SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA
Cusco, 23 a 25 de Outubro de 2007
ANÁLISE ENERGÉTICA E EXERGÉTICA DE UM FORNO CERÂMICO OPERANDO
COM GÁS NATURAL
Ana Cláudia Bento Melchíades*, Siderley Fernandes Albuquerque*, Antonio Gilson Barbosa de Limaº
*, º Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Unidade Acadêmica de Engenharia
Mecânica, ANP/UFCG/PRH-25, Av: Aprígio Veloso, 882 Bodocongó campina Grande-PB Brasil, CEP 58109-970,
Caixa Postal 10069
ºe-mail: gilson@dem.ufcg.edu.br
RESUMO
As vantagens do uso do gás natural como fonte de energia em fornos usados na Indústria de Cerâmica Vermelha já é
uma realidade, no entanto ainda não há consenso entre os ceramistas. Visando dar uma contribuição nesse sentido, este
trabalho apresenta uma análise energética e exergética do processo de combustão do gás natural usado, por exemplo,
em um forno tipo batelada para queima de materiais cerâmicos. O gás natural tem a seguinte composição química na
base molar: 87,563% de CH4; 9,586% de C2H6; 0,423% de C3H8; 0,086% de C4H10; 0,050% de C5H12; 0,061% de
C6H14; 0,982% de N2 e 1,247% de CO2 O gás é queimado a seco fornecendo produtos de combustão cuja análise na
base molar é: 7,82% de CO2; 0,2% de CO; 7% de O2 e 85% de N2. Resultados da quantidade de calor liberada no
processo de combustão, eficiência energética e energia residual dos gases de exaustão são apresentados e analisados.
Com o modelo matemático apresentado e seu melhor entendimento é possível a otimização do processo de queima e
aumento da eficiência do forno a gás.
PALAVRAS-CHAVE: Cerâmica vermelha, fornos, queima, consumo de energia, gás natural.
Introdução
A cerâmica ou material cerâmico compreendem todos os materiais inorgânicos ou não metálicos de emprego em
engenharia (materiais de construção em engenharia) ou produtos químicos inorgânicos (com exceção dos metais e suas
ligas), que são utilizados geralmente após tratamento em temperaturas elevadas. A cerâmica vermelha, classe que o
tijolo pertence, é utilizada pela humanidade desde tempos remotos. O Brasil apresenta um atraso de mais de 50 anos
quando comparado com países europeus. A maioria das indústrias tem um ar antiquado e rudimentar.
O processo de fabricação da cerâmica consiste no aquecimento da argila, provocando transformações na estrutura do
componente, conferindo-lhe resistência, que é a etapa mais importante. As propriedades finais dos produtos cerâmicos
dependem fortemente da temperatura a que foram submetidos durante a sua queima e a identificação das temperaturas
no interior do empilhamento pode revelar a causa da obtenção ou não de certas propriedades termo-mecânicas. O maior
desafio na construção e na operação de um forno consiste na obtenção de uma região de queima de grande
uniformidade de temperatura, através da distribuição e da regulagem criteriosa dos queimadores utilizados.
O combustível mais utilizado pela indústria cerâmica brasileira ainda é a lenha ou seus derivados. Aqui, no Brasil, o
uso da lenha e seus derivados, como a serragem, é bastante difundido, porém, encontra-se ameaçado. No caso da lenha
a ameaça é devida às crescentes barreiras impostas pela legislação ambiental, mo que diz respeitoàs madeiras nativas. Já
no caso dos derivados de madeira, a ameaça encontra-se no aumento da geração de energia elétrica a partir da biomassa
no Brasil, previsto para os próximos anos, e no aumento da utilização destes derivados na fabricação de produtos para a
