SlideShare uma empresa Scribd logo
1 de 11
NÚMEROS COMPLEXOS
Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
Esse número, representado pela letra i, denominado  unidade imaginária , é definido por:  i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado  conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
Definição de números complexos Dados dois números reais  a  e  b  , define-se o número complexo z como sendo:  z =  a  +  b i , onde i = √-1 é a unidade imaginária .  Ex: z =  2  +  3 i ( a = 2 e b = 3) w =  -3   -5 i (a = -3 e b = -5) u =  100 i ( a = 0 e b = 100)
NOTAS: a)  diz-se que z =  a  +  b i é a forma binômia ou algébrica do complexo z . b)  dado o número complexo z =  a  +  b i ,  a  é denominada parte real e  b  parte imaginária.  Escreve-se :  a  = Re(z) ;  b  = Im(z) . c)  se em z =  a  +  b i tivermos  a  = 0 e  b  diferente de zero, dizemos que z é um imaginário puro . Ex: z =  3 i . d) se em z =  a  +  b i tivermos  b  = 0 , dizemos que z é um número real .  Ex: z =  5  =  5  +  0 i .  e) Seja z =  a  +  b i , chama-se conjugado de z e representa-se por  , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z.   Ex: z= 4 + 5 i  ->  = 4  –  5 i
f) do item (c) acima concluímos que todo número real é complexo, ou seja,  o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g)  um número complexo z =  a  +  b i pode também ser representado como um par ordenado z = ( a , b ) .
Forma Algébrica Os números complexos são formados por um par ordenado ( a ,  b ) onde os valores de  a  estão situados no eixo x (abscissa) e os valores de  b  no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária.   Sendo P o ponto de coordenadas ( a ,  b ), a forma algébrica pela qual representaremos um número complexo será  a  +  b i, como  a  e b Є R.  A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
Operações com números complexos ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i –  bd ( a + b i)( c + d i)=( ac  –  bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
 Divisão: A divisão   de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex:   =  =
  Por: Andréia Caetano da Silva   Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994

Mais conteúdo relacionado

Mais procurados (11)

Números complexos 2008
Números complexos 2008Números complexos 2008
Números complexos 2008
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
Nmeros Complexos Daniel Mascarenhas 1234123084972510 1
 
NUMEROS COMPLEXOS
NUMEROS COMPLEXOSNUMEROS COMPLEXOS
NUMEROS COMPLEXOS
 
Conjunto dos números complexos
Conjunto dos números complexosConjunto dos números complexos
Conjunto dos números complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 
Números complexos
Números complexos Números complexos
Números complexos
 
Números complexos
Números complexosNúmeros complexos
Números complexos
 

Destaque

Porque 1 e um 2 e dois 3 e tres
Porque 1 e um 2 e dois 3 e tresPorque 1 e um 2 e dois 3 e tres
Porque 1 e um 2 e dois 3 e tres
Luiz Carlos Dias
 
1204903230 numerohistoria
1204903230 numerohistoria1204903230 numerohistoria
1204903230 numerohistoria
Pelo Siro
 
Livro De Receitas Tororomba
Livro De Receitas TororombaLivro De Receitas Tororomba
Livro De Receitas Tororomba
MaisVitamina
 
Análise dos resultados da tarefa investigativa - Demonstrações em Matemática
Análise dos resultados da tarefa investigativa - Demonstrações em MatemáticaAnálise dos resultados da tarefa investigativa - Demonstrações em Matemática
Análise dos resultados da tarefa investigativa - Demonstrações em Matemática
Elton Ribeiro da Cruz
 
Educação artística e as máscaras construídas pelos alunos.ppt
Educação artística e as máscaras construídas pelos alunos.pptEducação artística e as máscaras construídas pelos alunos.ppt
Educação artística e as máscaras construídas pelos alunos.ppt
L Fernando F Pinto
 
Atividade bullying maria e marani
Atividade bullying maria e maraniAtividade bullying maria e marani
Atividade bullying maria e marani
Walkiria Zanuncio
 
Powerpointalgoritmoeuclides
PowerpointalgoritmoeuclidesPowerpointalgoritmoeuclides
Powerpointalgoritmoeuclides
SilviaCampelo
 

Destaque (8)

Porque 1 e um 2 e dois 3 e tres
Porque 1 e um 2 e dois 3 e tresPorque 1 e um 2 e dois 3 e tres
Porque 1 e um 2 e dois 3 e tres
 
Ano novo (4)
Ano novo (4)Ano novo (4)
Ano novo (4)
 
1204903230 numerohistoria
1204903230 numerohistoria1204903230 numerohistoria
1204903230 numerohistoria
 
