SlideShare uma empresa Scribd logo
1 de 45
Baixar para ler offline
AULA 01
ENSAIOS DE DUREZA
Prof. Dr. André R. Marcondes
Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais
Ciência e Tecnologia de Materiais e Sensores (CMS)
Técnica Experimentais em Ciência dos Materiais I - CMS-207-4
25/08/2022
1. INTRODUÇÃO
Comportamento mecânico de um material
Consiste na relação entre a sua resposta ou
deformação a uma carga ou força que
esteja sendo aplicada.
1. INTRODUÇÃO
Propriedades Mecânicas importantes:
Resistência à tração, compressão e cisalhamento
Fadiga: ruptura progressiva do material quando sujeito à ciclos repetitivos de tensão ou
deformação.
Elasticidade: capacidade de deformar e retornar à forma original
Ductilidade: grande deformação na zona de escoamento
Fragilidade: pequena deformação na zona de escoamento
Resiliência: capacidade de suportar grandes cargas na zona elástica.
Tenacidade: capacidade do material de absorver energia sem ruptura
Plasticidade: capacidade de deformar e manter a forma
Dureza: resistência à penetração
Módulo de elasticidade: medida da rigidez na região elástica
1. INTRODUÇÃO
Como são medidas as propriedades
mecânicas?
Através da execução de experimentos
(ou testes) de laboratório
cuidadosamente idealizados para
reproduzirem da maneira mais fiel
possível as condições de serviço.
Teste de tração axial
1. INTRODUÇÃO
Como garantir que um ensaio tenha
significado para os diferentes interesses
(produção, pesquisa, entretenimento etc.)?
Através do uso de técnicas de ensaio ou
procedimentos padronizados determinadas
por normas técnicas.
1. INTRODUÇÃO
Normas Técnicas mais comuns:
ABNT - Associação Brasileira de Normas Técnicas
ASTM - American Society for Testing and Materials
DIN - Deutsches Institut für Normung
AFNOR - Association Française de Normalisation
BSI - British Standards Institution
ASME - American Society of Mechanical Engineer
ISO - International Organization for Standardization
JIS - Japanese Industrial Standards
SAE - Society of Automotive Engineers
COPANT - Comissão Panamericana de Normas Técnicas
CONCEITOS IMPORTANTES
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
Para a maioria dos metais em tensões de
trabalho baixas: tensão  deformação:
 = E. (Lei de Hook)
: tensão
: deformação
E: módulo de Young ou módulo de elasticidade
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
MÓDULO DE YOUNG
Indica a rigidez ou resistência de um material à
deformação elástica.
Quanto maior E, mais rígido o material e menor a sua
deformação elástica devido à uma dada tensão
aplicada
Fonte: Ciência e Engenharia dos Materiais, W.D. Calister, 5ª Ed
Deformação
elástica linear
Módulo de Young
para curva T-D não
linear (alguns
polímeros, ferro
fundido, concreto,
DLC etc):
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
MÓDULO DE YOUNG
deformação elástica não linear
Em escala atômica a deformação
elástica é a alteração:
1. nos espaçamentos interatômicos
2. na extensão das ligações
interatômicas
Portanto:
E: representa a medida da resistência do
material à separação de átomos
adjacente (força de suas ligações
interatômicas)
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
MÓDULO DE YOUNG
O módulo de elasticidade é proporcional à inclinação da curva
de separação interatômica de equilíbrio.
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
MÓDULO DE YOUNG
Dimensões de E para alguns
materiais:
Ecerâmicos > Emetais
Epolímeros < Emetais
VARIAÇÃO COM A TEMPERATURA
o módulo de elasticidade varia
com a temperatura (T E)
A deformação elástica não é um processo
independente do tempo nem é totalmente recuperada
após a remoção da tensão aplicada.
Há uma componente da deformação elástica
dependente do tempo que permanece após cessar a
aplicação da tensão: é a anelastividade. (devido aos
processos microscópiocos e atomísticos)
Metais: anelasticidade pequena (usualmente
desprezada)
Polímeros: anelasticidade significativa chamada de
comportamento viscoelástico.
COMPORTAMENTO TENSÃO-DEFORMAÇÃO
ANELASTICIDADE
PROPRIEDADES ELÁSTICAS DOS MATEIRIAIS
COEFICIENTE DE POISSON
Elongação (deformação positiva) axial (z)
e contrações (deformações negativas)
laterais (x e y) em resposta a uma força
de tração.
O parâmetro
é chamado de coeficiente de Poisson,
que é uma medida do efeito Poisson
(expansão ou contração de um material
perpendicularmente à direção da força
aplicada).
Exemplo em um metal
PROPRIEDADES ELÁSTICAS DOS MATEIRIAIS
COEFICIENTE DE POISSON
Maioria dos materiais: 0,0 ≤  ≤ 0,5 (0,5 para material isovolumétrico)
Maioria dos sólidos: 0,2 ≤  ≤ 0,3 (0,3 adotado na maioria dos casos)
Em casos raros:  ≤ 0 (espumas poliméricas, polímeros
microporosos, espumas de metal*)
(*) phys. stat. sol. (b) 245, No. 3, 545– 551 (2008) / DOI 10.1002/pssb.200777708
Espuma de metal
DEFORMAÇÃO PLÁSTICA
É a deformação permanente sofrida por
um material sujeito a uma tensão.
Corresponde à quebra de ligações
atômicas entre átomos vizinhos e
formação de novas ligações, mudando a
estrutura e organização das moléculas.
Mecanismo de deformação plástica:
diferente entre materiais cristalinos e
amorfos (escorregamento x escoamento
viscoso)
Nessa deformação não vale a Lei de
Hook
limite de escoamento
RECUPERAÇÃO ELÁSTICA DURANTE UMA
DEFORMAÇÃO PLÁSTICA
Com a liberação da carga
durante o curso de um ensaio
tensão-deformação, uma
parte da deformação total é
recuperada na forma de
deformação elástica.
Tensão
Deformação
Recuperação da
Deformação elástica
DUREZA
Medida da resistência de um material a uma
deformação plástica devido à uma pequena
impressão. A medida também pode ser associada
à resistência à flexão, risco, abrasão ou corte.
Nos ensaios por penetração a dureza é a
resistência que o material apresenta à penetração
da ponta, e é obtida pela razão entre a força
aplicada, P, e a área de contato projetada na
direção do deslocamento do penetrador
H =
𝑃
𝐴
DEFINIÇÃO DE DUREZA
1.Na metalurgia: dureza é a resistência à
deformação plástica permanente;
2. Na mecânica: dureza é a resistência de um
material à penetração por outro material;
3. Na mineralogia: dureza é a resistência de um
material ao risco produzido nele por outro material;
4. Na usinagem: dureza é a resistência ao corte de
um material
5. Na Engenharia de materiais: a dureza está
associada também à resistência ao desgaste
MEDIDA DE DUREZA
A dureza não é uma propriedade intrínseca
do material, ditada por definições precisas
em termos de unidades fundamentais.
Um valor de dureza de um material depende
da elasticidade, ductilidade e encruamento
do material e também do tipo de penetrador
e das condições de ensaio.
ENSAIOS DE DUREZA
Tipos de
ensaios de
Dureza
1. Dureza de risco
2. Dureza de choque ou ressalto
3. Dureza de penetração
Escala de Mohs
Dureza Shore
Dureza Brinell
Dureza Meyer
Dureza Rockwell
Dureza Vickers
Dureza Knoop
Testes de macrodureza
Testes de microdureza
ENSAIO DE DUREZA – ESCALA MOHS
Quantifica a dureza dos minerais, isto é, a
resistência que um determinado mineral oferece
ao risco, ou seja, à retirada de partículas da sua
superfície.
Escala criada em 1812 pelo mineralogista alemão
Friedrich Vilar Mohs com dez minerais de
diferentes durezas
Materiais que conseguiam deixar um risco
permanente em outro eram classificados como
mais duros.
Mohs atribuiu valores de 1 a 10. O valor 1 foi dado
ao material menos duro da escala, que é o talco,
e o valor 10 foi dado ao diamante.
Minerais, vidro, cerâmicas
ENSAIO DE DUREZA – ESCALA MOHS
Escala Mohs não é conveniente para metais
[maioria com Mohs entre 4 e 8 – aço dúctil e aço
temperado têm a mesma dureza Mohs (6)]
Limitações desse método levaram ao
desenvolvimento de outros métodos.
Minerais, vidro, cerâmicas
ENSAIO DE DUREZA – DUREZA SHORE
Baseia-se no uso do durômetro Shore,
desenvolvido em 1920 por Albert F.
Shore.
Método: medida da profundidade
da impressão deixada no material
com a aplicação de uma carga.
Valor da dureza: definido a partir da
profundidade de penetração de
uma esfera rígida no corpo de prova
sob condições normalizadas, de
acordo com:
Durômetro
portátil
Shore A
analógico
Polímeros
ENSAIO DE DUREZA – DUREZA SHORE
F: força aplicada (N);
E0: módulo de Young (Mpa);
R: raio do penetrador esférico (mm);
P: profundidade de penetração (mm).
Durômetro
portátil
Shore A
analógico
Polímeros
ENSAIO DE DUREZA – DUREZA SHORE
Existem diversas escalas utilizadas em materiais
com propriedades diferentes.
As mais comuns são a A (plásticos macios)e D,
(plásticos rígidos).
As escalas Shore A, B, C, D, DO, E, M, O, OO,
OOO, OOO-S, e R são as escalas previstas pela
norma ASTM D2240-00.
Polímeros
ENSAIO DE DUREZA – DUREZA SHORE
Polímeros
ENSAIO DE DUREZA – DUREZA SHORE
Polímeros
Outro método de medida de dureza Shore é a
por choque que mede a altura do ressalto de um
peso que cai livremente até bater na superfície
lisa e plana de um corpo de prova. Esta altura de
ressalto mede a perda de energia cinética do
peso, absorvida pelo corpo de prova.
Método bastante prático e que pode ser usado
em peças de grande tamanho.
ENSAIO DE DUREZA – DUREZA BRINELL
Método utilizado principalmente em materiais
metálicos.
Proposto em 1900, pelo engenheiro sueco Johan
August Brinell.
Primeiro ensaio de penetração padronizado
reconhecido industrialmente;
O teste típico consiste em um penetrador esférico
com ø 1, 2, 5 ou 10 mm, de aço de elevada dureza
ou de WC.
Carga aplicada: entre 500 e 3000 kgf mantida
constante entre 10 e 30 s.
Metais não ferrosos, ferro fundido, aço, peças não-temperadas
ENSAIO DE DUREZA – DUREZA BRINELL
O número Brinell de dureza (HB, Hardeness Brinell) é função da carga
aplicada e do diâmetro da calota esférica resultante e pode ser
obtido através da seguinte relação:
F: carga aplicada (Kgf)
p: profundidade da penetração
D: diâmetro do penetrador
d: média do diâmetro da impressão
em pelo menos duas direções.
Dimensão da dureza Brinell: MPa
Norma de referência: ASTM E10 (Standard Test Method for Brinell
Hardness of Metallic Materials).
Metais não ferrosos, ferro fundido, aço, peças não-temperadas
HBS: esfera de aço
HBW: esfera de WC
Dificuldade
de se medir p
ENSAIO DE DUREZA
DUREZA BRINELL
Exemplo de tabela com valores
de dureza Brinell em função do
diâmetro de impressão, d.
Pela norma brasileira, a
espessura mínima do material
ensaiado deve ser 17 vezes a
profundidade da calota.
Único ensaio aceito para metais
sem estrutura interna uniforme.
HB limitado a 500HB (dureza da
esfera de aço)
Metais não ferrosos, ferro fundido, aço, peças não-temperadas