indústria moveleira, como é o caso dos aglomerados [1].
A utilização do gás natural para a secagem e queima nos fornos é uma tendência mundial, por ser um combustível
mais nobre, menos poluente, que facilita o controle do processo de queima e a obtenção de produtos de maior qualidade
[2].
Ao se usar o gás natural como fonte de energia na indústria cerâmica, pode-se aplicar o calor diretamente ao produto;
evita-se impurezas e o depósito de compostos contaminadores; alcança-se curvas de temperaturas ideais; tem-se a
garantia de padrão de qualidade; permite um melhor controle da queima e um baixo nível de emissões de partículas e
gases, possibilitando a fabricação de produtos finais com maior qualidade e, conseqüentemente, maior valor agregado.
Verifica-se ainda menor nível de rejeitos; proporciona uma regulagem fácil e rápida do forno para a queima de produtos
diferentes quanto ao tamanho, forma e matéria-prima, permitindo maior flexibilidade na diversificação da linha de
produção. Quanto às vantagens operacionais, o gás natural apresenta uma combustão completa; reduz o número e o
tempo de paradas para a manutenção; aumenta a disponibilidade e vida útil dos equipamentos; proporciona elevado
rendimento térmico; composição química constante isenta de compostos pesados; estabilidade e formatos de chama
adequados para cada aplicação. Quanto às vantagens econômicas, o gás natural não tem frete rodoviário; dispensa área
de armazenamento (lenha e óleo) e elimina gasto com energia de nebulização (óleo); diminui os custos de manutenção;
retarda os investimentos em troca de equipamentos; é pago após a utilização; não necessita de aquecimento e possui
reservas medidas acima de 150 bilhões de m3
[3].
Do ponto de vista ambiental, o gás natural apresenta elevado rendimento e eficiência, pela combustão completa com
menor excesso de ar; reduz a emissão de CO2; limpeza dos produtos de combustão; redução drástica de emissões (SOx e
NOx), que são chuva ácida e destruição da camada de ozônio e redução do desmatamento. Segundo [3], esse aspecto
muitas vezes pode significar a ampliação da capacidade de produção de indústrias ou a implantação de novas empresas,
permitindo o desenvolvimento regional, tendo em vista a possibilidade de não degradar a qualidade de vida da região,
tornando possível uma perfeita integração do setor produtivo com a população.
Diante do exposto, muitos trabalhos têm sido desenvolvidos em várias regiões do país, visando à busca de novas
tecnologias para o setor, um aperfeiçoamento do produto e uma racionalização no consumo de energia. A idéia central
visa à utilização do gás natural como combustível para a indústria de cerâmica vermelha. Nesse sentido, este trabalho
visa modelar e analisar energética e exergeticamente um forno-secador operando com gás natural para ser usado na
indústria cerâmica.
MODELAGEM MATEMÁTICA
Equacionamento químico
O estudo apresentado aqui é apenas teórico, representando uma situação em que o forno mostrado acima funciona
apenas com gás natural. Nesta condição, considera-se que o gás natural utilizado para o funcionamento do forno
apresenta a seguinte composição química na base molar: 87,563% de CH4; 9,586% de C2H6; 0,423% de C3H8; 0,086%
de C4H10; 0,050% de C5H12; 0,061% de C6H14; 0,982% de N2 e 1,247% de CO2. O gás é queimado a seco fornecendo
produtos de combustão cuja análise na base molar é: 7,82% de CO2; 0,2% de CO; 7% de O2 e 85% de N2. Considera-se
a mistura combustível, para efeitos de cálculo como um gás ideal.
