SlideShare uma empresa Scribd logo
1 de 19
Baixar para ler offline
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Apostila de Cálculo
Diferencial e Integral 1
2013
Professora Gabriele Granada Veleda
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
1Continuidade de uma função real
Definição: Dizemos que uma função real é contínua em 𝑥 = 𝑎 se, e somente se,
as seguintes condições forem satisfeitas:
1) lim
𝑥→𝑎
𝑓(𝑥) existe;
2) 𝑓(𝑎) existe;
3) lim
𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎).
Exemplo: Verifique se as funções 𝑓(𝑥) = {
𝑥2−9
𝑥+3
, 𝑒 𝑥 ≠ −3
4, 𝑠𝑒 𝑥 = −3
e 𝑔(𝑥) =
1
𝑥−2
são
contínuas, em seguida, faça um esboço dos gráficos.
DE MANEIRA GERAL, PODEMOS DIZER QUE UMA FUNÇÃO É CONTÍNUA SE
CONSEGUIRMOS DESENHAR SEU GRÁFICO SEM TIRAR O LÁPIS DO PAPEL.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
2Exercício 1: Observe os gráficos a seguir e diga se eles representam um função
contínua ou descontínua. Caso seja descontínua, indique o ponto de descontinuidade
e justifique sua resposta utilizando as três condições para que uma função seja
contínua.
a) b)
c) d)
e) f)
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
3Exercício 2: Verifique se as funções a seguir são contínuas em seu domínio.
a) 𝑓(𝑥) = {
2𝑥 + 3, 𝑠𝑒 𝑥 ≠ 1
2, 𝑠𝑒 𝑥 = 1
b) 𝑔(𝑥) = {
|𝑥 − 3|, 𝑠𝑒 𝑥 ≠ 3
1, 𝑠𝑒 𝑥 = 3
c) ℎ(𝑥) = 𝑥2
+ 2𝑥 − 5
d) 𝑗(𝑥) = √𝑥2 − 3
e) 𝑞(𝑥) = {
𝑥 + 1, 𝑠𝑒 𝑥 > 1
𝑥2
+ 1, 𝑠𝑒 𝑥 ≤ 1
Tipos de descontinuidade
Podemos caracterizar a descontinuidade de uma função em:
Descontinuidade removível: quando lim
𝑥→𝑎
𝑓(𝑥) ≠ 𝑓(𝑎), a descontinuidade pode ser
removida redefinindo a função de modo a termos lim
𝑥→𝑎
𝑓(𝑥) = 𝑓(𝑎).
Descontinuidade essencial (ou de salto): quando lim
𝑥→𝑎
𝑓(𝑥) não existir, ou seja, o
gráfico da função possui um salto.
Exercício 3: Classifique a descontinuidade das funções dos exercícios 1 e 2. Em
caso de descontinuidade removível, redefina a função de modo a torná-la contínua.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
4O problema da velocidade instantânea
Suponha que uma bola é solta do topo de um prédio de 450m de altura. Determine
a velocidade da bola após 5 segundos de queda.
Para resolvermos este problema, precisamos lembrar da descoberta de Galileu: a
distância percorrida por qualquer objeto em queda livre é proporcional ao quadrado do
tempo de queda. Chamando o tempo de t, a distância percorrida s depende do tempo
de queda, logo, uma função que descreve a situação é 𝑠(𝑡) = 4,9𝑡2
.
Após 5s, a distância percorrida será 122,5m, pois 𝑠(5) = 4,9 ∙ (5)2
= 122,5.
Temos, então que a velocidade média (vm) da bola é calculada pela equação:
𝑣𝑚 =
𝑠(𝑡)
𝑡
=
122,5
5
= 24,5
Isto é, a velocidade média da bola é de 24,5m/s.
Porém, não é isto o que o problema pede, o problema pede para calcular a
velocidade no instante 5s (chamada de velocidade instantânea). Para isso, podemos
calcular a velocidade média sobre um breve intervalo de tempo, por exemplo, do tempo
de 5s até 6s, e irmos diminuindo este intervalo, conforme mostra a tabela a seguir.
Tempo
inicial (ti)
Tempo
final (tf)
Intervalo de tempo
(∆𝑡 = 𝑡𝑓 − 𝑡𝑖)
𝑠(𝑡𝑖) 𝑠(𝑡𝑓)
𝑣𝑚 =
𝑠(𝑡𝑓) − 𝑠(𝑡𝑖)
∆𝑡
5 6 1 122,5 176,4 53,9
5 5,1 0,1 122,5 127,449 49,49
5 5,05 0,05 122,5 124,9623 49,24
5 5,01 0,01 122,5 122,9905 49,049
5 5,001 0,001 122,5 122,549 49,0049
Quanto mais encurtamos o tempo de queda da bola, mais a velocidade média se
aproxima de 49m/s, ou seja, conforme t se aproxima de 5, a velocidade média se
aproxima de 49. Essa segunda ideia nos remete a ideia de limite, portanto, podemos
escrever: lim
𝑡𝑓→𝑡𝑖
𝑣𝑚 = 49, ou ainda, lim
𝑡𝑓→𝑡𝑖
𝑠(𝑡𝑓)−𝑠(𝑡𝑖)
∆𝑡
= 49. Para deixarmos o limite
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
5em função de ∆𝑡 basta lembrarmos que ∆𝑡 = 𝑡𝑓 − 𝑡𝑖, 𝑡𝑖 = 5 e 𝑡𝑓 = 5 + ∆𝑡, e o
limite fica:
lim
∆𝑡→0
𝑠(5 + ∆𝑡) − 𝑠(5)
∆𝑡
= 49
Vamos resolver o limite e verificar que o seu valor é 49.
lim
∆𝑡→0
𝑠(5 + ∆𝑡) − 𝑠(5)
∆𝑡
= lim
∆𝑡→0
4,9 ∙ (5 + ∆𝑡)2
− 4,9 ∙ (5)2
∆𝑡
= lim
∆𝑡→0
4,9 ∙ (25 + 10∆𝑡 + ∆𝑡2) − 122,5
∆𝑡
= lim
∆𝑡→0
122,5 + 49∆𝑡 + ∆𝑡2
− 122,5
∆𝑡
= lim
∆𝑡→0
49∆𝑡 + ∆𝑡2
∆𝑡
= lim
∆𝑡→0
∆𝑡(49 + ∆𝑡)
∆𝑡
= lim
∆𝑡→0
49 + ∆𝑡⏞
0
= 49
Exercícios
1. Uma bola é atirada no ar com uma velocidade de 40pés/s, e sua altura em pés
após t segundos é dada por 𝑦 = 40𝑡 − 16𝑡2
.
a) Encontre a velocidade média para o período de tempo que começa quanto 𝑡 =
2 e dura:
i) 0,5𝑠 ii) 0,1𝑠 iii) 0,05𝑠 iv) 0,01𝑠
b) Encontre a velocidade instantânea no tempo 2 segundos.
2. O deslocamento (em pés) de uma certa partícula movendo-se em linha reta é
dado por 𝑠(𝑡) = 𝑡3
6⁄ , onde t é medido em segundos. Encontre a velocidade instantânea
da partícula no tempo 1 segundo.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
6Construindo a reta tangente em um ponto de um gráfico no Geogebra
Vamos construir a ideia de reta tangente no Geogebra:
1. Digite no campo “entrada” a função 0.5x^2 e tecle enter.
2. Marque o ponto A(2,2) e o ponto B(4,8).
3. Crie uma reta perpendicular ao eixo x que passe por B e uma reta perpendicular
ao eixo y que passe por A. Marque a intersecção das duas retas (ponto C) e apague-
as.
4. Crie os segmentos AC, BC e AB. Renomeie o segmento AC para ∆𝑥 e a reta
BC para ∆𝑦.
5. Crie uma reta que passe pelos pontos A e B.
6. Crie a reta 𝑦 = 0, marque o ponto D (4,0) e o ponto E, intersecção desta reta
com a reta criada no item anterior.
7. Marque o ângulo DÊA e o ângulo CÂB.
