SlideShare uma empresa Scribd logo
1 de 32
Vento Agrometeorologia  Prof. Carlos Wagner Oliveira Campus Cariri/UFC – 2008 Aula # 7c
Vento: velocidade e direção Agrometeorologia  Carlos W Oliveira
Origem dos Ventos ,[object Object],[object Object],[object Object],Agrometeorologia  Carlos W Oliveira ,[object Object],[object Object],[object Object],[object Object],[object Object]
Forças Modificadoras ,[object Object],Agrometeorologia  Carlos W Oliveira
Forças Modificadoras ,[object Object],Agrometeorologia  Carlos W Oliveira
Forças Modificadoras ,[object Object],Agrometeorologia  Carlos W Oliveira
Agrometeorologia  Carlos W Oliveira Como já discutido anteriormente, os ventos se originam em decorrência da diferença de pressão atmosférica entre duas regiões. Os fatores da macroescala são responsáveis pela formação dos ventos predominantes, enquanto que os fatores da topo e da microescala tem influência na formação dos ventos locais. O vento, especialmente a sua velocidade, tem efeitos consideráveis em vários aspectos relacionados à agricultura, atuando tanto de modo favorável como desfavorável. Logicamente, os efeitos desfavoráveis são os mais relevantes nos estudos envolvendo a agricultura, e nesse caso os ventos excessivos podem ser controlados com o uso dos quebra ventos (estrutura natural ou artificial destinada a reduzir a velocidade do vento). Para tanto é necessário se conhecer sua direção e velocidade. Além disso, a velocidade do vento é muito importante no processo de evapotranspiração, exercendo grande influência no consumo hídrico das plantas. Essa variável será também muito útil na estimativa da evapotranspiração das culturas e, conseqüentemente, para o manejo da irrigação. Vento: velocidade e direção
Agrometeorologia  Carlos W Oliveira Medida do Vento Direção do vento A direção do vento é indicada pela direção de onde o vento é proveniente, ou seja, de onde ele vem. A direção é expressa tanto em termos da direção de onde ele provém comoem termos do azimute, isto é, do ângulo que o vetor da direção forma com o Norte geográfico local. Assim, um vento de SE terá um ângulo variando entre 91 e 179º. 0 o 90 o 180 o 270 o 1 a 89 o 91 a 179 o 181 a 269 o 271 a 359 o
Agrometeorologia  Carlos W Oliveira Medida do Vento Velocidade do vento A velocidade do vento expressa a distância percorrida pelo vento em um determinado intervalo de tempo. É medida a 10 m de altura (para fins meteorológicos) ou 2 m (para fins agronômicos). Normalmente é expressa em metros por segundo (m/s), quilômetros por hora (km/h) ou knots (kt): 1 kt = 0,514 m/s ou 1 m/s = 1,944 kt 1 m/s = 3,6 km/h ou 1 km/h = 0,278 m/s A velocidade do vento aumenta exponencialmente com a altura. Isso se dá em função da redução do atrito conforme o fluxo de ar se distancia da superfície. Assim, a velocidade do vento a 10m de altura (p/ fins meteorológicos) será maior do que aquela medida a 2m (p/ fins agronômicos)‏ U 2m  = 0,748 * U 10m Velocidade do vento (m/s)‏ PERFIL DE VENTO Altura acima da superfície (m)‏
Agrometeorologia  Carlos W Oliveira Medida do Vento Equipamentos Anemômetro Universal – Equipamento mecânico que fornece dados de direção, velocidade e rajadas Bateria de anemômetros de caneca para medida automática da velocidade do vento Anemômetro de hélice  – Equipamento automático para medida da velocidade e direção do vento Sensor automático de baixo custo – mede a direção e velocidade do vento
Medida do Vento Agrometeorologia  Carlos W Oliveira Anemograma, obtido pelo Anemógrafo Universal, do vendaval ocorrido em 29/03/2006 em Piracicaba. Neste dia, a rajada máxima do vento chegou a cerca de 44 m/s, o que correspondeu a 158 km/h, recorde observado na cidade. Direção Distância percorrida (km)‏ Rajada instantânea (m/s)‏
Agrometeorologia  Carlos W Oliveira Escala de Vento de Belfort Essa escala ajuda a interpretar os dados de velocidade máxima do vento (rajadas) medidos nas estações meteorológicas convencionais (a 10 m de altura)‏ > 118 Tornado, Furacão 12 102- 117 Temporal Muito Forte 11 88 – 101 Temporal Forte 10 75 – 87 Temporal 9 62 – 74 Vento Fortíssimo 8 51 – 61 Vento Muito Forte 7 40 – 50 Vento Forte 6 30 – 39 Brisa Forte 5 20 – 29 Brisa Moderada 4 12 – 19 Brisa Leve 3 7 – 11 Brisa Amena 2 2 – 6 Vento Calmo 1 0 – 2 Calmaria 0 Velocidade (km/h)‏ Descrição Grau
Agrometeorologia  Carlos W. Oliveira Brisas Marítimas Como as massas de terra são aquecidas pelo sol mais rapidamente do que o oceano, o ar em cima delas ascende e cria uma baixa de pressão no solo que atrai o ar mais fresco do mar: o que se chama uma  brisa marítima . Ao cair da noite, há muitas vezes um período de calma durante o qual a temperatura em terra e no mar são iguais. De noite, como o oceano arrefece mais lentamente, a brisa sopra de terra, na direção oposta, mas é geralmente mais fraca porque a diferença de temperaturas é menor.
Agrometeorologia  Carlos W. Oliveira Brisas de vale e de montanha O ar, na vizinhança das encostas das montanhas, fica a temperatura mais elevada e eleva-se durante o dia; o ar ascendente é substituído pelo ar que se encontra nos vales. Assim, durante o dia o ar sobe a encosta. Durante a noite, as encostas das montanhas arrefecem. Este ar frio desce a montanha por acção da gravidade. Assim, ao amanhecer, o ar mais frio pode ser encontrado no vale. Se o ar contiver humidade suficiente, pode formar-se nevoeiro no vale.
