deste equilíbrio, atinge-se,
teoricamente, a mesma situação da Figura 15b, como se pode ver na Figura 20,
que mostra um tensiômetro com manômetro de água instalado no campo medindo
a tensão τ = h m água ou o potencial mátrico φ        m   = -h m água no ponto C
adjacente à cápsula (note-se a semelhança entre as Figuras 15b e 20).
Evidentemente, numa condição de saturação, com o nível de um lençol de água
passando pelo ponto C, o nível da água no manômetro será coincidente com o
nível do lençol e localizar-se-á, portanto, em A (Figura 20), pelo que φ m = 0 m de
água, como na Figura 15a. Se o lençol subir para cima do ponto C, o tensiômetro




                                  Água no Solo
Paulo Leonel Libardi| 55




passará a funcionar como um piezômetro de modo que, como na Figura 10, a
altura de água acima de A representará o potencial de pressão no ponto C.

                                                Superfície do solo


                                                        z

                              A
                                                        C
                                   h                cápsula
                                                    porosa



                                                 água




Figura 20 - Tensiômetro com manômetro de água instalado no campo.

           Devido à impraticabilidade de utilização do tensiômetro com
manômetro de água mostrado na Figura 20, principalmente sob condições de
campo, pelo fato de se ter que abrir uma trincheira para que a leitura possa ser
feita, substitui-se o manômetro de água por um manômetro de mercúrio, colocado
acima do nível do solo, conforme a Figura 21.

           Evidentemente, para que o manômetro de mercúrio possa funcionar, o
tensiômetro precisa ficar com todas suas partes cheias de água, o que é feito com a
retirada da rolha de borracha, colocação de água sob pressão para eliminação de
todo o ar e recolocação da rolha à sua posição original. Assim, toda vez que sair
água do tensiômetro (aumento de h por secagem do solo ), aumenta o valor da




                                  Água no Solo
56 |Paulo Leonel Libardi




altura de mercúrio H. Evidentemente, uma diminuição de H indica diminuição da
tensão da água no solo τ = h. Há, portanto, uma dependência direta entre a leitura
do tensiômetro com manômetro de mercúrio H e a tensão da água h. A equação
que mostra como se obtém essa dependência será agora deduzida.

            Sabemos que no tensiômetro da Figura 21, só haverá equilíbrio quando
a pressão líquida ∆PA, que atua na superfície do mercúrio na cuba empurrando-o
para dentro do tubo de leitura, for igual à pressão líquida ∆PB, que atua na
superfície da água no solo empurrando-a para dentro do tensiômetro através dos
poros da cápsula porosa, e que, como será esclarecido mais adiante, esse equilíbrio
só ocorre para valores da quantidade ρ Hg gH + ρ a gh2 até um máximo igual a Po.

Pelo balanço das pressões atuantes e fazendo P′ = PP = pressão interna na
interface plana e P′− p =PC = pressão interna na interface côncava, percebe-se que
(Figura 21):


                           ∆PA = Po − (ρ Hg gH + ρ a gh2 − PP )


e

                               ∆PB = (Po + PC ) − ρ a gh1 .




                                   Água no Solo
Paulo Leonel Libardi| 57




                                                                      h2
                                                              P’

                                            H’
                                                               '
                                                              Pm
                                                         Po           H
                  Rolha de          h1
                  borracha

                                                                              hc
                                                          '
                                                         Pm
                                                                   Mercúrio             Superfície do solo




                                              Z
              Parede da
               cápsula                            Água



       Po                  P’ - p



            Partícula de             Cápsula porosa
                solo                                                               h

                                                                                        Po




                                                                                       P’

Figura 21 – Tensiômetro com manômetro de mercúrio instalado no campo, sendo
                 Po = pressão atmosférica do local, P´= pressão interna na água
                 numa interface plana água-ar e numa interface plana água-mercúrio
                    ´
                 e Pm = pressão interna no mercúrio, numa interface plana mercúrio-
                 ar e numa interface plana mercúrio-água.




                                                      Água no Solo
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção
Água no solo: capilaridade e retenção

Mais conteúdo relacionado

Mais procurados

Hidrologia escoamento superficial
Hidrologia   escoamento superficialHidrologia   escoamento superficial
Hidrologia escoamento superficialmarciotecsoma
 
Geomorfologia litorânea
Geomorfologia litorâneaGeomorfologia litorânea
Geomorfologia litorâneaHenrique Soares
 
Aula classificação dos solos
Aula classificação dos solosAula classificação dos solos
Aula classificação dos soloskarolpoa
 
Água subterrânea infiltração
Água subterrânea   infiltraçãoÁgua subterrânea   infiltração
Água subterrânea infiltraçãomarciotecsoma
 
Pedologia / solo - Professor Edu Gonzaga 2013
Pedologia / solo - Professor Edu Gonzaga 2013Pedologia / solo - Professor Edu Gonzaga 2013
Pedologia / solo - Professor Edu Gonzaga 2013Edu Gonzaga
 
Aula Prática - Granulometria e Morfoscópia dos Sedimentos
Aula Prática - Granulometria  e Morfoscópia dos SedimentosAula Prática - Granulometria  e Morfoscópia dos Sedimentos
Aula Prática - Granulometria e Morfoscópia dos SedimentosYago Matos
 
Aula 2 hidrologia( ciclo hidrologico)
Aula 2 hidrologia( ciclo hidrologico)Aula 2 hidrologia( ciclo hidrologico)
Aula 2 hidrologia( ciclo hidrologico)Gilson Adao
 
Evaporação e Evapotranspiração
Evaporação e Evapotranspiração Evaporação e Evapotranspiração
Evaporação e Evapotranspiração Hidrologia UFC
 
Aula de Hidrologia 03
Aula de Hidrologia 03Aula de Hidrologia 03
Aula de Hidrologia 03Ronaldo Cesar
 
Bacias
BaciasBacias
Baciasunesp
 
Ação geológica da água subterrânea
Ação geológica da água subterrâneaAção geológica da água subterrânea
Ação geológica da água subterrâneamarciotecsoma
 

Mais procurados (20)

Hidrologia escoamento superficial
Hidrologia   escoamento superficialHidrologia   escoamento superficial
Hidrologia escoamento superficial
 
Aula 7
Aula 7Aula 7
Aula 7
 
Geomorfologia litorânea
Geomorfologia litorâneaGeomorfologia litorânea
Geomorfologia litorânea
 
Erosões
ErosõesErosões
Erosões
 
Aula classificação dos solos
Aula classificação dos solosAula classificação dos solos
Aula classificação dos solos
 
Ciencias 6ano
Ciencias 6anoCiencias 6ano
Ciencias 6ano
 
Água subterrânea infiltração
Água subterrânea   infiltraçãoÁgua subterrânea   infiltração
Água subterrânea infiltração
 
Deltas e Estuários
Deltas e EstuáriosDeltas e Estuários
Deltas e Estuários
 
Aula04 precipitação
Aula04   precipitaçãoAula04   precipitação
Aula04 precipitação
 
Pedologia / solo - Professor Edu Gonzaga 2013
Pedologia / solo - Professor Edu Gonzaga 2013Pedologia / solo - Professor Edu Gonzaga 2013
Pedologia / solo - Professor Edu Gonzaga 2013
 
Aula Prática - Granulometria e Morfoscópia dos Sedimentos
Aula Prática - Granulometria  e Morfoscópia dos SedimentosAula Prática - Granulometria  e Morfoscópia dos Sedimentos
Aula Prática - Granulometria e Morfoscópia dos Sedimentos
 
Aula 2 hidrologia( ciclo hidrologico)
Aula 2 hidrologia( ciclo hidrologico)Aula 2 hidrologia( ciclo hidrologico)
Aula 2 hidrologia( ciclo hidrologico)
 
Hidrogeologia
HidrogeologiaHidrogeologia
Hidrogeologia
 
Evaporação e Evapotranspiração
Evaporação e Evapotranspiração Evaporação e Evapotranspiração
Evaporação e Evapotranspiração
 
Erosões
ErosõesErosões
Erosões
 
Hidrologia aula 02
Hidrologia aula 02Hidrologia aula 02
Hidrologia aula 02
 
Infiltração
InfiltraçãoInfiltração
Infiltração
 
Aula de Hidrologia 03
Aula de Hidrologia 03Aula de Hidrologia 03
Aula de Hidrologia 03
 
Bacias
BaciasBacias
Bacias
 
Ação geológica da água subterrânea
Ação geológica da água subterrâneaAção geológica da água subterrânea
Ação geológica da água subterrânea
 

Destaque

Movimento de agua no solo
Movimento de agua no soloMovimento de agua no solo
Movimento de agua no soloElvio Giasson
 
Hidrologiqa permeabiliade e infiltração
Hidrologiqa   permeabiliade e infiltraçãoHidrologiqa   permeabiliade e infiltração
Hidrologiqa permeabiliade e infiltraçãomarciotecsoma
 
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...Danilo Max
 
12 agua no-solo
12  agua no-solo12  agua no-solo
12 agua no-solofatimaeng
 
Trabalho ionara aula_de_campo
Trabalho ionara aula_de_campoTrabalho ionara aula_de_campo
Trabalho ionara aula_de_campoCotucaAmbiental
 
1 fluxo unidimensional - 05-08-2013
1   fluxo unidimensional - 05-08-20131   fluxo unidimensional - 05-08-2013
1 fluxo unidimensional - 05-08-2013raphaelcava
 
Características físicas gerais dos solos
Características físicas gerais dos solosCaracterísticas físicas gerais dos solos
Características físicas gerais dos solosJadson Belem de Moura
 
Apresentaçã adubação do cultivo de banana
Apresentaçã adubação do cultivo de bananaApresentaçã adubação do cultivo de banana
Apresentaçã adubação do cultivo de bananaAnderson Santos
 

Destaque (16)

Movimento de agua no solo
Movimento de agua no soloMovimento de agua no solo
Movimento de agua no solo
 
Hidrologiqa permeabiliade e infiltração
Hidrologiqa   permeabiliade e infiltraçãoHidrologiqa   permeabiliade e infiltração
Hidrologiqa permeabiliade e infiltração
 
Infiltraçao
InfiltraçaoInfiltraçao
Infiltraçao
 
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...
Apostila de Hidrologia (Profa. Ticiana Studart) - Capítulo 10: Controle de En...
 
12 agua no-solo
12  agua no-solo12  agua no-solo
12 agua no-solo
 
Trabalho ionara aula_de_campo
Trabalho ionara aula_de_campoTrabalho ionara aula_de_campo
Trabalho ionara aula_de_campo
 
1 fluxo unidimensional - 05-08-2013
1   fluxo unidimensional - 05-08-20131   fluxo unidimensional - 05-08-2013
1 fluxo unidimensional - 05-08-2013
 
Definição..
Definição..Definição..
Definição..
 
Hidrologia 7
Hidrologia 7Hidrologia 7
Hidrologia 7
 
Características físicas gerais dos solos
Características físicas gerais dos solosCaracterísticas físicas gerais dos solos
Características físicas gerais dos solos
 
Caule
CauleCaule
Caule
 
Apresentaçã adubação do cultivo de banana
Apresentaçã adubação do cultivo de bananaApresentaçã adubação do cultivo de banana
Apresentaçã adubação do cultivo de banana
 
Apostila anatomia
Apostila anatomiaApostila anatomia
Apostila anatomia
 
Anatomia do caule
Anatomia do cauleAnatomia do caule
Anatomia do caule
 
10 Propriedades Físicas do Solo-aula
10 Propriedades Físicas do Solo-aula10 Propriedades Físicas do Solo-aula
10 Propriedades Físicas do Solo-aula
 
Hidrologia Aula 1
Hidrologia Aula 1Hidrologia Aula 1
Hidrologia Aula 1
 

Semelhante a Água no solo: capilaridade e retenção

o estudo profundos da poluicao sonora e suas consequencias
o estudo profundos da poluicao sonora e suas consequenciaso estudo profundos da poluicao sonora e suas consequencias
o estudo profundos da poluicao sonora e suas consequenciasSergioAlberto32
 
Apost hidraulica final
Apost hidraulica finalApost hidraulica final
Apost hidraulica finalmartalls
 
Prática 1 tensão superficial 1 - relatório diandra
Prática 1   tensão superficial 1 - relatório diandraPrática 1   tensão superficial 1 - relatório diandra
Prática 1 tensão superficial 1 - relatório diandraRafaela Campos de Souza
 
Quil006 forças intermolecculares material
Quil006 forças intermolecculares materialQuil006 forças intermolecculares material
Quil006 forças intermolecculares materialLeandro Da Paz Aristides
 
Aula 02_Tensões de capilaridade.pptx
Aula 02_Tensões de capilaridade.pptxAula 02_Tensões de capilaridade.pptx
Aula 02_Tensões de capilaridade.pptxSergio Luis Baraldi
 
ForçAs Intermoleculares - ProfºPyt
ForçAs Intermoleculares - ProfºPytForçAs Intermoleculares - ProfºPyt
ForçAs Intermoleculares - ProfºPytProfªThaiza Montine
 
Texto unidade 3 os estados da matéria e as soluções
Texto unidade 3   os estados da matéria e as soluçõesTexto unidade 3   os estados da matéria e as soluções
Texto unidade 3 os estados da matéria e as soluçõesjbrconsultoria
 
aula Interface L-sólido-29-08-2019.pdf
aula Interface L-sólido-29-08-2019.pdfaula Interface L-sólido-29-08-2019.pdf
aula Interface L-sólido-29-08-2019.pdfWaDesignerr
 
Aula 2 - Capilaridade dos solos.pdf
Aula 2 - Capilaridade dos solos.pdfAula 2 - Capilaridade dos solos.pdf
Aula 2 - Capilaridade dos solos.pdfKarinaTaizaTom
 
Ap fisica modulo 02 exercicios
Ap fisica modulo 02 exerciciosAp fisica modulo 02 exercicios
Ap fisica modulo 02 exercicioscomentada
 
Qumica geral 1a-parte[1]
Qumica geral 1a-parte[1]Qumica geral 1a-parte[1]
Qumica geral 1a-parte[1]Gabriel1020
 
comportamento dos fluídos do saneamento básico
comportamento dos fluídos do saneamento básicocomportamento dos fluídos do saneamento básico
comportamento dos fluídos do saneamento básicoJessicaStone37
 

Semelhante a Água no solo: capilaridade e retenção (20)

o estudo profundos da poluicao sonora e suas consequencias
o estudo profundos da poluicao sonora e suas consequenciaso estudo profundos da poluicao sonora e suas consequencias
o estudo profundos da poluicao sonora e suas consequencias
 
Apost hidraulica final
Apost hidraulica finalApost hidraulica final
Apost hidraulica final
 
Prática 1 tensão superficial 1 - relatório diandra
Prática 1   tensão superficial 1 - relatório diandraPrática 1   tensão superficial 1 - relatório diandra
Prática 1 tensão superficial 1 - relatório diandra
 
Quil006 forças intermolecculares material
Quil006 forças intermolecculares materialQuil006 forças intermolecculares material
Quil006 forças intermolecculares material
 
Fenomenos
FenomenosFenomenos
Fenomenos
 
Hidrostática resumo
Hidrostática resumoHidrostática resumo
Hidrostática resumo
 
Aula 02_Tensões de capilaridade.pptx
Aula 02_Tensões de capilaridade.pptxAula 02_Tensões de capilaridade.pptx
Aula 02_Tensões de capilaridade.pptx
 
Intefaces
 Intefaces Intefaces
Intefaces
 
Intefaces
 Intefaces Intefaces
Intefaces
 
ForçAs Intermoleculares - ProfºPyt
ForçAs Intermoleculares - ProfºPytForçAs Intermoleculares - ProfºPyt
ForçAs Intermoleculares - ProfºPyt
 
Hidrostática
HidrostáticaHidrostática
Hidrostática
 
Texto unidade 3 os estados da matéria e as soluções
Texto unidade 3   os estados da matéria e as soluçõesTexto unidade 3   os estados da matéria e as soluções
Texto unidade 3 os estados da matéria e as soluções
 
aula Interface L-sólido-29-08-2019.pdf
aula Interface L-sólido-29-08-2019.pdfaula Interface L-sólido-29-08-2019.pdf
aula Interface L-sólido-29-08-2019.pdf
 
01_TEN~1.PPT
01_TEN~1.PPT01_TEN~1.PPT
01_TEN~1.PPT
 
Aula 2 - Capilaridade dos solos.pdf
Aula 2 - Capilaridade dos solos.pdfAula 2 - Capilaridade dos solos.pdf
Aula 2 - Capilaridade dos solos.pdf
 
mecanica dos fluidos
mecanica dos fluidosmecanica dos fluidos
mecanica dos fluidos
 
Ap fisica modulo 02 exercicios
Ap fisica modulo 02 exerciciosAp fisica modulo 02 exercicios
Ap fisica modulo 02 exercicios
 
Fluidos
FluidosFluidos
Fluidos
 
Qumica geral 1a-parte[1]
Qumica geral 1a-parte[1]Qumica geral 1a-parte[1]
Qumica geral 1a-parte[1]
 
comportamento dos fluídos do saneamento básico
comportamento dos fluídos do saneamento básicocomportamento dos fluídos do saneamento básico
comportamento dos fluídos do saneamento básico
 

