SlideShare uma empresa Scribd logo
1 de 44
Baixar para ler offline
1ª e 2a Leis
TERMODINÂNICA
OVERVIEW
Termodinâmica é a ciência
que trata
• do calor e do trabalho
• das características dos sistemas e
• das propriedades dos fluidos termodinâmicos
Sadi Carnot
1796 - 1832
James Joule
1818 - 1889
Rudolf Clausius
1822 - 1888
Wiliam Thomson
Lord Kelvin
1824 - 1907
Emile Claupeyron
1799 - 1864
Alguns ilustres pesquisadores
que construiram a termodinâmica
Nasceu em
Salford - Inglaterra
James P. Joule
(1818-1889)
Contribuição de James Joule.
1839 Experimentos:
trabalho mecânico, eletricidade e calor.
1840 Efeito Joule : Pot = RI2
1843 Equivalente mecânico do calor
( 1 cal = 4,18 J)
1852 Efeito Joule-Thomson : decrescimo
da temperatura de um gás em função da
expansão sem realização de trabalho
externo.
As contribuições de Joule e outros levaram
ao surgimento de uma nova disciplina:
a Termodinâmica
Lei da
Conservação
de
Energia
1a Lei
da
Termodinâmica
Para entender melhor a
1a Lei de Termodinâmica
é preciso compreender as características dos
sistemas termodinâmicos e os caminhos
“percorridos” pelo calor...
Certa massa delimitada por
uma fronteira.
Vizinhança do sistema.
O que fica fora da
fronteira
Sistema isolado
Sistema que não troca energia
nem massa com a sua vizinhança.
Sistema fechado
Sistema que não troca massa com a
vizinhança, mas permite passagem
de calor e trabalho por sua fronteira.
Sistema Termodinâmico
Transformação
P1
V1
T1
U1
P2
V2
T2
U2
Estado 1 Estado 2
Transformação
Variáveis de
estado
Variáveis de
estado
“Caminho” descrito pelo sistema na
transformação .
Processos
P1
V1
T1
U1
P2
V2
T2
U2
Processos Durante a transformação
Isotérmico temperatura invariável
Isobárico Pressão invariável
Isovolumétrico volume constante
Adiabático É nula a troca de calor com a vizinhança.
Transformações
1a Lei da Termodinâmica
ΔU = U2 – U1
Variação Energia Interna
W > 0 → energia que sai do sistema
W < 0 → energia que entra no sistema
Q > 0 → calor que entra no sistema
Q < 0 → calor que sai do sistema
1a Lei
Q = W + ΔU
Sistema Fechado
∆U = Q - W
Gás
Expansão nula
W = 0
Δ U = Q = (mc)gás ΔT
Como (mc)gás = ctc
ΔU depende apenas
de ΔT.
ΔT = 0 → ΔU = 0
ΔT > 0 → ΔU > 0
ΔT < 0 → ΔU < 0
Como U é uma
variável de
estado, ΔU não
depende do
processo.
Variação da Energia Interna
A energia interna de um gás é função apenas
da temperatura absoluta T.
O calor Q que passa pelas fronteiras
do sistema depende do processo.
∆V = V2 -V1
∆U = Q - W
W
depende de
como a pressão
e volume mudam
no processo.
W = F.d
F = Pr.S
W = Pr.S.d
W = Pr.ΔV
.
O trabalho que
atravessa a fronteira
depende do processo?
P1V1 = nRT1
Estado 1
no de moles
Constante dos gases
R = 8,31 J/mol.K = 2 cal/mol.K
Diagramas P x V
Gases ideais
1
P1
V1
T1
Como as variáveis
de estado se
relacionam?
Equação de estado
1ª Lei da Termodinâmica
W = 0
Q = n  CV  (T2-T1)
Calor específico molar
a volume constante
U = Q = n  CV  (T2-T1)
∆V = 0
Transformação de 1 → 2
Volume invariável
Isovolumétrica
Processo isovolumétrico
Transformação a volume constante
U = Q - W
Q = + n CP (TB - TA)
calor específico molar
a pressão constante
W = Po [VB-VA]
1ª Lei da Termodinâmica
U = Q - W
∆U = n  Cv  (TB-TA)
Calor específico a volume constante
Transformação a pressão constante
Processo isobárico
Êmbolo movimentado
lentamente
∆U = 0 → ∆T=0
Transformação à temperatura constante
 Q = W = n  R  T  [ln(V2/V1)]
0 = Q – W
Processo Isotérmico
Movimento rápido do êmbolo.
Q = 0
W = - ∆U = - nCv∆T
Primeira Lei da Termodinâmica
∆U = Q - W
Q = 0 → ∆U= - W
Compressão adiabática
Trabalho transforma-se em calor
Q = 0
O processo ocorre tão
rapidamente que o