8. Crie a variável m, definida da seguinte forma: 𝑚 =
∆𝑦
∆𝑥
.
9. Movimente o ponto B para próximo do ponto A e, utilizando uma calculadora,
calcule o a tangente do ângulo CAB, para auxiliar, complete a tabela a seguir.
Medida de CAB tg(CÂB) Medida de (DÊA) Valor de m
Agora, responda as perguntas:
a) O que ∆𝑥 e ∆𝑦 representam? Como é possível calculá-los.
b) O que acontece quando aproximamos o ponto B do ponto A?
c) Por que o ângulo CÂB é igual ao ângulo DÊA? Por que tg(CÂB) é igual a m?
d) Conforme ∆𝑥 tende a zero, para qual valor a imagem da função se aproxima?
e) Reescreva o item e como o limite de uma função e verifique se esse limite
tende ao valor que você respondeu no item anterior.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
7Determinando a inclinação da reta tangente em um ponto do gráfico
Observe o gráfico de uma função na figura
ao lado.
Note que que é possível criar uma reta que
passa pelos pontos P e Q e, pelas propriedades
do triângulo retângulo, temos que
𝑓(𝑥2)−𝑓(𝑥1)
𝑥2−𝑥1
define o valor da tangente da inclinação da reta
em relação ao eixo x.
Para determinarmos a reta tangente no ponto P, basta aproximarmos o ponto
𝑄(𝑥2, 𝑓(𝑥2)) do ponto 𝑃(𝑥1, 𝑓(𝑥1)), ou seja, o valor de 𝑥2 será muito próximo (tende) de
𝑥1 e, com isso 𝑓(𝑥2) se aproxima de 𝑓(𝑥1), de modo que podemos determinar a reta
tangente no ponto P pelo limite:
lim
𝑥2→𝑥1
𝑓(𝑥2) − 𝑓(𝑥1)
𝑥2 − 𝑥1
Como o ponto P é fixo, podemos deixar o limite acima em função de 𝑥1, que é um
valor conhecido, para isso, basta tomarmos ∆𝑥 = 𝑥2 − 𝑥1, o que segue, 𝑥2 = 𝑥1 +
∆𝑥. Logo, quando 𝑥2 tende a 𝑥1, segue que ∆𝑥 tende a zero, e o limite pode ser
reescrito da seguinte forma:
lim
∆𝑥→0
𝑓(𝑥1 + ∆𝑥) − 𝑓(𝑥1)
∆𝑥
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
8Exemplo: Dada a parábola 𝑦 = 𝑥2
,
a) Ache a inclinação da reta secante que passa pelos pontos (2;4) e (3,9); (2;4) e
(2,1;4,41); (2;4) e (2,01; 4,0401)
b) Determine a inclinação da reta tangente no ponto no ponto (2;4)
c) Faça um esboço do gráfico e da reta tangente no ponto (2;4)
a) 𝑚1 =
9−4
3−2
= 5; 𝑚2 =
4,41−4
2,1−2
=
0,41
0,1
= 4,1;
𝑚3 =
4,0401−4
2,01−2
=
0,0401
0,01
= 4,01
b) lim
∆𝑥→0
𝑓(2+∆𝑥)−𝑓(2)
∆𝑥
= lim
∆𝑥→0
(2+∆𝑥)2−4
∆𝑥
= lim
∆𝑥→0
4+2∙2∙∆𝑥+∆𝑥2−4
∆𝑥
=
lim
∆𝑥→0
∆𝑥(4+∆𝑥)
∆𝑥
= lim
∆𝑥→0
4 + ∆𝑥⏟
0
= 4
c)
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
9Exercícios
1. Ache a inclinação da reta tangente ao gráfico da função 𝑓(𝑥) = 𝑥3
− 3𝑥 + 4 no
ponto (𝑥1, 𝑦1).
2. Ache uma equação da reta tangente à curva do exercício 1 no ponto (2,6).
Lembre-se que a equação geral de uma reta é dada pela equação 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1).
3. Um monitor é usado para medir os batimentos cardíacos de um paciente após
uma cirurgia. Ele fornece um número de batimentos cardíacos após t minutos. Quando
os dados na tabela são colocados em um gráfico, a inclinação da reta tangente
representa a taxa de batimentos cardíacos por minuto.
t (min) 36 38 40 42 44
Batimentos cardíacos 2530 2661 2806 2948 3080
O monitor estima esse valor calculando a inclinação de uma reta secante. Use os
dados da tabela para estimar a taxa de batimentos cardíacos após 42 minutos usando
a reta secante entre 𝑡 = 42 e os outros tempos dados. Quais são as suas conclusões?
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
10Derivada
Observe que no problema da velocidade instantânea e na determinação da
inclinação da reta tangente a ideia de construção é semelhante: escolhemos um ponto
𝑄(𝑥2, 𝑓(𝑥2)) diferente do ponto 𝑃(𝑥1, 𝑓(𝑥1)), dado no problema e aproximamos Q de
P, modo a diminuir a distância entre os valores do domínio, isto é, fazemos 𝑥2 tender a
𝑥1. Chamando a diferença entre 𝑥2 e 𝑥1 de ∆𝑡 (∆𝑡 = 𝑥2 − 𝑥1), segue que 𝑥2 = 𝑥1 + ∆𝑡,
e a resposta ao problema proposto é obtida resolvendo o seguinte limite:
lim
∆𝑥→0
𝑓(𝑥1 + ∆𝑥) − 𝑓(𝑥1)
∆𝑥
Este limite, por ser usado na resolução de diferentes problemas, pode ser dito
especial, e por isso, recebe o nome de derivada.
Exemplo: Ache a derivada da função 𝑓(𝑥) = 3𝑥2
+ 12.
𝑓′(𝑥) = lim
∆𝑥→0
3(𝑥 + ∆𝑥)2
+ 12 − (3𝑥2
+ 12)
∆𝑥
= lim
∆𝑥→0
3𝑥2
+ 6𝑥 ∙ ∆𝑥 + ∆𝑥2
+ 12 − 3𝑥2
− 12
∆𝑥
= lim
∆𝑥→0
6𝑥 ∙ ∆𝑥 + ∆𝑥2
∆𝑥
= lim
∆𝑥→0
∆𝑥(6𝑥 + ∆𝑥)
∆𝑥
= lim
∆𝑥→0
6𝑥 + ∆𝑥⏟
0
= 6𝑥
Portanto, a derivada de 𝑓(𝑥) = 3𝑥2
+ 12 é 𝑓′(𝑥) = 6𝑥.
Definição: A derivada de uma função f é a função denotada por f’, tal que seu valor
em qualquer número 𝑥 do domínio de f seja dado por
𝑓′(𝑥) = lim
∆𝑥→0
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)
∆𝑥
se esse limite existir.
O SÍMBOLO 𝑓′ FOI INTRODUZIDO PELO MATEMÁTICO LAGRANGE, NO SÉCULO XVIII.
EXISTEM OUTRAS NOTAÇÕES : 𝑦′,
𝑑𝑦
𝑑𝑥
,
𝑑
𝑑𝑥
(𝑦), E REPRESENTAM A DERIVADA DA
FUNÇÃO 𝑦 EM RELAÇÃO À VARIÁVEL 𝑥
Leithold, 1994.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
11Observação: Se 𝑥1 for um determinado número do domínio de 𝑓, podemos calcular
a derivada neste ponto utilizando a seguinte equação:
𝑓′(𝑥1) = lim
𝑥→𝑥1
𝑓(𝑥) − 𝑓(𝑥1)
𝑥 − 𝑥1
Exemplo: Ache a derivada da função 𝑓(𝑥) = 3𝑥2
+ 12 no ponto 2.
Como foi calculado no exemplo anterior 𝑓′(𝑥) = 6𝑥, aplicando 𝑥 = 2, segue que
𝑓′(2) = 6 ∙ 2 = 12
Utilizando a fórmula da observação acima, podemos realizar o seguinte cálculo:
𝑓′(2) = lim
𝑥→2
(3𝑥2
+ 12) − 24
𝑥 − 2
= lim
𝑥→2
3𝑥2
− 12
𝑥 − 2
= lim
𝑥→2
3(𝑥2
− 4)
𝑥 − 2
= lim
𝑥→2
3(𝑥 − 2)(𝑥 + 2)
𝑥 − 2
= lim
𝑥→2
3(𝑥 + 2) = 3 ∙ 4 = 12
Exercícios:
