SlideShare uma empresa Scribd logo
1 de 48
Baixar para ler offline
Temperatura e Calor
Leis da Termodinâmica
2
Temperatura
➢ O conceito de temperatura está intuitivamente ligado a ideia de “quente” e “frio”.
➢ Para se medir a temperatura, é necessário uma escala.
➢ Para determinar a temperatura de um objeto, usa-se o termômetro. A leitura deve ser
feita quanto o sistema atinge o equilíbrio térmico.
3
A lei Zero da Termodinâmica
➢ Considere três sistemas, A, B e C, que inicialmente não estão em equilíbrio térmico.
➢ A e B são colocados em contato com C, mas permanecem isolados entre si.
➢ Experimentos mostram que, quando A e B são colocados em contato, não há nenhuma
mudança no estado de A ou de B.
Lei Zero da Termodinâmica
Se dois corpos A e B estão em equilíbrio térmico com um terceiro corpo C, então, estão
em equilíbrio térmico um com o outro.
Quando dois corpos estão em equilíbrio térmico, suas temperaturas são iguais.
4
Escalas de Temperatura
TF =
9
5
TC + 320
TK = TC + 273.15
5
A Escala Kelvin
➢ Geralmente, a definição de uma escala de temperatura depende das propriedades do
material utilizado.
➢ O termômetro mais próximo do ideal é o termômetro de gás. O princípio utilizado é de que
a pressão de um gás a volume constante aumenta com a temperatura.
➢ O termômetro foi calibrado usando os pontos de fusão e ebulição da água, para diferentes
gases.
Para todos os gases, a pressão é zero quando a
temperatura é – 273,15 0
C.
Atualmente, o ponto triplo da água é usada como referência para a escala kelvin. Por
definição, o ponto triplo da água ocorre a T = 273,16 K.
6
Dilatação Térmica I
➢ A maioria dos materiais se expande com o aumento da temperatura.
➢ A dilatação térmica é consequência da separação média entre os átomos
constituintes da matéria.
➢ Se a dilatação é pequena em comparação com as dimensões do objeto, a dilatação
é proporcional a temperatura.
Suponha que um objeto tenha um comprimento inicial Li
a uma certa temperatura e
um comprimento Lf
após uma mudança de temperatura de ΔT. O coeficiente de
expansão linear é definido como:
α =
Δ L/ Li
Δ T
Lf − Li = α Li (Tf − Ti)
A unidade de α é 0
C -1
.
A expressão acima é apenas aproximadamente correta para pequenas variações
de temperatura.
7
Se uma dimensão de um objeto muda com a temperatura, a área e o volume também
variam.
Dilatação Térmica II
Se a temperatura de um sólido ou um líquido varia de ΔT, a variação volumétrica é
dada por
Δ V = V β Δ T
onde é o coeficiente de expansão volumétrica do sólido ou do líquido, que é
diferente para diferentes materiais.
Exercício: Mostre que β = 3α.
8
Quando a temperatura aumenta de 00
C para 40
C, a água sofre contração e portanto sua
densidade aumenta. Acima de 40
C, a água se expande, como ocorre com os outros
líquidos.
Dilatação Térmica III
Esse comportamento anômalo da água é o responsável pelo congelamento da
superfície dos lagos, mantendo a água no estado líquido na parte mais profunda.
9
Quantidade de Calor
Calor é a energia transferia de um sistema para outro devida a uma diferença de
temperatura.
Calor não é uma propriedade intrínseca do sistema.
Como calor é energia, sua unidade no SI é o joule. Também à comum utilizar a
unidade caloria (cal), definida como a quantidade de calor necessária para aquecer 1g
de água de 14,5 0
C 15,5 0
C. Essas unidades estão relacionadas por
1 Cal = 4,187 J
10
Equivalente Mecânico do Calor
No experimento de Joule, uma certa quantidade de água é mantida termicamente
isolada num recipiente.
Trabalho é realizado sobre a água através de um sistema de pás que gira impulsionado
pela queda dos blocos mostrados na figura.
Joule encontrou que a perda de energia potencial 2mgh é proporcional ao aumento de
temperatura ΔT da água.
1 Cal = 4,187 J
11
Absorção de Calor I
A capacidade térmica (ou capacidade calorífica) C de uma substância é definida como
a quantidade de energia necessária para elevar a temperatura da substância em 1 0
C.
Capacidade Térmica
Q = C Δ T
Calor Específico
Calor específico c de uma substância é a capacidade térmica por unidade de massa.
Portanto, podemos escrever
Q = m c Δ T
O calor específico é uma medida da sensibilidade térmica de uma substância. Quanto
maior o calor específico do material, maior a quantidade de energia necessária para
provocar uma certa mudança de temperatura.
12
Absorção de Calor II
O mol é definido como
Calor Específico Molar
A capacidade térmica por mol é chamada calor específico molar, dada em J/mol.K .
1 mol = 6,02 x 1023
unidades elementares
O calor específico molar dos sólidos é de
aproximadamente 25 J/mol.K (em altas
temperaturas).
13
Absorção de Calor III
A quantidade de calor, por unidade de massa, necessária para que uma amostra de
uma substância mude completamente de fase é chamada calor de transformação ou
calor latente L.
Calor Latente
Q = Lm
Quando a mudança de fase é de líquida para gasosa, o calor latente é chamado calor
de vaporização LV
. Quando a mudança é de sólida para líquida, o calor é chamado
calor de fusão LF
.
Exemplo: energia
necessária para
converter 1 kg de
gelo a – 30 0
C em
vapor a 120 0
C.
14
Transmissão de Calor I
Existem três mecanismos de transmissão de calor
Condução
Considere uma placa de área A e largura Δx, cujas faces são
mantidas a temperaturas T1
e T2
, com T2
> T1
. Seja Q o calor
que é transferido através da placa, da face quente para a fria,
no tempo t. A taxa de transmissão do calor H (energia
transferida por unidade de tempo) é dada por
H =
dQ
dt
= kA∣
dT
dx
∣
onde k é a condutividade térmica e dT/dx é o gradiente de temperatura. Para a situação descrita
acima (T1
e T2
constantes), a taxa de transmissão é
H = kA
T2−T1
Δ x
15
Isolamento Térmico
Transmissão de Calor II
Em aplicações de engenharia, a razão Δx/k para um dado material é chamada de
resistência térmica R. Quanto menor a condutividade, maior a resistência da placa de
uma dada largura Δx.
R =
Δ x
k
Muitos materiais devem sua capacidade isolante à sua habilidade de prender pequenas
“bolsas” de ar em seu interior. Em climas frios, vidros duplos são colocados nas
janelas para reduzir o frio (reduzir a transferência de calor).
Se uma placa é composta por vários materiais de resistência R1
, R2
, R3
,..., a taxa de
transmissão de calor é
H =
A(T2−T1)
∑
i
Ri
16
Quando uma porção de fluido entra em contato com um objeto de maior temperatura,
o fluido se expande. Como se torna menos denso que a parte do fluido mais frio à sua
volta, essa parte quente do fluido sobe o a porção fria desce, formando uma corrente.