Agrometeorologia  Carlos W. Oliveira Oceanidade / Continentalidade Esses termos se referem, respectivamente, à proximidade ou distância do oceano ou grandes massas de água.  Oceanidade  se refere ao efeito do oceâno sobre o clima de uma região litorânea. A água do oceano atua como um moderador térmico, ou seja, não permite que grandes variações de temperatura ocorram. Isso se dá pelo fato da água ter maior calor específico do que o ar, resfriando-se e aquecendo-se mais lentamente. A massa de água ao trocar calor com o ar faz com que haja uma atenuação tanto do aquecimento do ar como de seu resfriamento, reduzindo assim a amplitude térmica (Tmax – Tmin). A  continentalidade  ocorre em locais situados no interior dos continentes, portanto sem sofrer efeito dos oceanos. Nessa condição, as amplitudes térmicas são maiores, tanto em termos diários como em termos anuais. Cuiabá  -> Amplitude térmica mensal entre 8 e 17 o C Salvador -> Amplitude térmica mensal entre 3 e 6 o C Numa escala geográfica maior, o poder moderador dos oceanos explica também porque as amplitudes térmicas (verão – inverno) são maiores no HN e menores do HS. Veja a figura a seguir e comprove isso...
Agrometeorologia  Carlos W. Oliveira HN  -> Continente > Oceano  -> > Amplitude Térmica  HS -> Continente < Oceano -> < Amplitude Térmica Amplitude térmica anual (diferença entre a Tmed do mês mais quente e do mês mais frio) decorrente dos efeitos da continentalidade/oceanidade.
Agrometeorologia  Carlos W. Oliveira Anticiclones Semi-Permanentes, ZCIT, ZCET e Circulação Geral da Atmosfera A circulação geral da atmosfera gera os ventos predominantes, os quais por sua vez são responsáveis pela formação das zonas de convergência intertropical (ZCIT) e extratropical (ZCET), e também dos anticiclones semi-permanentes nas latitudes de cavalo. Latitude de cavalo Latitude de cavalo ZCIT ZCET
Agrometeorologia  Carlos W. Oliveira Circulação Geral da Atmosfera Cinturas de Pressão Zonal (distribuição entre paralelos - Leste Oeste) &quot;Ideal&quot;. Uma Terra uniforme imaginária com cinturas de pressão idealizadas (zonais  e contínuas)‏ Cintura de Pressões Zonal Climatológico “Real”. A Terra real com descontinuidades no padrão zonal dos ventos/pressão causados pelas grandes massas continentais.
Agrometeorologia  Carlos W. Oliveira Anticiclones  Semi-Permanentes Na ZCIT os ventos alíseos de SE (HS) e de NE (HN) se encontram formando áreas de baixa pressão (L), que mostram a posição do Equador Térmico, o que favorece a formação de nuvens e chuvas. Na ZCET a convergência dos ventos de W e de E forma as frentes frias, que posteriormente se deslocam em direção ao equador provocando chuvas. Já nas latitudes de cavalos ocorre a subsidência de ar, formando as altas pressões (H) que inibem os movimentos convectivos e conseqüentemente, desfavorecem a formação de nuvens e chuvas. L
Agrometeorologia  Carlos W. Oliveira As figuras a seguir mostram a posição média da ZCIT nos meses de Janeiro e Julho. É possível notar que durante o verão no HS a ZCIT desloca-se para o sul, o que contribui para o aumento das chuvas nas regiões N, CO e SE do Brasil. ZCIT ZCIT
Agrometeorologia  Carlos W. Oliveira No mês de julho (inverno no HS), por outro lado, a ZCIT desloca-se para o norte, o que contribui para a diminuição das chuvas nas regiões SE, CO e inclusive em parte da região N do Brasil. ZCIT ZCIT
Agrometeorologia  Carlos W. Oliveira Agrometeorologia  Carlos W. Oliveira Monções A palavra  monção  teve a sua origem dada pelos antigos marinheiros árabes do Oceano Índico e do Mar Arábico às periódicas mudanças de direcção do vento que ocorrem ao largo das costas da Índia e da Península Arábica, especialmente no Mar Arábico, no Golfo Pérsico e no noroeste do Índico, onde o vento sopra desde o sudoeste uma metade do ano e desde o nordeste durante a outra metade. O efeito de monção é causado pelo aparecimento sazonal de grandes diferenças térmicas entre os mares e as regiões continentais adjacentes nas zonas próximas dos bordos externos da célula de Hadley. Monções de verão na India
Agrometeorologia  Carlos W. Oliveira Correntes Oceânicas A movimentação contínua das águas oceânicas em função de diferenças de densidade (causadas por dif. de temp. e salinidade e pela rotação da Terra) gera correntes que se movem de maneira organizada, mantendo as suas características físicas, as quais diferem das águas adjacentes. As correntes que circulam dos Pólos para o Equador são FRIAS e as que circulam do Equador para os Pólos são QUENTES. A atmosfera em contato com essas massas de água entram em equilíbrio térmico com a superfície. Por isso, as correntes tem grande efeito sobre o regime térmico e hídrico (chuvas) na faixa litorânea dos continentes. Correntes Frias -> Condicionam clima ameno e seco   Correntes Quentes -> Condicionam clima quente e úmido Exemplo: Salvador, BA, Brasil  -> T anual  = 24,9 o C e P anual  = 2.000 mm Lima, Perú ->  T anual  = 19,4 o C e P anual  = 40 mm
Agrometeorologia  Carlos W. Oliveira
Ventos Perigosos...
Ciclone:   é o nome genérico para ventos circulares como tufão, furacão, tornado e willy-willy. Caracteriza-se por uma tempestade violenta que ocorre em regiões tropicais ou subtropicais, produzida por grandes massas de ar em alta velocidade de rotação. Os ventos os superam 50 km/h.
 
Furacão:  vento circular forte, com velocidade igual ou superior a 108 km/h. Os furacões são os ciclones que surgem no mar do Caribe (oceano Atlântico) ou nos EUA. Os ventos precisam ter mais de 119 km/h para uma tempestade ser considerada um furacão. Giram no sentido horário (no hemisfério Sul) ou anti-horário (no hemisfério Norte), e medem de 200 km a 400 km de diâmetro. Sua curva se assemelha a uma parabólica.
Escala de Saffir-Simpson
Tufão : é o nome que se dá aos ciclones formados no sul da Ásia e na parte ocidental do oceano Índico, entre julho e outubro. É o mesmo que furacão, só que na região equatorial do Oceano Pacífico. Os tufões surgem no mar da China e atingem o Leste Asiático.
Tornado  : é o mais forte dos fenômenos meteorológicos, menor e mais intenso que os demais tipos de ciclone. Com alto poder de destruição, atinge até 490 km/h de velocidade no centro do cone. Produz fortes redemoinhos e eleva poeira. Forma-se entre 10 e 30 minutos e tem, no máximo, 10 km de diâmetro. O tornado é menor e em geral mais breve que o furacão, e ocorre em zonas temperadas do hemisfério Norte.
Escala Fujita

Mais conteúdo relacionado

Mais procurados

Os movimentos da terra
Os movimentos da terraOs movimentos da terra
Os movimentos da terra
Professor
 