Para 1 kmol da mistura combustível, temos a seguinte equação química a ser balanceada:
(0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 +
0,00982N2) + a(O2 + 3,76N2) → b(0,078CO2 + 0,002CO + 0,07O2 + 0,85N2) + c(H2O)
(1)
onde a, b e c são coeficientes a serem determinados da Ec. (1).
A razão ar combustível em base molar é:
( )
1
76,31073874875,3 +
=AC (2)
A massa molecular do ar é: Ma r= 28,84 kg/kmol de ar.
A massa molecular do combustível é. Mc = 18,0753266 kg/kmol de combustível
Logo, em base mássica, a razão ar combustível é dada pela equação (3):
c
ar
M
M
ACAC = (3)
A quantidade teórica de ar é obtida através do balanceamento da equação química para combustão completa dada
por:
(0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 +
0,00982N2) + a’(O2 + 3,76N2) → b’CO2 + c’N2 + d’H2O
(4)
onde a’, b’, c’ e d’ são coeficientes a serem determinados da equação química (4).
Equações de energia e exergia para o forno
Para a análise do forno, o combustível entra em combustão no mesmo operando em regime permanente com uma
vazão mássica de mc ao ser misturado com uma quantidade de ar ma. O combustível entra no forno à temperatura Tc e à
pressão Pc, enquanto o ar entra com a temperatura Ta e à pressão Pa. A mistura queima completamente e os produtos da
combustão deixam o forno à temperatura Tp e a pressão Pp com o fluxo de massa mf. Na combustão uma quantidade de
calor Q é transferida para o interior do forno.
O balanço de energia para o sistema reagente em regime permanente quando a energia cinética e potencial são
desprezíveis, é da forma [4], [5], [6].
sseevc hmhmQ ∑∑ =+ &&& (5)
Para as entalpias expressas por mol de combustível, o balanço de energia toma a forma:
∑∑ =−=−=
R
RPee
p
ssRP
c
vc
hhnhnhh
n
Q
ˆˆ
&
&
(6a)
onde cn& é a vazão molar do combustível; Ph e Rh simbolizam, respectivamente, as entalpias dos produtos e dos
reagentes por mol de combustível; n& correspondem aos respectivos coeficientes na reação química que fornecem os
moles dos reagentes e produtos por mol de combustível e RPh é a entalpia de combustão na base molar.
A entalpia específica de um composto em um estado que não o estado padrão é determinada pela adição da variação
de entalpia específica h∆ entre o estado padrão e o estado de interesse e a entalpia de formação como dado abaixo:
( )[ ] ∫+=+=−+=
T
refT
dTPc0
fhh0
fh)refP,refT(hP,Th0
fh)P,T(h ∆ (6b)
A entalpia 0
fh está associada com a formação do composto a partir de seus elementos e h∆ está relacionada a uma
variação de estado em uma composição constante.
O poder calorífico inferior (PCI) do combustível é dado por:
∑∑= iiiC yPCIyPCI / (7)
onde yi simboliza a fração molar do componente i na mistura a T0, P0.
A eficiência da combustão, ηcomb, será:
atmC
cvc
comb
PCI
mQ
1,250)(
/ &&
=η (8)
A exergia, X, associada a um estado especificado é composta por duas contribuições: a contribuição termomecânica,
Xterm, e a contribuição química, Xqui. Em uma base unitária de massa, a exergia total, x, será:
( ) ( ) quixgz
2
2V
0ss0T0hhquixtermxx +
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
++−−−=+= (9)
em que o termo entre colchetes é a contribuição termomecânica e
qui
x é a contribuição química.
Quando se avalia uma variação de exergia, ou de exergia de fluxo entre dois estados onde a composição química da
substância é a mesma, a contribuição química se cancela, permanecendo apenas a diferença das contribuições
termomecânicas. Entretanto, em várias avaliações torna-se necessário levar em conta explicitamente à contribuição da