Esse tipo de transmissão de calor é chamado convecção.
Esse processo ocorre, por exemplo, quando uma sala é aquecida (ou resfriada) por um
aparelho.
Convecção
Transmissão de Calor III
17
Todos objetos emitem radiação eletromagnética produzida pela vibração térmica das
moléculas, assim como absorvem parte da radiação térmica que chega até eles.
A taxa com a qual um corpo emite radiação é proporcional a quarta potência da
temperatura absoluta:
Radiação
Transmissão de Calor IV
H = σ ϵ AT
4
onde σ é uma constante chamada constante de Boltzamann, A é a área da superfície
do objeto, T é a temperatura em kelvin e ϵ é a emissividade, que pode variar ente zero
e um.
Se um corpo está a temperatura T e o meio a temperatura T0
, a energia líquida ganha
ou perdida por unidade de tempo, devido à radiação, é:
H = σ ϵ A(T
4
−T0
4
)
O corpo que absorve toda radiação incidente (ϵ = 1) é chamado de corpo negro.
18
A garrafa térmica é um contêiner projetado para minimizar a transferência de energia
por condução, convecção e radiação
A garrafa térmica (garrafa a vácuo)
Transmissão de Calor V
A garrafa consiste de vaso com paredes duplas
de vidro cobertas com prata. O espaço entre as
paredes é evacuado para minimizar a
transferência por condução e convecção. A
superfície de prata minimiza a perda por
radiação porque a prata é um bom refletor.
19
Sistema termodinâmico: qualquer sistema que tem potencial para trocar energia com
o meio
Processo termodinâmico: quando o estado de um sistema é variado por mudanças de
pressão, volume ou temperatura, dizemos que o processo é um processo
termodinâmico.
Energia Interna (U): soma das energias cinéticas de todas as partículas, acrescida da
soma das energias potenciais decorrentes das interações entre elas.
A energia interna é toda a energia do sistema associada com seus componentes
microscópicos (átomos ou moléculas).
Primeira Lei da Termodinâmica
20
Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é
“usada” para aumentar a energia interna do sistema
Primeira Lei da Termodinâmica
Δ U = Q
21
Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é
“usada” para aumentar a energia interna do sistema
Primeira Lei da Termodinâmica
Δ U = Q
Se o sistema realiza trabalho (W > 0), energia é transferida para o meio, e a energia
interna diminui
Δ U = −W
22
Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é
“usada” para aumentar a energia interna do sistema
Primeira Lei da Termodinâmica
Δ U = Q
Se o sistema realiza trabalho (W > 0), energia é transferida para o meio, e a energia
interna diminui
Δ U = −W
Se ocorre transferência de calor e realização de trabalho
Δ U = Q−W
Primeira lei da
termodinâmica
Convenção de sinais:
W representa o trabalho realizado pelo sistema.
Q representa o calor fornecido ao sistema.
23
Quando um sistema termodinâmico varia de um estado inicial até um estado final, ele
passa por uma série de estados intermediários. Essa série de estados é chamada
caminho.
Caminhos Entre Estados Termodinâmicos
Quando os estados intermediários forem estados de equilíbrio, eles podem ser
representados num diagrama PV.
Suponha que o sistema passe de um estado 1 (P1
, V1
, T1
) para um estado 2 (P2
, V2
, T2
).
Três caminhos possíveis
a) 1 → 3 → 2
b) 1 → 4 → 2
c) 1 → 2
24
O trabalho realizado em cada um dos caminhos é
Caminhos Entre Estados Termodinâmicos
a) 1 → 3 → 2
b) 1 → 4 → 2 c) 1 → 2
25
O trabalho realizado em cada um dos caminhos é
Caminhos Entre Estados Termodinâmicos
a) 1 → 3 → 2
b) 1 → 4 → 2 c) 1 → 2
O trabalho realizado depende não apenas
dos estados iniciais e finais, mas também do
caminho.
26
O calor fornecido (Q) depende do caminho ?
Caminhos Entre Estados Termodinâmicos
Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura
constante (T = 300 K).
Processo 1: Expansão Isotérmica
O gás se expande lentamente,
recebendo calor do aquecedor,
mantendo T = 300 K.
27
O calor fornecido (Q) depende do caminho ?
Caminhos Entre Estados Termodinâmicos
Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura
constante (T = 300 K).
Processo 1: Expansão Isotérmica
O gás se expande lentamente,
recebendo calor do aquecedor,
mantendo T = 300 K.
Processo 2: Expansão Livre
O sistema está isolado (Q = 0).
Ao romper a divisória, o gás
sofre uma expansão rápida (e
W = 0). Nesse caso, não ocorre
variação de temperatura.
28
O calor fornecido (Q) depende do caminho ?
Caminhos Entre Estados Termodinâmicos
Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura
constante (T = 300 K).
Processo 1: Expansão Isotérmica
O gás se expande lentamente,
recebendo calor do aquecedor,
mantendo T = 300 K.
Processo 2: Expansão Livre
O sistema está isolado (Q = 0).
Ao romper a divisória, o gás
sofre uma expansão rápida (e
W = 0). Nesse caso, não ocorre
variação de temperatura.
O calor transferido também depende do caminho.
29
Para diversos sistemas termodinâmicos, podemos medir Q e W em várias mudanças
de estado e ao longo de diversos caminhos. Experimentalmente, observa-se que ΔU é
independente do caminho, ou seja, depende apenas do estado inicial e do estado
final do sistema.
Energia Interna
A energia interna é uma função de estado (uma função de qualquer par das variáveis
de estado P, V e T)
U = f (P ,V ) U = f (P ,T) U = f (T ,V )
No caso de um gás ideal, a energia interna é função apenas da temperatura.
U = f (T)
30
Tipos de Processos Termodinâmicos
1. Ciclo. No processo cíclico, os estados inicial e final são os mesmos.
U1 = U2
W = Q
2. Processo Adiabático. Não há troca de calor (Q = 0).
Δ U = −W
3. Processo Isocório. Volume permanece constante.
Δ U = Q
31
Tipos de Processos Termodinâmicos
4. Processo Isobárico. Pressão se mantém constante.
Δ U = Q−W
W = P Δ V
5. Processo Isotérmico. Temperatura se mantém constante
Para que um processo seja isotérmico, a troca de calor deve ser lenta,
possibilitando que o sistema permanece em equilíbrio térmico.
No caso específico do gás ideal, U = f (T), e portanto ΔU = 0.
W = nRT ln
(
V f
Vi
)
O trabalho numa expansão (compressão) isotérmica é dado por
32
Capacidades Térmicas de Um Gás Ideal I
Capacidade térmica a volume constante: CV
CV =
q
2
R q = número de graus de liberdade
Gás monoatômico (q = 2)
Gás diatômico (q = 5)
Sólidos (q = 6)
CV = 3R = 24.9 J / mol.K
Lei de Dulong-Petit
33
Capacidades Térmicas de Um Gás Ideal II
Capacidade térmica a volume constante: CV
Capacidade térmica a pressão constante: CP
Para todas as substâncias que se expandem no aquecimento
CP > CV
Para medir CV
, elevamos a temperatura de
um gás ideal num recipiente de paredes
rígidas (V fixo).
dQ = nCV dT