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°anoDinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
Ronaldo Santana
 

Mais procurados (20)

Mudanças climáticas e saúde: impactos na saúde humana
Mudanças climáticas e saúde: impactos na saúde humanaMudanças climáticas e saúde: impactos na saúde humana
Mudanças climáticas e saúde: impactos na saúde humana
 
A estrutura da terra 6o ano
A estrutura da terra 6o anoA estrutura da terra 6o ano
A estrutura da terra 6o ano
 
Adaptação
AdaptaçãoAdaptação
Adaptação
 
Fenômenos Atmosféricos
Fenômenos AtmosféricosFenômenos Atmosféricos
Fenômenos Atmosféricos
 
8 ano_A Terra, a Lua e o Sol.ppt
8 ano_A Terra, a Lua e o Sol.ppt8 ano_A Terra, a Lua e o Sol.ppt
8 ano_A Terra, a Lua e o Sol.ppt
 
Terremotos
TerremotosTerremotos
Terremotos
 
Climatologia geográfica
Climatologia geográficaClimatologia geográfica
Climatologia geográfica
 
As estações do ano
As estações do anoAs estações do ano
As estações do ano
 
Os movimentos da terra
Os movimentos da terraOs movimentos da terra
Os movimentos da terra
 
A atmosfera terrestre
A atmosfera terrestreA atmosfera terrestre
A atmosfera terrestre
 
Ondas
OndasOndas
Ondas
 
IV.3 Previsão do tempo
IV.3 Previsão do tempoIV.3 Previsão do tempo
IV.3 Previsão do tempo
 
6 ano atmosfera
6 ano atmosfera6 ano atmosfera
6 ano atmosfera
 
Força e movimento
Força e movimentoForça e movimento
Força e movimento
 
Ecossistemas brasileiros
Ecossistemas brasileirosEcossistemas brasileiros
Ecossistemas brasileiros
 
Hidrologia aula introdutória
Hidrologia   aula introdutóriaHidrologia   aula introdutória
Hidrologia aula introdutória
 
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°anoDinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
Dinâmica: Força e Vetor - Aula Ensino Fundamental - Ciências Fisicas 9°ano
 
Trabalho e potência
Trabalho e potênciaTrabalho e potência
Trabalho e potência
 
Biomas do mundo
Biomas do mundoBiomas do mundo
Biomas do mundo
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 

Destaque (9)

Madeiras
MadeirasMadeiras
Madeiras
 
A secagem da madeira é um processo complexo em função das características esp...
A secagem da madeira é um processo complexo em função das características esp...A secagem da madeira é um processo complexo em função das características esp...
A secagem da madeira é um processo complexo em função das características esp...
 
Trabajo de agrometeorología
Trabajo de agrometeorologíaTrabajo de agrometeorología
Trabajo de agrometeorología
 
Utilizando o DRIA-0111: Agrometeorologia dos Cultivares:
Utilizando o DRIA-0111: Agrometeorologia dos Cultivares: Utilizando o DRIA-0111: Agrometeorologia dos Cultivares:
Utilizando o DRIA-0111: Agrometeorologia dos Cultivares:
 
Secagem de Madeiras
Secagem de MadeirasSecagem de Madeiras
Secagem de Madeiras
 
Agrometeorologia 01
Agrometeorologia 01Agrometeorologia 01
Agrometeorologia 01
 
Aula3 materiais
Aula3 materiaisAula3 materiais
Aula3 materiais
 
Madeiras
MadeirasMadeiras
Madeiras
 
Madeiras
MadeirasMadeiras
Madeiras
 

Semelhante a Aula07c

3.Factores Climáticos
3.Factores Climáticos3.Factores Climáticos
3.Factores Climáticos
Mayjö .
 