1. Calcule a derivada das funções dadas:
a) 𝑦 = 8 − 𝑥3
d) 𝑦 = 7𝑥 + 3 g) 𝑦 = 𝑥3
− 3𝑥
b) 𝑦 = 𝑥3
e) 𝑦 = 3𝑥2
+ 4 h) 𝑦 =
1
𝑥
c) 𝑦 = √ 𝑥 f) 𝑦 = 3𝑥2
− 6 i) 𝑦 = −2
2. Ache a equação da reta tangente à curva dada, no ponto indicado.
a) 𝑦 = 𝑥2
− 4𝑥 − 5; (−2,7) c) 𝑦 = 2𝑥 − 𝑥3
; (−2,4)
b) 𝑦 =
6
𝑥
; (3,2) d) 𝑦 = −
8
√ 𝑥
; (4, −4)
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
12Derivabilidade e continuidade
O processo do cálculo da derivada é chamado derivação. Assim, a derivação é a
operação de derivar uma função 𝑓′ de uma função 𝑓.
Se uma função possui uma derivada em 𝑥1, a função será derivável em 𝑥1. Uma
função será derivável em um intervalo aberto se ela for derivável em todo número
deste intervalo aberto.
Exemplo 1: A derivada da função 𝑓(𝑥) = 3𝑥2
+ 12 é 𝑓′(𝑥) = 6𝑥. Como o domínio
de 𝑓(𝑥) são todos os reais e 6𝑥 pode ser calculado para qualquer número real, dizemos
que 𝑓(𝑥) é derivável em todos os reais.
Exemplo 2: A derivada da função 𝑔(𝑥) = √𝑥 − 3 é a função 𝑔′(𝑥) =
1
2√𝑥−3
. Note que
o domínio de 𝑔(𝑥) é o intervalo [3, +∞[, no entanto, não podemos calcular 𝑔′(3), pois
o valor do denominador seria zero, logo, a função 𝑔(𝑥) não é derivável em todo o seu
domínio, porém, 𝑔(𝑥) é derivável no intervalo (3, +∞).
Exemplo 3: Seja 𝑓(𝑥) = 𝑥
1
3⁄
, resolva o que se pede.
a) Ache 𝑓′(𝑥).
b) Mostre que 𝑓′(0) não existe, mesmo que 𝑓(𝑥) seja contínua nesse número.
c) Faça um esboço do gráfico de 𝑓.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
13Teorema: Se uma função 𝑓 for derivável em 𝑥1, então 𝑓 será contínua em 𝑥1.
Demonstração:
Observe que, pelo teorema, segue que toda função é derivável é necessariamente
contínua. Entretanto, conforme o exemplo 3, nem toda função contínua é derivável.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
14Exercícios:
1. Calcule a derivadas das funções a seguir e diga o que é possível concluir.
a) 𝑦 = 3 b) 𝑦 = −3 c) ) 𝑦 = 5 d) ) 𝑦 = −√2
e) 𝑦 = 𝑥 f) 𝑦 = 𝑥 + 2 g) 𝑦 = 𝑥 − 4 h) 𝑦 = −𝑥
i) 𝑦 = 𝑥2
j) 𝑦 = 𝑥2
− 1 k) 𝑦 = 𝑥2
+ 2 l) 𝑦 = 𝑥2
− 7
2. Dadas as funções 𝑓(𝑥) = 3 + 𝑥, 𝑔(𝑥) = 𝑥2
− 9, calcule as derivadas indicadas e
diga se há alguma regularidade:
a) 𝑓′(𝑥) b) 𝑔′(𝑥) c) 𝑓′(𝑥) + 𝑔′(𝑥) d) [𝑓(𝑥) + 𝑔(𝑥)]′
e) 𝑓′(𝑥) − 𝑔′(𝑥) f) [𝑓(𝑥) − 𝑔(𝑥)]′ g) 𝑓′(𝑥) ∙ 𝑔′(𝑥) h) [𝑔(𝑥) ∙ 𝑓(𝑥)]′
i) 𝑓′(𝑥)/𝑔′(𝑥) j) [𝑓(𝑥)/𝑔(𝑥)]′ k) 𝑔′(𝑥)/𝑓′(𝑥) l) [𝑔(𝑥)/𝑓(𝑥)]′
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
15Teoremas de derivação de funções contínuas
Considerando 𝑓(𝑥), 𝑔(𝑥) e ℎ(𝑥) funções contínuas e uma constante real c, são
válidos os seguintes teoremas:
1. 𝑓(𝑥) = 𝑐 ⇒ 𝑓′(𝑥) = 0
2. 𝑓(𝑥) = 𝑥 𝑛
⇒ 𝑓′(𝑥) = 𝑛 ∙ 𝑥 𝑛−1
3. 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑐 ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) ∙ 𝑐
4. 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) + ℎ′(𝑥)
5. 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) − ℎ′(𝑥)
6. 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) ∙ ℎ(𝑥) + ℎ′(𝑥) ∙ 𝑔(𝑥)
7. 𝑓(𝑥) =
𝑔(𝑥)
ℎ(𝑥)
⇒ 𝑓′(𝑥) =
𝑔′(𝑥)∙ℎ(𝑥)−ℎ′(𝑥)∙𝑔(𝑥)
[ℎ(𝑥)]2
, com ℎ(𝑥) ≠ 0
8. 𝑓(𝑥) = 𝑠𝑒𝑛𝑥 ⇒ 𝑓′(𝑥) = 𝑐𝑜𝑠𝑥
9. 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 ⇒ 𝑓′(𝑥) = −𝑠𝑒𝑛𝑥
Exercícios:
1. Calcule a derivada das funções a seguir utilizando os teoremas e, em seguida,
confirme o resultado calculando pela definição.
a) 𝑓(𝑥) = 7𝑥 − 5
b) 𝑔(𝑥) = 1 − 2𝑥 − 𝑥2
c) ℎ(𝑥) = 4𝑥2
+ 𝑥 + 1
2. Calcule a derivada das funções indicadas utilizando os teoremas de derivação.
a) ℎ(𝑥) = 𝑥2
− 𝑥
b) 𝑦 = (𝑥2
+ 1)3(𝑥 − 4)
c) 𝑔(𝑥) = 𝑡𝑔𝑥
d) 𝑓(𝑥) =
1
2
𝑠𝑒𝑛𝜃 − 𝑐𝑜𝑠𝜃
e) 𝑤(𝑥) =
5𝑥
(2𝑥)3
+ 2𝑠𝑒𝑛𝑥
3. Determine 𝑓′
(1) se 𝑓(𝑥) = 𝑥3
+ 3𝑥 + 1.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
164. O limite abaixo representa o limite de uma função em um ponto a, ou seja,
𝑓′(𝑎). Determine f(x) e o valor de a.
lim
ℎ→0
√(4 + ℎ) + 2
ℎ
5. Dada a função 𝑓(𝑥) = √𝑥2 + 1, mostre que 𝑓′(𝑥) =
𝑥
√𝑥2+1
.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
17
Derivada da função composta
10. Regra da cadeia: 𝑓(𝑥) = 𝑔(ℎ(𝑥)) ⇒ 𝑓′(𝑥) = 𝑔′(ℎ(𝑥)) ∙ ℎ′(𝑥)
Exemplo 1: Seja 𝑓(𝑥) = (2𝑥3
− 5𝑥2
+ 4)10
, calcule 𝑓′(𝑥).
Exemplo 2: Seja 𝑓(𝑥) = 𝑠𝑒𝑛(2𝑥) calcule 𝑓′(𝑥).
Exercícios:
1. Utilize a regra da cadeia para derivar as seguintes funções:
a) 𝑓(𝑥) = (5𝑥 − 2)2
b) 𝑔(𝑡) = √2𝑡2 + 5𝑡
c) ℎ(𝑥) =
3
(2𝑥−5)2
2. Um corpo se move em linha reta de acordo com a equação 𝑠(𝑡) = √4 + 3𝑡2,
onde s é dado em metros e t em segundos.
a) Determine a velocidade média desse corpo no intervalo [0,2].
b) Determine a velocidade do corpo no instante t = 2s.
FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS
UNIÃO DA VITÓRIA - ESTADO DO PARANÁ
HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67
LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74
LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03
MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03
CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05
QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07
FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11
Professora Gabriele Granada Veleda
18Outros teoremas de derivação de função contínua
11. 𝑓(𝑥) = 𝑐 𝑔(𝑥)
⇒ 𝑓′(𝑥) = 𝑐 𝑔(𝑥)
∙ ln 𝑐 ∙ 𝑔′(𝑥)
Exemplo 1: 𝑓(𝑥) = 2 𝑥2+𝑥
Exemplo 2: 𝑓(𝑥) = √3 𝑠𝑒𝑛𝑥+15
12. 𝑓(𝑥) = 𝑒 𝑔(𝑥)
⇒ 𝑓′(𝑥) = 𝑒 𝑔(𝑥)
∙ 𝑔′(𝑥)
Exemplo: 𝑓(𝑥) =
𝑒cos( 𝑥
2⁄ )+1
𝑠𝑒𝑛[𝑐𝑜𝑠( 𝑥2
2⁄ )]
13. 𝑓(𝑥) = log 𝐶 𝑔(𝑥) ⇒ 𝑓′(𝑥) =
𝑔′(𝑥)
𝑔(𝑥)∙ln 𝑐
Exemplo: 𝑓(𝑥) = log3
(5𝑥2
+ 3𝑥)
14. ( 𝑥) = 𝑙𝑛 𝑔(𝑥) ⇒ 𝑓′( 𝑥) =
𝑔′(𝑥)
𝑔(𝑥)
Exemplo: 𝑓(𝑥) = 𝑙𝑛 ( 𝑠𝑒𝑛2
(
5𝑥−1
4−3𝑥
))