Para medir CP
, deixamos o gás se expandir
o suficiente para manter a pressão
constante.
dQ = nCP dT
Como U = f (T), ΔU deve ser o mesmo em ambos os casos (mesma temperatura).
34
Um processo é reversível quando se realiza muito lentamente, e o atrito é desprezível
O sistema está sempre próximo do equilíbrio termodinâmico, e qualquer mudança de
estado pode ser invertida. Exemplo: compressão ou expansão isotérmica.
Processo reversível
Processos Reversíveis e Irreversíveis
Processo irreversível
São processos que ocorrem em um determinado sentido, mas não em sentido
contrário. Exemplos: fluxo de calor e expansão livre de um gás.
35
Consideremos um gás contido num recipiente de paredes diatérmicas, à temperatura T
e pressão Pi
> P0
(pressão atmosférica). Se o gás se expande isotermicamente, temos
pela primeira lei:
Segunda Lei da termodinâmica
Q = W
O processo só pode ser executado uma única vez. Para realizar um ciclo, é necessário
que o sistema volte ao estado inicial. Nenhum processo físico conhecido permite que
calor seja completamente convertido em trabalho num ciclo.
Enunciado de Kelvin (K) da segunda lei:
É impossível realizar um processo cujo único efeito seja remover calor de um
reservatório térmico e produzir uma quantidade equivalente de trabalho.
Único efeito significa que o sistema deve realizar um ciclo.
Enunciado de Clausius (C) da segunda lei:
É impossível realizar um processo cujo único efeito seja transferir calor de um corpo
mais frio para um corpo mais quente.
36
Máquinas Térmicas
Qualquer dispositivo que transforma calor parcialmente em trabalho ou energia
mecânica é chamado máquina térmica.
A substância no interior da máquina responsável pelas trocar de calor é chamada
substância de trabalho. Exemplo: mistura de gasolina e ar.
Pela segunda lei da termodinâmica, todas as máquinas absorvem calor de uma fonte
de temperatura relativamente alta (fonte quente, TQ
) e rejeitam parte do calor a uma
temperatura mais baixa (fonte fria, TF
).
Exemplo: máquina a vapor.
Na máquina a vapor, a água é convertida
em vapor absorvendo calor Q1
, realiza
trabalho e é condensada, transferindo calor
Q2
para a fonte fria.
37
Eficiência de uma Máquina Térmica
Uma máquina térmica pode ser representada por um diagrama de fluxo de energia,
onde QQ
é o calor fornecido pela fonte quente a temperatura TQ
, e QF
o calor rejeitado
para a fonte fria a temperatura TF
. (Note a largura do “tubo”.)
Fonte Quente
Fonte Fria
Como a máquina opera em ciclo, ΔU = 0. Pela primeira lei
da termodinâmica:
W = QQ−∣QF∣
A eficiência térmica é dada por:
η =
W
QQ
= 1−∣
QF
QQ
∣
Note que η < 1.
38
Motor a Gasolina – Ciclo Otto
Os processos termodinâmicos que
ocorrem em um motor a gasolina podem
ser representados por um processo
idealizado chamado ciclo Otto.
39
Eficiência do ciclo Otto
Os calores QQ
e QF
são (W = 0 em bc e da):
QQ = nCV (Tc−Tb) > 0
QF = nCV (Ta−Td) < 0
A eficiência é:
η =
QQ−∣QF∣
QQ
= 1−
1
rγ−1
Sendo r = 8 e γ = 1,4 , a eficiência é de 56%.
Eficiência real: 35%.
O volume varia de V a rV.
(verifique!)
40
Refrigeradores
O melhor refrigerador é aquele que remove a maior quantidade de calor QF
com o
menor trabalho possível. O coeficiente de desempenho é
Um refrigerador recebe calor de uma fonte fria e o transfere para uma fonte quente.
Para isso, precisa receber trabalho.
Pela primeira lei:
QQ + QF + W = 0
∣QQ∣ = QF + ∣W∣
Como W < e QF
< 0
K =
QF
∣W∣
=
QF
∣QQ∣ − QF
41
Geladeiras e Condicionadores de Ar
Os refrigeradores contém um fluido refrigerante, um compressor, um evaporador e um
condensador.
O compressor comprime adiabaticamente o fluido, que libera calor para o meio
externo (fonte quente). O fluído se expande adiabaticamente no evaporador, se resfria
e calor é transferido do interior do refrigerador para o fluído.
42
Geladeiras e Condicionadores de Ar
No caso de um condicionador de ar, as serpentinas do evaporador estão no interior da
sala, e o condensador está do lado de fora.
O coeficiente de desempenho médio de um condicionador de ar é da ordem de 2,5.
43
Equivalência entre os Enunciados de Kelvin e Clausius
Um refrigerador perfeito,
operando acoplado com
uma máquina térmica, teria
como resultado converter
todo o calor QQ
- |QF
| em
W, violando o enunciado
de Kelvin.
W = QQ−∣QF∣
Uma máquina térmica
perfeita, operando com um
refrigerador real, podeira
transferir uma quantidade
de calor QF
da fonte quente
para a fonte fria sem
realização de trabalho.
Q −(Q+QF )=QF
44
O ciclo de Carnot I
Dada uma fonte quente e uma fonte fria, qual é o máximo rendimento que se pode
obter de uma máquina térmica operando entre essas duas fontes ?
A conversão de trabalho em energia é um processo irreversível. O objetivo da
máquina térmica é obter uma reversão parcial desse processo com maior eficiência
possível. Para eficiência máxima, devemos evitar processos irreversíveis.
Como o fluxo de calor devido à variação de temperatura é uma processo irreversível,
um processo cíclico com máxima eficiência deve isotérmico ou adiabático, e o
equilíbrio térmico deve ser sempre mantido.
45
O ciclo de Carnot II
1. Expansão isotérmica de um gás ideal a temperatura TQ
, absorvendo calor QQ
.
2. Expansão adiabática até a temperatura TF
< TQ
.
3. O gás é comprimido isotermicamente, rejeitando calor QF
.
4. O gás é finalmente comprimido adiabaticamente até a temperatura TQ
.
46
O ciclo de Carnot III
Exemplo: suponha que 0,2 mol de um gás ideal diatômico é usado como substância
de trabalho em um ciclo de Carnot com temperaturas de 2270
C e 27 0
C. A pressão
inicial é de 10,0 x 105
Pa, e durante a expansão isotérmica o volume do gás dobra.
a) Encontres os valore P e V em cada vértice do diagrama PV.
b) Calcule Q, W e ΔU em cada etapa e em todo o ciclo.
c) Calcule a eficiência do ciclo.
47
O ciclo de Carnot III
Exemplo: suponha que 0,2 mol de um gás ideal diatômico é usado como substância
de trabalho em um ciclo de Carnot com temperaturas de 2270
C e 27 0
C. A pressão
inicial é de 10,0 x 105
Pa, e durante a expansão isotérmica o volume do gás dobra.
a) Encontres os valore P e V em cada vértice do diagrama PV.
b) Calcule Q, W e ΔU em cada etapa e em todo o ciclo.
c) Calcule a eficiência do ciclo.
48
O Teorema de Carnot
Nenhuma máquina térmica que opere entre uma dada fonte quente e uma dada fonte
fria pode ter rendimento superior ao de uma máquina de Carnot
Todas as máquinas de Carnot que operam entre essas duas fontes tem o mesmo
rendimento.
Uma máquina térmica com rendimento maior do que a máquina de Carnot
violaria a segunda lei da termodinâmica.