Água no solo: capilaridade e retenção

  • 1. ÁGUA NO SOLO Paulo Leonel Libardi Descreve-se inicialmente os aspectos básicos da retenção da água no solo, notadamente a teoria da capilaridade, visando principalmente a conceituação do potencial mátrico e da curva de retenção da água no solo. Índices para quantificar a água no solo, em especial a armazenagem da água, são definidos em seguida. A energia da água, bem como o modelo dos potenciais e, então, as equações de fluxo da água no solo, são tratados com certo detalhe. O texto termina com uma discussão resumida a respeito do balanço de água no solo. 1 RETENÇÃO DA ÁGUA NO SOLO Nesse estudo, o solo será considerado simplesmente como um conjunto de partículas sólidas de diversas formas e tamanhos, entremeadas por poros, também de diversas formas e tamanhos, e interconectados. Pode-se dizer, portanto, que o solo é composto, basicamente, de duas partes: uma sólida, também chamada de sólidos do solo ou matriz do solo e a parte não ocupada pelos sólidos, denominada espaço poroso ou poros do solo. Normalmente o espaço poroso do solo no campo é ocupado por quantidades variáveis de uma solução aquosa denominada água no solo e de uma solução gasosa denominada ar no solo; o solo nesta situação é dito estar não saturado. Quando o espaço poroso do solo estiver totalmente cheio de água, o solo é dito estar saturado.
  • 2. 2 |Paulo Leonel Libardi Dois são os processos que explicam a retenção da água num solo não- saturado. No primeiro deles, a retenção ocorre nos chamados poros capilares do solo e pode ser ilustrada, por isso, pelo fenômeno da capilaridade, o qual está sempre associado a uma interface curva água-ar. No segundo processo, a retenção ocorre nas superfícies dos sólidos do solo como filmes presos a ela, pelo fenômeno da adsorção. Desses dois fenômenos, o mais relevante é o da capilaridade daí ser devotado a ele um item especial, a seguir, sob o título tensão superficial e capilaridade. Com relação ao processo de adsorção da água sobre as superfícies sólidas, três são os mecanismos principais propostos para explicá-lo, a saber: 1. A superfície dos minerais de argila é coberta com átomos de oxigênio e grupos oxidrilas negativamente carregados devido à substituição isomorfa de cátions. Desse modo, cria-se ao redor das partículas desses minerais um campo elétrico cuja intensidade decresce com a distância da superfície da partícula. Devido à natureza dipolar das moléculas de água, elas se orientam neste campo elétrico e experimentam uma força na direção da superfície da partícula, a qual decresce gradualmente com a distância desta superfície até se tornar nula num ponto em que não há mais influência do campo. 2. Os pares de elétrons não compartilhados do átomo de oxigênio das moléculas de água podem ser eletricamente atraídos a cátions trocáveis que podem estar adsorvidos sobre a superfície da argila, ou seja, os cátions que são retidos à superfície negativamente carregada de argila (a concentração iônica é crescente Água no Solo
  • 3. Paulo Leonel Libardi| 3 na direção da superfície sólida) ocasionam também a adsorção das moléculas de água. 3. Finalmente, as moléculas de água podem ainda ser atraídas às superfícies sólidas pelas forças de London-van der Waals, que são forças de curto alcance e decrescem rapidamente com a distância da superfície, de modo que uma camada muito fina é adsorvida dessa maneira ao redor das partículas de solo. É importante reforçar que essa película de água adsorvida às superfícies dos sólidos do solo possui, como resultado destas forças de adsorção, uma energia potencial extra, uma vez que, se afastarmos uma determinada porção dessa película a uma distância dentro do raio de ação destas forças e a abandonarmos, ela volta à posição original realizando um trabalho. 1.1 Tensão superficial e capilaridade Ao se colocar uma das extremidades de um tubo capilar de vidro dentro de um recipiente com água, observa-se que a água sobe no tubo e entra em repouso a uma determinada altura acima da superfície da água no recipiente. Se em vez de água for utilizado mercúrio, observa-se que o nível de mercúrio dentro do tubo capilar se estabiliza a uma distância abaixo do seu nível no recipiente. No primeiro caso, diz-se ter ocorrido uma ascensão capilar e no segundo uma depressão capilar. A explicação destes fenômenos capilares é feita com base numa propriedade associada com a superfície livre de qualquer líquido, denominada tensão superficial. Água no Solo
  • 4. 4 |Paulo Leonel Libardi A tensão superficial resulta da existência de forças de atração de curto alcance entre as moléculas do líquido chamadas forças moleculares de London- van der Waals de coesão, forças moleculares de coesão ou simplesmente forças de coesão. A distância limite de atuação dessas forças, isto é, a distância máxima que uma molécula consegue exercer atração sobre as outras, delimita uma esfera de raio r conhecida pelo nome de esfera de ação das forças moleculares ou simplesmente esfera de ação molecular. Para a água, r não excede 0,05 µm. Nestas condições, moléculas como M1 ou M2 (Figura 1), cujas esferas de ação molecular se encontram totalmente dentro do líquido, atraem e são atraídas simetricamente por todas as moléculas vizinhas e a resultante sobre elas é nula. Entretanto, em qualquer molécula, cuja esfera de ação não esteja inteiramente no interior do líquido, como M3 por exemplo, as forças sobre ela não se equilibram. Isso porque a calota inferior da esfera de ação (área hachurada, Figura 1) está cheia de moléculas que atraem tal molécula, mas a calota correspondente superior, caindo fora do líquido, não está cheia de moléculas como a inferior para atraí-la. Como consequência, esta molécula é atraída para o interior do líquido pela resultante dessas forças de coesão não equilibradas. Esta resultante é então nula nas moléculas localizadas a partir de uma distância r da superfície do líquido para baixo e aumenta nas localizadas a partir desta distância para cima, atingindo um máximo nas moléculas da superfície (molécula M4, Figura 1). Água no Solo
  • 5. Paulo Leonel Libardi| 5 esfera de ação r molecular interface líquido-gás M4 r camada ativa { r M2 M3 F2 = 0 F4 F3 r M1 F1 = 0 Figura 1 - Forças intermoleculares. Em todas as moléculas situadas na camada superficial de espessura r ou “camada ativa” de um líquido, atuam, portanto, forças que tendem a puxá-las para o interior do líquido causando, com isso, uma enorme pressão, dirigida para o interior do líquido, chamada pressão interna P'. Assim, todo líquido, além da pressão atmosférica, que atua externamente sobre sua superfície, está sujeito também à pressão interna P' oriunda das forças moleculares de coesão não equilibradas da camada ativa. Para a água, P' ≅ 1700 MPa. Além disso, pela ação dessas forças, a superfície do líquido se contrai, minimizando sua área, e adquire uma energia potencial extra que se opõe a qualquer tentativa de distendê-la, ou seja, ocorrendo uma distensão, a tendência da superfície é sempre voltar a posição original. Em outras palavras, devido a essas forças, a superfície do líquido se torna contrátil. A essa energia potencial extra Água no Solo
  • 6. 6 |Paulo Leonel Libardi adquirida pela superfície do líquido, devido às forças moleculares de coesão não equilibradas da camada ativa, dá-se o nome de energia potencial superficial. Esse fato mostra que a superfície de qualquer líquido está num estado de constante tensão pelo que, se traçarmos uma linha arbitrária de comprimento L sobre a superfície de um líquido, a superfície de cada lado da linha puxa a superfície do lado oposto com uma força igual a F perpendicular à linha e paralela à superfície (Figura 2). A razão F/L é definida como tensão superficial (σ) do líquido, isto é: F σ= (1) L A dimensão da tensão superficial é, portanto, força por unidade de comprimento (N/m). Superfície livre de um líquido L F F Linha arbitrária de comprimento L Figura 2 - Definição da tensão superficial de um líquido. Água no Solo
  • 7. Paulo Leonel Libardi| 7 Uma consequência importante dessa tensão superficial dos líquidos e que é básica para o entendimento dos fenômenos capilares, é o fato de que se a superfície de um líquido deixar de ser plana, surge uma nova pressão p que pode atuar no mesmo sentido que a pressão P' que é o que ocorre numa superfície convexa, ou opostamente a P' como numa superfície côncava. A primeira situação (superfície convexa) está ilustrada na Figura 3 na qual: ABCD é uma pequena porção (infinitesimal) da superfície; R1 e R2 seus dois raios principais de curvatura*; σdl1, duas forças de tensão superficial (ver equação 1), que atuam nos arcos opostos e iguais AB e DC, de comprimento infinitesimal dl1; e σdl2, duas forças de tensão superficial que atuam nos arcos opostos e iguais AD e BC, de comprimento infinitesimal dl2. Como se pode ver, devido única e exclusivamente à curvatura da superfície, estas quatro forças, resultantes da tensão exercida pelo restante da superfície ABCD nos arcos AB, DC, AD e BC, adquirem uma resultante infinitesimal dF = dF1 + dF2 (Figura 3) que é, portanto, a causa do surgimento da pressão p. Com base nessas informações, pode-se deduzir (Libardi, 2005) que:  1 1  p =σ  +  R R ,  (2)  1 2  isto é, a nova pressão p, causada pela curvatura da superfície, está relacionada com a tensão superficial do líquido e os raios de curvatura da superfície curva. * Qualquer superfície curva pequena é caracterizada por dois raios principais de curvatura. Água no Solo
  • 8. 8 |Paulo Leonel Libardi N N N AR B AR σdl1 AR σdl1 σdl2 σdl2 σdl2 H I σdl1 H G E G dF2 dF1 LÍQUIDO σdl2 σdl2 σdl1 σdl1 O LÍQUIDO A C E I R1 dF R2 LÍQUIDO σdl2 R1 σdl1 D R2 O1 O1 O2 O2 (a) (b) AB=DC=EG=dl1 AD=BC=HI=dl2 Figura 3 - Porção infinitesimal de uma superfície curva. A superfície da Figura 3, a qual tem ambos os raios de curvatura de um mesmo lado, é chamada de superfície sinclástica e a pressão extra causada pela curvatura da superfície é, como se acabou de mostrar, dada pela equação (2). Note- se ainda que, pelo fato de a superfície ser convexa, portanto, com os dois raios no lado do líquido, a resultante dF e, conseqüentemente p, atua a favor de P'. Com isso, pode-se dizer que a pressão interna que atua numa superfície convexa de um líquido é igual a P' + p (Figura 4b). Considerando a mesma superfície ABCD da Figura 3 mas que ao invés de convexa seja côncava, chega-se ao mesmo resultado para p (equação 2) porque esta superfície também é sinclástica; no entanto, neste caso, pelo fato de os dois raios ficarem no lado do ar, verifica-se que a resultante dF e, conseqüentemente, p, atua contra a pressão P' pelo que a pressão interna Água no Solo
  • 9. Paulo Leonel Libardi| 9 numa superfície côncava de um líquido é igual a P' - p (Figura 4c). Evidentemente, se a superfície for plana dF = 0 e p = 0 e, portanto, a pressão interna é igual a P' (Figura 4a). p p ... ... ... ... ... ... ... P' - p P' P' P' P' + p (a) (b) (c) interface interface interface plana convexa côncava Figura 4 - Pressão interna numa superfície: plana (a), convexa (b) e côncava (c). Quando a superfície curva tem seus raios de curvatura em lados opostos, isto é, um estendendo-se para o líquido e o outro para o ar (Figura 5), por raciocínio semelhante chega-se à fórmula  1 1  p =σ − R R  ,  (3)  1 2  na qual, R1 < R2 e, portanto, dF1 > dF2 e o sentido da força dF1 é o inverso do sentido da força dF2. Esta superfície é conhecida pelo nome de superfície Água no Solo