Mais conteúdo relacionado

Destaque

Aula 4 Cálculo III Integral de linha :)
Aula 4   Cálculo III Integral de linha :)Aula 4   Cálculo III Integral de linha :)
Aula 4 Cálculo III Integral de linha :)João Monteiro
 
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticasdanielceh
 
Edo
EdoEdo
Edowvnf
 
Aula4 derivadas integrais
Aula4 derivadas integraisAula4 derivadas integrais
Aula4 derivadas integraisWeslley Murdock
 
Calculo I - Uma Breve Introdução ao Estudo de Integrais
Calculo I - Uma Breve Introdução ao Estudo de IntegraisCalculo I - Uma Breve Introdução ao Estudo de Integrais
Calculo I - Uma Breve Introdução ao Estudo de IntegraisRonildo Oliveira
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definidaeducacao f
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorialtooonks
 
Col.agro 1 calculo da necessidade de calagem
Col.agro 1 calculo da necessidade de calagemCol.agro 1 calculo da necessidade de calagem
Col.agro 1 calculo da necessidade de calagemgastao ney monte braga
 
Alvenaria - Técnica e Arte
Alvenaria - Técnica e ArteAlvenaria - Técnica e Arte
Alvenaria - Técnica e ArteCarlos Cunha
 
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer Dynamic
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer DynamicMind Melds and BattleBots: Creating the Right Kind of Designer/Developer Dynamic
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer DynamicWebVisions
 

Destaque (17)

Aula 4 Cálculo III Integral de linha :)
Aula 4   Cálculo III Integral de linha :)Aula 4   Cálculo III Integral de linha :)
Aula 4 Cálculo III Integral de linha :)
 
Calculo integral
Calculo integralCalculo integral
Calculo integral
 
Física – eletricidade eletrização 01 – 2013
Física – eletricidade eletrização 01 – 2013Física – eletricidade eletrização 01 – 2013
Física – eletricidade eletrização 01 – 2013
 
Calculo integral e_diferencial_3[1]
Calculo integral e_diferencial_3[1]Calculo integral e_diferencial_3[1]
Calculo integral e_diferencial_3[1]
 
Matemática básica derivada e integral
Matemática básica   derivada e integralMatemática básica   derivada e integral
Matemática básica derivada e integral
 
Tópico 09 - Integral
Tópico 09 - IntegralTópico 09 - Integral
Tópico 09 - Integral
 
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas IsostáticasAplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
Aplicação do Cálculo Diferencial e Integral no Estudo de Vigas Isostáticas
 
Edo
EdoEdo
Edo
 
Unidade i física 13
Unidade i física 13Unidade i física 13
Unidade i física 13
 
Aula4 derivadas integrais
Aula4 derivadas integraisAula4 derivadas integrais
Aula4 derivadas integrais
 
Calculo I - Uma Breve Introdução ao Estudo de Integrais
Calculo I - Uma Breve Introdução ao Estudo de IntegraisCalculo I - Uma Breve Introdução ao Estudo de Integrais
Calculo I - Uma Breve Introdução ao Estudo de Integrais
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definida
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
 
Cálculo integral
Cálculo integralCálculo integral
Cálculo integral
 
Col.agro 1 calculo da necessidade de calagem
Col.agro 1 calculo da necessidade de calagemCol.agro 1 calculo da necessidade de calagem
Col.agro 1 calculo da necessidade de calagem
 
Alvenaria - Técnica e Arte
Alvenaria - Técnica e ArteAlvenaria - Técnica e Arte
Alvenaria - Técnica e Arte
 
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer Dynamic
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer DynamicMind Melds and BattleBots: Creating the Right Kind of Designer/Developer Dynamic
Mind Melds and BattleBots: Creating the Right Kind of Designer/Developer Dynamic
 

Semelhante a Apostila de cálculo diferencial e integral 1

Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Equipe_FAETEC
 
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptx
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptxGRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptx
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptxCarlos Fernando Oliveira
 
Banco de Questões - Física
Banco de Questões  - FísicaBanco de Questões  - Física
Banco de Questões - FísicaEverton Moraes
 
3 lista de exercicios mod iv e v (1)
3 lista de exercicios mod iv e v (1)3 lista de exercicios mod iv e v (1)
3 lista de exercicios mod iv e v (1)Laryssa Maia
 
Matemática por assunto
Matemática por assuntoMatemática por assunto
Matemática por assuntoJota Sousa
 
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...Romilda Dores Brito
 
Cópia de Produto integrador.pdf
Cópia de Produto integrador.pdfCópia de Produto integrador.pdf
Cópia de Produto integrador.pdfcamilassobral1
 