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
alessandraoliveira324
 
Atmosfera, tempo e clima 2
Atmosfera, tempo e clima 2Atmosfera, tempo e clima 2
Atmosfera, tempo e clima 2
Google
 
Aula 1 climatologia_parte_1_enviar
Aula 1 climatologia_parte_1_enviarAula 1 climatologia_parte_1_enviar
Aula 1 climatologia_parte_1_enviar
caduisolada
 

Semelhante a Aula07c (20)

Clima e formaçoes vegetais
Clima e formaçoes vegetaisClima e formaçoes vegetais
Clima e formaçoes vegetais
 
3.Factores Climáticos
3.Factores Climáticos3.Factores Climáticos
3.Factores Climáticos
 
06092018072941290.pdf
06092018072941290.pdf06092018072941290.pdf
06092018072941290.pdf
 
Climatologia
Climatologia Climatologia
Climatologia
 
CLIMATOLOGIA.ppt
CLIMATOLOGIA.pptCLIMATOLOGIA.ppt
CLIMATOLOGIA.ppt
 
Factores do Clima - Temperatura
Factores do Clima - TemperaturaFactores do Clima - Temperatura
Factores do Clima - Temperatura
 
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
09-ciencias-8o-ano-clima-2023-11-16-15-57-40.pptx
 
EM-1ª-SERIE-Aula-de-GEOGRAFIA-A-Atmosfera-e-sua-Dinamica-07-05-2020.ppt
EM-1ª-SERIE-Aula-de-GEOGRAFIA-A-Atmosfera-e-sua-Dinamica-07-05-2020.pptEM-1ª-SERIE-Aula-de-GEOGRAFIA-A-Atmosfera-e-sua-Dinamica-07-05-2020.ppt
EM-1ª-SERIE-Aula-de-GEOGRAFIA-A-Atmosfera-e-sua-Dinamica-07-05-2020.ppt
 
Aula introdução a climatologia 1
Aula   introdução a climatologia 1Aula   introdução a climatologia 1
Aula introdução a climatologia 1
 
1 ano clima
1 ano clima1 ano clima
1 ano clima
 
BLOCO IV / METEOROLOGIA (CMS)
BLOCO IV / METEOROLOGIA (CMS)BLOCO IV / METEOROLOGIA (CMS)
BLOCO IV / METEOROLOGIA (CMS)
 
Resumo.pdf
Resumo.pdfResumo.pdf
Resumo.pdf
 
Estado de tempo
Estado de tempoEstado de tempo
Estado de tempo
 
Modulo 06 - Fatores e elementos do clima
Modulo 06 - Fatores e elementos do climaModulo 06 - Fatores e elementos do clima
Modulo 06 - Fatores e elementos do clima
 
Cliima
CliimaCliima
Cliima
 
Atmosfera, tempo e clima 2
Atmosfera, tempo e clima 2Atmosfera, tempo e clima 2
Atmosfera, tempo e clima 2
 
Clima e tempo cap 14 15 16
Clima e tempo cap 14 15 16Clima e tempo cap 14 15 16
Clima e tempo cap 14 15 16
 
Aula 1 climatologia_parte_1_enviar
Aula 1 climatologia_parte_1_enviarAula 1 climatologia_parte_1_enviar
Aula 1 climatologia_parte_1_enviar
 
1º os recursos hídricos
1º os recursos hídricos1º os recursos hídricos
1º os recursos hídricos
 
Geografia a dinamica do clima
Geografia   a dinamica do climaGeografia   a dinamica do clima
Geografia a dinamica do clima
 

Último

Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
AntonioVieira539017
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
azulassessoria9
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.ppt
RogrioGonalves41
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
Autonoma
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
PatriciaCaetano18
 

Último (20)

TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptxPlano de aula Nova Escola períodos simples e composto parte 1.pptx
Plano de aula Nova Escola períodos simples e composto parte 1.pptx
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024Historia de Portugal - Quarto Ano - 2024
Historia de Portugal - Quarto Ano - 2024
 
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptxResponde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
Responde ou passa na HISTÓRIA - REVOLUÇÃO INDUSTRIAL - 8º ANO.pptx
 
M0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptxM0 Atendimento – Definição, Importância .pptx
M0 Atendimento – Definição, Importância .pptx
 
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
Considerando as pesquisas de Gallahue, Ozmun e Goodway (2013) os bebês até an...
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
Conflitos entre: ISRAEL E PALESTINA.pdf
Conflitos entre:  ISRAEL E PALESTINA.pdfConflitos entre:  ISRAEL E PALESTINA.pdf
Conflitos entre: ISRAEL E PALESTINA.pdf
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.ppt
 
3 2 - termos-integrantes-da-oracao-.pptx
3 2 - termos-integrantes-da-oracao-.pptx3 2 - termos-integrantes-da-oracao-.pptx
3 2 - termos-integrantes-da-oracao-.pptx
 
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptxCópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
 
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
Apresentação | Dia da Europa 2024 - Celebremos a União Europeia!
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
A EDUCAÇÃO FÍSICA NO NOVO ENSINO MÉDIO: IMPLICAÇÕES E TENDÊNCIAS PROMOVIDAS P...
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...E a chuva ...  (Livro pedagógico para ser usado na educação infantil e trabal...
E a chuva ... (Livro pedagógico para ser usado na educação infantil e trabal...
 