ENSAIO DE DUREZA – DUREZA ROCKWELL
Aplica-se uma carga menor (pré-
carga) e depois uma maior (de
ensaio).
Dureza = diferença entre as
profundidades de penetrações,
descontando a recuperação elástica.
Carga inicial: 10 kgf
Carga final: 50, 90 ou 140 Kgf
Carga total: 60, 100 ou 150 Kgf
Maioria dos metais, ligas metálicas e polímeros
Resultado é lido diretamente no
mostrador da máquina de ensaio.
ENSAIO DE DUREZA – DUREZA ROCKWELL
• Um dos mais simples e mais utilizados na indústria;
• Várias escalas diferentes podem ser utilizadas através de
possíveis combinações de penetradores e cargas, o que
permite o uso deste ensaio em praticamente todas as ligas
metálicas, assim como em muitos polímeros.
• Penetradores: esferas de aço de elevada dureza, com ø
1/16, 1/8, 1/4 e 1/2 in, ou cones de diamante com conicidade
de 120º (materiais de alta dureza).
Maioria dos metais, ligas metálicas e polímeros
ENSAIO DE DUREZA – DUREZA
ROCKWELL
Maioria dos metais, ligas metálicas e polímeros
Exemplo:
80 HRB: dureza Rockwell de 80 na escala B
Regras importantes:
1. Espessura do material pelo menos 10x > do
que a profundidade da impressão.
2. Distância mínima entre impressões = 3 x ø do
penetrador
3. Amostra com boa planicidade.
Normas aplicáveis:
ASTM E18 (Standard methods for Rockwell
hardness and Rockwell superficial hardness of
metallic materials)
ISO 6508-1 (Metallic materials - Rockwell
hardness test - Part 1: Test method (scales A, B,
C, D, E, F, G, H, K, N, T)).
Exemplo de durômetro
Rockwell digital
instrumentado
Exemplo de durômetro
Rockwell analógico
instrumentado
Exemplos de penetradores
Rockwell
(ponta de diamante ou de
outros elementos)
ENSAIO DE DUREZA – DUREZA ROCKWELL
SUPERFICIAL
Maioria dos metais, ligas metálicas e polímeros
Determinação de dureza folhas finas, lâminas e
camadas superficiais.
Mesmo princípio [carga menor (3 kgf) depois
carga maior (15, 30 ou 45 kgf)].
Escalas identificadas por um 15, 30 ou 45
(dependendo da carga), seguido por N, T, W, X
ou Y, de acordo com o penetrador
Exemplo:
60 HR30W representa uma dureza Rockwell
Superficial de 60 na escala 30W.
Comparação do valor de dureza de
diferentes materiais nas escalas
Brinell, Rockwell e Mohs
ENSAIO DE DUREZA – DUREZA VICKERS
Desenvolvido em 1925 para suplantar
algumas limitações do método Rockwell
(escalas sem continuidade – dificuldade para
alguns materiais no limite das escalas).
Ademais, os HR não apresentam relação
com a resistência à tração do material, como
o Brinell.
Método: penetração de uma pirâmide
diamante de base quadrada, com ângulo
entre as faces opostas (ângulo de diedro) de
136º.
ENSAIO DE DUREZA – DUREZA VICKERS
O valor de dureza Vickers (HV) é o
quociente da carga aplicada (F) pela
área de impressão (A) deixada no corpo
ensaiado. Essa relação, expressa em
linguagem matemática é a seguinte:
Por meio de um microscópio acoplado, a
máquina de ensaio Vickers permite fazer
as medidas das diagonais d1 e d2
ENSAIO DE DUREZA – DUREZA VICKERS
Conhecendo-se d1 e d2, calcula-se a área da pirâmide que foi
impressa:
E, assim, chega-se ao valor da dureza Vickers:
ENSAIO DE DUREZA – DUREZA VICKERS
Tempo normal de aplicação da carga:10 a 15 segundos.
Quando a duração da aplicação da carga é diferente, indica-se o
tempo de aplicação após a carga.
Exemplo: 440 HV 30/20 (440 de dureza com carga de 30 Kgf aplicada
por 20 segundos.
Neste método, as CARGAS PODEM SER DE QUALQUER VALOR, pois as
impressões são proporcionais às cargas para um mesmo material
DUREZA VICKERS: VALOR DA DUREZA INDEPENDE DA CARGA UTILIZADA!
ENSAIO DE DUREZA – DUREZA VICKERS
Como padronização, as cargas recomendadas
são: 1, 2, 3, 4, 5, 10, 20, 30, 40, 60, 80, 100, 120 kgf.
Para cargas > 120 kgf pode-se usar esferas de
aço temperado de 1 ou 2 mm de diâmetro na
mesma máquina. Neste caso, o ensaio feito na
máquina Vickers é o ensaio de dureza Brinell.
Microdureza Vickers: para medida de superfícies
tratadas ou dureza de microconstituintes de uma
microestrutura
Nessa caso> cargas < 1 Kgf (até 10gf)
Penetrador: diamante. Ensaio: não destrutuvo
Na microdureza a
impressão produzida é
microscópica
ENSAIO DE DUREZA – DUREZA VICKERS
Vantagens:
• Ensaio não destrutivo
• Penetrador de diamante (indeformável)
• Aplica-se em materiais de qualquer espessura
• Escala contínua de dureza
• Grande precisão das medidas (uso em pesquisa)
Desvantagens:
• Necessária preparação da superfície do material ou CDP
• Para cargas pequenas (<300 gf) pode haver recuperação
elástica o que dificulta as medidas das diagonais.
• Equipamento Vickers requer aferição constante e é caro.
• Ensaio mais demorado.
ENSAIO DE DUREZA – DUREZA KNOOP
Microdureza Knoop: utiliza o mesmo princípio de ensaio de dureza
Vickers, mas o penetrador possui geometria diferente. Pode ser
usado em materiais frágeis como cerâmicos.
Dureza Knoop:
P: carga aplicada (Kgf)
A: área da impressão (mm2)
L: comprimento da impressão (mm)
Cp: fator de correção devido ao formato do
penetrador
P entre 1 e 1000 g.
Impressão medida no microscópio
Método desenvolvido no National Bureau of Standards (hoje NIST), pelo físico e engenheiro
americano Frederick Knopp e normatizado pela ASTM D1474 (Standard Test Methods for
Indentation Hardness of Organic Coatings).
Obrigado!