Aula 2 - Método Científico - Física - PVSJ - Prof Elvis
Aula 2 - Método Científico - Física - PVSJ - Prof ElvisAula 2 - Método Científico - Física - PVSJ - Prof Elvis
Aula 2 - Método Científico - Física - PVSJ - Prof ElvisElvis Soares
 
Procura Se Pela Função: Alguém viu?
Procura Se Pela Função: Alguém viu?Procura Se Pela Função: Alguém viu?
Procura Se Pela Função: Alguém viu?Andréa Thees
 
Exercicios ef e mecânica
Exercicios ef e mecânicaExercicios ef e mecânica
Exercicios ef e mecânicaAna Rodrigues
 
132128734 caderno-exercicios fisica
132128734 caderno-exercicios fisica132128734 caderno-exercicios fisica
132128734 caderno-exercicios fisicaCDM Renan Chalão
 

Semelhante a Apostila de cálculo diferencial e integral 1 (20)

1 em física
1 em física1 em física
1 em física
 
Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)Notação Científica (Telecomunicações)
Notação Científica (Telecomunicações)
 
Estimar preci bacias
Estimar preci baciasEstimar preci bacias
Estimar preci bacias
 
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptx
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptxGRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptx
GRANDEZAS FÍSICAS_NOTAÇÃO CIENTÍFICA_ENSINO MÉDIO_2023.pptx
 
Banco de Questões - Física
Banco de Questões  - FísicaBanco de Questões  - Física
Banco de Questões - Física
 
Logaritimos
LogaritimosLogaritimos
Logaritimos
 
3 lista de exercicios mod iv e v (1)
3 lista de exercicios mod iv e v (1)3 lista de exercicios mod iv e v (1)
3 lista de exercicios mod iv e v (1)
 
Resumo cinematica e dinâmica para alunos
Resumo cinematica e dinâmica para alunosResumo cinematica e dinâmica para alunos
Resumo cinematica e dinâmica para alunos
 
Notação científica
Notação científicaNotação científica
Notação científica
 
Matemática por assunto
Matemática por assuntoMatemática por assunto
Matemática por assunto
 
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...
{63 d5e492 b8d4-4d07-96b8-c3c7e8af369c}-revisão para a prova unificada 4º bim...
 
Aula 01 - Extensivo Positivo
Aula 01 - Extensivo PositivoAula 01 - Extensivo Positivo
Aula 01 - Extensivo Positivo
 
Cópia de Produto integrador.pdf
Cópia de Produto integrador.pdfCópia de Produto integrador.pdf
Cópia de Produto integrador.pdf
 
Aula 2 - Método Científico - Física - PVSJ - Prof Elvis
Aula 2 - Método Científico - Física - PVSJ - Prof ElvisAula 2 - Método Científico - Física - PVSJ - Prof Elvis
Aula 2 - Método Científico - Física - PVSJ - Prof Elvis
 
Apostil aformatada14
Apostil aformatada14Apostil aformatada14
Apostil aformatada14
 
Procura Se Pela Função: Alguém viu?
Procura Se Pela Função: Alguém viu?Procura Se Pela Função: Alguém viu?
Procura Se Pela Função: Alguém viu?
 
Exercicios ef e mecânica
Exercicios ef e mecânicaExercicios ef e mecânica
Exercicios ef e mecânica
 
132128734 caderno-exercicios fisica
132128734 caderno-exercicios fisica132128734 caderno-exercicios fisica
132128734 caderno-exercicios fisica
 