Aula07c

  • 1. Vento Agrometeorologia Prof. Carlos Wagner Oliveira Campus Cariri/UFC – 2008 Aula # 7c
  • 2. Vento: velocidade e direção Agrometeorologia Carlos W Oliveira
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. Agrometeorologia Carlos W Oliveira Como já discutido anteriormente, os ventos se originam em decorrência da diferença de pressão atmosférica entre duas regiões. Os fatores da macroescala são responsáveis pela formação dos ventos predominantes, enquanto que os fatores da topo e da microescala tem influência na formação dos ventos locais. O vento, especialmente a sua velocidade, tem efeitos consideráveis em vários aspectos relacionados à agricultura, atuando tanto de modo favorável como desfavorável. Logicamente, os efeitos desfavoráveis são os mais relevantes nos estudos envolvendo a agricultura, e nesse caso os ventos excessivos podem ser controlados com o uso dos quebra ventos (estrutura natural ou artificial destinada a reduzir a velocidade do vento). Para tanto é necessário se conhecer sua direção e velocidade. Além disso, a velocidade do vento é muito importante no processo de evapotranspiração, exercendo grande influência no consumo hídrico das plantas. Essa variável será também muito útil na estimativa da evapotranspiração das culturas e, conseqüentemente, para o manejo da irrigação. Vento: velocidade e direção
  • 8. Agrometeorologia Carlos W Oliveira Medida do Vento Direção do vento A direção do vento é indicada pela direção de onde o vento é proveniente, ou seja, de onde ele vem. A direção é expressa tanto em termos da direção de onde ele provém comoem termos do azimute, isto é, do ângulo que o vetor da direção forma com o Norte geográfico local. Assim, um vento de SE terá um ângulo variando entre 91 e 179º. 0 o 90 o 180 o 270 o 1 a 89 o 91 a 179 o 181 a 269 o 271 a 359 o
  • 9. Agrometeorologia Carlos W Oliveira Medida do Vento Velocidade do vento A velocidade do vento expressa a distância percorrida pelo vento em um determinado intervalo de tempo. É medida a 10 m de altura (para fins meteorológicos) ou 2 m (para fins agronômicos). Normalmente é expressa em metros por segundo (m/s), quilômetros por hora (km/h) ou knots (kt): 1 kt = 0,514 m/s ou 1 m/s = 1,944 kt 1 m/s = 3,6 km/h ou 1 km/h = 0,278 m/s A velocidade do vento aumenta exponencialmente com a altura. Isso se dá em função da redução do atrito conforme o fluxo de ar se distancia da superfície. Assim, a velocidade do vento a 10m de altura (p/ fins meteorológicos) será maior do que aquela medida a 2m (p/ fins agronômicos)‏ U 2m = 0,748 * U 10m Velocidade do vento (m/s)‏ PERFIL DE VENTO Altura acima da superfície (m)‏
  • 10. Agrometeorologia Carlos W Oliveira Medida do Vento Equipamentos Anemômetro Universal – Equipamento mecânico que fornece dados de direção, velocidade e rajadas Bateria de anemômetros de caneca para medida automática da velocidade do vento Anemômetro de hélice – Equipamento automático para medida da velocidade e direção do vento Sensor automático de baixo custo – mede a direção e velocidade do vento
  • 11. Medida do Vento Agrometeorologia Carlos W Oliveira Anemograma, obtido pelo Anemógrafo Universal, do vendaval ocorrido em 29/03/2006 em Piracicaba. Neste dia, a rajada máxima do vento chegou a cerca de 44 m/s, o que correspondeu a 158 km/h, recorde observado na cidade. Direção Distância percorrida (km)‏ Rajada instantânea (m/s)‏
  • 12. Agrometeorologia Carlos W Oliveira Escala de Vento de Belfort Essa escala ajuda a interpretar os dados de velocidade máxima do vento (rajadas) medidos nas estações meteorológicas convencionais (a 10 m de altura)‏ > 118 Tornado, Furacão 12 102- 117 Temporal Muito Forte 11 88 – 101 Temporal Forte 10 75 – 87 Temporal 9 62 – 74 Vento Fortíssimo 8 51 – 61 Vento Muito Forte 7 40 – 50 Vento Forte 6 30 – 39 Brisa Forte 5 20 – 29 Brisa Moderada 4 12 – 19 Brisa Leve 3 7 – 11 Brisa Amena 2 2 – 6 Vento Calmo 1 0 – 2 Calmaria 0 Velocidade (km/h)‏ Descrição Grau