sistema não troca calor
com o exterior.
W
Área sob o grafico
Processo adiabático
Transformação sem troca de calor
3.- Wciclo = W = área 12341
Wciclo > 0 → Qciclo  0
O sentido do ciclo no diagrama PV : horário.
O sistema recebe Q e entrega W
1a Lei da Termodinâmica
∆Uciclo = Qciclo - Wciclo
Qciclo = Wciclo
1.- ∆Uciclo = ∆U = 0 pois Tfinal = Tinicial
2.- Qciclo = Q
Processos cíclicos
“Trabalham” em ciclos.
Máquinas Térmicas
Fonte quente
Fonte fria
Trabalho
Ciclo
De onde a
máquina retira
calor QHot.
Para onde a
máquina rejeita
calor QCold
A máquina de Denis Papin
1647 - 1712
Transformações
máquinas térmicas - Diagrama PV
Ciclo de Otto
Ciclo Diesel
Em cada ciclo
W = Q1-Q2
Eficiência = W/Q1= (Q1-Q2)/Q1
ε = [1 – Q2/Q1]
∆U = 0
Eficiência térmica: 1ªLei
Refrigerador
Bomba de calor
12: compressão adiabática em um compressor
23: processo de rejeição de calor a pressão constante
34: estrangulamento em uma válvula de expansão (com a respectiva queda de pressão)
41: absorção de calor a pressão constante, no evaporador
Ciclo Refrigerador
Primeira Lei da Termodinâmica
Em cada ciclo
∆U = 0 → W + Q2 = Q1
W = Q1 - Q2
Coeficiente de Performance – COP
COP refrigerador = Q2/W = Q2/(Q1 - Q2 ) = T2/(T1 – T2)
COP bomba calor = Q1/W = Q1/(Q1 - Q2 ) = T1/(T1-T2)
Uma bomba de calor necessita de 1.000 W da rede para
funcionar e aquece 1 litro de água de 0,5oC /s.
Qual o COP desta bomba?
COP - Coeficiente de Performance
1a Lei da
Termodinâmica
A energia total do Universo,
com ou sem transformações,
permanece constante.
2a Lei da
Termodinâmica
A disponibilidade de energia para
realização de trabalho diminui
após cada transformação
2a Lei da Termodinâmica
Entropia
Refrigerador ou Bomba de Calor
Segunda Lei
Formulação de Clausius
É impossível existir transferência
espontânea de calor de uma fonte fria
para outra quente.
É impossível construir um dispositivo que,
operando em ciclo termodinâmico, não
produza outros efeitos além da passagem de
calor de um corpo frio para outro quente.
COPRefrigerador = Q2/W
COP Bomba Calor = Q1/W
Máquinas Térmicas
W = W2 – W1
2a LeiTermodinâmica
Formulação de Kelvin-Planck
É impossível construir uma
máquina térmica com
eficiência 100%.
ε = W/Q1 = [1 - T2/T1] < 1
Ou seja uma máquina que retira uma
quantidade de calor Q de uma fonte
quente e a transforme totalmente em
trabalho.
Formulação de Clausius
É impossível existir transferência espontânea de
calor de uma fonte fria para outra quente.
Formulação Kelvin-Planck
É impossível construir uma máquina
térmica com eficiência 100%.
Segunda Lei Termodinâmica
Ambas são afirmações negativas.
Não podem ser demonstradas.
Baseiam-se em evidências experimentais.
A 2a Lei
enuncia a impossibilidade de construção de moto perpétuo de 2a espécie.
Moto Perpétuo
1a Espécie: criaria trabalho do nada. Viola a 1a Lei.
2a Espécie: viola a 2a Lei
3a Espécie: inexistencia de atrito produziria movimento
eterno sem realização de trabalho
Qual o limite da eficiência
de uma máquina térmica ?
ε = [1 – Q2/Q1]
Q1 → 0
ε → 1
É possível construir esta
máquina?
ε → 100%
Máquinas Térmicas
100% de rendimento ?
Impossível!
Qual o máximo rendimento
de uma Máquina Térmica?
A construção de uma máquina ideal
Definição de um processo ideal.
Processo reversível.
Aquele que tendo ocorrido, pode ser invertido de
sentido e retornar ao estado original, sem deixar
vestígios no sistema e no meio circundante.
Processo reversível:
desvio do equilíbrio é infinitesimal e ocorre numa
velocidade infinitesimal.
Causas que tornam um processo irreversível.
Atrito
Expansão não resistida.
Troca de calor com diferença finita de temperatura.
Mistura de 2 substâncias diferentes.