Prova afa 2013
Prova afa 2013Prova afa 2013
Prova afa 2013
 
Provas afa 2013
Provas afa 2013Provas afa 2013
Provas afa 2013
 

Apostila de cálculo diferencial e integral 1

  • 1. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Apostila de Cálculo Diferencial e Integral 1 2013 Professora Gabriele Granada Veleda
  • 2. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 1Continuidade de uma função real Definição: Dizemos que uma função real é contínua em 𝑥 = 𝑎 se, e somente se, as seguintes condições forem satisfeitas: 1) lim 𝑥→𝑎 𝑓(𝑥) existe; 2) 𝑓(𝑎) existe; 3) lim 𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎). Exemplo: Verifique se as funções 𝑓(𝑥) = { 𝑥2−9 𝑥+3 , 𝑒 𝑥 ≠ −3 4, 𝑠𝑒 𝑥 = −3 e 𝑔(𝑥) = 1 𝑥−2 são contínuas, em seguida, faça um esboço dos gráficos. DE MANEIRA GERAL, PODEMOS DIZER QUE UMA FUNÇÃO É CONTÍNUA SE CONSEGUIRMOS DESENHAR SEU GRÁFICO SEM TIRAR O LÁPIS DO PAPEL.
  • 3. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 2Exercício 1: Observe os gráficos a seguir e diga se eles representam um função contínua ou descontínua. Caso seja descontínua, indique o ponto de descontinuidade e justifique sua resposta utilizando as três condições para que uma função seja contínua. a) b) c) d) e) f)
  • 4. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 3Exercício 2: Verifique se as funções a seguir são contínuas em seu domínio. a) 𝑓(𝑥) = { 2𝑥 + 3, 𝑠𝑒 𝑥 ≠ 1 2, 𝑠𝑒 𝑥 = 1 b) 𝑔(𝑥) = { |𝑥 − 3|, 𝑠𝑒 𝑥 ≠ 3 1, 𝑠𝑒 𝑥 = 3 c) ℎ(𝑥) = 𝑥2 + 2𝑥 − 5 d) 𝑗(𝑥) = √𝑥2 − 3 e) 𝑞(𝑥) = { 𝑥 + 1, 𝑠𝑒 𝑥 > 1 𝑥2 + 1, 𝑠𝑒 𝑥 ≤ 1 Tipos de descontinuidade Podemos caracterizar a descontinuidade de uma função em: Descontinuidade removível: quando lim 𝑥→𝑎 𝑓(𝑥) ≠ 𝑓(𝑎), a descontinuidade pode ser removida redefinindo a função de modo a termos lim 𝑥→𝑎 𝑓(𝑥) = 𝑓(𝑎). Descontinuidade essencial (ou de salto): quando lim 𝑥→𝑎 𝑓(𝑥) não existir, ou seja, o gráfico da função possui um salto. Exercício 3: Classifique a descontinuidade das funções dos exercícios 1 e 2. Em caso de descontinuidade removível, redefina a função de modo a torná-la contínua.
  • 5. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 4O problema da velocidade instantânea Suponha que uma bola é solta do topo de um prédio de 450m de altura. Determine a velocidade da bola após 5 segundos de queda. Para resolvermos este problema, precisamos lembrar da descoberta de Galileu: a distância percorrida por qualquer objeto em queda livre é proporcional ao quadrado do tempo de queda. Chamando o tempo de t, a distância percorrida s depende do tempo de queda, logo, uma função que descreve a situação é 𝑠(𝑡) = 4,9𝑡2 . Após 5s, a distância percorrida será 122,5m, pois 𝑠(5) = 4,9 ∙ (5)2 = 122,5. Temos, então que a velocidade média (vm) da bola é calculada pela equação: 𝑣𝑚 = 𝑠(𝑡) 𝑡 = 122,5 5 = 24,5 Isto é, a velocidade média da bola é de 24,5m/s. Porém, não é isto o que o problema pede, o problema pede para calcular a velocidade no instante 5s (chamada de velocidade instantânea). Para isso, podemos calcular a velocidade média sobre um breve intervalo de tempo, por exemplo, do tempo de 5s até 6s, e irmos diminuindo este intervalo, conforme mostra a tabela a seguir. Tempo inicial (ti) Tempo final (tf) Intervalo de tempo (∆𝑡 = 𝑡𝑓 − 𝑡𝑖) 𝑠(𝑡𝑖) 𝑠(𝑡𝑓) 𝑣𝑚 = 𝑠(𝑡𝑓) − 𝑠(𝑡𝑖) ∆𝑡 5 6 1 122,5 176,4 53,9 5 5,1 0,1 122,5 127,449 49,49 5 5,05 0,05 122,5 124,9623 49,24 5 5,01 0,01 122,5 122,9905 49,049 5 5,001 0,001 122,5 122,549 49,0049 Quanto mais encurtamos o tempo de queda da bola, mais a velocidade média se aproxima de 49m/s, ou seja, conforme t se aproxima de 5, a velocidade média se aproxima de 49. Essa segunda ideia nos remete a ideia de limite, portanto, podemos escrever: lim 𝑡𝑓→𝑡𝑖 𝑣𝑚 = 49, ou ainda, lim 𝑡𝑓→𝑡𝑖 𝑠(𝑡𝑓)−𝑠(𝑡𝑖) ∆𝑡 = 49. Para deixarmos o limite
  • 6. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 5em função de ∆𝑡 basta lembrarmos que ∆𝑡 = 𝑡𝑓 − 𝑡𝑖, 𝑡𝑖 = 5 e 𝑡𝑓 = 5 + ∆𝑡, e o limite fica: lim ∆𝑡→0 𝑠(5 + ∆𝑡) − 𝑠(5) ∆𝑡 = 49 Vamos resolver o limite e verificar que o seu valor é 49. lim ∆𝑡→0 𝑠(5 + ∆𝑡) − 𝑠(5) ∆𝑡 = lim ∆𝑡→0 4,9 ∙ (5 + ∆𝑡)2 − 4,9 ∙ (5)2 ∆𝑡 = lim ∆𝑡→0 4,9 ∙ (25 + 10∆𝑡 + ∆𝑡2) − 122,5 ∆𝑡 = lim ∆𝑡→0 122,5 + 49∆𝑡 + ∆𝑡2 − 122,5 ∆𝑡 = lim ∆𝑡→0 49∆𝑡 + ∆𝑡2 ∆𝑡 = lim ∆𝑡→0 ∆𝑡(49 + ∆𝑡) ∆𝑡 = lim ∆𝑡→0 49 + ∆𝑡⏞ 0 = 49 Exercícios 1. Uma bola é atirada no ar com uma velocidade de 40pés/s, e sua altura em pés após t segundos é dada por 𝑦 = 40𝑡 − 16𝑡2 . a) Encontre a velocidade média para o período de tempo que começa quanto 𝑡 = 2 e dura: i) 0,5𝑠 ii) 0,1𝑠 iii) 0,05𝑠 iv) 0,01𝑠 b) Encontre a velocidade instantânea no tempo 2 segundos. 2. O deslocamento (em pés) de uma certa partícula movendo-se em linha reta é dado por 𝑠(𝑡) = 𝑡3 6⁄ , onde t é medido em segundos. Encontre a velocidade instantânea da partícula no tempo 1 segundo.