  • 10. 10 |Paulo Leonel Libardi anticlástica e nela p pode atuar tanto contra como a favor de P' ou mesmo até ser nula dependendo das magnitudes de dF1 e dF2. Para uma superfície esférica, R1 = R2 = R e, como ela é obrigatoriamente sinclástica, 2σ p= . (4) R As equações (2) ou (3) ou (4) são chamadas de equação de Laplace da capilaridade. AR R2 dF2 dF1 LÍQUIDO R1 Figura 5 - Superfície anticlástica. Após estas considerações a respeito das superfícies curvas dos líquidos, surge, de imediato, a pergunta. Quais são as situações em que a superfície livre de um líquido deixa de ser plana? Quando se coloca água pura num copo de Água no Solo
  • 11. Paulo Leonel Libardi| 11 vidro limpo, nota-se que próximo da sua parede a superfície da água se encurva para cima. No caso de colocar-se mercúrio no copo observa-se que a curvatura da superfície é voltada para baixo. Observa-se também que, no caso da água, a superfície se adere ao vidro ao passo que no caso do mercúrio existe uma tendência para sua superfície se afastar do vidro. Estes fatos mostram que quando se tem um líquido adjacente a uma parede sólida, não somente as forças moleculares de London-van der Waals de atração coesiva entre as moléculas do líquido são importantes, senão também as forças moleculares de London-van der Waals de atração adesiva entre as moléculas do sólido e as do líquido. Evidentemente, no caso da água em vidro as forças adesivas são dominantes enquanto que no caso de mercúrio em vidro dominam as forças de coesão do líquido. Pode-se, agora, explicar os fenômenos da capilaridade. Será visto o caso da ascensão capilar, de maior interesse; no caso da depressão capilar o raciocínio é o mesmo. Imagine-se, então, que um tubo capilar de vidro é colocado verticalmente dentro de uma vasilha com água (Figura 6). Assim que o tubo toca na superfície da água, as moléculas de sua parede interna atraem as moléculas da superfície da água fazendo com que ela se curve para cima num menisco côncavo. (Figura 6a). Esta curvatura para cima faz com que, de acordo com a fórmula de Laplace, a pressão interna no menisco (côncavo) no tubo capilar se torne menor do que a pressão interna na interface água-ar plana na vasilha. Água no Solo
  • 12. 12 |Paulo Leonel Libardi P0 ... P'-p h P0 P0 P0 P0 P0 ... z P'-p z ... ... P' P' ... A B A B (a) (b) Figura 6 - Ascensão da água num tubo capilar: (a) formação do menisco côncavo, (b) ascensão. Sejam considerados dois pontos na água dentro da vasilha da Figura 6, um abaixo do menisco côncavo recém formado no tubo capilar (ponto A) e outro no mesmo plano horizontal do ponto A, mas abaixo da superfície plana (ponto B). Percebe-se que, na situação da Figura 6a, o líquido não se encontra em equilíbrio porque a pressão em B é maior do que em A e isso faz com que a água seja empurrada para cima no tubo capilar até uma altura h (Figura 6b) quando a pressão em A se iguala à pressão em B e o líquido atinge a situação de equilíbrio da Figura 6b. Portanto, na condição de equilíbrio da Figura 6b: Água no Solo
  • 13. Paulo Leonel Libardi| 13 Po + P'+ ρ a gz = Po + ( P'− p) + ρ a gh + ρ a gz ou p = ρ a gh , (5) donde p h= , (6) ρa g sendo, evidentemente, h a altura da ascensão capilar da água, ρa a densidade da água e g a aceleração da gravidade. No caso em que a superfície côncava é esférica e de raio R (Figura 7), resulta, pela substituição da equação (4) na equação (6), que 2σ h= . (7) ρ a gR Por outro lado, da Figura 7: r R= , (8) cos α em que r é o raio do tubo capilar e α o ângulo de contato, o qual, como se pode ver, é o ângulo formado no líquido entre o plano tangente à superfície do líquido na linha de contato e a parede do tubo. Linha de contato é a linha composta pelos pontos comuns às três fases: sólida (vidro), líquida (água) e gasosa (ar) que em corte define o ponto de contato P mostrado na Figura 7. Substituindo a equação (8) na equação (7): Água no Solo
  • 14. 14 |Paulo Leonel Libardi 2σ cos α h= . (9) ρ a gr As equações 6, 7 e 9 são chamadas indistintamente de equação de Kelvin da capilaridade. r R α P α Figura 7 - Detalhe da superfície líquida no capilar com o ângulo de contato α. Maiores detalhes deste assunto podem ser encontrados, por exemplo, em Kirkham & Powers (1972) e Libardi (2005). Além dos mecanismos de retenção é também importante conhecer os índices que são utilizados para quantificar a água no solo. Água no Solo
  • 15. Paulo Leonel Libardi| 15 1.2 Quantificação da água no solo Seja uma amostra de solo não-saturado cujo volume V é, evidentemente, igual à soma do seu volume de sólidos Vs e o seu volume de poros Vp, isto é, V = Vs + V p . (10) Chamando de Va e Var os volumes de água (solução) e de ar, respectivamente, presentes no interior do espaço poroso desta amostra, num determinado momento, então V p = Va + Var (11) e, portanto, V = Vs + Va + Var . (12) Para solos de estrutura rígida (não-expansíveis), sempre Vp = Va + Var = constante e, portanto, quando Va aumenta (ou diminui), Var diminui (ou aumenta) do mesmo valor, ou seja, V e Vp não variam com Va. Para solos expansíveis, entretanto, Vp e, portanto, também V variam com Va, ou seja, aumentam com o aumento de Va e diminuem com a diminuição de Va; conseqüentemente, para estes solos, as equações (10), (11) e (12) continuam válidas, mas sempre para um determinado valor de Va. Igualmente, se for chamada de m a massa desta amostra de solo não- saturado num dado momento, de ms a massa de seus sólidos e, no mesmo momento, de ma e mar as massas de água e de ar presentes no interior do seu espaço poroso, evidentemente, Água no Solo
  • 16. 16 |Paulo Leonel Libardi m = ms + ma + mar . (13) Entretanto, em comparação com a magnitude de ms e ma, mar pode ser considerada sempre desprezível, pelo que m ≅ ms + ma . (14) A partir dessas informações pode-se, agora, definir os índices que quantificam a água no solo: - Conteúdo de água no solo à base de massa U É, por definição, o quociente da massa de água presente numa amostra de solo num determinado instante e a massa de sólidos da amostra: ma U= ms [ → kg kg −1 ] (15) ou, tendo em vista a equação (14), m − ms U= ms [ → kg kg −1 . ] (16) É importante esclarecer que, pelo fato de U não ser uma fração (parte de uma unidade), não deveria ser expressa em porcentagem, muito embora isso seja muito comum! Observe-se, também, que não há necessidade de qualquer informação adicional quando se utiliza U para quantificar a água de solos expansíveis. Água no Solo
  • 17. Paulo Leonel Libardi| 17 - Conteúdo de água no solo à base de volume θ É o quociente do volume de água presente numa amostra de solo, num determinado instante, e o volume da amostra, ou seja, Va θ= V [ → m 3 m −3 ] (17) ou, lembrando que a densidade da água ρa = ma/Va e tendo em vista a equação (14), m − ms θ= ρ aV [ → m 3 m −3 . ] (18) Como θ é uma fração (parte de uma unidade), isto é, mostra quanto de V é Va num determinado instante, pode perfeitamente ser expressa também em porcentagem, bastando para isso multiplicar por 100 o resultado obtido pelas equações (17) ou (18). O conteúdo de água θ pode ser calculado a partir da determinação do conteúdo de água U e da densidade do solo ρ. Como, por definição, densidade de um corpo é a razão da massa pelo volume desse corpo, então, no caso, para nosso corpo poroso solo = sólidos + poros de massa ms e volume V, ms ρ= V [ → kg m −3 . ] (19) Assim, dividindo a equação (17) pela equação (15) verifica-se facilmente que ρ θ= U . (20) ρa Normalmente se assume para a densidade da água ρa o valor 1000 kg m-3. Água no Solo
  • 18. 18 |Paulo Leonel Libardi É importante observar que, para solos expansivos, o valor de θ deve sempre vir acompanhado do valor de ρ e o valor de ρ sempre acompanhado do valor do conteúdo de água, no momento de amostragem. Dividindo ambos os membros da equação (11) por V, Vp Va Var = + , (21) V V V verifica-se que a quantidade Vp/V é uma fração que mostra quanto do volume da amostra de solo é volume de poros, sendo, por isso, denominada porosidade do solo α: Vp α= V [ → m 3 m −3 ] (22) e que a quantidade Var/V é uma fração que mostra quanto do volume da amostra de solo é volume de ar, num dado instante, sendo denominada, por esse motivo, porosidade de aeração αar: Var α ar = V [ → m 3 m −3 . ] (23) A substituição das equações (17), (22) e (23) na equação (21) mostra que α = θ + α ar . (24) Por esta expressão (24) vê-se claramente que a) quando θ = 0, α = αar (numericamente): solo completamente seco e b) quando αar = 0, α = θs (numericamente), sendo θs = conteúdo de água à base de volume no solo saturado. Água no Solo
  • 19. Paulo Leonel Libardi| 19 Explicitando Vp da equação (10) e dividindo ambos os membros da equação resultante por V, obtém-se Vs α = 1− . (25) V Sendo ms ρs = Vs [ → kg m −3 , ] (26) a densidade dos sólidos do solo, também chamada densidade das partículas do solo, percebe-se, facilmente, que, pela substituição das equações (19) e (26) na equação (25), ρ α = 1− . (27) ρs Será mostrado, a seguir, um outro modo de quantificar a água no solo também muito utilizado quando se estuda água no solo. - Armazenagem ou altura de água no solo Imagine-se um perfil de solo no campo e que, num determinado momento, ao longo de sua profundidade Z, sejam obtidos valores de θ a distâncias tão próximas entre si quanto possível de tal maneira que, num gráfico de θ em função de Z, o conjunto dos pontos obtidos resulte numa curva contínua representando uma dada função θ = θ (Z). Tal gráfico recebe o nome de perfil de conteúdo de água no solo à base de volume (Figura 8). Água no Solo
  • 20. 20 |Paulo Leonel Libardi θi* zo = 0 θ(m3 m-3) A z1 * z1 z2 * L ∆ zi zi-1 zi* (Z i * , θ i* ) zi zn = L Z(m) Figura 8 – Perfil do conteúdo de água solo à base de volume. Pode-se obter a área aproximada sob a curva deste gráfico no intervalo 0 a L, dividindo-a em pequenos retângulos como mostra a Figura 8, tal que, evidentemente, n Área aproximada = ∑ θ (Z i =1 i * i )∆Z i , (28) sendo θ i ( Z i* ) e ∆Z i = Z i − Z i −1 , os conteúdos de água à base de volume e os incrementos de profundidade i, respectivamente. Se n tender para o infinito (n → ∞) e o ∆Zi máximo tender para zero [(∆Zi)m → 0], obtém-se a área exata sob a curva θ = θ (Z) de 0 a L, Água no Solo
  • 21. Paulo Leonel Libardi| 21 n Área exata = lim n →∞ ∑θ (Z )∆Z * i i (29) ( ∆Z i ) m →0 i =1 ou, com uma notação mais compacta, L Área exata = ∫ θ ( Z )dZ 0 (30) e lê-se integral de θ(Z) com relação a Z de 0 a L. Pela definição de conteúdo de água à base de volume θ (equação 17), pode-se escrever o integrando da equação (30) como dVa dVa dV θ (Z )dZ = dZ = dZ = a = dh . dV AdZ A Nesta expressão, A é uma área de solo arbitrária representativa do perfil de conteúdo de água (Figura 8), dVa é o elemento de volume de água existente no elemento de volume de solo dV = AdZ e dh é a altura de água representada por dVa (dentro de dV) por unidade de área de solo (A). Portanto, voltando à equação (30), verifica-se que L hL = ∫ θ (Z )dZ → [m água] . (31) 0 Foi colocado o subíndice L em h para indicar que se trata do valor de h para a camada 0 – L do perfil de solo. A quantidade hL, dada pela expressão (31), representa, portanto, exatamente a área sob a curva do gráfico do conteúdo de água θ em função da profundidade do solo Z e é igual a altura de água que a camada 0 – L m do perfil Água no Solo