Mais conteúdo relacionado

Semelhante a Ensaios de Dureza.pdf

Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos Materiais
Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos MateriaisCiências dos Materiais - Aula 13 - Propriedades Mecânicas dos Materiais
Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos MateriaisFelipe Machado
 
Aula 2 ensaios mecânicos e end - ensaio de tração
Aula 2   ensaios mecânicos e end - ensaio de traçãoAula 2   ensaios mecânicos e end - ensaio de tração
Aula 2 ensaios mecânicos e end - ensaio de traçãoAlex Leal
 
Ciência dos materiais - fluência, resiliência e tenacidade
Ciência dos materiais - fluência, resiliência e tenacidadeCiência dos materiais - fluência, resiliência e tenacidade
Ciência dos materiais - fluência, resiliência e tenacidadeVicktor Richelly
 
Falha ou ruptura nos metais
Falha ou ruptura nos metaisFalha ou ruptura nos metais
Falha ou ruptura nos metaisedmarluis
 
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiaisPropriedades mecânicas dos materiais
Propriedades mecânicas dos materiaisJulyanne Rodrigues
 
PROPRIEDADES DO AÇO - ESTRUTURA METALICA
PROPRIEDADES DO AÇO - ESTRUTURA METALICAPROPRIEDADES DO AÇO - ESTRUTURA METALICA
PROPRIEDADES DO AÇO - ESTRUTURA METALICAMax Tonny Moreira
 
Corrosão sob tensão
Corrosão sob tensãoCorrosão sob tensão
Corrosão sob tensãoVirginia
 
Aula 3 propriedades mecânicas dos materiais
Aula 3   propriedades mecânicas dos materiaisAula 3   propriedades mecânicas dos materiais
Aula 3 propriedades mecânicas dos materiaisLidiane Augusto
 
Atividade 6 propriedades mecânicas 3(1)
Atividade 6   propriedades mecânicas 3(1)Atividade 6   propriedades mecânicas 3(1)
Atividade 6 propriedades mecânicas 3(1)Felipe Cardoso
 
Aula 9 manutenção industrial
Aula 9 manutenção industrialAula 9 manutenção industrial
Aula 9 manutenção industrialsm_carvalho
 
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...rafaelluiz87
 
9 ensaios mecanicos_dos_materiais
9 ensaios mecanicos_dos_materiais9 ensaios mecanicos_dos_materiais
9 ensaios mecanicos_dos_materiaisdjoaoalberto
 

Semelhante a Ensaios de Dureza.pdf (20)

Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos Materiais
Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos MateriaisCiências dos Materiais - Aula 13 - Propriedades Mecânicas dos Materiais
Ciências dos Materiais - Aula 13 - Propriedades Mecânicas dos Materiais
 
Ensaio de materiais
Ensaio de materiaisEnsaio de materiais
Ensaio de materiais
 
Aula 2 ensaios mecânicos e end - ensaio de tração
Aula 2   ensaios mecânicos e end - ensaio de traçãoAula 2   ensaios mecânicos e end - ensaio de tração
Aula 2 ensaios mecânicos e end - ensaio de tração
 
Ciência dos materiais - fluência, resiliência e tenacidade
Ciência dos materiais - fluência, resiliência e tenacidadeCiência dos materiais - fluência, resiliência e tenacidade
Ciência dos materiais - fluência, resiliência e tenacidade
 
Falha ou ruptura nos metais
Falha ou ruptura nos metaisFalha ou ruptura nos metais
Falha ou ruptura nos metais
 
Propriedades mecânicas dos materiais
Propriedades mecânicas dos materiaisPropriedades mecânicas dos materiais
Propriedades mecânicas dos materiais
 
aula 1 2022.pptx
aula 1 2022.pptxaula 1 2022.pptx
aula 1 2022.pptx
 
PROPRIEDADES DO AÇO - ESTRUTURA METALICA
PROPRIEDADES DO AÇO - ESTRUTURA METALICAPROPRIEDADES DO AÇO - ESTRUTURA METALICA
PROPRIEDADES DO AÇO - ESTRUTURA METALICA
 
Concretos refratarios
Concretos refratariosConcretos refratarios
Concretos refratarios
 
Relatorio
RelatorioRelatorio
Relatorio
 
Ensaio de dureza 1
Ensaio de dureza 1Ensaio de dureza 1
Ensaio de dureza 1
 
Corrosão sob tensão
Corrosão sob tensãoCorrosão sob tensão
Corrosão sob tensão
 
Tm229 propriedades mecanicas
Tm229   propriedades mecanicasTm229   propriedades mecanicas
Tm229 propriedades mecanicas
 
Aula 3 propriedades mecânicas dos materiais
Aula 3   propriedades mecânicas dos materiaisAula 3   propriedades mecânicas dos materiais
Aula 3 propriedades mecânicas dos materiais
 
Atividade 6 propriedades mecânicas 3(1)
Atividade 6   propriedades mecânicas 3(1)Atividade 6   propriedades mecânicas 3(1)
Atividade 6 propriedades mecânicas 3(1)
 
Aula 9 manutenção industrial
Aula 9 manutenção industrialAula 9 manutenção industrial
Aula 9 manutenção industrial
 
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...
3ª+aula+ +fundamentos+de+materiais+metálicos+i+-+mecanismos+de+endurecimento+...
 