  • 7. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 6Construindo a reta tangente em um ponto de um gráfico no Geogebra Vamos construir a ideia de reta tangente no Geogebra: 1. Digite no campo “entrada” a função 0.5x^2 e tecle enter. 2. Marque o ponto A(2,2) e o ponto B(4,8). 3. Crie uma reta perpendicular ao eixo x que passe por B e uma reta perpendicular ao eixo y que passe por A. Marque a intersecção das duas retas (ponto C) e apague- as. 4. Crie os segmentos AC, BC e AB. Renomeie o segmento AC para ∆𝑥 e a reta BC para ∆𝑦. 5. Crie uma reta que passe pelos pontos A e B. 6. Crie a reta 𝑦 = 0, marque o ponto D (4,0) e o ponto E, intersecção desta reta com a reta criada no item anterior. 7. Marque o ângulo DÊA e o ângulo CÂB. 8. Crie a variável m, definida da seguinte forma: 𝑚 = ∆𝑦 ∆𝑥 . 9. Movimente o ponto B para próximo do ponto A e, utilizando uma calculadora, calcule o a tangente do ângulo CAB, para auxiliar, complete a tabela a seguir. Medida de CAB tg(CÂB) Medida de (DÊA) Valor de m Agora, responda as perguntas: a) O que ∆𝑥 e ∆𝑦 representam? Como é possível calculá-los. b) O que acontece quando aproximamos o ponto B do ponto A? c) Por que o ângulo CÂB é igual ao ângulo DÊA? Por que tg(CÂB) é igual a m? d) Conforme ∆𝑥 tende a zero, para qual valor a imagem da função se aproxima? e) Reescreva o item e como o limite de uma função e verifique se esse limite tende ao valor que você respondeu no item anterior.
  • 8. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 7Determinando a inclinação da reta tangente em um ponto do gráfico Observe o gráfico de uma função na figura ao lado. Note que que é possível criar uma reta que passa pelos pontos P e Q e, pelas propriedades do triângulo retângulo, temos que 𝑓(𝑥2)−𝑓(𝑥1) 𝑥2−𝑥1 define o valor da tangente da inclinação da reta em relação ao eixo x. Para determinarmos a reta tangente no ponto P, basta aproximarmos o ponto 𝑄(𝑥2, 𝑓(𝑥2)) do ponto 𝑃(𝑥1, 𝑓(𝑥1)), ou seja, o valor de 𝑥2 será muito próximo (tende) de 𝑥1 e, com isso 𝑓(𝑥2) se aproxima de 𝑓(𝑥1), de modo que podemos determinar a reta tangente no ponto P pelo limite: lim 𝑥2→𝑥1 𝑓(𝑥2) − 𝑓(𝑥1) 𝑥2 − 𝑥1 Como o ponto P é fixo, podemos deixar o limite acima em função de 𝑥1, que é um valor conhecido, para isso, basta tomarmos ∆𝑥 = 𝑥2 − 𝑥1, o que segue, 𝑥2 = 𝑥1 + ∆𝑥. Logo, quando 𝑥2 tende a 𝑥1, segue que ∆𝑥 tende a zero, e o limite pode ser reescrito da seguinte forma: lim ∆𝑥→0 𝑓(𝑥1 + ∆𝑥) − 𝑓(𝑥1) ∆𝑥
  • 9. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 8Exemplo: Dada a parábola 𝑦 = 𝑥2 , a) Ache a inclinação da reta secante que passa pelos pontos (2;4) e (3,9); (2;4) e (2,1;4,41); (2;4) e (2,01; 4,0401) b) Determine a inclinação da reta tangente no ponto no ponto (2;4) c) Faça um esboço do gráfico e da reta tangente no ponto (2;4) a) 𝑚1 = 9−4 3−2 = 5; 𝑚2 = 4,41−4 2,1−2 = 0,41 0,1 = 4,1; 𝑚3 = 4,0401−4 2,01−2 = 0,0401 0,01 = 4,01 b) lim ∆𝑥→0 𝑓(2+∆𝑥)−𝑓(2) ∆𝑥 = lim ∆𝑥→0 (2+∆𝑥)2−4 ∆𝑥 = lim ∆𝑥→0 4+2∙2∙∆𝑥+∆𝑥2−4 ∆𝑥 = lim ∆𝑥→0 ∆𝑥(4+∆𝑥) ∆𝑥 = lim ∆𝑥→0 4 + ∆𝑥⏟ 0 = 4 c)
  • 10. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 9Exercícios 1. Ache a inclinação da reta tangente ao gráfico da função 𝑓(𝑥) = 𝑥3 − 3𝑥 + 4 no ponto (𝑥1, 𝑦1). 2. Ache uma equação da reta tangente à curva do exercício 1 no ponto (2,6). Lembre-se que a equação geral de uma reta é dada pela equação 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1). 3. Um monitor é usado para medir os batimentos cardíacos de um paciente após uma cirurgia. Ele fornece um número de batimentos cardíacos após t minutos. Quando os dados na tabela são colocados em um gráfico, a inclinação da reta tangente representa a taxa de batimentos cardíacos por minuto. t (min) 36 38 40 42 44 Batimentos cardíacos 2530 2661 2806 2948 3080 O monitor estima esse valor calculando a inclinação de uma reta secante. Use os dados da tabela para estimar a taxa de batimentos cardíacos após 42 minutos usando a reta secante entre 𝑡 = 42 e os outros tempos dados. Quais são as suas conclusões?
  • 11. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 10Derivada Observe que no problema da velocidade instantânea e na determinação da inclinação da reta tangente a ideia de construção é semelhante: escolhemos um ponto 𝑄(𝑥2, 𝑓(𝑥2)) diferente do ponto 𝑃(𝑥1, 𝑓(𝑥1)), dado no problema e aproximamos Q de P, modo a diminuir a distância entre os valores do domínio, isto é, fazemos 𝑥2 tender a 𝑥1. Chamando a diferença entre 𝑥2 e 𝑥1 de ∆𝑡 (∆𝑡 = 𝑥2 − 𝑥1), segue que 𝑥2 = 𝑥1 + ∆𝑡, e a resposta ao problema proposto é obtida resolvendo o seguinte limite: lim ∆𝑥→0 𝑓(𝑥1 + ∆𝑥) − 𝑓(𝑥1) ∆𝑥 Este limite, por ser usado na resolução de diferentes problemas, pode ser dito especial, e por isso, recebe o nome de derivada. Exemplo: Ache a derivada da função 𝑓(𝑥) = 3𝑥2 + 12. 𝑓′(𝑥) = lim ∆𝑥→0 3(𝑥 + ∆𝑥)2 + 12 − (3𝑥2 + 12) ∆𝑥 = lim ∆𝑥→0 3𝑥2 + 6𝑥 ∙ ∆𝑥 + ∆𝑥2 + 12 − 3𝑥2 − 12 ∆𝑥 = lim ∆𝑥→0 6𝑥 ∙ ∆𝑥 + ∆𝑥2 ∆𝑥 = lim ∆𝑥→0 ∆𝑥(6𝑥 + ∆𝑥) ∆𝑥 = lim ∆𝑥→0 6𝑥 + ∆𝑥⏟ 0 = 6𝑥 Portanto, a derivada de 𝑓(𝑥) = 3𝑥2 + 12 é 𝑓′(𝑥) = 6𝑥. Definição: A derivada de uma função f é a função denotada por f’, tal que seu valor em qualquer número 𝑥 do domínio de f seja dado por 𝑓′(𝑥) = lim ∆𝑥→0 𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥) ∆𝑥 se esse limite existir. O SÍMBOLO 𝑓′ FOI INTRODUZIDO PELO MATEMÁTICO LAGRANGE, NO SÉCULO XVIII. EXISTEM OUTRAS NOTAÇÕES : 𝑦′, 𝑑𝑦 𝑑𝑥 , 𝑑 𝑑𝑥 (𝑦), E REPRESENTAM A DERIVADA DA FUNÇÃO 𝑦 EM RELAÇÃO À VARIÁVEL 𝑥 Leithold, 1994.
  • 12. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 11Observação: Se 𝑥1 for um determinado número do domínio de 𝑓, podemos calcular a derivada neste ponto utilizando a seguinte equação: 𝑓′(𝑥1) = lim 𝑥→𝑥1 𝑓(𝑥) − 𝑓(𝑥1) 𝑥 − 𝑥1 Exemplo: Ache a derivada da função 𝑓(𝑥) = 3𝑥2 + 12 no ponto 2. Como foi calculado no exemplo anterior 𝑓′(𝑥) = 6𝑥, aplicando 𝑥 = 2, segue que 𝑓′(2) = 6 ∙ 2 = 12 Utilizando a fórmula da observação acima, podemos realizar o seguinte cálculo: 𝑓′(2) = lim 𝑥→2 (3𝑥2 + 12) − 24 𝑥 − 2 = lim 𝑥→2 3𝑥2 − 12 𝑥 − 2 = lim 𝑥→2 3(𝑥2 − 4) 𝑥 − 2 = lim 𝑥→2 3(𝑥 − 2)(𝑥 + 2) 𝑥 − 2 = lim 𝑥→2 3(𝑥 + 2) = 3 ∙ 4 = 12 Exercícios: 1. Calcule a derivada das funções dadas: a) 𝑦 = 8 − 𝑥3 d) 𝑦 = 7𝑥 + 3 g) 𝑦 = 𝑥3 − 3𝑥 b) 𝑦 = 𝑥3 e) 𝑦 = 3𝑥2 + 4 h) 𝑦 = 1 𝑥 c) 𝑦 = √ 𝑥 f) 𝑦 = 3𝑥2 − 6 i) 𝑦 = −2 2. Ache a equação da reta tangente à curva dada, no ponto indicado. a) 𝑦 = 𝑥2 − 4𝑥 − 5; (−2,7) c) 𝑦 = 2𝑥 − 𝑥3 ; (−2,4) b) 𝑦 = 6 𝑥 ; (3,2) d) 𝑦 = − 8 √ 𝑥 ; (4, −4)