exergia química. Alguns exemplos são os problemas que envolvem reações químicas, como é o caso da combustão.
A exergia química para uma mistura de gases ideais a T0 e P0 é obtida pela soma das contribuições de cada
componente. O resultado, por mol da mistura, é:
i
i
i
qui
i
i
ie
i
i
i
i
qui
qui
yyTRxy
y
y
yTR
M
x
x lnln 00 ∑∑∑ +=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
== (10)
Se a quantidade de calor liberada para o forno é tomada como o produto do forno e se os gases produzidos na saída
são vistos como perdas, uma expressão para a eficiência exergética, ε, que mede o quanto de exergia na entrada do
forno é convertida em produtos é:
c
vc
X
Q
&
=ε (11)
onde qui
ccc xmX
..
= significa a taxa pela qual a exergia entra com o combustível.
Todas as entalpias de formação, exergia química, calor específico e poder calorífico inferior do combustível e gases
de exaustão foram obtidas em [4], [7].
RESULTADOS E DISCUSSÕES
Partindo da equação (1) e aplicando a conservação da massa, temos:
a = 3,073874875
b = 13,776375
c = 2,06733
Então, a equação (1) balanceada assume a forma:
(0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 +
0,00982N2) + 3,073874875(O2 + 3,76N2) → 13,776375(0,078CO2 + 0,002CO + 0,07O2 0,85N2) + 2,06733H2O
Neste caso a razão ar combustível em base molar dada pela a Eq. (2) será:
( )
lcombustívedekmol
ardekmol
AC 631664441,14
1
76,31073874875,3
=
+
=
Logo, em base mássica, a razão ar combustível utilizando a Eq. (3) será:
lcombustívedekg
ardekg
M
M
ACAC
c
ar
34544952,23
0753266,18
84,28
63164441,14 ===
Por outro lado, aplicando a conservação da massa na Eq. (4), é
a’ = 2,123305
b’ = 1,10211
c’ = 7,9934468
d’ = 2,06733
onde a razão ar-combustível teórica em base molar será:
( )
lcombustívedekmol
ardekmola
AC 1069318,10
1
)76,4(123305,2
1
76,31
==
+′
=
Então, a percentagem de ar teórico será:
%14545,1
1069318,10
63164441,14
% ou
lcombustívedekmol
ardekmol
lcombustívedekmol
ardekmol
teóricoarde ==
Isto é, o sistema está operando com 45% de excesso de ar.
Com referência ao armazenamento, a quantidade de combustível em kmoles, nc, presente em 10 m3
de mistura
combustível a 300 K e a 1 bar (105
N/m2), é dada por:
lcombustívedekmol
Kx
Kkmol
Nm
mN
TR
PV
nc 400930158,0
3008314
/10 25
===
Isto corresponde a uma massa de combustível:
lcombustívedekg
kmol
kg
xkmolMnm ccc 24694355,70753266,18400930158,0 ===
A quantidade total de produtos da combustão é dada por:
b+c =13,776375 + 2,06733 kmol de produto/kmol de combustível =15,843705 kmol de produto/kmol de
combustível.
Conseqüentemente, a quantidade de mistura de produtos que será formada por 10 m3 de misturas de combustível
será:
np = 15,843705 x 0,400930158 = 6,352219149 kmoles de produto gasoso.
A massa total dos produtos será:
mp=np x Mp
onde:
( )[ ]
produtodekmol
produtodekg
x
xxxM p
02640463,28
843705,15
06733,2
)1601,12(
)142(85,0)162(07,0)1612(002,016212078,0
843705,15
776375,13
=+
++++++=
e portanto mp=167,05136 kg de produto .
Combinando as equações (1), (5) e (6), o balanço de energia para o forno assume a forma:
( ) ( ) ( )
( ) ] ( ) } ( ) ( ){
( ) ( ) ( )
]})(
76,3)[(073874875,3)(00982,0)(01247,0)(
00061,00005,000086,000423,0
09586,087563,006733,285,0
07,0002,0078,0776375,13
2
222146
12510483
62422
22
0
0000
000
0000
000
Nf
OfNfCOfHCf
HCfHCfHCf
HCfCHfOHfNf
OfCOff
c
vc
hh
hhhhhhhh
hhhhhh
hhhhhhhh
hhhhhh
n
Q
CO
∆+
+∆++∆++∆++∆+
+∆++∆++∆++
+∆++∆+−∆++∆++
⎩
⎨
⎧
⎢⎣
⎡ ∆++∆++∆++=
&
&