Mais conteúdo relacionado

Semelhante a aula_termodinamica.pdf

Termodinâmica (parte 1)
Termodinâmica (parte 1)Termodinâmica (parte 1)
Termodinâmica (parte 1)Charlesguidotti
 
Apostila de fenômenos_de_transporte
Apostila de fenômenos_de_transporteApostila de fenômenos_de_transporte
Apostila de fenômenos_de_transporteMarianna Duarte
 
Termologia -profª_luciana
Termologia  -profª_lucianaTermologia  -profª_luciana
Termologia -profª_lucianaffilipelima
 
Calorimetria Trabalho
Calorimetria TrabalhoCalorimetria Trabalho
Calorimetria TrabalhoIgor Oliveira
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantanaJoane Santana
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantanaJoane Santana
 
Apostila de fenomenos_de_transporte
Apostila de fenomenos_de_transporteApostila de fenomenos_de_transporte
Apostila de fenomenos_de_transporteautomacao16
 
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. Pedro
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. PedroUnidade I - Resumo - Prof. Paula - Fisica - Escola S. S. Pedro
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. PedroHugo Moreira
 
Física 2º ano prof. pedro ivo - (introdução à termometria )
Física 2º ano   prof. pedro ivo - (introdução à termometria )Física 2º ano   prof. pedro ivo - (introdução à termometria )
Física 2º ano prof. pedro ivo - (introdução à termometria )Pedro Ivo Andrade Sousa
 
Termoligia trabalhar.pptx
Termoligia trabalhar.pptxTermoligia trabalhar.pptx
Termoligia trabalhar.pptxMárcia Moura
 
Apostila transcal mecfluidos
Apostila transcal mecfluidosApostila transcal mecfluidos
Apostila transcal mecfluidosDaniele Souza
 
Termometria apostila
Termometria apostilaTermometria apostila
Termometria apostilantebrusque
 
Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Jorge Vieira
 

Semelhante a aula_termodinamica.pdf (20)

Termodinâmica (parte 1)
Termodinâmica (parte 1)Termodinâmica (parte 1)
Termodinâmica (parte 1)
 
Apostila de fenômenos_de_transporte
Apostila de fenômenos_de_transporteApostila de fenômenos_de_transporte
Apostila de fenômenos_de_transporte
 
Termologia -profª_luciana
Termologia  -profª_lucianaTermologia  -profª_luciana
Termologia -profª_luciana
 
Calorimetria I
Calorimetria ICalorimetria I
Calorimetria I
 
3 biotermol 1
3 biotermol 13 biotermol 1
3 biotermol 1
 
Slide de fisica
Slide de fisicaSlide de fisica
Slide de fisica
 
Slide de fisica
Slide de fisicaSlide de fisica
Slide de fisica
 
Calorimetria Trabalho
Calorimetria TrabalhoCalorimetria Trabalho
Calorimetria Trabalho
 
Quantidade de calor
Quantidade de calorQuantidade de calor
Quantidade de calor
 
Aulão Piumhi
Aulão PiumhiAulão Piumhi
Aulão Piumhi
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantana
 
Termodinamica joanesantana
Termodinamica   joanesantanaTermodinamica   joanesantana
Termodinamica joanesantana
 
Apostila de fenomenos_de_transporte
Apostila de fenomenos_de_transporteApostila de fenomenos_de_transporte
Apostila de fenomenos_de_transporte
 
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. Pedro
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. PedroUnidade I - Resumo - Prof. Paula - Fisica - Escola S. S. Pedro
Unidade I - Resumo - Prof. Paula - Fisica - Escola S. S. Pedro
 
