A função f(x) = 1/x é analisada quando x tende para infinito. Conclui-se que, à medida que x aumenta sem limite, f(x) aproxima-se cada vez mais de zero, ou seja, o limite de f(x) quando x tende para positivo infinito é zero.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒇 𝒙 =
𝟏
𝒙
Consideremos agora o comportamento da função quando 𝑥 tende para +∞.
Isto é, consideremos um conjunto
de valores positivos de 𝑥 cada vez
maiores.
2.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
𝒙 𝒇(𝒙)
1 1
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
3.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
4.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
5.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
4 0,25
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
6.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
4 0,25
10 0,1
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
7.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
4 0,25
10 0,1
20 0,05
𝑥
𝑓(𝑥)
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
8.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
4 0,25
10 0,1
20 0,05
50 0,02
100 0,001
1000 0,0001
𝑥
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
9.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
1 1
2 0,5
3 0,33(3)
4 0,25
10 0,1
20 0,05
50 0,02
100 0,001
1000 0,0001
… …
𝒙 → +∞ 𝒇(𝒙) → 𝟎
Quanto maior for o valor de 𝑥 , 𝑓(𝑥) aproxima-se
cada vez mais de zero. Isto é, quando
𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 + ∞, 𝒇(𝒙) tende para 𝟎.
Significa que o limite da função 𝑓 ,
quando 𝑥 tende para +∞, tende para 0.
Simbolicamente:
𝐥𝐢𝐦
𝒙→+∞
𝟏
𝒙
= 𝟎
𝑓(𝑥)
𝑥
𝒇 𝒙 =
𝟏
𝒙
Consideremos um conjunto de
valores positivos de 𝑥 cada vez
maiores.
10.
Considere 𝑓 umafunção real de variável real definida por 𝑓 𝑥 =
1
𝑥
e de domínio 𝐷𝑓 = ℝ 0 .
𝒙 𝒇(𝒙)
−1 −1
−2 −0,5
−3 −0,33(3)
−4 −0,25
−10 −0,1
−20 −0,05
−50 −0,02
−100 −0,001
−1000 −0,0001
… …
𝒙 → −∞ 𝒇(𝒙) → 𝟎
𝒇 𝒙 =
𝟏
𝒙
Quanto menor for o valor de 𝑥 , 𝑓(𝑥) aproxima-se
cada vez mais de zero. Isto é, quando
𝒙 𝐭𝐞𝐧𝐝𝐞 𝐩𝐚𝐫𝐚 − ∞, 𝒇(𝒙) tende para 𝟎.
O mesmo se aplica quando o valor
de 𝑥 tende para −∞.
O limite da função 𝑓, quando 𝑥 tende
para −∞, tende para 0:
𝐥𝐢𝐦
𝒙→−∞
𝟏
𝒙
= 𝟎
𝑥
𝑓(𝑥)