Outros fatores: Efeito Joule, Combustão, Histerese, etc.
O processo de troca de calor pode ser reversível se
for feita mediante diferença infinitesimal de
temperatura, mas que exige tempo infinito ou área
infinita.
Conclusão:
todos os processos reais de troca de calor são irreversíveis.
A eficiência da Máquina de Carnot
No ciclo:
∆U=0 → W = Q1 - Q2
ε = W/Q1 = [Q1-Q2]/Q1 = 1 - Q2/Q1
Q2/Q1 = T2/T1
ε = (1 - Q2/Q1) = (1 - T2/T1)
ε = 1 - T2/T1
Princípio de Carnot
"Nenhuma máquina térmica real, operando entre 2 reservatórios térmicos T1 e T2 , pode
ser mais eficiente que a "máquina de Carnot" operando entre os mesmos reservatórios"
BC e DA = adiabáticas
Ciclo reversível
A máquina ideal de Carnot
Rudolf Clausius
Nasceu em Koslin (Polônia) e morreu em Bonn (Alemanha)
Físico Teórico - Termodinâmica
1.- A energia do Universo é constante.
2.- A entropia do Universo tende a uma valor máximo.
Entropia
A quantificação da 2a Lei
Apresentou em 1865 a sua versão para as
1a e 2a Leis da Termodinâmica.
Σ(δQ/T) ≤ 0
(δQ/T)rev = 0
Σ(δQ/T)irrev < 0
A desigualdade de Clausius
1 - Σ(δQ/T)AB = Q1/T1 (isotérmico, T1 = cte)
2 - Σ(δQ/T)BC = 0 (adiabático, Q = 0)
3 - Σ(δQ/T)CD = -Q2/T2 (isotérmico, T2 = cte)
4 - Σ(δQ/T)DA = 0 (adiabático, Q = 0)
A desigualdade de Clausius Σ(δQ/T) no Ciclo de Carnot
No ciclo de Carnot os processos são reversíveis
Σ(δQ/T)rev = 0
Σ(δQ/T)ABCDA = Q1/T1 - Q2/T2 = 0 → Q2/Q1 = T2/T1
No ciclo A1B2A
Σ(δQ/T)A1B2A =Σ(δQ/T)A1B + Σ(δQ/T)B2A = 0 (I)
No ciclo A1B3A
Σ(δQ/T)A1B3A =Σ(δQ/T)A1B + Σ(δQ/T)B3A = 0 (II)
Subtraindo-se (II) de (I) tem-se
Σ(δQ/T)B2A = Σ(δQ/T)B3A
Em outras "trajetórias"4, 5,... reversíveis entre A e B,
o resultado seria
Σ(δQ/T)B2A = Σ(δQ/T)B3A = Σ(δQ/T)B4A = Σ(δQ/T)B5A = ...
∆S = Σ(δQ/T)rev  SB –SA = Σ(δQ/T)rev
Existe uma “variável de estado”, além do V, P, T e U, que caracteriza cada estado
térmico de um sistema termodinâmico:
é a Entropia (símbolo: S)
Entropia, uma variável de estado
Ciclo “1” + “2” → reversível
Σ(δQ/T) (1+2)ABArev = Σ(δQ/T)1ABrev + Σ(δQ/T)2BArev = 0
 Σ(δQ/T)1ABrev = - Σ(δQ/T)2BArev (I)
Ciclo “1” + “3” → irreversível
Σ(δQ/T) (1+3)ABAirrev = Σ(δQ/T)1ABrev + Σ(δQ/T) 3BAirrev < 0 (II)
Σ(δQ/T) = 0 (reversível)
Σ(δQ/T)  0 (irreversível)
∆S=(Q/T)rev
Σ(δQ/T) (1+3)ABAirrev = Σ(δQ/T)3BAirrev - Σ(δQ/T)2BArev < 0
(Σ(δQ/T)3irrev - [SA – SB] < 0
(Σ(δQ/T) 3irrev < [SA – SB]
∆S > Σ(δQ/T)
Generalizando :
∆S ≥ Σ(δQ/T)
∆S = Σ(δQ/T) (processo reversível)
∆S > Σ(δQ/T) (Processo irreversível)
Variação de entropia - processo irreversível
Como Σ(δQ/T) (1+2)ABArev = Σ(δQ/T) (1+3)ABAirrev = 0,
substituindo-se (I) em (II)
∆Ssist + ∆Sviz ≥ dQ(1/T - 1/To)
Processos reversíveis: ∆Ssist + ∆Sviz = 0
Processos irreversíveis: ∆Ssist + ∆Sviz > 0
"Em qualquer processo
natural a entropia do Universo
nunca diminui"
∆S sist ≥ dQ/T
∆S viz = - dQ/To
∆Ssist + ∆Sviz ≥ dQ/T - dQ/To
∆Ssist + ∆Sviz ≥ 0 (1/T - 1/To) > 0
Outra forma de se expressar a 2a Lei
Princípio do aumento de entropia
Quando um corpo recebe calor a
sua entropia aumenta.
∆S = QT  0
Aumenta a EC e/ou a
agitação molecular
Aumenta a “desordem”
A entropia é a medida da desordem
Entropia e a desordem
ΔS = Q/T < 0 → a “desordem” diminui.
Ordem e Energia - Sistemas Biológicos
Entropia
2a Lei
Evolução
natural
Ordem → Desordem
Como os sistemas biológicos se desenvolvem e mantém alto grau de ordem?
É uma violação da 2a Lei?
Ordem pode ser obtida as
custas de energia
A fotosíntese converte energia solar em
energia potencial nas moléculas de glucose
com de alta ordem de organização.
Nos animais
Celulas – Mitocondria
armazenam moléculas de açucar para
formar moléculas altamente ordenadas
e estruturadass.
Boa Prova