Física 2º ano prof. pedro ivo - (introdução à termometria )
Física 2º ano   prof. pedro ivo - (introdução à termometria )Física 2º ano   prof. pedro ivo - (introdução à termometria )
Física 2º ano prof. pedro ivo - (introdução à termometria )
 
Termoligia trabalhar.pptx
Termoligia trabalhar.pptxTermoligia trabalhar.pptx
Termoligia trabalhar.pptx
 
Apostila transcal mecfluidos
Apostila transcal mecfluidosApostila transcal mecfluidos
Apostila transcal mecfluidos
 
Termometria apostila
Termometria apostilaTermometria apostila
Termometria apostila
 
Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015Transferencia de calor_apontamentos_loc_2014_2015
Transferencia de calor_apontamentos_loc_2014_2015
 
Física (calorimetria)
Física (calorimetria)Física (calorimetria)
Física (calorimetria)
 

Mais de CarlosFilho631276

Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdf
Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdfApresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdf
Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdfCarlosFilho631276
 
Primeira Lei da Termodinâmica - slides da aula.pdf
Primeira Lei da Termodinâmica - slides da aula.pdfPrimeira Lei da Termodinâmica - slides da aula.pdf
Primeira Lei da Termodinâmica - slides da aula.pdfCarlosFilho631276
 
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdfTermodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdfCarlosFilho631276
 
aula-termodinamica-20081.ppt
aula-termodinamica-20081.pptaula-termodinamica-20081.ppt
aula-termodinamica-20081.pptCarlosFilho631276
 

Mais de CarlosFilho631276 (7)

Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdf
Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdfApresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdf
Apresentação-Ítalo-Guedes-Termodinâmica-Domina-Total.pdf
 
Primeira Lei da Termodinâmica - slides da aula.pdf
Primeira Lei da Termodinâmica - slides da aula.pdfPrimeira Lei da Termodinâmica - slides da aula.pdf
Primeira Lei da Termodinâmica - slides da aula.pdf
 
2 Lei da TD.pdf
2 Lei da TD.pdf2 Lei da TD.pdf
2 Lei da TD.pdf
 
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdfTermodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf
Termodinamica-OVERVIEW-Física-3º-ano-semana-20.pdf
 
aula-termodinamica-20081.ppt
aula-termodinamica-20081.pptaula-termodinamica-20081.ppt
aula-termodinamica-20081.ppt
 
Cap_tulo 2 - Energia.ppt
Cap_tulo 2 - Energia.pptCap_tulo 2 - Energia.ppt
Cap_tulo 2 - Energia.ppt
 
PQI5821-aula-01.pdf
PQI5821-aula-01.pdfPQI5821-aula-01.pdf
PQI5821-aula-01.pdf
 

Último

10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptxVagner Soares da Costa
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMdiminutcasamentos
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptxVagner Soares da Costa
 
Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3filiperigueira1
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxFlvioDadinhoNNhamizi
 
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfTipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfMarcos Boaventura
 
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfPROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfdanielemarques481
 

Último (7)

10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
10 - RELOGIO COMPARADOR - OPERAÇÃO E LEITURA.pptx
 
Apresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPMApresentação Manutenção Total Produtiva - TPM
Apresentação Manutenção Total Produtiva - TPM
 
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
07 - MICRÔMETRO EXTERNO SISTEMA MÉTRICO.pptx
 
Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3Calculo vetorial - eletromagnetismo, calculo 3
Calculo vetorial - eletromagnetismo, calculo 3
 
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docxTRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
TRABALHO INSTALACAO ELETRICA EM EDIFICIO FINAL.docx
 
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdfTipos de Cargas - Conhecendo suas Características e Classificações.pdf
Tipos de Cargas - Conhecendo suas Características e Classificações.pdf
 
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdfPROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
PROJETO DE INSTALAÇÕES ELÉTRICAS – REVIT MEP -.pdf
 