  • 22. 22 |Paulo Leonel Libardi de solo armazena, no momento de medida dos valores de θ para obtenção da função θ(Z), sendo, por isso, denominada armazenagem ou altura de água no solo. Um aspecto importante a respeito da armazenagem de água é o que será mostrado a seguir. Referindo-se novamente ao gráfico da Figura 8, pode-se obter o valor médio aproximado de θ = θ (Z) no intervalo 0 a L, tirando a média dos valores θ (Z 1* ), θ (Z 2 ), ... , θ (Z n ) de θ (Z): * * θ (Z 1* ) + θ (Z 2 ) + ... + θ (Z n ) * * θ ≅ . (32) n Evidentemente, a aproximação (≅) será tanto melhor quanto maior o número de pontos n tomados para tirar a média. Fazendo com que os pontos Z0, Z1, ..., Zn distem um do outro de ∆Zi = ∆Z = constante e multiplicando o numerador e o denominador do segundo membro da equação (32) por esse valor (∆Z), obtém-se: θ ≅ ( ) ( ) * ( ) [θ Z 1* + θ Z 2 + .... + θ Z n ]∆Z * . (33) n∆Z O denominador da equação (33), n ∆Z = L – 0 = L, é o comprimento do intervalo (= camada de solo) ao longo do qual é tirada a média, independentemente do valor de ∆Z e do número de pontos n. Se, agora, n → ∞ e ∆Z → 0, o numerador da expressão (33) torna-se igual à integral da equação (30) e o sinal de aproximação da equação (33) torna-se sinal de igualdade, ou seja, L ∫ θ (Z )dZ 0 θ = (34) L Água no Solo
  • 23. Paulo Leonel Libardi| 23 ou, tendo em conta a equação (31), hL = θ L . (35) Evidentemente, se medirmos hL em dois instantes diferentes, temos que a variação de armazenagem da água no solo, ∆hL , é obtida por ∆hL = (θ f − θi ) L (36) sendo θ f o conteúdo de água no solo à base de volume médio no instante final e θ i o conteúdo de água no solo à base de volume médio no instante inicial, ambos dados pela equação (34). 2 ENERGIA DA ÁGUA NO SOLO Todo corpo na natureza possui uma energia a qual é normalmente subdividida em três formas principais: energia cinética, resultante da velocidade instantânea do corpo em relação a algum referencial externo a ele, energia potencial, resultante da posição instantânea do corpo em relação a campos de força (gravitacional, elétrica, eletromagnética, etc) também externos a ele, e energia interna, associada ao movimento e posição das moléculas, átomos, elétrons, etc. de que se constitui a matéria do corpo, incluindo diversas formas como a energia térmica, a energia química, a energia nuclear, etc.. É importante esclarecer que em todo estudo com quaisquer destas formas de energia, nunca se trabalha com seu valor absoluto (porque é praticamente impossível conhecê-lo), mas sempre com uma diferença de energia entre duas situações, uma tomada como referência. Água no Solo
  • 24. 24 |Paulo Leonel Libardi A água no solo será aqui estudada, do ponto de vista energético, segundo um modelo no qual se considera sempre duas situações com ela em equilíbrio. Umas das situações é a água no solo propriamente dita, isto é, dentro do solo. A outra situação é a mesma água (com a mesma energia interna que a água no solo), mas fora do solo, denominada água padrão e definida como água livre, de mesma energia interna que a água no solo e em cuja superfície plana, coincidente com a referência gravitacional, atua a pressão atmosférica do local onde a medida é feita. Portanto, em ambas as situações, assume-se que a energia interna da água é a mesma, isto é, mesma temperatura, mesma concentração salina, enfim tudo é igual no que diz respeito às condições energéticas internas da água. De acordo com este modelo, portanto, a única diferença que existe entre as águas nas duas situações de equilíbrio (no solo e padrão), são os campos de força externos a elas. Como podem atuar concomitantemente mais de um campo de força externo, resultando, portanto, em mais de um tipo de energia potencial, será aqui utilizado o termo energia potencial total para indicar a soma dos diversos tipos ou componentes de energia potencial atuantes. Se a energia potencial total de um corpo (com energia interna constante) em equilíbrio for diferente em dois pontos de um determinado meio, este corpo vai sempre se movimentar, se o meio permitir, do ponto onde sua energia potencial total é maior para o ponto onde ela é menor. O raciocínio é o mesmo quando o corpo é a água no solo mas, nesse caso, é mais conveniente utilizar a energia potencial total da água por unidade de massa ou volume de água ou energia potencial total específica da água como veremos no item a seguir. Água no Solo
  • 25. Paulo Leonel Libardi| 25 2.1 Potencial total da água no solo Referindo-se ao modelo descrito no item anterior, o conceito de potencial total da água foi introduzido com o intuito de estabelecer o sentido do movimento da água entre dois pontos de um meio poroso, sem conhecer os valores individuais da energia potencial total específica em cada ponto. Assim, por exemplo, sendo ε a energia potencial total específica da água (em equilíbrio) num solo e εo a energia potencial total específica da água (em equilíbrio) padrão, a diferença ε – εo é, por definição, o potencial total da água no solo φt, isto é, φt = ε − ε o [energia / massa ou volume de água] . (37) Considerando, agora, dois pontos A e B no perfil do solo, nos quais, evidentemente, φ t ( A) = ε A − ε o e φt (B ) = ε B − ε o então, φt ( A) − φt (B ) = (ε A − ε o ) − (ε B − ε o ) = ε A − ε B . Ou seja, como a energia potencial total específica da água padrão deve ser a mesma para os dois pontos, medindo-se o potencial total nesses dois pontos obtém-se o valor da diferença εA - εB por meio da diferença φt (A) - φt (B), sem a Água no Solo
  • 26. 26 |Paulo Leonel Libardi necessidade de se conhecer individualmente εA e εB. Desse modo, se num determinado momento φt(A) > φt(B), o movimento da água é de A para B porque ε A > ε B e se φt (B) > φt (A), de B para A porque ε B > ε A . Quando φt (A) = φt (B), tem-se, evidentemente, uma condição em que não há movimento entre A e B, porque εA = εB (equilíbrio). Evidentemente, cada tipo (ou componente) de energia potencial que estiver atuando na água dentro do solo, dá origem a um potencial componente do potencial total da água no solo. Por outro lado, quando se expressa potencial (o total ou qualquer componente) em unidade de energia/volume, verifica-se, imediatamente que esta é idêntica à unidade de pressão porque, dimensionalmente, J Nm N 3 = 3 = 2 = Pa (Pascal). m m m (Será considerado nesse estudo a energia potencial específica preferencialmente como energia por unidade de volume; por unidade de massa o raciocínio é o mesmo, muda apenas a unidade). Portanto, os valores de todos os potenciais da água no solo, tanto o total como qualquer um dos seus componentes, podem ser considerados como idênticos ao valor de uma diferença de pressão, isto é, diferença entre uma pressão cujo valor é idêntico ao valor de ε e uma pressão cujo valor é idêntico ao valor de εo. Água no Solo
  • 27. Paulo Leonel Libardi| 27 A seguir, serão estudados os potenciais componentes do potencial total da água no solo. 2.2 Potencial gravitacional da água no solo Sabe-se da Mecânica que qualquer corpo num campo gravitacional possui uma energia potencial gravitacional (Eg). A água no solo, estando dentro do campo gravitacional terrestre possui, evidentemente, esta energia, cuja equação, dado a necessidade de incluir neste contexto a água padrão anteriormente definida, pode ser escrita como: ∆E g = ma g (r1 − ro ) , (38) sendo ma = massa da água no solo; g = aceleração da gravidade; r1 = distância do centro da Terra ao ponto considerado no perfil do solo e ro = distância do centro da Terra a um ponto arbitrário onde se deve imaginar localizada a superfície plana da água padrão e que será denominada simplesmente referência gravitacional. ∆Eg, evidentemente, é o incremento de energia potencial gravitacional que a água adquire quando de seu deslocamento da posição r1 para a posição ro contra ou a favor a força da gravidade. Considerando a existência apenas do campo gravitacional terrestre, o potencial total, definido pela equação (37), torna-se apenas o potencial gravitacional φg o qual, tendo em conta a equação (38), é dado por ∆E g φg = ε − ε o = = ρ a g (r1 − r0 ) , (39) Va Água no Solo
  • 28. 28 |Paulo Leonel Libardi em que ρa = ma/Va = densidade da água no solo, considerada constante. Chamando, então, o valor da distância vertical do ponto considerado à posição da referência gravitacional, de Z, isto é, Z = r1 − ro , (40) reescreve-se a equação (39) como: φ g = ± ρ a gZ [energia / volume] , (41) sendo que o sinal de Z e, portanto de φg dependerá da posição do ponto considerado em relação à referência gravitacional, isto é, o sinal será positivo se o ponto estiver acima da referência gravitacional (r1 > r0), negativo se estiver abaixo (r1 < r0) e nulo se for coincidente com ela (r1 = r0). Com base no que foi afirmado no item anterior, pode-se considerar também o valor da energia/volume como idêntico ao valor da pressão de uma coluna de água causada pelo campo gravitacional terrestre. Tal pressão é dada por: Pa = ρ a gh , em que Pa = pressão de água (N/m2, Pa), ρa = densidade da água (kg/m3), g = aceleração da gravidade (m/s2) e h = altura da coluna de água (m). Desta maneira, a partir das equações (39) a (41): φ g = ρ a g(r1 − r0 ) ≡ ρ a g(h1 − h0 ) ou Água no Solo
  • 29. Paulo Leonel Libardi| 29 φ g = ± ρ a gZ ≡ ± ρ a gh [energia / volume] , (42) sendo h = h1 − h0 , de modo que ρ a gh1 = valor da pressão de uma coluna de água de altura h1 idêntico ao valor de ε da água no solo e ρ a gh0 = valor da pressão de uma coluna de água de altura ho idêntico ao valor de εo da água padrão. Dividindo ambos os membros da equação (42) por ρa g: φ g = ± Z ≡ ± h [altura de água] , (43) isto é, dividindo-se o valor de φg, expresso na unidade energia/volume, calculado a partir da equação (41), pela quantidade ρ a g , obtém-se o valor de φg na unidade altura de água ou carga hidráulica. Portanto, para se obter o valor de φg num determinado ponto no solo, precisa-se apenas de uma régua para medir a distância vertical deste ponto à posição tomada como referência gravitacional, que a unidade do resultado obtido será em altura de água, ou seja, se a distância medida for, por exemplo, 1 m, o valor de φg será 1 m de água se o ponto estiver acima da referência gravitacional e -1 m de água, se o ponto estiver abaixo da referência gravitacional. 2.3 Potencial de pressão da água no solo Num solo com estrutura rígida, este componente do potencial total só se manifesta sob a condição de saturação. Para defini-lo, considere-se o esquema da Figura 9. Água no Solo
