O documento descreve o algoritmo de máquina de vetor de suporte (SVM), explicando como ele busca encontrar o hiperplano separador de margem máxima entre os dados de treinamento de duas classes. O SVM define fronteiras lineares ótimas para dados linearmente separáveis, maximizando a distância entre o hiperplano separador e os exemplos de treinamento mais próximos, chamados de vetores de suporte. O problema é formulado como um problema de otimização para encontrar os parâmetros ω e b que maximizam essa distância de separação.