aula_termodinamica.pdf

  • 1. Temperatura e Calor Leis da Termodinâmica
  • 2. 2 Temperatura ➢ O conceito de temperatura está intuitivamente ligado a ideia de “quente” e “frio”. ➢ Para se medir a temperatura, é necessário uma escala. ➢ Para determinar a temperatura de um objeto, usa-se o termômetro. A leitura deve ser feita quanto o sistema atinge o equilíbrio térmico.
  • 3. 3 A lei Zero da Termodinâmica ➢ Considere três sistemas, A, B e C, que inicialmente não estão em equilíbrio térmico. ➢ A e B são colocados em contato com C, mas permanecem isolados entre si. ➢ Experimentos mostram que, quando A e B são colocados em contato, não há nenhuma mudança no estado de A ou de B. Lei Zero da Termodinâmica Se dois corpos A e B estão em equilíbrio térmico com um terceiro corpo C, então, estão em equilíbrio térmico um com o outro. Quando dois corpos estão em equilíbrio térmico, suas temperaturas são iguais.
  • 4. 4 Escalas de Temperatura TF = 9 5 TC + 320 TK = TC + 273.15
  • 5. 5 A Escala Kelvin ➢ Geralmente, a definição de uma escala de temperatura depende das propriedades do material utilizado. ➢ O termômetro mais próximo do ideal é o termômetro de gás. O princípio utilizado é de que a pressão de um gás a volume constante aumenta com a temperatura. ➢ O termômetro foi calibrado usando os pontos de fusão e ebulição da água, para diferentes gases. Para todos os gases, a pressão é zero quando a temperatura é – 273,15 0 C. Atualmente, o ponto triplo da água é usada como referência para a escala kelvin. Por definição, o ponto triplo da água ocorre a T = 273,16 K.
  • 6. 6 Dilatação Térmica I ➢ A maioria dos materiais se expande com o aumento da temperatura. ➢ A dilatação térmica é consequência da separação média entre os átomos constituintes da matéria. ➢ Se a dilatação é pequena em comparação com as dimensões do objeto, a dilatação é proporcional a temperatura. Suponha que um objeto tenha um comprimento inicial Li a uma certa temperatura e um comprimento Lf após uma mudança de temperatura de ΔT. O coeficiente de expansão linear é definido como: α = Δ L/ Li Δ T Lf − Li = α Li (Tf − Ti) A unidade de α é 0 C -1 . A expressão acima é apenas aproximadamente correta para pequenas variações de temperatura.
  • 7. 7 Se uma dimensão de um objeto muda com a temperatura, a área e o volume também variam. Dilatação Térmica II Se a temperatura de um sólido ou um líquido varia de ΔT, a variação volumétrica é dada por Δ V = V β Δ T onde é o coeficiente de expansão volumétrica do sólido ou do líquido, que é diferente para diferentes materiais. Exercício: Mostre que β = 3α.
  • 8. 8 Quando a temperatura aumenta de 00 C para 40 C, a água sofre contração e portanto sua densidade aumenta. Acima de 40 C, a água se expande, como ocorre com os outros líquidos. Dilatação Térmica III Esse comportamento anômalo da água é o responsável pelo congelamento da superfície dos lagos, mantendo a água no estado líquido na parte mais profunda.
  • 9. 9 Quantidade de Calor Calor é a energia transferia de um sistema para outro devida a uma diferença de temperatura. Calor não é uma propriedade intrínseca do sistema. Como calor é energia, sua unidade no SI é o joule. Também à comum utilizar a unidade caloria (cal), definida como a quantidade de calor necessária para aquecer 1g de água de 14,5 0 C 15,5 0 C. Essas unidades estão relacionadas por 1 Cal = 4,187 J
  • 10. 10 Equivalente Mecânico do Calor No experimento de Joule, uma certa quantidade de água é mantida termicamente isolada num recipiente. Trabalho é realizado sobre a água através de um sistema de pás que gira impulsionado pela queda dos blocos mostrados na figura. Joule encontrou que a perda de energia potencial 2mgh é proporcional ao aumento de temperatura ΔT da água. 1 Cal = 4,187 J
  • 11. 11 Absorção de Calor I A capacidade térmica (ou capacidade calorífica) C de uma substância é definida como a quantidade de energia necessária para elevar a temperatura da substância em 1 0 C. Capacidade Térmica Q = C Δ T Calor Específico Calor específico c de uma substância é a capacidade térmica por unidade de massa. Portanto, podemos escrever Q = m c Δ T O calor específico é uma medida da sensibilidade térmica de uma substância. Quanto maior o calor específico do material, maior a quantidade de energia necessária para provocar uma certa mudança de temperatura.
  • 12. 12 Absorção de Calor II O mol é definido como Calor Específico Molar A capacidade térmica por mol é chamada calor específico molar, dada em J/mol.K . 1 mol = 6,02 x 1023 unidades elementares O calor específico molar dos sólidos é de aproximadamente 25 J/mol.K (em altas temperaturas).
  • 13. 13 Absorção de Calor III A quantidade de calor, por unidade de massa, necessária para que uma amostra de uma substância mude completamente de fase é chamada calor de transformação ou calor latente L. Calor Latente Q = Lm Quando a mudança de fase é de líquida para gasosa, o calor latente é chamado calor de vaporização LV . Quando a mudança é de sólida para líquida, o calor é chamado calor de fusão LF . Exemplo: energia necessária para converter 1 kg de gelo a – 30 0 C em vapor a 120 0 C.
  • 14. 14 Transmissão de Calor I Existem três mecanismos de transmissão de calor Condução Considere uma placa de área A e largura Δx, cujas faces são mantidas a temperaturas T1 e T2 , com T2 > T1 . Seja Q o calor que é transferido através da placa, da face quente para a fria, no tempo t. A taxa de transmissão do calor H (energia transferida por unidade de tempo) é dada por H = dQ dt = kA∣ dT dx ∣ onde k é a condutividade térmica e dT/dx é o gradiente de temperatura. Para a situação descrita acima (T1 e T2 constantes), a taxa de transmissão é H = kA T2−T1 Δ x
  • 15. 15 Isolamento Térmico Transmissão de Calor II Em aplicações de engenharia, a razão Δx/k para um dado material é chamada de resistência térmica R. Quanto menor a condutividade, maior a resistência da placa de uma dada largura Δx. R = Δ x k Muitos materiais devem sua capacidade isolante à sua habilidade de prender pequenas “bolsas” de ar em seu interior. Em climas frios, vidros duplos são colocados nas janelas para reduzir o frio (reduzir a transferência de calor). Se uma placa é composta por vários materiais de resistência R1 , R2 , R3 ,..., a taxa de transmissão de calor é H = A(T2−T1) ∑ i Ri
  • 16. 16 Quando uma porção de fluido entra em contato com um objeto de maior temperatura, o fluido se expande. Como se torna menos denso que a parte do fluido mais frio à sua volta, essa parte quente do fluido sobe o a porção fria desce, formando uma corrente. Esse tipo de transmissão de calor é chamado convecção. Esse processo ocorre, por exemplo, quando uma sala é aquecida (ou resfriada) por um aparelho. Convecção Transmissão de Calor III