  • 30. 30 |Paulo Leonel Libardi Po Po P’ h A BB RG P’ Água com energia potencial Água com energia potencial total específica ε no ponto total ε (ponto considerado A, considerado A sob a pressão Po+P’+ρa gh.) Água padrão com energia potencial total Á Água padrão com energia potencial total ífica o (pontoεo (ponto B) ε total específica sob espec específica εo (ponto B,B) a pressão Po+P’). Figura 9 - Definição do potencial de pressão. No ponto B, em equilíbrio no recipiente do lado direito desta figura, tem-se água padrão (com energia potencial total específica εo) porque na interface plana, coincidente com a referência gravitacional (RG) onde ele se localiza, estão atuando a pressão atmosférica (Po) e a pressão interna (P’). Por outro lado, o ponto A, em equilíbrio no recipiente do lado esquerdo da figura, é diferente do primeiro apenas por nele atuar também a pressão da altura de água h. Note, então, que a única diferença entre os dois pontos é a pressão de água Pa = ρa Água no Solo
  • 31. Paulo Leonel Libardi| 31 gh que atua no ponto da esquerda. Conseqüentemente, esta pressão Pa torna a energia potencial total específica ε no ponto à esquerda (considerado) maior do que a energia potencial total específica εo no ponto à direita (água padrão): se for permitida uma comunicação entre os dois pontos, a água, por ação desta pressão, flui em direção à água padrão indicando que ε > εo. Pela definição de potencial (equação 37) e, no caso, pelo fato de a única diferença entre a água padrão e a água no ponto considerado ser a pressão de líquido no ponto considerado, tem-se que: φ p = ε − ε o = ρ a gh → [energia / volume] , (44) sendo φ p = potencial de pressão. De modo idêntico ao que vimos no caso do potencial gravitacional, em termos de carga hidráulica, φ p = h [altura de água] . (45) Note-se, no entanto, que, no caso deste potencial de pressão, h é uma carga hidráulica real que atua no ponto considerado. Como se pode ver pela equação (45), φp pode ser determinado medindo o comprimento h da coluna de líquido que atua acima do ponto de medida. No campo, isto é feito inserindo um piezômetro no solo, adjacente ao ponto onde se deseja conhecer φp, e mede-se a profundidade h do ponto abaixo da superfície livre de água no piezômetro (Figura 10). Portanto, o valor do potencial de pressão é sempre positivo ou no mínimo igual a zero. Esta última situação (φp= 0) ocorre quando o ponto se localiza na superfície livre de água. Água no Solo
  • 32. 32 |Paulo Leonel Libardi piezômetro superfície do solo lençol freático h ponto em questão Figura 10 - Ilustração da medida de φp num determinado ponto no solo abaixo de um lençol de água, por meio de um piezômetro. 2.4 Potencial mátrico da água no solo Seja um determinado volume, um torrão, de solo não saturado. É fácil verificar que para retirar a quantidade de água nele em equilíbrio, é necessário realizar trabalho sobre ela, o qual é tanto maior quanto mais seco estiver o solo. Isso nos leva a concluir que o solo retém a água no seu espaço poroso com forças cujas intensidades aumentam conforme o seu conteúdo de água diminui. Essas forças, por se manifestarem devido à presença da matriz do solo, são denominadas Água no Solo
  • 33. Paulo Leonel Libardi| 33 forças mátricas, relacionadas aos já mencionados fenômenos de capilaridade e adsorção. Distinguem-se, assim, dois tipos de força mátrica: a) as forças capilares, responsáveis pela retenção da água nos poros capilares dos agregados e b) as forças de adsorção, responsáveis pela retenção da água nas superfícies das partículas do solo. Quantificar a contribuição de cada um desses tipos de força no potencial mátrico é praticamente impossível na faixa do conteúdo de água no solo que as plantas normalmente se desenvolvem. O que se pode dizer, em termos qualitativos, é que logo após a drenagem livre de um solo saturado no campo, as forças capilares são dominantes e que, à medida que o solo seca a partir daí, a adsorção vai adquirindo maior importância. Estes dois mecanismos de retenção da água no solo pelas forças capilares e de adsorção reduzem a energia potencial total específica da água livre. A veracidade desta afirmação pode ser demonstrada tanto pelo fato de se ter que realizar trabalho sobre a água para retirá-la de um solo não-saturado, como também pelo fato de que ao se colocar água livre (padrão) em contato com um solo não saturado, num mesmo plano horizontal, a água flui naturalmente para o solo, ou seja, de um local com maior para um local com menor energia potencial total específica. Nesse caso, portanto, como a única causa da diferença entre a energia potencial total específica da água no solo não-saturado ε (ponto A) e a energia potencial total específica da água padrão εo (ponto B) é a existência das forças mátricas que atuam para reter a água no solo não saturado (Figura 11), o potencial Água no Solo
  • 34. 34 |Paulo Leonel Libardi total definido pela equação (37) torna-se apenas o potencial mátrico φm, o qual pode ser interpretado como uma medida do trabalho realizado por um agente externo para tornar livre a unidade de volume de água retida num solo não saturado, isto é, ε + W/Va = εo ou W φm = ε − ε o = − . (46) Va Po Po W A BB RG V a P’ Água com energia potencial total Água padrão com energia específica ε (ponto considerado A potencial total específica εo (ponto B) do solo não saturado. saturado). Figura 11 - Definição do potencial mátrico. Pela equação (46), percebe-se que, a não ser no caso particular de uma interface água-ar plana como num lençol freático na qual ε = εo e então φm = 0, o potencial mátrico é sempre uma quantidade negativa (ε < εo), sendo, por isso, Água no Solo
  • 35. Paulo Leonel Libardi| 35 comum a utilização do termo tensão da água no solo τ para eliminar o sinal negativo, isto é, em vez de se dizer, por exemplo, que o potencial mátrico da água no solo φm = -30 kPa, diz-se que a tensão da água no solo τ = 30 kPa. 3 CURVA DE RETENÇÃO Como acabamos de ver, o potencial mátrico pode ser avaliado pelo trabalho que se deve realizar à unidade de volume de água retida num solo não- saturado pelas forças mátricas, para torná-la livre como a água padrão. Devido à heterogeneidade dos poros dos solos, com formas e tamanhos muito variáveis de um solo para outro, não é possível se obter uma equação teórica para o potencial mátrico como no caso dos potenciais gravitacional e de pressão. Entretanto, como este potencial varia com o conteúdo de água no solo, sendo tanto menor quanto mais seco estiver o solo, foram desenvolvidos aparelhos por meio dos quais se pudesse buscar uma correlação entre ele e o conteúdo de água no solo. A curva resultante dessa correlação recebeu o nome de curva de retenção da água no solo ou simplesmente curva de retenção. Os aparelhos tradicionais desenvolvidos para a determinação dessa curva são os funis de placa porosa (Haines, 1930) e as câmaras de pressão com placa porosa (Richards, 1941, 1947, 1948), os quais têm a teoria da capilaridade como base de seu funcionamento. Água no Solo
  • 36. 36 |Paulo Leonel Libardi 3.1 Funil de placa porosa A Figura 12 representa o experimento tradicional de demonstração da ascensão capilar com tubos de diversas formas. Assim, enquanto no tubo A desta figura, capilar em todo o seu comprimento, o desnível h se forma naturalmente, nos tubos B e C isso não é possível por causa das suas partes não capilares. No entanto, se forem preenchidas as partes não capilares destes tubos, elevando o nível da superfície da água na cuba até a altura h', isto é, até que a porção capilar seja atinjida, o menisco é formado e a coluna é mantida em h, sem a necessidade de que o nível permaneça em h' o qual pode, então, ser rebaixado à posição original esgotando-se a água através da torneira T (Figura 12). Imagine-se, no entanto, que o nível da superfície da água na cuba da Figura 12 seja mantido a altura h' . Pela equação de Kelvin, o valor da ascensão é h, mas, como há um comprimento de tubo igual a H-h', menor do que h, acima da superfície da água na cuba, evidentemente, a água sobe até o fim deste comprimento e adquire um menisco mais plano, cujo raio de curvatura deve ser exatamente igual a h/(H-h') vezes aquele que ela adquiriria normalmente, isto é, se houvesse um comprimento mínimo h de capilar acima da superfície plana da água na cuba. Por exemplo, se H-h'=h/2, o valor do raio de curvatura do menisco na extremidade do tubo A será o dobro do valor normal. Este fato é depreendido facilmente da equação (7) de Kelvin pela qual, uma vez que 2σ/ρag é constante, o fator de diminuição de h é igual ao fator de aumento de R. Analisando, agora, o tubo C da Figura 12, observa-se que há cinco pequenos tubos capilares. Ao invés de cinco, poderiam haver dez, vinte, cem, ou muito mais. Uma maneira prática de obter o maior número possível de capilares Água no Solo
  • 37. Paulo Leonel Libardi| 37 como no tubo C, consiste em utilizar uma placa porosa (de cerâmica, por exemplo) conforme o tubo D da figura. Evidentemente, no caso da placa porosa, os diâmetros dos seus capilares não são todos iguais e nem uniformes como no tubo C, mas sendo pequena a espessura da placa (da ordem de 5 mm) e considerando que o valor de h deve ser sempre menor do que o valor máximo calculado pela equação (47) a seguir, pode-se dizer que os meniscos nos capilares da placa se localizam, praticamente, na sua superfície para qualquer valor de h (Figura 12). Placa porosa h h h' H T A B C D Figura 12 - Tubos capilares com diferentes volumes de água. O tubo D da Figura 12 pode ser confeccionado de tal maneira a se tornar um funil de haste prolongada e flexível por meio da qual se pode aumentar ou diminuir h pelo abaixamento ou elevação do nível de água mantido constante em sua extremidade por um dispositivo simples (Figura 13). Água no Solo
  • 38. 38 |Paulo Leonel Libardi Por ser um funil munido de uma placa porosa na parte inferior do seu corpo, recebe a denominação de funil de placa porosa. Po Po Po placa porosa funil de placa porosa Po h tubo flexível dispositivo para manter o nível de (a) (b) água constante Figura 13 - Funil de placa porosa adaptado com uma haste flexível: (a) placa porosa com a superfície dos meniscos nos seus poros, plana e (b) placa porosa com a superfície dos meniscos nos seus poros, côncava, com p = ρagh. Como já se viu, o aumento de h faz com que os raios de curvatura dos meniscos nos capilares da placa porosa decresçam, isto é, suas interfaces sejam Água no Solo
  • 39. Paulo Leonel Libardi| 39 “puxadas” para baixo. Isto, entretanto, acontece até o limite máximo quando o raio de curvatura do menisco no maior poro da placa se torna igual ao raio r’ deste poro. Nessa situação limite, a equação de Kelvin se torna, portanto, 2σ hmax = . (47) ρgr ' Um valor maior do que o hmax da placa, resultará em rompimento do menisco e passagem de ar através da placa. Portanto, quanto menor r’ maior hmax, que também é denominado valor de entrada de ar da placa porosa. Entretanto, praticamente, o valor máximo de h que se consegue é ≅ 8,5 m, mesmo que o valor de r’ permita um hmax maior, devido ao fenômeno da cavitação. Resumidamente, este fenômeno consiste no seguinte: à medida que se aumenta a altura h, a pressão interna no menisco diminui (lembre-se que a pressão interna no menisco é P’ - p e p = ρagh = incremento da pressão interna devido à curvatura da superfície); esta diminuição da pressão interna faz com que ar e vapor de água saiam do líquido ou passem através das paredes da tubulação usada e concentre-se sob a placa, quebrando a continuidade da coluna de água que então se desprende da placa, normalmente quando h ≅ 8,5 m. Considerando qualquer um dos poros da placa porosa do funil da Figura 13 tem-se, como ilustra a Figura 14, (a) à esquerda (correspondente a situação da Figura 13a) a água padrão com sua interface plana e (b) à direita (correspondente a situação da Figura 13b) a água no mesmo poro capilar com sua interface côncava (ponto considerado). Água no Solo