Livro De Receitas Tororomba
Livro De Receitas TororombaLivro De Receitas Tororomba
Livro De Receitas Tororomba
 
Análise dos resultados da tarefa investigativa - Demonstrações em Matemática
Análise dos resultados da tarefa investigativa - Demonstrações em MatemáticaAnálise dos resultados da tarefa investigativa - Demonstrações em Matemática
Análise dos resultados da tarefa investigativa - Demonstrações em Matemática
 
Educação artística e as máscaras construídas pelos alunos.ppt
Educação artística e as máscaras construídas pelos alunos.pptEducação artística e as máscaras construídas pelos alunos.ppt
Educação artística e as máscaras construídas pelos alunos.ppt
 
Atividade bullying maria e marani
Atividade bullying maria e maraniAtividade bullying maria e marani
Atividade bullying maria e marani
 
Powerpointalgoritmoeuclides
PowerpointalgoritmoeuclidesPowerpointalgoritmoeuclides
Powerpointalgoritmoeuclides
 

Semelhante a Números Complexos

Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
brandy57279
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
GuiVogt
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
brandy57279
 

Semelhante a Números Complexos (15)

Números complexos bom
Números complexos bomNúmeros complexos bom
Números complexos bom
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
NúMeros Complexos
NúMeros ComplexosNúMeros Complexos
NúMeros Complexos
 
Números Complexos
Números ComplexosNúmeros Complexos
Números Complexos
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Números Complexos_IME ITA
Números Complexos_IME ITANúmeros Complexos_IME ITA
Números Complexos_IME ITA
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Definição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptxDefinição do corpo dos números complexos - Copy.pptx
Definição do corpo dos números complexos - Copy.pptx
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
(Curso extensivo) números complexos 01.08 e 02.08
(Curso extensivo) números complexos  01.08 e 02.08(Curso extensivo) números complexos  01.08 e 02.08
(Curso extensivo) números complexos 01.08 e 02.08
 
Definição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptxDefinição do corpo dos números complexos.pptx
Definição do corpo dos números complexos.pptx
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
www.videoaulagratisapoio.com.br - Matemática -  Números Complexoswww.videoaulagratisapoio.com.br - Matemática -  Números Complexos
www.videoaulagratisapoio.com.br - Matemática - Números Complexos
 

Último

Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
TailsonSantos1
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.ppt
RogrioGonalves41
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
lenapinto
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
Autonoma
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
sh5kpmr7w7
 

Último (20)

TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdfTCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
TCC_MusicaComoLinguagemNaAlfabetização-ARAUJOfranklin-UFBA.pdf
 
Cartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptxCartão de crédito e fatura do cartão.pptx
Cartão de crédito e fatura do cartão.pptx
 
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM  POLÍGON...
Polígonos, Diagonais de um Polígono, SOMA DOS ANGULOS INTERNOS DE UM POLÍGON...
 
Educação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptxEducação Financeira - Cartão de crédito665933.pptx
Educação Financeira - Cartão de crédito665933.pptx
 
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptxPoesiamodernismo fase dois. 1930 prosa e poesiapptx
Poesiamodernismo fase dois. 1930 prosa e poesiapptx
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptxMonoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
Monoteísmo, Politeísmo, Panteísmo 7 ANO2.pptx
 
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdfAula prática JOGO-Regencia-Verbal-e-Nominal.pdf
Aula prática JOGO-Regencia-Verbal-e-Nominal.pdf
 
Pesquisa Ação René Barbier Livro acadêmico
Pesquisa Ação René Barbier Livro  acadêmicoPesquisa Ação René Barbier Livro  acadêmico
Pesquisa Ação René Barbier Livro acadêmico
 
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdfApresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
Apresentação ISBET Jovem Aprendiz e Estágio 2023.pdf
 
Artigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.pptArtigo Científico - Estrutura e Formatação.ppt
Artigo Científico - Estrutura e Formatação.ppt
 
Expansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XVExpansão Marítima- Descobrimentos Portugueses século XV
Expansão Marítima- Descobrimentos Portugueses século XV
 
aula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.pptaula de bioquímica bioquímica dos carboidratos.ppt
aula de bioquímica bioquímica dos carboidratos.ppt
 
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdfatividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
atividade-de-portugues-paronimos-e-homonimos-4º-e-5º-ano-respostas.pdf
 
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.docGUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
GUIA DE APRENDIZAGEM 2024 9º A - História 1 BI.doc
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptxCópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
Cópia de AULA 2- ENSINO FUNDAMENTAL ANOS INICIAIS - LÍNGUA PORTUGUESA.pptx
 