  • 17. 17 Todos objetos emitem radiação eletromagnética produzida pela vibração térmica das moléculas, assim como absorvem parte da radiação térmica que chega até eles. A taxa com a qual um corpo emite radiação é proporcional a quarta potência da temperatura absoluta: Radiação Transmissão de Calor IV H = σ ϵ AT 4 onde σ é uma constante chamada constante de Boltzamann, A é a área da superfície do objeto, T é a temperatura em kelvin e ϵ é a emissividade, que pode variar ente zero e um. Se um corpo está a temperatura T e o meio a temperatura T0 , a energia líquida ganha ou perdida por unidade de tempo, devido à radiação, é: H = σ ϵ A(T 4 −T0 4 ) O corpo que absorve toda radiação incidente (ϵ = 1) é chamado de corpo negro.
  • 18. 18 A garrafa térmica é um contêiner projetado para minimizar a transferência de energia por condução, convecção e radiação A garrafa térmica (garrafa a vácuo) Transmissão de Calor V A garrafa consiste de vaso com paredes duplas de vidro cobertas com prata. O espaço entre as paredes é evacuado para minimizar a transferência por condução e convecção. A superfície de prata minimiza a perda por radiação porque a prata é um bom refletor.
  • 19. 19 Sistema termodinâmico: qualquer sistema que tem potencial para trocar energia com o meio Processo termodinâmico: quando o estado de um sistema é variado por mudanças de pressão, volume ou temperatura, dizemos que o processo é um processo termodinâmico. Energia Interna (U): soma das energias cinéticas de todas as partículas, acrescida da soma das energias potenciais decorrentes das interações entre elas. A energia interna é toda a energia do sistema associada com seus componentes microscópicos (átomos ou moléculas). Primeira Lei da Termodinâmica
  • 20. 20 Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é “usada” para aumentar a energia interna do sistema Primeira Lei da Termodinâmica Δ U = Q
  • 21. 21 Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é “usada” para aumentar a energia interna do sistema Primeira Lei da Termodinâmica Δ U = Q Se o sistema realiza trabalho (W > 0), energia é transferida para o meio, e a energia interna diminui Δ U = −W
  • 22. 22 Se fornecemos calor (Q) a um sistema, e não há realização de trabalho, toda energia é “usada” para aumentar a energia interna do sistema Primeira Lei da Termodinâmica Δ U = Q Se o sistema realiza trabalho (W > 0), energia é transferida para o meio, e a energia interna diminui Δ U = −W Se ocorre transferência de calor e realização de trabalho Δ U = Q−W Primeira lei da termodinâmica Convenção de sinais: W representa o trabalho realizado pelo sistema. Q representa o calor fornecido ao sistema.
  • 23. 23 Quando um sistema termodinâmico varia de um estado inicial até um estado final, ele passa por uma série de estados intermediários. Essa série de estados é chamada caminho. Caminhos Entre Estados Termodinâmicos Quando os estados intermediários forem estados de equilíbrio, eles podem ser representados num diagrama PV. Suponha que o sistema passe de um estado 1 (P1 , V1 , T1 ) para um estado 2 (P2 , V2 , T2 ). Três caminhos possíveis a) 1 → 3 → 2 b) 1 → 4 → 2 c) 1 → 2
  • 24. 24 O trabalho realizado em cada um dos caminhos é Caminhos Entre Estados Termodinâmicos a) 1 → 3 → 2 b) 1 → 4 → 2 c) 1 → 2
  • 25. 25 O trabalho realizado em cada um dos caminhos é Caminhos Entre Estados Termodinâmicos a) 1 → 3 → 2 b) 1 → 4 → 2 c) 1 → 2 O trabalho realizado depende não apenas dos estados iniciais e finais, mas também do caminho.
  • 26. 26 O calor fornecido (Q) depende do caminho ? Caminhos Entre Estados Termodinâmicos Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura constante (T = 300 K). Processo 1: Expansão Isotérmica O gás se expande lentamente, recebendo calor do aquecedor, mantendo T = 300 K.
  • 27. 27 O calor fornecido (Q) depende do caminho ? Caminhos Entre Estados Termodinâmicos Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura constante (T = 300 K). Processo 1: Expansão Isotérmica O gás se expande lentamente, recebendo calor do aquecedor, mantendo T = 300 K. Processo 2: Expansão Livre O sistema está isolado (Q = 0). Ao romper a divisória, o gás sofre uma expansão rápida (e W = 0). Nesse caso, não ocorre variação de temperatura.
  • 28. 28 O calor fornecido (Q) depende do caminho ? Caminhos Entre Estados Termodinâmicos Queremos alterar o volume de um gás de 2,0 L para 5,0 L, mantendo a temperatura constante (T = 300 K). Processo 1: Expansão Isotérmica O gás se expande lentamente, recebendo calor do aquecedor, mantendo T = 300 K. Processo 2: Expansão Livre O sistema está isolado (Q = 0). Ao romper a divisória, o gás sofre uma expansão rápida (e W = 0). Nesse caso, não ocorre variação de temperatura. O calor transferido também depende do caminho.
  • 29. 29 Para diversos sistemas termodinâmicos, podemos medir Q e W em várias mudanças de estado e ao longo de diversos caminhos. Experimentalmente, observa-se que ΔU é independente do caminho, ou seja, depende apenas do estado inicial e do estado final do sistema. Energia Interna A energia interna é uma função de estado (uma função de qualquer par das variáveis de estado P, V e T) U = f (P ,V ) U = f (P ,T) U = f (T ,V ) No caso de um gás ideal, a energia interna é função apenas da temperatura. U = f (T)
  • 30. 30 Tipos de Processos Termodinâmicos 1. Ciclo. No processo cíclico, os estados inicial e final são os mesmos. U1 = U2 W = Q 2. Processo Adiabático. Não há troca de calor (Q = 0). Δ U = −W 3. Processo Isocório. Volume permanece constante. Δ U = Q
  • 31. 31 Tipos de Processos Termodinâmicos 4. Processo Isobárico. Pressão se mantém constante. Δ U = Q−W W = P Δ V 5. Processo Isotérmico. Temperatura se mantém constante Para que um processo seja isotérmico, a troca de calor deve ser lenta, possibilitando que o sistema permanece em equilíbrio térmico. No caso específico do gás ideal, U = f (T), e portanto ΔU = 0. W = nRT ln ( V f Vi ) O trabalho numa expansão (compressão) isotérmica é dado por
  • 32. 32 Capacidades Térmicas de Um Gás Ideal I Capacidade térmica a volume constante: CV CV = q 2 R q = número de graus de liberdade Gás monoatômico (q = 2) Gás diatômico (q = 5) Sólidos (q = 6) CV = 3R = 24.9 J / mol.K Lei de Dulong-Petit
  • 33. 33 Capacidades Térmicas de Um Gás Ideal II Capacidade térmica a volume constante: CV Capacidade térmica a pressão constante: CP Para todas as substâncias que se expandem no aquecimento CP > CV Para medir CV , elevamos a temperatura de um gás ideal num recipiente de paredes rígidas (V fixo). dQ = nCV dT Para medir CP , deixamos o gás se expandir o suficiente para manter a pressão constante. dQ = nCP dT Como U = f (T), ΔU deve ser o mesmo em ambos os casos (mesma temperatura).