Considerando como exemplo que 0072,0=cm& kg/s, Tc=Ta=27 0C, Pc=Pa=1 atm, e Tp=616 0C, então tem-se que a
vazão molar do combustível é dada por:
000398333,0
0753266,18
0072,0
===
c
c
c
M
m
n
&
& kmol de combustível/s
Sendo assim, supondo que o forno está isolado de vizinhança, a transferência de calor para o interior do forno será:
kW
hhnQ RPcvc
2345882,217
))34831,78083(5426,623442(000398333,0)(
−=
=−−−=−= &&
Para o combustível, usando a Eq. (7) tem-se que:
PCI = 48622,54911kJ/Kg
A eficiência da combustão dada pela Eq. (8), será:
%05242451,62620524245,0
54911,48622
2007,0/2345882,217
)(
/
1,250
ou
PCI
mQ
atmC
cvc
=
−
==
&&
η
Outra definição para a eficiência da combustão seria:
( )
( ) %0758435,69690758435,0
63164441,14
1069318,10
ou
AC
AC
real
teórico
===η
No que se refere aos aspectos exergéticos, nas condições ambientais, a exergia termomecânica é nula. Então, a
exergia total para o gás natural é justamente a exergia química dada pela Eq. (10).
lcombustívedekmol
kJ
x
x
xxxx
xxxxx
qui
c
qui
c
4303,891588
)92491,10763(00982,0
260187,927701247,0884,411625000061,0217,34582180005,0864,2801441
00086,0698,214964800423,0424,149855009586,09496,83618087563,0
=
−+
++++
+++=
ou ainda
kg
kJ
M
x
x
c
qui
cqui
c 26945,49326
0753266,18
4303,891588
===
Para obtenção da eficiência exergética do forno, um balanço de exergia deve ser utilizado. Em regime permanente, a
taxa pela qual a exergia entra no forno é igual à taxa pela qual a exergia sai acrescentada da taxa pela qual a exergia é
destruída no interior do forno.
Conforme o ar de combustão entra na condição ambiente, e conseqüentemente com um valor nulo de exergia, apenas
o combustível fornece exergia ao forno. A exergia sai do forno acompanhando o calor, e os produtos da combustão.Já
que o combustível entra a 270C e 1 atm, o que corresponde aos valores aproximados de T0 e P0 do ambiente (25ºC e 1
atm), e sendo os efeitos de energia cinética e potencial desprezíveis, a exergia do combustível é considerada ser apenas
a sua exergia química. Não existe contribuição termomecânica alguma. Assim sendo,
kWxxmX qui
ccc 14914,35526945,493260072,0 === &&
Então, a eficiência exergética será encontrada através da Eq. (11) será:
%16714465,61611671446,0
14914,355
2345882,217
.
.
ou
X
Q
c
vc
===ε
Como visto, de entrada os parâmetros a são: o consumo do combustível (gás natural), valores de entalpia e exergia de
acordo com a variação da temperatura na entrada e na saída do forno-secador, dando como resultado, a perda de calor.
Sendo assim, pode-se verificar em quais temperaturas de entrada e saída ocorrem maiores e menores rendimentos
energéticos e exergéticos. Nesse sentido, as Figuras 1 e 2, ilustram a influência da temperatura dos produtos de
combustão na saída e do ar na entrada, na eficiência do forno e perda calor de combustão para o forno.
400 450 500 550 600 650 700 750 800 850
45
50
55
60
65
70
75
80
Tp [C]
ηPCI[%]
400 450 500 550 600 650 700 750 800 850
-270
-250
-230
-210
-190
-170
-150
Tp [C]
Q[kW]
Figura 1: (a) rendimento exergético do forno em função da temperatura dos gases de exaustão (b) calor fornecido
durante a combustão em função da temperatura dos gases de combustão na saída do forno.
Verifica-se na Figura 1 (a) que a medida que a temperatura dos gases de combustão na saída do forno aumenta, a
quantidade de calor disponível para ser usada no forno diminui. Isto ocorre de forma linear e está em concordância com
a Figura 1 (b). Observa-se que enquanto a quantidade de calor disponível varia de ≅ 262 kw até ≅ 165 kw, seu