9 ensaios mecanicos_dos_materiais
9 ensaios mecanicos_dos_materiais9 ensaios mecanicos_dos_materiais
9 ensaios mecanicos_dos_materiais
 
Apostila mecanica da_fratura_rev0
Apostila mecanica da_fratura_rev0Apostila mecanica da_fratura_rev0
Apostila mecanica da_fratura_rev0
 
Artigo dureza
Artigo durezaArtigo dureza
Artigo dureza
 

Mais de André Ricardo Marcondes

Principios de Trabalho da Sociedade Teosofica
Principios de Trabalho da Sociedade TeosoficaPrincipios de Trabalho da Sociedade Teosofica
Principios de Trabalho da Sociedade TeosoficaAndré Ricardo Marcondes
 
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VI
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VIA Doutrina Secreta - Vol 1 - Cosmogênese - Estância VI
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VIAndré Ricardo Marcondes
 
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância I
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância IA Doutrina Secreta - Vol 1 - Cosmogênese - Estância I
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância IAndré Ricardo Marcondes
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância III
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância IIIA Doutrina Secreta   Vol 1 - Cosmogênese - Estância III
A Doutrina Secreta Vol 1 - Cosmogênese - Estância IIIAndré Ricardo Marcondes
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância IV
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância IVA Doutrina Secreta   Vol 1 - Cosmogênese - Estância IV
A Doutrina Secreta Vol 1 - Cosmogênese - Estância IVAndré Ricardo Marcondes
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância V
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância VA Doutrina Secreta   Vol 1 - Cosmogênese - Estância V
A Doutrina Secreta Vol 1 - Cosmogênese - Estância VAndré Ricardo Marcondes
 

Mais de André Ricardo Marcondes (20)

AUTOCULTURA.pdf
AUTOCULTURA.pdfAUTOCULTURA.pdf
AUTOCULTURA.pdf
 
Do eu Inferior ao Eu Superior.pdf
Do eu Inferior ao Eu Superior.pdfDo eu Inferior ao Eu Superior.pdf
Do eu Inferior ao Eu Superior.pdf
 
Aula 3 - Cosmogênese.ppt
Aula 3 - Cosmogênese.pptAula 3 - Cosmogênese.ppt
Aula 3 - Cosmogênese.ppt
 
A Sociedade Teosófica
A Sociedade TeosóficaA Sociedade Teosófica
A Sociedade Teosófica
 
A Tradicao-Sabedoria e a Teosofia.pdf
A Tradicao-Sabedoria e a Teosofia.pdfA Tradicao-Sabedoria e a Teosofia.pdf
A Tradicao-Sabedoria e a Teosofia.pdf
 
Sopro Divino de Amor.pdf
Sopro Divino de Amor.pdfSopro Divino de Amor.pdf
Sopro Divino de Amor.pdf
 
Samādhi.pdf
Samādhi.pdfSamādhi.pdf
Samādhi.pdf
 
O Mistério do Santo Graal.pdf
O Mistério do Santo Graal.pdfO Mistério do Santo Graal.pdf
O Mistério do Santo Graal.pdf
 
A Doutrina Secreta - Estância VII
A Doutrina Secreta - Estância VIIA Doutrina Secreta - Estância VII
A Doutrina Secreta - Estância VII
 
Principios de Trabalho da Sociedade Teosofica
Principios de Trabalho da Sociedade TeosoficaPrincipios de Trabalho da Sociedade Teosofica
Principios de Trabalho da Sociedade Teosofica
 
A Senda para a Perfeição
A Senda para a PerfeiçãoA Senda para a Perfeição
A Senda para a Perfeição
 
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VI
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VIA Doutrina Secreta - Vol 1 - Cosmogênese - Estância VI
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância VI
 
A Doutrina Secreta - Proêmio
A Doutrina Secreta - ProêmioA Doutrina Secreta - Proêmio
A Doutrina Secreta - Proêmio
 
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância I
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância IA Doutrina Secreta - Vol 1 - Cosmogênese - Estância I
A Doutrina Secreta - Vol 1 - Cosmogênese - Estância I
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância III
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância IIIA Doutrina Secreta   Vol 1 - Cosmogênese - Estância III
A Doutrina Secreta Vol 1 - Cosmogênese - Estância III
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância IV
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância IVA Doutrina Secreta   Vol 1 - Cosmogênese - Estância IV
A Doutrina Secreta Vol 1 - Cosmogênese - Estância IV
 
A Doutrina Secreta Vol 1 - Cosmogênese - Estância V
A Doutrina Secreta   Vol 1 - Cosmogênese - Estância VA Doutrina Secreta   Vol 1 - Cosmogênese - Estância V
A Doutrina Secreta Vol 1 - Cosmogênese - Estância V
 
Exegese logosofica
Exegese logosofica   Exegese logosofica
Exegese logosofica
 
A Gentileza
A GentilezaA Gentileza
A Gentileza
 
Estoicismo
EstoicismoEstoicismo
Estoicismo
 

Ensaios de Dureza.pdf

  • 1. AULA 01 ENSAIOS DE DUREZA Prof. Dr. André R. Marcondes Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais Ciência e Tecnologia de Materiais e Sensores (CMS) Técnica Experimentais em Ciência dos Materiais I - CMS-207-4 25/08/2022
  • 2. 1. INTRODUÇÃO Comportamento mecânico de um material Consiste na relação entre a sua resposta ou deformação a uma carga ou força que esteja sendo aplicada.
  • 3. 1. INTRODUÇÃO Propriedades Mecânicas importantes: Resistência à tração, compressão e cisalhamento Fadiga: ruptura progressiva do material quando sujeito à ciclos repetitivos de tensão ou deformação. Elasticidade: capacidade de deformar e retornar à forma original Ductilidade: grande deformação na zona de escoamento Fragilidade: pequena deformação na zona de escoamento Resiliência: capacidade de suportar grandes cargas na zona elástica. Tenacidade: capacidade do material de absorver energia sem ruptura Plasticidade: capacidade de deformar e manter a forma Dureza: resistência à penetração Módulo de elasticidade: medida da rigidez na região elástica
  • 4. 1. INTRODUÇÃO Como são medidas as propriedades mecânicas? Através da execução de experimentos (ou testes) de laboratório cuidadosamente idealizados para reproduzirem da maneira mais fiel possível as condições de serviço. Teste de tração axial
  • 5. 1. INTRODUÇÃO Como garantir que um ensaio tenha significado para os diferentes interesses (produção, pesquisa, entretenimento etc.)? Através do uso de técnicas de ensaio ou procedimentos padronizados determinadas por normas técnicas.
  • 6. 1. INTRODUÇÃO Normas Técnicas mais comuns: ABNT - Associação Brasileira de Normas Técnicas ASTM - American Society for Testing and Materials DIN - Deutsches Institut für Normung AFNOR - Association Française de Normalisation BSI - British Standards Institution ASME - American Society of Mechanical Engineer ISO - International Organization for Standardization JIS - Japanese Industrial Standards SAE - Society of Automotive Engineers COPANT - Comissão Panamericana de Normas Técnicas
  • 8. COMPORTAMENTO TENSÃO-DEFORMAÇÃO Para a maioria dos metais em tensões de trabalho baixas: tensão  deformação:  = E. (Lei de Hook) : tensão : deformação E: módulo de Young ou módulo de elasticidade
  • 9. COMPORTAMENTO TENSÃO-DEFORMAÇÃO MÓDULO DE YOUNG Indica a rigidez ou resistência de um material à deformação elástica. Quanto maior E, mais rígido o material e menor a sua deformação elástica devido à uma dada tensão aplicada Fonte: Ciência e Engenharia dos Materiais, W.D. Calister, 5ª Ed Deformação elástica linear
  • 10. Módulo de Young para curva T-D não linear (alguns polímeros, ferro fundido, concreto, DLC etc): COMPORTAMENTO TENSÃO-DEFORMAÇÃO MÓDULO DE YOUNG deformação elástica não linear
  • 11. Em escala atômica a deformação elástica é a alteração: 1. nos espaçamentos interatômicos 2. na extensão das ligações interatômicas Portanto: E: representa a medida da resistência do material à separação de átomos adjacente (força de suas ligações interatômicas) COMPORTAMENTO TENSÃO-DEFORMAÇÃO MÓDULO DE YOUNG
  • 12. O módulo de elasticidade é proporcional à inclinação da curva de separação interatômica de equilíbrio. COMPORTAMENTO TENSÃO-DEFORMAÇÃO MÓDULO DE YOUNG Dimensões de E para alguns materiais: Ecerâmicos > Emetais Epolímeros < Emetais VARIAÇÃO COM A TEMPERATURA o módulo de elasticidade varia com a temperatura (T E)
  • 13. A deformação elástica não é um processo independente do tempo nem é totalmente recuperada após a remoção da tensão aplicada. Há uma componente da deformação elástica dependente do tempo que permanece após cessar a aplicação da tensão: é a anelastividade. (devido aos processos microscópiocos e atomísticos) Metais: anelasticidade pequena (usualmente desprezada) Polímeros: anelasticidade significativa chamada de comportamento viscoelástico. COMPORTAMENTO TENSÃO-DEFORMAÇÃO ANELASTICIDADE
  • 14. PROPRIEDADES ELÁSTICAS DOS MATEIRIAIS COEFICIENTE DE POISSON Elongação (deformação positiva) axial (z) e contrações (deformações negativas) laterais (x e y) em resposta a uma força de tração. O parâmetro é chamado de coeficiente de Poisson, que é uma medida do efeito Poisson (expansão ou contração de um material perpendicularmente à direção da força aplicada). Exemplo em um metal
  • 15. PROPRIEDADES ELÁSTICAS DOS MATEIRIAIS COEFICIENTE DE POISSON Maioria dos materiais: 0,0 ≤  ≤ 0,5 (0,5 para material isovolumétrico) Maioria dos sólidos: 0,2 ≤  ≤ 0,3 (0,3 adotado na maioria dos casos) Em casos raros:  ≤ 0 (espumas poliméricas, polímeros microporosos, espumas de metal*) (*) phys. stat. sol. (b) 245, No. 3, 545– 551 (2008) / DOI 10.1002/pssb.200777708 Espuma de metal
  • 16. DEFORMAÇÃO PLÁSTICA É a deformação permanente sofrida por um material sujeito a uma tensão. Corresponde à quebra de ligações atômicas entre átomos vizinhos e formação de novas ligações, mudando a estrutura e organização das moléculas. Mecanismo de deformação plástica: diferente entre materiais cristalinos e amorfos (escorregamento x escoamento viscoso) Nessa deformação não vale a Lei de Hook limite de escoamento
  • 17. RECUPERAÇÃO ELÁSTICA DURANTE UMA DEFORMAÇÃO PLÁSTICA Com a liberação da carga durante o curso de um ensaio tensão-deformação, uma parte da deformação total é recuperada na forma de deformação elástica. Tensão Deformação Recuperação da Deformação elástica
  • 18. DUREZA Medida da resistência de um material a uma deformação plástica devido à uma pequena impressão. A medida também pode ser associada à resistência à flexão, risco, abrasão ou corte. Nos ensaios por penetração a dureza é a resistência que o material apresenta à penetração da ponta, e é obtida pela razão entre a força aplicada, P, e a área de contato projetada na direção do deslocamento do penetrador H = 𝑃 𝐴
  • 19. DEFINIÇÃO DE DUREZA 1.Na metalurgia: dureza é a resistência à deformação plástica permanente; 2. Na mecânica: dureza é a resistência de um material à penetração por outro material; 3. Na mineralogia: dureza é a resistência de um material ao risco produzido nele por outro material; 4. Na usinagem: dureza é a resistência ao corte de um material 5. Na Engenharia de materiais: a dureza está associada também à resistência ao desgaste
  • 20. MEDIDA DE DUREZA A dureza não é uma propriedade intrínseca do material, ditada por definições precisas em termos de unidades fundamentais. Um valor de dureza de um material depende da elasticidade, ductilidade e encruamento do material e também do tipo de penetrador e das condições de ensaio.
  • 21. ENSAIOS DE DUREZA Tipos de ensaios de Dureza 1. Dureza de risco 2. Dureza de choque ou ressalto 3. Dureza de penetração Escala de Mohs Dureza Shore Dureza Brinell Dureza Meyer Dureza Rockwell Dureza Vickers Dureza Knoop Testes de macrodureza Testes de microdureza
  • 22. ENSAIO DE DUREZA – ESCALA MOHS Quantifica a dureza dos minerais, isto é, a resistência que um determinado mineral oferece ao risco, ou seja, à retirada de partículas da sua superfície. Escala criada em 1812 pelo mineralogista alemão Friedrich Vilar Mohs com dez minerais de diferentes durezas Materiais que conseguiam deixar um risco permanente em outro eram classificados como mais duros. Mohs atribuiu valores de 1 a 10. O valor 1 foi dado ao material menos duro da escala, que é o talco, e o valor 10 foi dado ao diamante. Minerais, vidro, cerâmicas
  • 23. ENSAIO DE DUREZA – ESCALA MOHS Escala Mohs não é conveniente para metais [maioria com Mohs entre 4 e 8 – aço dúctil e aço temperado têm a mesma dureza Mohs (6)] Limitações desse método levaram ao desenvolvimento de outros métodos. Minerais, vidro, cerâmicas
  • 24. ENSAIO DE DUREZA – DUREZA SHORE Baseia-se no uso do durômetro Shore, desenvolvido em 1920 por Albert F. Shore. Método: medida da profundidade da impressão deixada no material com a aplicação de uma carga. Valor da dureza: definido a partir da profundidade de penetração de uma esfera rígida no corpo de prova sob condições normalizadas, de acordo com: Durômetro portátil Shore A analógico Polímeros
  • 25. ENSAIO DE DUREZA – DUREZA SHORE F: força aplicada (N); E0: módulo de Young (Mpa); R: raio do penetrador esférico (mm); P: profundidade de penetração (mm). Durômetro portátil Shore A analógico Polímeros
  • 26. ENSAIO DE DUREZA – DUREZA SHORE Existem diversas escalas utilizadas em materiais com propriedades diferentes. As mais comuns são a A (plásticos macios)e D, (plásticos rígidos). As escalas Shore A, B, C, D, DO, E, M, O, OO, OOO, OOO-S, e R são as escalas previstas pela norma ASTM D2240-00. Polímeros
  • 27. ENSAIO DE DUREZA – DUREZA SHORE Polímeros
  • 28. ENSAIO DE DUREZA – DUREZA SHORE Polímeros Outro método de medida de dureza Shore é a por choque que mede a altura do ressalto de um peso que cai livremente até bater na superfície lisa e plana de um corpo de prova. Esta altura de ressalto mede a perda de energia cinética do peso, absorvida pelo corpo de prova. Método bastante prático e que pode ser usado em peças de grande tamanho.
  • 29. ENSAIO DE DUREZA – DUREZA BRINELL Método utilizado principalmente em materiais metálicos. Proposto em 1900, pelo engenheiro sueco Johan August Brinell. Primeiro ensaio de penetração padronizado reconhecido industrialmente; O teste típico consiste em um penetrador esférico com ø 1, 2, 5 ou 10 mm, de aço de elevada dureza ou de WC. Carga aplicada: entre 500 e 3000 kgf mantida constante entre 10 e 30 s. Metais não ferrosos, ferro fundido, aço, peças não-temperadas
  • 30. ENSAIO DE DUREZA – DUREZA BRINELL O número Brinell de dureza (HB, Hardeness Brinell) é função da carga aplicada e do diâmetro da calota esférica resultante e pode ser obtido através da seguinte relação: F: carga aplicada (Kgf) p: profundidade da penetração D: diâmetro do penetrador d: média do diâmetro da impressão em pelo menos duas direções. Dimensão da dureza Brinell: MPa Norma de referência: ASTM E10 (Standard Test Method for Brinell Hardness of Metallic Materials). Metais não ferrosos, ferro fundido, aço, peças não-temperadas HBS: esfera de aço HBW: esfera de WC Dificuldade de se medir p
  • 31. ENSAIO DE DUREZA DUREZA BRINELL Exemplo de tabela com valores de dureza Brinell em função do diâmetro de impressão, d. Pela norma brasileira, a espessura mínima do material ensaiado deve ser 17 vezes a profundidade da calota. Único ensaio aceito para metais sem estrutura interna uniforme. HB limitado a 500HB (dureza da esfera de aço) Metais não ferrosos, ferro fundido, aço, peças não-temperadas