Mais conteúdo relacionado

Semelhante a Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf

Aula Primeira Lei da Termodinâmica.pdf
Aula Primeira Lei da Termodinâmica.pdfAula Primeira Lei da Termodinâmica.pdf
Aula Primeira Lei da Termodinâmica.pdfPaulo63083
 
Ciclo de Carnot.ppt
Ciclo de Carnot.pptCiclo de Carnot.ppt
Ciclo de Carnot.pptssuser24eee9
 
2.0 capítulo 4 com gabarito do simulado
2.0 capítulo 4   com gabarito do simulado2.0 capítulo 4   com gabarito do simulado
2.0 capítulo 4 com gabarito do simuladoMarcio Versuti
 
Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Valter Bravim Jr.
 
Apresentação ana cristina(1)
Apresentação ana cristina(1)Apresentação ana cristina(1)
Apresentação ana cristina(1)Matheus Henrique
 
04 1 2_lei_termodinamica
04 1 2_lei_termodinamica04 1 2_lei_termodinamica
04 1 2_lei_termodinamicaacarneirinho
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantanaJoane Santana
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantanaJoane Santana
 
1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmica1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmicaluciene12345
 
Termodinâmica
TermodinâmicaTermodinâmica
TermodinâmicaCleber1965
 
aula_2_primeira_lei_termodinamica_2.pdf
aula_2_primeira_lei_termodinamica_2.pdfaula_2_primeira_lei_termodinamica_2.pdf
aula_2_primeira_lei_termodinamica_2.pdfMarcosPaulo734507
 
Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Jorge Vieira
 

Semelhante a Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf (20)

Aula Primeira Lei da Termodinâmica.pdf
Aula Primeira Lei da Termodinâmica.pdfAula Primeira Lei da Termodinâmica.pdf
Aula Primeira Lei da Termodinâmica.pdf
 
Ciclo de Carnot.ppt
Ciclo de Carnot.pptCiclo de Carnot.ppt
Ciclo de Carnot.ppt
 
2 termodinâmica
2 termodinâmica2 termodinâmica
2 termodinâmica
 
2.0 capítulo 4 com gabarito do simulado
2.0 capítulo 4   com gabarito do simulado2.0 capítulo 4   com gabarito do simulado
2.0 capítulo 4 com gabarito do simulado
 