  • 40. 40 |Paulo Leonel Libardi Note-se que a única diferença entre as duas situações é a curvatura côncava da interface água-ar no ponto considerado causada pela matriz (= placa porosa) ao se abaixar, de h, o dispositivo de manutenção do nível da água. Pode-se observar que, devido a esta curvatura causada pela matriz, a energia potencial total específica da água retida pela placa (ponto A, logo abaixo da camada ativa) é menor do que a energia potencial total específica da água padrão (ponto B, também logo abaixo da camada ativa), porque a pressão que atua em A (interface côncava) é Po+ P' - p e a pressão que atua em B (interface plana da água padrão) é Po+ P' (Figura 14). Logo, a semelhança do que vimos para o φp: φ m = ε − ε o = − p → [energia/volume] (48) Po Po RG B A ... (a) (b) ... P'-p P' Água padrão com energia Água com energia potencial total específica εo potencial total específica ε (ponto B) no ponto considerado A. Figura 14 - Medida do potencial mátrico ou, tendo em conta o valor de p = ρagh: Água no Solo
  • 41. Paulo Leonel Libardi| 41 φ m = − ρ g h → [energia / volume] (49) ou ainda φm = −h → [altura de água] (50) Considere-se, agora, a colocação de uma amostra de solo na superfície da placa porosa do funil, que ela seja saturada elevando o nível de água no tubo flexível até torná-lo coincidente com o seu topo (Figura 15a) e, depois de um certo tempo, quando se tem certeza que foi bem saturada, seja abaixado o nível de água no tubo flexível a uma altura h (Figura 15b). Ao se fazer isso, os poros da amostra de solo de raio maior do que o calculado pela equação 2σ r= (51) ρ a gh são esvaziados, o que pode ser observado pelo gotejamento de água através da pequena saída do dispositivo que mantém o nível de água constante na extremidade do tubo flexível. Note-se que a equação (51) é a equação (9) com o r explicitado, para α=0. Atingido o equilíbrio, isto é, assim que o gotejamento parar, a situação da Figura 15 é idêntica à da Figura 13, com a diferença de que se tem uma amostra de solo (ponto considerado A) em perfeito contato com a placa porosa. Logo, as mesmas equações (48, 49 e 50) se aplicam, ou seja, a altura de água h (agora a distância do centro da amostra de solo ao nível de água mantido constante na extremidade da haste do funil), com o sinal trocado, representa o potencial mátrico da água no solo após o equilíbrio. Água no Solo
  • 42. 42 |Paulo Leonel Libardi Po Po Po A amostra de solo amostra de solo com uma tensão h saturado h Po RG C (a) (b) Figura 15 - Procedimento para medida de φm com o funil de placa porosa: (a) saturação do solo, (b) aplicação da tensão h, com consequente dessaturação da amostra de solo. A equação (50) pode ser obtida de outra maneira. Considere-se a amostra de solo (ponto A) e a água padrão (ponto C) da Figura 15b. Quando pára o gotejamento, a amostra de solo torna-se não saturada, portanto com um determinado φm. Como no equilíbrio, φt(A)=φt(C) e, pela Figura 15b, φt(A)=φm(A)+φg(A)=φm+h m água e φt(C)=φm(C)+φg(C)=0+0, então, φm= -h m água. Para a elaboração da curva de retenção da água no solo com o funil de placa porosa, repete-se para diversos valores de h, o procedimento indicado na Água no Solo
  • 43. Paulo Leonel Libardi| 43 Figura 15 determinando-se, depois de atingido o equilíbrio com cada valor de h selecionado, o valor do conteúdo de água no solo correspondente. Evidentemente, de um modo geral, quanto maior h (ou menor φm), sempre menor deve ser o conteúdo de água no solo depois do equilíbrio. O funil da placa porosa é normalmente utilizado para valores de h menores do que 2 m. 3.2 Câmaras de Pressão Para valores de φm menores do que ≅ -2,0 m de água até o limite de - 150 m de água, pode-se completar a curva de retenção no laboratório, utilizando câmaras de ar comprimido munidas de placa porosa (Figura 16). Como se pode ver por esta figura, a placa porosa separa a água no solo (ponto A) da água padrão (ponto B). Estando a amostra de solo saturada, ao se aplicar uma pressão P na câmara, toda unidade de volume de água retida no solo com uma energia menor do que a pressão P aplicada, é dele retirada e goteja no tubo de saída. Portanto, enquanto o tubo de saída estiver gotejando, o valor do potencial mátrico estará diminuindo, uma vez que o solo estará sendo dessaturado. Quando parar de gotejar (equilíbrio), o valor de φm é tal que compensa a pressão aplicada, ou seja, ε + P = ε o e então φm = ε − ε o = − P . (52) Resumidamente, o procedimento de utilização da câmara consiste em saturar a amostra de solo, aplicar a pressão de interesse P e, após o equilíbrio, quando o tubo de saída parar de gotejar, medir o valor do conteúdo de água com Água no Solo
  • 44. 44 |Paulo Leonel Libardi que ficou a amostra; repete-se o procedimento para vários valores de P e elabora- se a curva. medidor de pressão câmara de pressão de ar P Po + P Po + P amostra compressor Po de solo de ar A RG B placa porosa P’ P’- p água tubo de saída de água Figura 16 - Câmara de pressão de ar com placa porosa para elaboração da curva de retenção. A explicação do porquê φm = -P com a câmara de pressão pode também ser dada de outra maneira como a seguir. A amostra de solo, depois que pára o gotejamento através do tubo de saída, torna-se não-saturada e, portanto, com determinado φm; mas fica sujeita também à pressão de ar P, portanto com um potencial de pressão φp = P que, neste caso, por tratar-se de pressão de ar, alguns autores chamam de potencial pneumático. Portanto (ver Figura 16) na amostra (ponto A), Água no Solo
  • 45. Paulo Leonel Libardi| 45 φ t ( A) = φ m + P e na água padrão (ponto B) φt (B ) = 0 Como no equilíbrio φt ( A) = φt (B ) , resulta imediatamente que φm = − P → [energia/volume] (53) Um ponto importante a ser considerado é que, com a aplicação da pressão P, cria-se nos capilares não esvasiados da amostra de solo (ponto A), e nos capilares da placa, um menisco côncavo no qual atua a pressão Po+P+P’-p e, como no ponto B atua a pressão Po+P’, então, no equilíbrio, Po+P+P’-p = Po+P’, resultando que P = p . Assumindo que o menisco côncavo seja esférico, tem-se, com base nas equações (4) e (8) e no resultado acima (P=p), que 2σ cos α r= (54) P e, à semelhança do que ocorre com o funil de placa porosa, quando se aplica a pressão P, pode-se dizer que, de acordo com a teoria da capilaridade, todos os poros da amostra de solo cujos raios são maiores do que o raio r calculado pela equação 2σ r= (55) P Água no Solo
  • 46. 46 |Paulo Leonel Libardi são esvaziados. Note-se aqui também que a equação (55) é a equação (54), para α=0. Comparando as equações (51) e (55), pode-se verificar que são idênticas na forma, visto que P = p = ρ a gh ; o que muda é a maneira de retirar a água do solo. Como no caso do funil para a aplicação de h, o que limita o valor de P a ser aplicado é a porosidade da placa. Placas com poros pequenos, evidentemente, suportam uma pressão maior P sem rompimento do menisco nos seus poros capilares. O valor máximo de pressão que a placa suporta é denominada de pressão de borbulhamento da placa porosa e o valor do raio correspondente a esta pressão pode ser calculado pela equção (55). No comércio, encontram-se placas porosas com pressão de borbulhamento de 100, 300, 500 e 1500 kPa. Para valores de pressão de 10 a 400 kPa, utiliza-se uma câmara de pressão também conhecida pelo nome popular de “panela de pressão”, pela semelhança na forma com a panela de uso doméstico. Para valores de pressão de 500 a 2000 kPa, utiliza-se uma outra câmara, de constituição mais robusta e forma mais achatada para suportar estes altos valores de pressão. Também no caso das câmaras de pressão, o bom contato entre a placa porosa e a amostra de solo é primordial, a fim de que o contato hidráulico entre ambas seja sempre mantido. Foi mostrado, portanto, que o potencial mátrico (φm) ou a tensão (τ) da água no solo se relaciona com a curvatura das interfaces água-ar no solo não saturado. Isto foi feito assumindo que estas interfaces na amostra de solo, tanto no funil como na câmara de pressão, se acomodavam num capilar de secção Água no Solo
  • 47. Paulo Leonel Libardi| 47 transversal circular de raio r sob uma tensão de água h (equação 9), no caso dos funis de placa porosa, ou P (equação 54), no caso das câmaras de pressão. O solo, como sabemos, não é um simples tubo capilar, mas uma composição irregular de poros e canais formados por seus sólidos. Conseqüentemente, é claro que as interfaces não são iguais em todos os pontos do solo mas, como vimos, as curvaturas estão todas com o mesmo valor de tensão h ou P, no equilíbrio. Isso nos leva a concluir que o valor de r que se obtém pelas equações da capilaridade só pode ser considerado com um “raio equivalente” sem qualquer tentativa de quantificação do raio real do poro. De qualquer maneira, o cálculo do raio r por meio das equações (51) e (55) para as diversas tensões, depois de determinada a curva de retenção de um solo (Figura 17), não deixa de ser uma maneira válida para avaliar o tamanho dos poros do solo e sua distribuição, como mostraremos a seguir. Outra maneira válida para isso, mas que exige a visualização do poro é a) pelo raio da maior esfera inscrita no poro, se o tamanho dos tres eixos principais deste poro for comparável ou b) pelo raio do círculo inscrito, se a forma do poro for tubular (Kutílek e Nielsen, 1994). Será, agora, visto como se pode determinar a distribuição do tamanho dos poros do solo com base na curva de retenção, pelo cálculo do “raio equivalente” a cada tensão, pela teoria da capilaridade. Na abordagem, será considerada a determinação da curva de retenção por secagem. Na determinação por molhagem, a abordagem é a mesma apenas invertendo-se o sentido do processo de determinação, isto é, enquanto na curva por secagem os poros são esvaziados por aumento de tensão, na por molhagem os poros são preenchidos com água por diminuição de tensão. Água no Solo