  • 13. Agrometeorologia Carlos W. Oliveira Brisas Marítimas Como as massas de terra são aquecidas pelo sol mais rapidamente do que o oceano, o ar em cima delas ascende e cria uma baixa de pressão no solo que atrai o ar mais fresco do mar: o que se chama uma brisa marítima . Ao cair da noite, há muitas vezes um período de calma durante o qual a temperatura em terra e no mar são iguais. De noite, como o oceano arrefece mais lentamente, a brisa sopra de terra, na direção oposta, mas é geralmente mais fraca porque a diferença de temperaturas é menor.
  • 14. Agrometeorologia Carlos W. Oliveira Brisas de vale e de montanha O ar, na vizinhança das encostas das montanhas, fica a temperatura mais elevada e eleva-se durante o dia; o ar ascendente é substituído pelo ar que se encontra nos vales. Assim, durante o dia o ar sobe a encosta. Durante a noite, as encostas das montanhas arrefecem. Este ar frio desce a montanha por acção da gravidade. Assim, ao amanhecer, o ar mais frio pode ser encontrado no vale. Se o ar contiver humidade suficiente, pode formar-se nevoeiro no vale.
  • 15. Agrometeorologia Carlos W. Oliveira Oceanidade / Continentalidade Esses termos se referem, respectivamente, à proximidade ou distância do oceano ou grandes massas de água. Oceanidade se refere ao efeito do oceâno sobre o clima de uma região litorânea. A água do oceano atua como um moderador térmico, ou seja, não permite que grandes variações de temperatura ocorram. Isso se dá pelo fato da água ter maior calor específico do que o ar, resfriando-se e aquecendo-se mais lentamente. A massa de água ao trocar calor com o ar faz com que haja uma atenuação tanto do aquecimento do ar como de seu resfriamento, reduzindo assim a amplitude térmica (Tmax – Tmin). A continentalidade ocorre em locais situados no interior dos continentes, portanto sem sofrer efeito dos oceanos. Nessa condição, as amplitudes térmicas são maiores, tanto em termos diários como em termos anuais. Cuiabá -> Amplitude térmica mensal entre 8 e 17 o C Salvador -> Amplitude térmica mensal entre 3 e 6 o C Numa escala geográfica maior, o poder moderador dos oceanos explica também porque as amplitudes térmicas (verão – inverno) são maiores no HN e menores do HS. Veja a figura a seguir e comprove isso...
  • 16. Agrometeorologia Carlos W. Oliveira HN -> Continente > Oceano -> > Amplitude Térmica HS -> Continente < Oceano -> < Amplitude Térmica Amplitude térmica anual (diferença entre a Tmed do mês mais quente e do mês mais frio) decorrente dos efeitos da continentalidade/oceanidade.
  • 17. Agrometeorologia Carlos W. Oliveira Anticiclones Semi-Permanentes, ZCIT, ZCET e Circulação Geral da Atmosfera A circulação geral da atmosfera gera os ventos predominantes, os quais por sua vez são responsáveis pela formação das zonas de convergência intertropical (ZCIT) e extratropical (ZCET), e também dos anticiclones semi-permanentes nas latitudes de cavalo. Latitude de cavalo Latitude de cavalo ZCIT ZCET
  • 18. Agrometeorologia Carlos W. Oliveira Circulação Geral da Atmosfera Cinturas de Pressão Zonal (distribuição entre paralelos - Leste Oeste) &quot;Ideal&quot;. Uma Terra uniforme imaginária com cinturas de pressão idealizadas (zonais e contínuas)‏ Cintura de Pressões Zonal Climatológico “Real”. A Terra real com descontinuidades no padrão zonal dos ventos/pressão causados pelas grandes massas continentais.
  • 19. Agrometeorologia Carlos W. Oliveira Anticiclones Semi-Permanentes Na ZCIT os ventos alíseos de SE (HS) e de NE (HN) se encontram formando áreas de baixa pressão (L), que mostram a posição do Equador Térmico, o que favorece a formação de nuvens e chuvas. Na ZCET a convergência dos ventos de W e de E forma as frentes frias, que posteriormente se deslocam em direção ao equador provocando chuvas. Já nas latitudes de cavalos ocorre a subsidência de ar, formando as altas pressões (H) que inibem os movimentos convectivos e conseqüentemente, desfavorecem a formação de nuvens e chuvas. L