1.0 capítulo 4
1.0 capítulo 41.0 capítulo 4
1.0 capítulo 4
 
Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)
 
Apresentação ana cristina(1)
Apresentação ana cristina(1)Apresentação ana cristina(1)
Apresentação ana cristina(1)
 
TERMODINÂMICA_PARTE 2.pdf
TERMODINÂMICA_PARTE 2.pdfTERMODINÂMICA_PARTE 2.pdf
TERMODINÂMICA_PARTE 2.pdf
 
04 1 2_lei_termodinamica
04 1 2_lei_termodinamica04 1 2_lei_termodinamica
04 1 2_lei_termodinamica
 
2leidatermodinamica
2leidatermodinamica2leidatermodinamica
2leidatermodinamica
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantana
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantana
 
1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmica1 ¬ lei da termodinâmica
1 ¬ lei da termodinâmica
 
Termodinâmica
TermodinâmicaTermodinâmica
Termodinâmica
 
Termodinâmica
TermodinâmicaTermodinâmica
Termodinâmica
 
Aula 12-entropia-2010
Aula 12-entropia-2010Aula 12-entropia-2010
Aula 12-entropia-2010
 
Revisão p1
Revisão p1Revisão p1
Revisão p1
 
aula_2_primeira_lei_termodinamica_2.pdf
aula_2_primeira_lei_termodinamica_2.pdfaula_2_primeira_lei_termodinamica_2.pdf
aula_2_primeira_lei_termodinamica_2.pdf
 
Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015
 
Gases e termodinamica formulario
Gases e termodinamica   formularioGases e termodinamica   formulario
Gases e termodinamica formulario
 

Último

Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06AndressaTenreiro
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptxVagner Soares da Costa
 
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptxVagner Soares da Costa
 
apresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaapresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaWilliamCruz402522
 
NR10 - Treinamento LOTO - 2023.pp tx
NR10 - Treinamento LOTO - 2023.pp     txNR10 - Treinamento LOTO - 2023.pp     tx
NR10 - Treinamento LOTO - 2023.pp txrafaelacushman21
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxFlvioDadinhoNNhamizi
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMdiminutcasamentos
 

Último (7)

Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06Lista de presença treinamento de EPI NR-06
Lista de presença treinamento de EPI NR-06
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
 
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
 
apresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aulaapresentação de Bancos de Capacitores aula
apresentação de Bancos de Capacitores aula
 
NR10 - Treinamento LOTO - 2023.pp tx
NR10 - Treinamento LOTO - 2023.pp     txNR10 - Treinamento LOTO - 2023.pp     tx
NR10 - Treinamento LOTO - 2023.pp tx
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPM
 

Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf

  • 1. 1ª e 2a Leis TERMODINÂNICA OVERVIEW
  • 2. Termodinâmica é a ciência que trata • do calor e do trabalho • das características dos sistemas e • das propriedades dos fluidos termodinâmicos
  • 3. Sadi Carnot 1796 - 1832 James Joule 1818 - 1889 Rudolf Clausius 1822 - 1888 Wiliam Thomson Lord Kelvin 1824 - 1907 Emile Claupeyron 1799 - 1864 Alguns ilustres pesquisadores que construiram a termodinâmica
  • 4. Nasceu em Salford - Inglaterra James P. Joule (1818-1889) Contribuição de James Joule. 1839 Experimentos: trabalho mecânico, eletricidade e calor. 1840 Efeito Joule : Pot = RI2 1843 Equivalente mecânico do calor ( 1 cal = 4,18 J) 1852 Efeito Joule-Thomson : decrescimo da temperatura de um gás em função da expansão sem realização de trabalho externo. As contribuições de Joule e outros levaram ao surgimento de uma nova disciplina: a Termodinâmica Lei da Conservação de Energia 1a Lei da Termodinâmica
  • 5. Para entender melhor a 1a Lei de Termodinâmica é preciso compreender as características dos sistemas termodinâmicos e os caminhos “percorridos” pelo calor...
  • 6. Certa massa delimitada por uma fronteira. Vizinhança do sistema. O que fica fora da fronteira Sistema isolado Sistema que não troca energia nem massa com a sua vizinhança. Sistema fechado Sistema que não troca massa com a vizinhança, mas permite passagem de calor e trabalho por sua fronteira. Sistema Termodinâmico
  • 7. Transformação P1 V1 T1 U1 P2 V2 T2 U2 Estado 1 Estado 2 Transformação Variáveis de estado Variáveis de estado
  • 8. “Caminho” descrito pelo sistema na transformação . Processos P1 V1 T1 U1 P2 V2 T2 U2 Processos Durante a transformação Isotérmico temperatura invariável Isobárico Pressão invariável Isovolumétrico volume constante Adiabático É nula a troca de calor com a vizinhança.
  • 9. Transformações 1a Lei da Termodinâmica ΔU = U2 – U1 Variação Energia Interna W > 0 → energia que sai do sistema W < 0 → energia que entra no sistema Q > 0 → calor que entra no sistema Q < 0 → calor que sai do sistema 1a Lei Q = W + ΔU Sistema Fechado
  • 10. ∆U = Q - W Gás Expansão nula W = 0 Δ U = Q = (mc)gás ΔT Como (mc)gás = ctc ΔU depende apenas de ΔT. ΔT = 0 → ΔU = 0 ΔT > 0 → ΔU > 0 ΔT < 0 → ΔU < 0 Como U é uma variável de estado, ΔU não depende do processo. Variação da Energia Interna A energia interna de um gás é função apenas da temperatura absoluta T.
  • 11. O calor Q que passa pelas fronteiras do sistema depende do processo.
  • 12. ∆V = V2 -V1 ∆U = Q - W W depende de como a pressão e volume mudam no processo. W = F.d F = Pr.S W = Pr.S.d W = Pr.ΔV . O trabalho que atravessa a fronteira depende do processo?
  • 13. P1V1 = nRT1 Estado 1 no de moles Constante dos gases R = 8,31 J/mol.K = 2 cal/mol.K Diagramas P x V Gases ideais 1 P1 V1 T1 Como as variáveis de estado se relacionam? Equação de estado
  • 14. 1ª Lei da Termodinâmica W = 0 Q = n  CV  (T2-T1) Calor específico molar a volume constante U = Q = n  CV  (T2-T1) ∆V = 0 Transformação de 1 → 2 Volume invariável Isovolumétrica Processo isovolumétrico Transformação a volume constante U = Q - W
  • 15. Q = + n CP (TB - TA) calor específico molar a pressão constante W = Po [VB-VA] 1ª Lei da Termodinâmica U = Q - W ∆U = n  Cv  (TB-TA) Calor específico a volume constante Transformação a pressão constante Processo isobárico
  • 16. Êmbolo movimentado lentamente ∆U = 0 → ∆T=0 Transformação à temperatura constante  Q = W = n  R  T  [ln(V2/V1)] 0 = Q – W Processo Isotérmico