rendimento energético variou de ≅ 77 % para ≅ 47 %, respectivamente.
Na Figura 2 (a) apresenta-se o rendimento energético em função da temperatura do ar na entrada do forno. Verifica-
se que quanto maior esta grandeza, maior será o rendimento do forno e a quantidade de calor disponível para ser usada
no mesmo, no entanto, esta variação não foi tão significativa.
20 22 24 26 28 30 32 34 36 38
63,4
63,6
63,8
64
64,2
64,4
64,6
Ta [C]
ηPCI[%]
20 22 24 26 28 30 32 34 36 38
-219,5
-219
-218,5
-218
-217,5
-217
-216,5
-216
Ta [C]
Q[kW]
Figura 2: (a) rendimento energético do forno em função da temperatura do ar na entrada do forno. (b) calor fornecido
durante a combustão em função da temperatura do ar na entrada do forno.
(a) (b)
(a) (b)
CONCLUSÕES
Os resultados obtidos com o código computacional apresentam boa concordância com dados teóricos.
O gás natural mostra ser viável, econômico, eficiente, rentável e ambientalmente correto.
A medida que a temperatura dos gases de combustão aumenta, o rendimento do forno diminui.
Para dias mais quentes, ou seja, temperatura ambiente mais elevada observa-se um maior rendimento energético do
forno.
O rendimento do energético do forno também se eleva com o aumento da temperatura ambiente, porém em menor
proporção do que a temperatura dos gases de exaustão.
A eficiência exergética do forno apresentou resultados muito próximos da eficiência energética.
AGRADECIMENTOS
Os autores agradecem a FINEP, CT-PETRO, PETROBRÁS, ANP, JBR ENGENHARIA Ltda. e ao CNPq pelo apoio
financeiro concedido e aos pesquisadores referenciados que com suas pesquisas, ajudaram no melhoramento deste
trabalho.
REFERÊNCIAS
1. M. Tolmasquim e A. Skilo (coord.), A Matriz Energética Brasileira na Virada do Milênio. COPPE/UFRJ,
ENERGE, Rio de Janeiro, 2000,
2. R. E. C. Tapia, S. C. Villar, M. F., Henrique Jr., et al., Manual para a indústria de cerâmica vermelha. Série uso
eficiente de energia. SEBRAE, Rio de Janeiro, 2000.
3. V. P. Nicolau, R. F. Hartke, W. A. Lehmkuhl, W. M. Kawaguti e G. M. Santos, Análise numérica e experimental
de um forno túnel utilizado em cerâmica vermelha. ENCIT 2002 – Congresso Brasileiro de Eng. e Ciências
Térmicas. Caxambu, 2002. CD-Rom
4. M. S. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 5a Edição, Jonh Wiley & Sons.
New York, 2002.
5. Çengel, Yunus A. and Boles, Michael A., 1998 “Thermodynamics: An Engineering Approach”, Third Edition,
McGraw-Hill,1001p.
6. R. E. Sonntag, C. Borgnakke and G. J. VanWylen, Fundamentos da Termodinâmica, Tradução da 6a Edição
Americana, Editora Edgard Blucher Ltda, 2003,
7. T. J. Kotas, The exergy method of thermal plant analysis. Butterworths, 1985.
UNIDADES E NOMENCLATURA
M massa molecular (Kg/Kmol)
AC razão ar combustível (adimensional)
em
•
fluxo de massa na entrada (m3
/s)
sm
•
fluxo de massa na saída (m3
/s)
he entalpia de entrada (J/mol)
hs entalpia de saída (J/mol)
hp entalpia dos produtos (J/mol)
hp entalpia dos reagentes (J/mol)
ch
•
vazão molar do combustível (moles/s)
h∆ variação de entalpia (J/mol)
T temperatura (K)
P pressão (N/m2
)
fh
__
o
entalpia de formação (J/mol)
PCIc poder calorífico do combustível (J/kg)
i componente de uma mistura (adimensional)
y fração molar (adimensional)
combη eficiência da combustão (adimensional)
X exergia (J)
Xterm exergia devido a contribuição termomecânica (J)
Xquim exergia devido a contribuição química (J)
R constante dos gases (J/mol.K)
ε eficiência exergética (adimensional)