  • 20. Agrometeorologia Carlos W. Oliveira As figuras a seguir mostram a posição média da ZCIT nos meses de Janeiro e Julho. É possível notar que durante o verão no HS a ZCIT desloca-se para o sul, o que contribui para o aumento das chuvas nas regiões N, CO e SE do Brasil. ZCIT ZCIT
  • 21. Agrometeorologia Carlos W. Oliveira No mês de julho (inverno no HS), por outro lado, a ZCIT desloca-se para o norte, o que contribui para a diminuição das chuvas nas regiões SE, CO e inclusive em parte da região N do Brasil. ZCIT ZCIT
  • 22. Agrometeorologia Carlos W. Oliveira Agrometeorologia Carlos W. Oliveira Monções A palavra monção teve a sua origem dada pelos antigos marinheiros árabes do Oceano Índico e do Mar Arábico às periódicas mudanças de direcção do vento que ocorrem ao largo das costas da Índia e da Península Arábica, especialmente no Mar Arábico, no Golfo Pérsico e no noroeste do Índico, onde o vento sopra desde o sudoeste uma metade do ano e desde o nordeste durante a outra metade. O efeito de monção é causado pelo aparecimento sazonal de grandes diferenças térmicas entre os mares e as regiões continentais adjacentes nas zonas próximas dos bordos externos da célula de Hadley. Monções de verão na India
  • 23. Agrometeorologia Carlos W. Oliveira Correntes Oceânicas A movimentação contínua das águas oceânicas em função de diferenças de densidade (causadas por dif. de temp. e salinidade e pela rotação da Terra) gera correntes que se movem de maneira organizada, mantendo as suas características físicas, as quais diferem das águas adjacentes. As correntes que circulam dos Pólos para o Equador são FRIAS e as que circulam do Equador para os Pólos são QUENTES. A atmosfera em contato com essas massas de água entram em equilíbrio térmico com a superfície. Por isso, as correntes tem grande efeito sobre o regime térmico e hídrico (chuvas) na faixa litorânea dos continentes. Correntes Frias -> Condicionam clima ameno e seco Correntes Quentes -> Condicionam clima quente e úmido Exemplo: Salvador, BA, Brasil -> T anual = 24,9 o C e P anual = 2.000 mm Lima, Perú -> T anual = 19,4 o C e P anual = 40 mm
  • 24. Agrometeorologia Carlos W. Oliveira
  • 26. Ciclone: é o nome genérico para ventos circulares como tufão, furacão, tornado e willy-willy. Caracteriza-se por uma tempestade violenta que ocorre em regiões tropicais ou subtropicais, produzida por grandes massas de ar em alta velocidade de rotação. Os ventos os superam 50 km/h.
  • 27.  
  • 28. Furacão: vento circular forte, com velocidade igual ou superior a 108 km/h. Os furacões são os ciclones que surgem no mar do Caribe (oceano Atlântico) ou nos EUA. Os ventos precisam ter mais de 119 km/h para uma tempestade ser considerada um furacão. Giram no sentido horário (no hemisfério Sul) ou anti-horário (no hemisfério Norte), e medem de 200 km a 400 km de diâmetro. Sua curva se assemelha a uma parabólica.
  • 30. Tufão : é o nome que se dá aos ciclones formados no sul da Ásia e na parte ocidental do oceano Índico, entre julho e outubro. É o mesmo que furacão, só que na região equatorial do Oceano Pacífico. Os tufões surgem no mar da China e atingem o Leste Asiático.
  • 31. Tornado : é o mais forte dos fenômenos meteorológicos, menor e mais intenso que os demais tipos de ciclone. Com alto poder de destruição, atinge até 490 km/h de velocidade no centro do cone. Produz fortes redemoinhos e eleva poeira. Forma-se entre 10 e 30 minutos e tem, no máximo, 10 km de diâmetro. O tornado é menor e em geral mais breve que o furacão, e ocorre em zonas temperadas do hemisfério Norte.