  • 17. Movimento rápido do êmbolo. Q = 0 W = - ∆U = - nCv∆T Primeira Lei da Termodinâmica ∆U = Q - W Q = 0 → ∆U= - W Compressão adiabática Trabalho transforma-se em calor Q = 0 O processo ocorre tão rapidamente que o sistema não troca calor com o exterior. W Área sob o grafico Processo adiabático Transformação sem troca de calor
  • 18. 3.- Wciclo = W = área 12341 Wciclo > 0 → Qciclo  0 O sentido do ciclo no diagrama PV : horário. O sistema recebe Q e entrega W 1a Lei da Termodinâmica ∆Uciclo = Qciclo - Wciclo Qciclo = Wciclo 1.- ∆Uciclo = ∆U = 0 pois Tfinal = Tinicial 2.- Qciclo = Q Processos cíclicos
  • 20. Fonte quente Fonte fria Trabalho Ciclo De onde a máquina retira calor QHot. Para onde a máquina rejeita calor QCold A máquina de Denis Papin 1647 - 1712
  • 24. Em cada ciclo W = Q1-Q2 Eficiência = W/Q1= (Q1-Q2)/Q1 ε = [1 – Q2/Q1] ∆U = 0 Eficiência térmica: 1ªLei
  • 25. Refrigerador Bomba de calor 12: compressão adiabática em um compressor 23: processo de rejeição de calor a pressão constante 34: estrangulamento em uma válvula de expansão (com a respectiva queda de pressão) 41: absorção de calor a pressão constante, no evaporador Ciclo Refrigerador
  • 26. Primeira Lei da Termodinâmica Em cada ciclo ∆U = 0 → W + Q2 = Q1 W = Q1 - Q2 Coeficiente de Performance – COP COP refrigerador = Q2/W = Q2/(Q1 - Q2 ) = T2/(T1 – T2) COP bomba calor = Q1/W = Q1/(Q1 - Q2 ) = T1/(T1-T2) Uma bomba de calor necessita de 1.000 W da rede para funcionar e aquece 1 litro de água de 0,5oC /s. Qual o COP desta bomba? COP - Coeficiente de Performance
  • 27. 1a Lei da Termodinâmica A energia total do Universo, com ou sem transformações, permanece constante. 2a Lei da Termodinâmica A disponibilidade de energia para realização de trabalho diminui após cada transformação 2a Lei da Termodinâmica Entropia
  • 28. Refrigerador ou Bomba de Calor Segunda Lei Formulação de Clausius É impossível existir transferência espontânea de calor de uma fonte fria para outra quente. É impossível construir um dispositivo que, operando em ciclo termodinâmico, não produza outros efeitos além da passagem de calor de um corpo frio para outro quente. COPRefrigerador = Q2/W COP Bomba Calor = Q1/W
  • 29. Máquinas Térmicas W = W2 – W1 2a LeiTermodinâmica Formulação de Kelvin-Planck É impossível construir uma máquina térmica com eficiência 100%. ε = W/Q1 = [1 - T2/T1] < 1 Ou seja uma máquina que retira uma quantidade de calor Q de uma fonte quente e a transforme totalmente em trabalho.
  • 30. Formulação de Clausius É impossível existir transferência espontânea de calor de uma fonte fria para outra quente. Formulação Kelvin-Planck É impossível construir uma máquina térmica com eficiência 100%. Segunda Lei Termodinâmica Ambas são afirmações negativas. Não podem ser demonstradas. Baseiam-se em evidências experimentais. A 2a Lei enuncia a impossibilidade de construção de moto perpétuo de 2a espécie. Moto Perpétuo 1a Espécie: criaria trabalho do nada. Viola a 1a Lei. 2a Espécie: viola a 2a Lei 3a Espécie: inexistencia de atrito produziria movimento eterno sem realização de trabalho
  • 31. Qual o limite da eficiência de uma máquina térmica ? ε = [1 – Q2/Q1] Q1 → 0 ε → 1 É possível construir esta máquina? ε → 100%
  • 32. Máquinas Térmicas 100% de rendimento ? Impossível! Qual o máximo rendimento de uma Máquina Térmica?
  • 33. A construção de uma máquina ideal Definição de um processo ideal. Processo reversível. Aquele que tendo ocorrido, pode ser invertido de sentido e retornar ao estado original, sem deixar vestígios no sistema e no meio circundante. Processo reversível: desvio do equilíbrio é infinitesimal e ocorre numa velocidade infinitesimal.
