O documento discute (1) transformações canônicas para osciladores harmônicos simples e com força externa, (2) o significado de uma transformação de escala, e (3) a prova da identidade de Jacobi para colchetes de Poisson.
Resolução da Lista9 de FF-207
01. Ache a Transformação Canônica definida pela função geradora:
a)
Escreva as equações de movimento nas variáveis Q e P para
um oscilador harmônico simples de frequência angular .
b)
Escreva as equações de movimento nas variáveis Q e P para
um oscilador harmônico sobre o qual atua uma força externa
.
SOLUÇÃO:
a) É fácil ver que é uma função geradora do tipo 1. Desse fato,
temos que:
Como , temos:
Comparando (1) com (2):
Daí segue que:
Estas são as equações da transformação canônica.
A Hamiltoneana de um oscilador harmônico simples de
frequência angular é dada por:
Como não depende explicitamente do tempo, ela se
conserva. Então, vamos substituir (3) em (4), a fim de
encontrar a função K.
2.
Podemos concluir queQ é uma coordenada cíclica. Então, P é
conservado. Isso bate com o fato de que H é conservado
então K também vai ser.
Também segue que:
Então, temos as seguintes equações de movimento:
Elas batem com as equações conhecidas de oscilador
harmônico simples de frequência angular .
b) Novamente, vemos que é uma função geradora do tipo 1.
Desse fato, temos que:
Como , temos:
Comparando (1) com (2):
3.
Daí segue que:
AHamiltoneana de um oscilador harmônico sobre o qual
atua uma força externa é dada por:
Podemos pensar nesse oscilador como um sistema massa-
mola não livre. O fator representa a distensão
adicional da mola causada pela força externa . Então,
vamos substituir (3) em (4), a fim de encontrar a função
K(Q,P,t).
Também segue que:
4.
02.Qual o significadoda transformação canônica criada pela função
geradora:
Onde é constante.
SOLUÇÃO:
É fácil ver que é uma função geradora do tipo 2. Desse fato,
temos que:
Como , temos:
Comparando (1) com (2):
Para satisfazer o princípio de Hamilton, podemos definir:
Assim, a transformação canônica criada pela função geradora
representa uma Transformação de escala.
03. Prove a identidade de Jacobi para colchetes de Poisson.
SOLUÇÃO:
Pela definição de colchetes de Poisson, temos que:
Utilizando as propriedades dos colchetes de Poisson, temos:
Com um “pouco”de trabalho meramente matemático, temos:
Reorganizando os termos, temos:
7.
Vemos que, devidoà simetria dessa soma e ao fato das derivadas
parciais mistas de segunda ordem serem iguais, os termos se
anulam, provando a identidade de Jacobi para os colchetes de
Poisson: