Implicação Lógica

6.639 visualizações

Publicada em

Um dos assuntos de Lógica Proposicional

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
6.639
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
61
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Implicação Lógica

  1. 1. LÓGICA MATEMÁTICA CURSO: SISTEMAS DE INFORMAÇÃO 1º PERÍODO Prof.: Hugo Souza hugo.souza@cesmac.com.br CENTRO UNIVERSITÁRIO – CESMAC FACULDADE DE CIÊNCIAS EXATAS - FACET
  2. 2. Objetivo da aula de hoje... •Continuaremos os conceitos de Lógica Proposicional •Conheceremos os conceitos de Implicação Lógica LÓGICA MATEMÁTICA 2
  3. 3. Sumário •Correção do Exercício passado •Implicação Lógica •Exercícios •Iniciar Revisão para a Avaliação 1 – 2014.1 LÓGICA MATEMÁTICA 3
  4. 4. Ementa •Lógica Proposicional: –Sintaxe –Semântica –Propriedades Semânticas –Método para determinação da validade de fórmulas •Lógica de Predicados: –Sintaxe –Semântica –Propriedades Semânticas –Resolução. LÓGICA MATEMÁTICA 4
  5. 5. Aviso! •Avaliação 1 •02/09/2014 •Assuntos: –Introdução e história de lógica –Lógica Proposicional •Sintaxe •Semântica (Operações Lógicas; Tabela Verdade; Tautologia, Contradição e Contingência) LÓGICA MATEMÁTICA 5
  6. 6. Implicação •Definição: Dadas as proposições compostas P e Q, diz-se que ocorre uma implicação lógica (ou relação de implicação) entre P e Q quando a proposição condicional P  Q é uma tautologia. •Notação: P  Q LÓGICA MATEMÁTICA 6
  7. 7. Implicação LÓGICA MATEMÁTICA 7 -Portanto, dizemos que P  Q quando nas respectivas tabelas verdade dessas duas proposições não aparece V na última coluna de P e F na última coluna de Q, com V e F em uma mesma linha, isto é, não ocorre P e Q com valores lógicos simultâneos respectivamente V e F. - Em particular, toda proposição implica uma tautologia e somente uma contradição implica outra contradição.
  8. 8. Implicação LÓGICA MATEMÁTICA 8 Exemplos: a) 4 x 5 = 20  (2 + 1)² = 3². Podemos usar o símbolo , pois a proposição condicional: 4 x 5 = 20  3²= (2 + 1)² é verdadeira. b) Não podemos escrever que 3 > 2  3 > 4, pois a proposição condicional: 3 > 2  3 > 4 é falsa.
  9. 9. Implicação LÓGICA MATEMÁTICA 9 •Observação:  DIFERENTE  •O símbolo  entre duas proposições dadas indica uma relação, isto é, que a proposição condicional associada é uma tautologia, enquanto  realiza uma operação entre proposições dando origem a uma nova proposição p  q (que pode conter valores lógicos V ou F).
  10. 10. Implicação LÓGICA MATEMÁTICA 10 Propriedade Reflexiva: P(p,q,r,...)  P(p,q,r,...) Propriedade Transitiva: SE P(p,q,r,...)  Q(p,q,r,...) E Q(p,q,r,...)  R(p,q,r,...), ENTÃO P(p,q,r,...)  R(p,q,r,...)
  11. 11. Implicação LÓGICA MATEMÁTICA 11 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V Assim, diz-se que p ^ q  p v q e p ^ q  p  q
  12. 12. Implicação LÓGICA MATEMÁTICA 12 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p  p v q (Adição)
  13. 13. Implicação LÓGICA MATEMÁTICA 13 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p ^ q  p (Simplificação)
  14. 14. Implicação LÓGICA MATEMÁTICA 14 p ^ q, p v q, p  q p q p ^ q p v q p  q V V V V V V F F V F F V F V F F F F F V REGRA DE INFERÊNCIA: p ^ q  q (Simplificação)
  15. 15. Implicação LÓGICA MATEMÁTICA 15 (p v q) ^ ~p  q (p v q) ^ ~q  p REGRA DE INFERÊNCIA: SILOGISMO DISJUNTIVO
  16. 16. Implicação LÓGICA MATEMÁTICA 16 (p  q) ^ p  q REGRA MODUS ponens (p  q) ^ ~q  ~p REGRA MODUS tollens
  17. 17. Implicação LÓGICA MATEMÁTICA 17 •Teorema: - A proposição P(p,q,r,...) IMPLICA a proposição Q(p,q,r,...) se e somente se a condicional P  Q é tautológica. •P(p,q,r,...)  Q(p,q,r,...) se e somente se: P  Q = V (tautológica)
  18. 18. Implicação LÓGICA MATEMÁTICA 18 •P(p,q,r,...)  Q(p,q,r,...) se e somente se: P  Q = V (tautológica). •A condicional: (p  q) ^ (q ^ r)  (p  r) é Tautologia. •Logo, deduz-se a implicação lógica: (p  q) ^ (q ^ r)  p  r - (Regra do SILOGISMO HIPOTÉTICO)
  19. 19. Implicação LÓGICA MATEMÁTICA 19 Exemplo: Mostrar que (p ^ q)  p p q p ^ q V V V V F F F V F F F F - Como (p ^ q)  p é uma tautologia, então (p ^ q)  p, isto é, ocorre a implicação lógica. (p ^ q)  p V V V V
  20. 20. Implicação LÓGICA MATEMÁTICA 20 1. As tabelas-verdade das proposições p ^ q, p v q, p  q são: p ^ q  p v q e p ^ q  p  q - A proposição “p ^ q” é verdadeira (V) somente na linha 1 e, nesta linha, as proposições “p v q” e “p  q” também são verdadeiras (V). Logo, a primeira posição implica cada uma das outras posições, isto é:
  21. 21. Implicação LÓGICA MATEMÁTICA 21 - As mesmas tabelas-verdade também demonstram as importantes Regras de Inferência: p  p v q e q  p v q (Adição) p ^ q  p e p ^ q  q (Simplificação)
  22. 22. Implicação LÓGICA MATEMÁTICA 22 Regras de Inferência Adição disjuntiva (AD) p  p  q Simplificação conjuntiva(SIM) p  q  p ou p  q  q Modus Ponens(MP) ( p  q )  p  q Modus Tollens(MT) ( p  q )  ~q  ~p Silogismo Disjuntivo(SD) ( p  q )  ~q  p Silogismo Hipotético(SH) ( p  q )  ( q  r )  p  r Dilema Construtivo(DC) ( p  q )  ( r  s )  ( p  r )  q  s Dilema Destrutivo(DD) ( p  q )  ( r  s )  ( ~q  ~s )  ~p  ~r Absorção(ABS) p  q  p  ( p  q )
  23. 23. E por hoje... LÓGICA MATEMÁTICA 23 •Vamos ter uma revisão para a Avaliação 1 •Obrigado! •Até a próxima aula!

×