  • 32. ENSAIO DE DUREZA – DUREZA ROCKWELL Aplica-se uma carga menor (pré- carga) e depois uma maior (de ensaio). Dureza = diferença entre as profundidades de penetrações, descontando a recuperação elástica. Carga inicial: 10 kgf Carga final: 50, 90 ou 140 Kgf Carga total: 60, 100 ou 150 Kgf Maioria dos metais, ligas metálicas e polímeros Resultado é lido diretamente no mostrador da máquina de ensaio.
  • 33. ENSAIO DE DUREZA – DUREZA ROCKWELL • Um dos mais simples e mais utilizados na indústria; • Várias escalas diferentes podem ser utilizadas através de possíveis combinações de penetradores e cargas, o que permite o uso deste ensaio em praticamente todas as ligas metálicas, assim como em muitos polímeros. • Penetradores: esferas de aço de elevada dureza, com ø 1/16, 1/8, 1/4 e 1/2 in, ou cones de diamante com conicidade de 120º (materiais de alta dureza). Maioria dos metais, ligas metálicas e polímeros
  • 34. ENSAIO DE DUREZA – DUREZA ROCKWELL Maioria dos metais, ligas metálicas e polímeros Exemplo: 80 HRB: dureza Rockwell de 80 na escala B Regras importantes: 1. Espessura do material pelo menos 10x > do que a profundidade da impressão. 2. Distância mínima entre impressões = 3 x ø do penetrador 3. Amostra com boa planicidade. Normas aplicáveis: ASTM E18 (Standard methods for Rockwell hardness and Rockwell superficial hardness of metallic materials) ISO 6508-1 (Metallic materials - Rockwell hardness test - Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T)).
  • 35. Exemplo de durômetro Rockwell digital instrumentado Exemplo de durômetro Rockwell analógico instrumentado Exemplos de penetradores Rockwell (ponta de diamante ou de outros elementos)
  • 36. ENSAIO DE DUREZA – DUREZA ROCKWELL SUPERFICIAL Maioria dos metais, ligas metálicas e polímeros Determinação de dureza folhas finas, lâminas e camadas superficiais. Mesmo princípio [carga menor (3 kgf) depois carga maior (15, 30 ou 45 kgf)]. Escalas identificadas por um 15, 30 ou 45 (dependendo da carga), seguido por N, T, W, X ou Y, de acordo com o penetrador Exemplo: 60 HR30W representa uma dureza Rockwell Superficial de 60 na escala 30W.
  • 37. Comparação do valor de dureza de diferentes materiais nas escalas Brinell, Rockwell e Mohs
  • 38. ENSAIO DE DUREZA – DUREZA VICKERS Desenvolvido em 1925 para suplantar algumas limitações do método Rockwell (escalas sem continuidade – dificuldade para alguns materiais no limite das escalas). Ademais, os HR não apresentam relação com a resistência à tração do material, como o Brinell. Método: penetração de uma pirâmide diamante de base quadrada, com ângulo entre as faces opostas (ângulo de diedro) de 136º.
  • 39. ENSAIO DE DUREZA – DUREZA VICKERS O valor de dureza Vickers (HV) é o quociente da carga aplicada (F) pela área de impressão (A) deixada no corpo ensaiado. Essa relação, expressa em linguagem matemática é a seguinte: Por meio de um microscópio acoplado, a máquina de ensaio Vickers permite fazer as medidas das diagonais d1 e d2
  • 40. ENSAIO DE DUREZA – DUREZA VICKERS Conhecendo-se d1 e d2, calcula-se a área da pirâmide que foi impressa: E, assim, chega-se ao valor da dureza Vickers:
  • 41. ENSAIO DE DUREZA – DUREZA VICKERS Tempo normal de aplicação da carga:10 a 15 segundos. Quando a duração da aplicação da carga é diferente, indica-se o tempo de aplicação após a carga. Exemplo: 440 HV 30/20 (440 de dureza com carga de 30 Kgf aplicada por 20 segundos. Neste método, as CARGAS PODEM SER DE QUALQUER VALOR, pois as impressões são proporcionais às cargas para um mesmo material DUREZA VICKERS: VALOR DA DUREZA INDEPENDE DA CARGA UTILIZADA!
  • 42. ENSAIO DE DUREZA – DUREZA VICKERS Como padronização, as cargas recomendadas são: 1, 2, 3, 4, 5, 10, 20, 30, 40, 60, 80, 100, 120 kgf. Para cargas > 120 kgf pode-se usar esferas de aço temperado de 1 ou 2 mm de diâmetro na mesma máquina. Neste caso, o ensaio feito na máquina Vickers é o ensaio de dureza Brinell. Microdureza Vickers: para medida de superfícies tratadas ou dureza de microconstituintes de uma microestrutura Nessa caso> cargas < 1 Kgf (até 10gf) Penetrador: diamante. Ensaio: não destrutuvo Na microdureza a impressão produzida é microscópica
  • 43. ENSAIO DE DUREZA – DUREZA VICKERS Vantagens: • Ensaio não destrutivo • Penetrador de diamante (indeformável) • Aplica-se em materiais de qualquer espessura • Escala contínua de dureza • Grande precisão das medidas (uso em pesquisa) Desvantagens: • Necessária preparação da superfície do material ou CDP • Para cargas pequenas (<300 gf) pode haver recuperação elástica o que dificulta as medidas das diagonais. • Equipamento Vickers requer aferição constante e é caro. • Ensaio mais demorado.
  • 44. ENSAIO DE DUREZA – DUREZA KNOOP Microdureza Knoop: utiliza o mesmo princípio de ensaio de dureza Vickers, mas o penetrador possui geometria diferente. Pode ser usado em materiais frágeis como cerâmicos. Dureza Knoop: P: carga aplicada (Kgf) A: área da impressão (mm2) L: comprimento da impressão (mm) Cp: fator de correção devido ao formato do penetrador P entre 1 e 1000 g. Impressão medida no microscópio Método desenvolvido no National Bureau of Standards (hoje NIST), pelo físico e engenheiro americano Frederick Knopp e normatizado pela ASTM D1474 (Standard Test Methods for Indentation Hardness of Organic Coatings).