Slide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemáticaSlide - SAEB. língua portuguesa e matemática
Slide - SAEB. língua portuguesa e matemática
 
APRESENTAÇÃO - BEHAVIORISMO - TEORIA DA APRENDIZAGEM.pdf
APRESENTAÇÃO - BEHAVIORISMO - TEORIA DA APRENDIZAGEM.pdfAPRESENTAÇÃO - BEHAVIORISMO - TEORIA DA APRENDIZAGEM.pdf
APRESENTAÇÃO - BEHAVIORISMO - TEORIA DA APRENDIZAGEM.pdf
 
O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.O que é arte. Definição de arte. História da arte.
O que é arte. Definição de arte. História da arte.
 

Números Complexos

  • 2. Quantas vezes, ao calcularmos o valor de Delta( b² - 4ac) na resolução de equação de 2º grau, nos deparamos com um valor negativo (Delta <0). Neste caso, sempre dizemos que não existe solução no campo dos números reais. Uma equação que tirou o sono de muitos matemáticos do século XV, foi a equação x² +1 = 0, uma vez que não existe no campo dos reais raiz quadrada de número negativo (x = √-1). Para que as equações sempre fosse possíveis, houve a necessidade de ampliar o universo dos números. Criou-se, então, um número cujo quadrado é -1.
  • 3. Esse número, representado pela letra i, denominado unidade imaginária , é definido por: i² = -1 A partir dessa definição, surge um novo conjunto de números, denominado conjunto dos números complexos , que indicamos por C. Mas não se assustem o complexo só está no nome. Vocês verão que esse conjunto é muito fácil de aprender.
  • 4. Definição de números complexos Dados dois números reais a e b , define-se o número complexo z como sendo: z = a + b i , onde i = √-1 é a unidade imaginária . Ex: z = 2 + 3 i ( a = 2 e b = 3) w = -3 -5 i (a = -3 e b = -5) u = 100 i ( a = 0 e b = 100)
  • 5. NOTAS: a) diz-se que z = a + b i é a forma binômia ou algébrica do complexo z . b) dado o número complexo z = a + b i , a é denominada parte real e b parte imaginária. Escreve-se : a = Re(z) ; b = Im(z) . c) se em z = a + b i tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3 i . d) se em z = a + b i tivermos b = 0 , dizemos que z é um número real . Ex: z = 5 = 5 + 0 i . e) Seja z = a + b i , chama-se conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z. Ex: z= 4 + 5 i -> = 4 – 5 i
  • 6. f) do item (c) acima concluímos que todo número real é complexo, ou seja, o conjunto dos números reais é um subconjunto do conjunto dos números complexos . g) um número complexo z = a + b i pode também ser representado como um par ordenado z = ( a , b ) .
  • 7. Forma Algébrica Os números complexos são formados por um par ordenado ( a , b ) onde os valores de a estão situados no eixo x (abscissa) e os valores de b no eixo y (ordenadas). Sobre o eixo x marcamos os pontos relacionados à parte real do número complexo e sobre o eixo y os pontos relacionados à parte imaginária. Sendo P o ponto de coordenadas ( a , b ), a forma algébrica pela qual representaremos um número complexo será a + b i, como a e b Є R. A forma algébrica de representar um número complexo é mais prática e mais utilizada nos cálculos.
  • 8.
  • 9.  Multiplicação: A multiplicação de dois números complexos se dá de acordo com a regra de multiplicação de binômios e lembrando que i²=1,temos: ( a + b i)( c + d i)= ac + a d i+ b c i+ bd i² ( a + b i)( c + d i)= ac + a d i+ b c i – bd ( a + b i)( c + d i)=( ac – bd )+( a d + b c )i Ex: ( 2 + 4 i)( 1 + 3 i)=2+6i+4i+12i² ( 2 + 4 i)( 1 + 3 i)=2+6i+4i - 12 ( 2 + 4 i)( 1 + 3 i)=(2-12)+(6+4)i ( 2 + 4 i)( 1 + 3 i)= - 10 + 10 i
  • 10.  Divisão: A divisão de dois números complexos pode ser obtida escrevendo-se o quociente sob a forma de fração; a seguir, procedendo-se de modo análogo ao utilizado na racionalização do denominador de uma fração, multiplicam-se ambos os termos da fração pelo número complexo conjugado do denominador. Ex: = =
  • 11. Por: Andréia Caetano da Silva Bibliografia: Matemática Fundamental, 2ºgrau: volume único/José Ruy Giovanni, José Roberto Bonjorno, José Ruy Giovanni Jr. – São Paulo:FTD,1994