  • 13. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 12Derivabilidade e continuidade O processo do cálculo da derivada é chamado derivação. Assim, a derivação é a operação de derivar uma função 𝑓′ de uma função 𝑓. Se uma função possui uma derivada em 𝑥1, a função será derivável em 𝑥1. Uma função será derivável em um intervalo aberto se ela for derivável em todo número deste intervalo aberto. Exemplo 1: A derivada da função 𝑓(𝑥) = 3𝑥2 + 12 é 𝑓′(𝑥) = 6𝑥. Como o domínio de 𝑓(𝑥) são todos os reais e 6𝑥 pode ser calculado para qualquer número real, dizemos que 𝑓(𝑥) é derivável em todos os reais. Exemplo 2: A derivada da função 𝑔(𝑥) = √𝑥 − 3 é a função 𝑔′(𝑥) = 1 2√𝑥−3 . Note que o domínio de 𝑔(𝑥) é o intervalo [3, +∞[, no entanto, não podemos calcular 𝑔′(3), pois o valor do denominador seria zero, logo, a função 𝑔(𝑥) não é derivável em todo o seu domínio, porém, 𝑔(𝑥) é derivável no intervalo (3, +∞). Exemplo 3: Seja 𝑓(𝑥) = 𝑥 1 3⁄ , resolva o que se pede. a) Ache 𝑓′(𝑥). b) Mostre que 𝑓′(0) não existe, mesmo que 𝑓(𝑥) seja contínua nesse número. c) Faça um esboço do gráfico de 𝑓.
  • 14. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 13Teorema: Se uma função 𝑓 for derivável em 𝑥1, então 𝑓 será contínua em 𝑥1. Demonstração: Observe que, pelo teorema, segue que toda função é derivável é necessariamente contínua. Entretanto, conforme o exemplo 3, nem toda função contínua é derivável.
  • 15. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 14Exercícios: 1. Calcule a derivadas das funções a seguir e diga o que é possível concluir. a) 𝑦 = 3 b) 𝑦 = −3 c) ) 𝑦 = 5 d) ) 𝑦 = −√2 e) 𝑦 = 𝑥 f) 𝑦 = 𝑥 + 2 g) 𝑦 = 𝑥 − 4 h) 𝑦 = −𝑥 i) 𝑦 = 𝑥2 j) 𝑦 = 𝑥2 − 1 k) 𝑦 = 𝑥2 + 2 l) 𝑦 = 𝑥2 − 7 2. Dadas as funções 𝑓(𝑥) = 3 + 𝑥, 𝑔(𝑥) = 𝑥2 − 9, calcule as derivadas indicadas e diga se há alguma regularidade: a) 𝑓′(𝑥) b) 𝑔′(𝑥) c) 𝑓′(𝑥) + 𝑔′(𝑥) d) [𝑓(𝑥) + 𝑔(𝑥)]′ e) 𝑓′(𝑥) − 𝑔′(𝑥) f) [𝑓(𝑥) − 𝑔(𝑥)]′ g) 𝑓′(𝑥) ∙ 𝑔′(𝑥) h) [𝑔(𝑥) ∙ 𝑓(𝑥)]′ i) 𝑓′(𝑥)/𝑔′(𝑥) j) [𝑓(𝑥)/𝑔(𝑥)]′ k) 𝑔′(𝑥)/𝑓′(𝑥) l) [𝑔(𝑥)/𝑓(𝑥)]′
  • 16. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 15Teoremas de derivação de funções contínuas Considerando 𝑓(𝑥), 𝑔(𝑥) e ℎ(𝑥) funções contínuas e uma constante real c, são válidos os seguintes teoremas: 1. 𝑓(𝑥) = 𝑐 ⇒ 𝑓′(𝑥) = 0 2. 𝑓(𝑥) = 𝑥 𝑛 ⇒ 𝑓′(𝑥) = 𝑛 ∙ 𝑥 𝑛−1 3. 𝑓(𝑥) = 𝑔(𝑥) ∙ 𝑐 ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) ∙ 𝑐 4. 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) + ℎ′(𝑥) 5. 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) − ℎ′(𝑥) 6. 𝑓(𝑥) = 𝑔(𝑥) ∙ ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) ∙ ℎ(𝑥) + ℎ′(𝑥) ∙ 𝑔(𝑥) 7. 𝑓(𝑥) = 𝑔(𝑥) ℎ(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥)∙ℎ(𝑥)−ℎ′(𝑥)∙𝑔(𝑥) [ℎ(𝑥)]2 , com ℎ(𝑥) ≠ 0 8. 𝑓(𝑥) = 𝑠𝑒𝑛𝑥 ⇒ 𝑓′(𝑥) = 𝑐𝑜𝑠𝑥 9. 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 ⇒ 𝑓′(𝑥) = −𝑠𝑒𝑛𝑥 Exercícios: 1. Calcule a derivada das funções a seguir utilizando os teoremas e, em seguida, confirme o resultado calculando pela definição. a) 𝑓(𝑥) = 7𝑥 − 5 b) 𝑔(𝑥) = 1 − 2𝑥 − 𝑥2 c) ℎ(𝑥) = 4𝑥2 + 𝑥 + 1 2. Calcule a derivada das funções indicadas utilizando os teoremas de derivação. a) ℎ(𝑥) = 𝑥2 − 𝑥 b) 𝑦 = (𝑥2 + 1)3(𝑥 − 4) c) 𝑔(𝑥) = 𝑡𝑔𝑥 d) 𝑓(𝑥) = 1 2 𝑠𝑒𝑛𝜃 − 𝑐𝑜𝑠𝜃 e) 𝑤(𝑥) = 5𝑥 (2𝑥)3 + 2𝑠𝑒𝑛𝑥 3. Determine 𝑓′ (1) se 𝑓(𝑥) = 𝑥3 + 3𝑥 + 1.
  • 17. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 164. O limite abaixo representa o limite de uma função em um ponto a, ou seja, 𝑓′(𝑎). Determine f(x) e o valor de a. lim ℎ→0 √(4 + ℎ) + 2 ℎ 5. Dada a função 𝑓(𝑥) = √𝑥2 + 1, mostre que 𝑓′(𝑥) = 𝑥 √𝑥2+1 .
  • 18. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 17 Derivada da função composta 10. Regra da cadeia: 𝑓(𝑥) = 𝑔(ℎ(𝑥)) ⇒ 𝑓′(𝑥) = 𝑔′(ℎ(𝑥)) ∙ ℎ′(𝑥) Exemplo 1: Seja 𝑓(𝑥) = (2𝑥3 − 5𝑥2 + 4)10 , calcule 𝑓′(𝑥). Exemplo 2: Seja 𝑓(𝑥) = 𝑠𝑒𝑛(2𝑥) calcule 𝑓′(𝑥). Exercícios: 1. Utilize a regra da cadeia para derivar as seguintes funções: a) 𝑓(𝑥) = (5𝑥 − 2)2 b) 𝑔(𝑡) = √2𝑡2 + 5𝑡 c) ℎ(𝑥) = 3 (2𝑥−5)2 2. Um corpo se move em linha reta de acordo com a equação 𝑠(𝑡) = √4 + 3𝑡2, onde s é dado em metros e t em segundos. a) Determine a velocidade média desse corpo no intervalo [0,2]. b) Determine a velocidade do corpo no instante t = 2s.
  • 19. FACULDADE ESTADUAL DE FILOSOFIA, CIÊNCIAS E LETRAS UNIÃO DA VITÓRIA - ESTADO DO PARANÁ HISTÓRIA E PEDAGOGIA: Decreto Federal nº 61.120 - 31.07.67 - DOU 03.08.67 LETRAS/INGLÊS E GEOGRAFIA: Decreto Federal n.º 74.750 - 23.10.74 - DOU 24.10.74 LETRAS/ESPANHOL: Decreto Estadual nº 1.715 - 13.08.03 - DOE 13.08.03 MATEMATICA: Decreto Estadual nº 1.719 - 13.08.03 - DOE 13.08.03 CIÊNCIAS BIOLÓGICAS: Decreto Estadual nº 4.275 - 01.02.05 - DOE 01.02.05 QUÍMICA: Decreto Estadual n° 1.040 - 27.07.07 - DOE - 27.07.07 FILOSOFIA: Decreto Estadual n° 1.211 - 03.05.11 - DOE - 03.05.11 Professora Gabriele Granada Veleda 18Outros teoremas de derivação de função contínua 11. 𝑓(𝑥) = 𝑐 𝑔(𝑥) ⇒ 𝑓′(𝑥) = 𝑐 𝑔(𝑥) ∙ ln 𝑐 ∙ 𝑔′(𝑥) Exemplo 1: 𝑓(𝑥) = 2 𝑥2+𝑥 Exemplo 2: 𝑓(𝑥) = √3 𝑠𝑒𝑛𝑥+15 12. 𝑓(𝑥) = 𝑒 𝑔(𝑥) ⇒ 𝑓′(𝑥) = 𝑒 𝑔(𝑥) ∙ 𝑔′(𝑥) Exemplo: 𝑓(𝑥) = 𝑒cos( 𝑥 2⁄ )+1 𝑠𝑒𝑛[𝑐𝑜𝑠( 𝑥2 2⁄ )] 13. 𝑓(𝑥) = log 𝐶 𝑔(𝑥) ⇒ 𝑓′(𝑥) = 𝑔′(𝑥) 𝑔(𝑥)∙ln 𝑐 Exemplo: 𝑓(𝑥) = log3 (5𝑥2 + 3𝑥) 14. ( 𝑥) = 𝑙𝑛 𝑔(𝑥) ⇒ 𝑓′( 𝑥) = 𝑔′(𝑥) 𝑔(𝑥) Exemplo: 𝑓(𝑥) = 𝑙𝑛 ( 𝑠𝑒𝑛2 ( 5𝑥−1 4−3𝑥 ))