  • 34. Causas que tornam um processo irreversível. Atrito Expansão não resistida. Troca de calor com diferença finita de temperatura. Mistura de 2 substâncias diferentes. Outros fatores: Efeito Joule, Combustão, Histerese, etc. O processo de troca de calor pode ser reversível se for feita mediante diferença infinitesimal de temperatura, mas que exige tempo infinito ou área infinita. Conclusão: todos os processos reais de troca de calor são irreversíveis.
  • 35. A eficiência da Máquina de Carnot No ciclo: ∆U=0 → W = Q1 - Q2 ε = W/Q1 = [Q1-Q2]/Q1 = 1 - Q2/Q1 Q2/Q1 = T2/T1 ε = (1 - Q2/Q1) = (1 - T2/T1) ε = 1 - T2/T1 Princípio de Carnot "Nenhuma máquina térmica real, operando entre 2 reservatórios térmicos T1 e T2 , pode ser mais eficiente que a "máquina de Carnot" operando entre os mesmos reservatórios" BC e DA = adiabáticas Ciclo reversível A máquina ideal de Carnot
  • 36. Rudolf Clausius Nasceu em Koslin (Polônia) e morreu em Bonn (Alemanha) Físico Teórico - Termodinâmica 1.- A energia do Universo é constante. 2.- A entropia do Universo tende a uma valor máximo. Entropia A quantificação da 2a Lei Apresentou em 1865 a sua versão para as 1a e 2a Leis da Termodinâmica.
  • 37. Σ(δQ/T) ≤ 0 (δQ/T)rev = 0 Σ(δQ/T)irrev < 0 A desigualdade de Clausius
  • 38. 1 - Σ(δQ/T)AB = Q1/T1 (isotérmico, T1 = cte) 2 - Σ(δQ/T)BC = 0 (adiabático, Q = 0) 3 - Σ(δQ/T)CD = -Q2/T2 (isotérmico, T2 = cte) 4 - Σ(δQ/T)DA = 0 (adiabático, Q = 0) A desigualdade de Clausius Σ(δQ/T) no Ciclo de Carnot No ciclo de Carnot os processos são reversíveis Σ(δQ/T)rev = 0 Σ(δQ/T)ABCDA = Q1/T1 - Q2/T2 = 0 → Q2/Q1 = T2/T1
  • 39. No ciclo A1B2A Σ(δQ/T)A1B2A =Σ(δQ/T)A1B + Σ(δQ/T)B2A = 0 (I) No ciclo A1B3A Σ(δQ/T)A1B3A =Σ(δQ/T)A1B + Σ(δQ/T)B3A = 0 (II) Subtraindo-se (II) de (I) tem-se Σ(δQ/T)B2A = Σ(δQ/T)B3A Em outras "trajetórias"4, 5,... reversíveis entre A e B, o resultado seria Σ(δQ/T)B2A = Σ(δQ/T)B3A = Σ(δQ/T)B4A = Σ(δQ/T)B5A = ... ∆S = Σ(δQ/T)rev  SB –SA = Σ(δQ/T)rev Existe uma “variável de estado”, além do V, P, T e U, que caracteriza cada estado térmico de um sistema termodinâmico: é a Entropia (símbolo: S) Entropia, uma variável de estado
  • 40. Ciclo “1” + “2” → reversível Σ(δQ/T) (1+2)ABArev = Σ(δQ/T)1ABrev + Σ(δQ/T)2BArev = 0  Σ(δQ/T)1ABrev = - Σ(δQ/T)2BArev (I) Ciclo “1” + “3” → irreversível Σ(δQ/T) (1+3)ABAirrev = Σ(δQ/T)1ABrev + Σ(δQ/T) 3BAirrev < 0 (II) Σ(δQ/T) = 0 (reversível) Σ(δQ/T)  0 (irreversível) ∆S=(Q/T)rev Σ(δQ/T) (1+3)ABAirrev = Σ(δQ/T)3BAirrev - Σ(δQ/T)2BArev < 0 (Σ(δQ/T)3irrev - [SA – SB] < 0 (Σ(δQ/T) 3irrev < [SA – SB] ∆S > Σ(δQ/T) Generalizando : ∆S ≥ Σ(δQ/T) ∆S = Σ(δQ/T) (processo reversível) ∆S > Σ(δQ/T) (Processo irreversível) Variação de entropia - processo irreversível Como Σ(δQ/T) (1+2)ABArev = Σ(δQ/T) (1+3)ABAirrev = 0, substituindo-se (I) em (II)
  • 41. ∆Ssist + ∆Sviz ≥ dQ(1/T - 1/To) Processos reversíveis: ∆Ssist + ∆Sviz = 0 Processos irreversíveis: ∆Ssist + ∆Sviz > 0 "Em qualquer processo natural a entropia do Universo nunca diminui" ∆S sist ≥ dQ/T ∆S viz = - dQ/To ∆Ssist + ∆Sviz ≥ dQ/T - dQ/To ∆Ssist + ∆Sviz ≥ 0 (1/T - 1/To) > 0 Outra forma de se expressar a 2a Lei Princípio do aumento de entropia
  • 42. Quando um corpo recebe calor a sua entropia aumenta. ∆S = QT  0 Aumenta a EC e/ou a agitação molecular Aumenta a “desordem” A entropia é a medida da desordem Entropia e a desordem ΔS = Q/T < 0 → a “desordem” diminui.
  • 43. Ordem e Energia - Sistemas Biológicos Entropia 2a Lei Evolução natural Ordem → Desordem Como os sistemas biológicos se desenvolvem e mantém alto grau de ordem? É uma violação da 2a Lei? Ordem pode ser obtida as custas de energia A fotosíntese converte energia solar em energia potencial nas moléculas de glucose com de alta ordem de organização. Nos animais Celulas – Mitocondria armazenam moléculas de açucar para formar moléculas altamente ordenadas e estruturadass.