  • 34. 34 Um processo é reversível quando se realiza muito lentamente, e o atrito é desprezível O sistema está sempre próximo do equilíbrio termodinâmico, e qualquer mudança de estado pode ser invertida. Exemplo: compressão ou expansão isotérmica. Processo reversível Processos Reversíveis e Irreversíveis Processo irreversível São processos que ocorrem em um determinado sentido, mas não em sentido contrário. Exemplos: fluxo de calor e expansão livre de um gás.
  • 35. 35 Consideremos um gás contido num recipiente de paredes diatérmicas, à temperatura T e pressão Pi > P0 (pressão atmosférica). Se o gás se expande isotermicamente, temos pela primeira lei: Segunda Lei da termodinâmica Q = W O processo só pode ser executado uma única vez. Para realizar um ciclo, é necessário que o sistema volte ao estado inicial. Nenhum processo físico conhecido permite que calor seja completamente convertido em trabalho num ciclo. Enunciado de Kelvin (K) da segunda lei: É impossível realizar um processo cujo único efeito seja remover calor de um reservatório térmico e produzir uma quantidade equivalente de trabalho. Único efeito significa que o sistema deve realizar um ciclo. Enunciado de Clausius (C) da segunda lei: É impossível realizar um processo cujo único efeito seja transferir calor de um corpo mais frio para um corpo mais quente.
  • 36. 36 Máquinas Térmicas Qualquer dispositivo que transforma calor parcialmente em trabalho ou energia mecânica é chamado máquina térmica. A substância no interior da máquina responsável pelas trocar de calor é chamada substância de trabalho. Exemplo: mistura de gasolina e ar. Pela segunda lei da termodinâmica, todas as máquinas absorvem calor de uma fonte de temperatura relativamente alta (fonte quente, TQ ) e rejeitam parte do calor a uma temperatura mais baixa (fonte fria, TF ). Exemplo: máquina a vapor. Na máquina a vapor, a água é convertida em vapor absorvendo calor Q1 , realiza trabalho e é condensada, transferindo calor Q2 para a fonte fria.
  • 37. 37 Eficiência de uma Máquina Térmica Uma máquina térmica pode ser representada por um diagrama de fluxo de energia, onde QQ é o calor fornecido pela fonte quente a temperatura TQ , e QF o calor rejeitado para a fonte fria a temperatura TF . (Note a largura do “tubo”.) Fonte Quente Fonte Fria Como a máquina opera em ciclo, ΔU = 0. Pela primeira lei da termodinâmica: W = QQ−∣QF∣ A eficiência térmica é dada por: η = W QQ = 1−∣ QF QQ ∣ Note que η < 1.
  • 38. 38 Motor a Gasolina – Ciclo Otto Os processos termodinâmicos que ocorrem em um motor a gasolina podem ser representados por um processo idealizado chamado ciclo Otto.
  • 39. 39 Eficiência do ciclo Otto Os calores QQ e QF são (W = 0 em bc e da): QQ = nCV (Tc−Tb) > 0 QF = nCV (Ta−Td) < 0 A eficiência é: η = QQ−∣QF∣ QQ = 1− 1 rγ−1 Sendo r = 8 e γ = 1,4 , a eficiência é de 56%. Eficiência real: 35%. O volume varia de V a rV. (verifique!)
  • 40. 40 Refrigeradores O melhor refrigerador é aquele que remove a maior quantidade de calor QF com o menor trabalho possível. O coeficiente de desempenho é Um refrigerador recebe calor de uma fonte fria e o transfere para uma fonte quente. Para isso, precisa receber trabalho. Pela primeira lei: QQ + QF + W = 0 ∣QQ∣ = QF + ∣W∣ Como W < e QF < 0 K = QF ∣W∣ = QF ∣QQ∣ − QF
  • 41. 41 Geladeiras e Condicionadores de Ar Os refrigeradores contém um fluido refrigerante, um compressor, um evaporador e um condensador. O compressor comprime adiabaticamente o fluido, que libera calor para o meio externo (fonte quente). O fluído se expande adiabaticamente no evaporador, se resfria e calor é transferido do interior do refrigerador para o fluído.
  • 42. 42 Geladeiras e Condicionadores de Ar No caso de um condicionador de ar, as serpentinas do evaporador estão no interior da sala, e o condensador está do lado de fora. O coeficiente de desempenho médio de um condicionador de ar é da ordem de 2,5.
  • 43. 43 Equivalência entre os Enunciados de Kelvin e Clausius Um refrigerador perfeito, operando acoplado com uma máquina térmica, teria como resultado converter todo o calor QQ - |QF | em W, violando o enunciado de Kelvin. W = QQ−∣QF∣ Uma máquina térmica perfeita, operando com um refrigerador real, podeira transferir uma quantidade de calor QF da fonte quente para a fonte fria sem realização de trabalho. Q −(Q+QF )=QF
  • 44. 44 O ciclo de Carnot I Dada uma fonte quente e uma fonte fria, qual é o máximo rendimento que se pode obter de uma máquina térmica operando entre essas duas fontes ? A conversão de trabalho em energia é um processo irreversível. O objetivo da máquina térmica é obter uma reversão parcial desse processo com maior eficiência possível. Para eficiência máxima, devemos evitar processos irreversíveis. Como o fluxo de calor devido à variação de temperatura é uma processo irreversível, um processo cíclico com máxima eficiência deve isotérmico ou adiabático, e o equilíbrio térmico deve ser sempre mantido.
  • 45. 45 O ciclo de Carnot II 1. Expansão isotérmica de um gás ideal a temperatura TQ , absorvendo calor QQ . 2. Expansão adiabática até a temperatura TF < TQ . 3. O gás é comprimido isotermicamente, rejeitando calor QF . 4. O gás é finalmente comprimido adiabaticamente até a temperatura TQ .
  • 46. 46 O ciclo de Carnot III Exemplo: suponha que 0,2 mol de um gás ideal diatômico é usado como substância de trabalho em um ciclo de Carnot com temperaturas de 2270 C e 27 0 C. A pressão inicial é de 10,0 x 105 Pa, e durante a expansão isotérmica o volume do gás dobra. a) Encontres os valore P e V em cada vértice do diagrama PV. b) Calcule Q, W e ΔU em cada etapa e em todo o ciclo. c) Calcule a eficiência do ciclo.
  • 47. 47 O ciclo de Carnot III Exemplo: suponha que 0,2 mol de um gás ideal diatômico é usado como substância de trabalho em um ciclo de Carnot com temperaturas de 2270 C e 27 0 C. A pressão inicial é de 10,0 x 105 Pa, e durante a expansão isotérmica o volume do gás dobra. a) Encontres os valore P e V em cada vértice do diagrama PV. b) Calcule Q, W e ΔU em cada etapa e em todo o ciclo. c) Calcule a eficiência do ciclo.
  • 48. 48 O Teorema de Carnot Nenhuma máquina térmica que opere entre uma dada fonte quente e uma dada fonte fria pode ter rendimento superior ao de uma máquina de Carnot Todas as máquinas de Carnot que operam entre essas duas fontes tem o mesmo rendimento. Uma máquina térmica com rendimento maior do que a máquina de Carnot violaria a segunda lei da termodinâmica.