  • 48. 48 |Paulo Leonel Libardi r (µm) 1000 100 50 15 10 1 0,1 θ/α θ (m3 m-3) r1 r2 0,55 1,00 Macroporosidade (0,043 m3 m-3) θ1= 0,507 0,92 0,50 0,45 Mesoporosidade (0,124 m3 m-3) 0,75 0,40 θ2 = 0,383 0,70 0,35 0,30 Microporosidade (0,383 m3 m-3) 0,50 τ1 τ2 0,01 0,1 0,3 1 10 100 τ (m) Figura 17 – Curva de retenção da água no solo em papel semi-log. A determinação é iniciada pela elaboração do gráfico da curva de retenção utilizando a saturação relativa θ/α no eixo das ordenadas e no eixo das abscissas a tensão τ em escala decimal (Figura 18). A curva de retenção da Figura 18 é, portanto, o gráfico da equação (θ/α)=F(τ) no plano (τ,θ/α). Se a equação (θ/α)=F(τ) for diferenciada com relação a τ, obtém-se a inclinação da tangente à curva de retenção no ponto (τ,θ/α), a qual é também função de τ, isto é, (dθ/αdτ)=f(τ), cuja unidade é portanto o inverso da unidade de tensão. É conveniente elaborar também o gráfico da curva de −dθ/αdτ em função de τ denominada curva diferencial da curva de retenção (Figura 19). Água no Solo
  • 49. Paulo Leonel Libardi| 49 θ/α 1,0 Macroporos (8%) θ1/α = 0,92 dτ θ  0,9 d  α  dτ Mesoporos (22%) 0,8 θ  θ2/α = 0,7 d  α  dτ Microporos (70%) 0,6 τ1 τ2 0,300,360,5 1,0 1,5 2,0 τ (m) r1 = 50 µm r2 = 15 µm 41 µm Figura 18 – Curva de retenção da água no solo (θ/α em função deτ). 0,4 - dθ/αdτ (m-1) 0,3 0,2 τ2 − ∫τ 1 f (τ )dτ = 0,22 0,1 τ* τ1τmax τ2 − ∫τ 2 f (τ )dτ = 0,7 0,0 0,30 0,36 0,5 1,0 1,5 2,0 τ (m) τ1 r = 50 µm − ∫ 0 f (τ )dτ = 0,08 1 rmax = 41 µm r2 = 15 µm Figura 19 – Curva diferencial da curva de retenção da Figura 18. Água no Solo
  • 50. 50 |Paulo Leonel Libardi Observe-se que, enquanto na Figura 17 o eixo das abscissas está em escala logarítmica (gráfico semi-log), nas Figuras 18 e 19 está em escala decimal. Isso foi feito porque, como se pode notar pela Figura 17, para tensões acima de aproximadamente 2 m água o conteúdo de água θ é sempre decrescente e já tendendo para um valor constante e para algumas explicações no presente estudo é didaticamente mais conveniente trabalhar em escala decimal. Lembrando que θ = (Va / V) e α = (Vp / V), é fácil verificar que (θ /α) = (Va / Vp), isto é, a saturação relativa é um índice que mede a fração cheia de água do volume de poros de uma amostra de solo. No entanto, como ordenada da curva de retenção, ela está vinculada à tensão τ e como tal representa, em associação com a teoria da capilaridade, a fração do volume de poros de uma amostra de solo correspondente aos poros (cheios de água) de raio menor do que r=2σ/ρagτ. Observe ainda que, teoricamente, para τ =0, θ/α=1 (todos os poros cheios de água) e, para uma τ =τ* muito alta, θ/α=0 (nenhum poro com água), pelo que a fração θ/α também pode ser expressa em porcentagem, bastando para isso multiplicá-la por 100. Por outro lado, do Cálculo, se dF (τ ) f (τ ) = , dτ então τ2 F (τ 2 ) ∫ τ1 f (τ ) dτ = ∫ dF (τ ) = F (τ F (τ 1 ) 2 ) − F (τ 1 ). Água no Solo
  • 51. Paulo Leonel Libardi| 51 Como F(τ1)=(θ1/α) e F(τ2)=(θ2/α) (Figura 18), resulta que τ2 θ1 θ 2 − ∫ f (τ ) dτ = − . (56) τ1 α α O primeiro membro da equação (56) está representado pela área hachurada da Figura 19. Com relação ao segundo membro desta equação, percebe-se que θ1 θ 2 θ1 − θ 2 ∆Va δVP − = = ≡ (57) α α α VP VP em que ∆Va é a diferença entre o volume de água existente na amostra de solo com conteúdo de água θ1 e o volume de água existente na amostra com conteúdo de água θ2, portanto, igual ao volume de água liberado da amostra quando o seu conteúdo de água decresce de θ1 para θ2 pelo aumento da tensão τ de τ1 a τ2. Tal volume, evidentemente, é idêntico ao volume de poros esvaziados δVP quando do aumento da tensão de τ1 a τ2. Logo, a fração δVP/VP, medida por (θ1/α)−(θ2/α) (equação 57), representa a fração do volume de poros da amostra correspondente aos poros de raio menor do que r1 e maior do que r2 que são esvaziados quando se aumenta a tensão de τ1 para τ2, visto que, pelo modelo em estudo, quando se aumenta a tensão de 0 a τ1 são esvaziados os poros de raio maior do que r1 e quando se aumenta a tensão de 0 a τ2 são esvaziados os poros de raio maior do que r2. Água no Solo
  • 52. 52 |Paulo Leonel Libardi Exemplificando, para σ =0,072 N m-1, ρa=1000 kg m-3 e g=9,8 m s-2 na equação 51 ou 55, tem-se, para a tensão τ1= 0,3 m água (r1=50µm), que (θ1/α)=0,92 (Figura 17 ou 18), significando que o volume de poros correspondente aos poros de raio menor do que 50 µm é igual a 0,92 vezes o volume de poros da amostra. Para a tensão τ2= 1,0 m água (r2=15 µm), o valor de θ2/α é evidentemente menor, no caso 0,70 (Figura 17 ou 18), significando que 0,70 vezes o volume de poros da amostra é igual ao volume dos poros de raio menor do que 15 µm. Como para τ0=0 m água, (θs/α)=1 e para τ =τ* m água, (θ0/α)=0, sendo θs o conteúdo de água no solo saturado e θ0 o conteúdo de água no solo completamente seco, então a) (θs/α)-(θ1/α)=1,00-0,92=0,08 é a fração do volume de poros da amostra correspondente aos poros de raio maior do que r1=50 µm (área sob a curva da Figura 19 à esquerda da área hachurada), b) (θ1/α)- (θ2/α)=0,92-0,70=0,22 é a fração do volume de poros da amostra correspondente aos poros de raio menor do que r1=50 µm e maior do que r2=15 µm (área hachurada sob a curva da Figura 19) e c) (θ2/α)-(θ0/α)=0,70-0,00=0,70 é a fração do volume de poros da amostra correspondente aos poros de raio menor do que r2= 15µm (área sob a curva da Figura 19 à direita da área hachurada). Empiricamente, os poros do solo têm sido classificados por meio dos seus raios em, por exemplo (Koorevaar et al, 1983), a) macroporos: poros de raio maior do que 50 µm, cuja principal função é a aeração do solo e a condução de água durante o processo de infiltração, b) mesoporos: poros de raio entre 15 e 50 µm, com a função principal de conduzir a água durante o processo de Água no Solo
  • 53. Paulo Leonel Libardi| 53 redistribuição, isto é, após o esvaziamento dos macroporos e c) microporos: poros de raio menor do que 15 µm que atuam, principalmente, na armazenagem da água. Assim, pode-se dizer que, pelo modelo da capilaridade associado à curva de retenção, 8% dos poros do solo do exemplo em estudo são macroporos, 22% são mesoporos e 70% são microporos (Figura 17, 18 ou 19). Além disso, sendo θs = 0,55 m3m-3, θ1 = 0,507 m3m-3 e θ2 = 0,383 m3m-3 (Figura 17), pode-se dizer também que a macroporosidade deste solo é 0,550-0,507=0,043 m3m-3, sua mesoporosidade é 0,507-0,383=0,124 m3m-3 e sua microporosidade é 0,383- 0,000=0,383 m3m-3. Observe-se ainda que, como para a tensão de 0,36 m água (ou o raio de 41 µm) o valor de dθ/αdτ é máximo neste solo (Figura 19), então para um dado valor de dτ, o valor de dθ/α também é máximo à tensão de 0,36 m água (Figura 18). Consequentemente, os poros em maior porcentagem neste solo são aqueles cujos raios estão em torno do valor de 41 µm. Finalmente, não é demais lembrar que a colocação do eixo dos raios na Figura 17 em comparação ao eixo das tensões, só pode ser feita quando se utiliza a escala logarítmica nestes eixos, porque log r varia inversamente mas também linearmente com log τ. Se fosse utilizada a escala decimal, o eixo dos raios não poderia ser colocado em comparação ao eixo das tensões na figura, porque nessa escala r varia inversamente mas não linearmente com τ. Água no Solo
  • 54. 54 |Paulo Leonel Libardi 3.3 O tensiômetro O princípio de funcionamento do tensiômetro é muito semelhante ao do funil de placa porosa, residindo a diferença fundamental no fato de que, no caso do tensiômetro, ao invés de se trazer a amostra de solo para junto da placa porosa, leva-se a placa porosa para junto da amostra, uma vez que o objetivo principal do tensiômetro, ao contrário do funil, não é a elaboração da curva de retenção e, sim, a medida de φm no local de interesse. Como o material poroso deve ser introduzido no solo, é confeccionado, por esse motivo, numa forma cilíndrica, conhecida como cápsula porosa. O procedimento com o funil de placa porosa de se trazer o solo á saturação e depois colocá-lo à tensão de interesse não se faz no caso do tensiômetro. O importante, no caso do tensiômetro, é que o solo esteja o mais úmido possível, quando da sua instalação, a fim de que haja o bom contato necessário entre a cápsula porosa e o solo ou, em outras palavras, para que, através dos poros da parede da cápsula, a água no tensiômetro entre em contato e se equilibre com a água no solo. Após o estabelecimento deste equilíbrio, atinge-se, teoricamente, a mesma situação da Figura 15b, como se pode ver na Figura 20, que mostra um tensiômetro com manômetro de água instalado no campo medindo a tensão τ = h m água ou o potencial mátrico φ m = -h m água no ponto C adjacente à cápsula (note-se a semelhança entre as Figuras 15b e 20). Evidentemente, numa condição de saturação, com o nível de um lençol de água passando pelo ponto C, o nível da água no manômetro será coincidente com o nível do lençol e localizar-se-á, portanto, em A (Figura 20), pelo que φ m = 0 m de água, como na Figura 15a. Se o lençol subir para cima do ponto C, o tensiômetro Água no Solo
  • 55. Paulo Leonel Libardi| 55 passará a funcionar como um piezômetro de modo que, como na Figura 10, a altura de água acima de A representará o potencial de pressão no ponto C. Superfície do solo z A C h cápsula porosa água Figura 20 - Tensiômetro com manômetro de água instalado no campo. Devido à impraticabilidade de utilização do tensiômetro com manômetro de água mostrado na Figura 20, principalmente sob condições de campo, pelo fato de se ter que abrir uma trincheira para que a leitura possa ser feita, substitui-se o manômetro de água por um manômetro de mercúrio, colocado acima do nível do solo, conforme a Figura 21. Evidentemente, para que o manômetro de mercúrio possa funcionar, o tensiômetro precisa ficar com todas suas partes cheias de água, o que é feito com a retirada da rolha de borracha, colocação de água sob pressão para eliminação de todo o ar e recolocação da rolha à sua posição original. Assim, toda vez que sair água do tensiômetro (aumento de h por secagem do solo ), aumenta o valor da Água no Solo
  • 56. 56 |Paulo Leonel Libardi altura de mercúrio H. Evidentemente, uma diminuição de H indica diminuição da tensão da água no solo τ = h. Há, portanto, uma dependência direta entre a leitura do tensiômetro com manômetro de mercúrio H e a tensão da água h. A equação que mostra como se obtém essa dependência será agora deduzida. Sabemos que no tensiômetro da Figura 21, só haverá equilíbrio quando a pressão líquida ∆PA, que atua na superfície do mercúrio na cuba empurrando-o para dentro do tubo de leitura, for igual à pressão líquida ∆PB, que atua na superfície da água no solo empurrando-a para dentro do tensiômetro através dos poros da cápsula porosa, e que, como será esclarecido mais adiante, esse equilíbrio só ocorre para valores da quantidade ρ Hg gH + ρ a gh2 até um máximo igual a Po. Pelo balanço das pressões atuantes e fazendo P′ = PP = pressão interna na interface plana e P′− p =PC = pressão interna na interface côncava, percebe-se que (Figura 21): ∆PA = Po − (ρ Hg gH + ρ a gh2 − PP ) e ∆PB = (Po + PC ) − ρ a gh1 . Água no Solo
  • 57. Paulo Leonel Libardi| 57 h2 P’ H’ ' Pm Po H Rolha de h1 borracha hc ' Pm Mercúrio Superfície do solo Z Parede da cápsula Água Po P’ - p Partícula de Cápsula porosa solo h Po P’ Figura 21 – Tensiômetro com manômetro de mercúrio instalado no campo, sendo Po = pressão atmosférica do local, P´= pressão interna na água numa interface plana água-ar e numa interface plana água-mercúrio ´ e Pm = pressão interna no mercúrio, numa interface plana mercúrio- ar e numa interface plana mercúrio-água. Água no Solo