Mais conteúdo relacionado

Mais procurados

Carvão como sucedâneo do petróleo.docx
Carvão como sucedâneo do petróleo.docxCarvão como sucedâneo do petróleo.docx
Carvão como sucedâneo do petróleo.docxLuís Filipe Marinho
 
Aula 7 co-processamento
Aula 7   co-processamentoAula 7   co-processamento
Aula 7 co-processamentoGiovanna Ortiz
 
Comparativo de emissões e energia através da análise do inventário para produ...
Comparativo de emissões e energia através da análise do inventário para produ...Comparativo de emissões e energia através da análise do inventário para produ...
Comparativo de emissões e energia através da análise do inventário para produ...Fernando Jose Novaes
 
Bancada experimental para estudos de combustão catalítica em meios porosos
Bancada experimental para estudos de combustão catalítica em meios porososBancada experimental para estudos de combustão catalítica em meios porosos
Bancada experimental para estudos de combustão catalítica em meios porososBruno Sprícigo
 
Unicamp gera--o, distribui--o e utiliza--o de vapore
Unicamp   gera--o, distribui--o e utiliza--o de vaporeUnicamp   gera--o, distribui--o e utiliza--o de vapore
Unicamp gera--o, distribui--o e utiliza--o de vaporeVânia Queiroz
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediaisGabi Coelho
 
Cogeração gas natural
Cogeração gas naturalCogeração gas natural
Cogeração gas naturalAnai Gaia
 
Apresentação final
Apresentação finalApresentação final
Apresentação finalAlvaro Komiya
 
Reaproveitamento de Calor na Indústria Cerâmica
Reaproveitamento de Calor na Indústria CerâmicaReaproveitamento de Calor na Indústria Cerâmica
Reaproveitamento de Calor na Indústria CerâmicaMarcelo Tramontin
 
CENTRAL DE CICLO COMBINADO DE SINES ESTUDO DE IMPACTE AMBIENTAL
CENTRAL DE CICLO  COMBINADO DE SINES    ESTUDO DE IMPACTE AMBIENTAL CENTRAL DE CICLO  COMBINADO DE SINES    ESTUDO DE IMPACTE AMBIENTAL
CENTRAL DE CICLO COMBINADO DE SINES ESTUDO DE IMPACTE AMBIENTAL Cláudio Carneiro
 

Mais procurados (19)

Carvão como sucedâneo do petróleo.docx
Carvão como sucedâneo do petróleo.docxCarvão como sucedâneo do petróleo.docx
Carvão como sucedâneo do petróleo.docx
 
Aula 7 co-processamento
Aula 7   co-processamentoAula 7   co-processamento
Aula 7 co-processamento
 
Comparativo de emissões e energia através da análise do inventário para produ...
Comparativo de emissões e energia através da análise do inventário para produ...Comparativo de emissões e energia através da análise do inventário para produ...
Comparativo de emissões e energia através da análise do inventário para produ...
 
Manual gas
Manual gasManual gas
Manual gas
 
Bancada experimental para estudos de combustão catalítica em meios porosos
Bancada experimental para estudos de combustão catalítica em meios porososBancada experimental para estudos de combustão catalítica em meios porosos
Bancada experimental para estudos de combustão catalítica em meios porosos
 
Unicamp gera--o, distribui--o e utiliza--o de vapore
Unicamp   gera--o, distribui--o e utiliza--o de vaporeUnicamp   gera--o, distribui--o e utiliza--o de vapore
Unicamp gera--o, distribui--o e utiliza--o de vapore
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediais
 
Algoritmo para fornos
Algoritmo para fornosAlgoritmo para fornos
Algoritmo para fornos
 
15 transferencia de-calor_em_camara_de_combustao
15 transferencia de-calor_em_camara_de_combustao15 transferencia de-calor_em_camara_de_combustao
15 transferencia de-calor_em_camara_de_combustao
 
Cogeração gas natural
Cogeração gas naturalCogeração gas natural
Cogeração gas natural
 
Apresentação a
Apresentação aApresentação a
Apresentação a
 
Capitulo1 a
Capitulo1 aCapitulo1 a
Capitulo1 a
 
Processo completo da extração
Processo completo da extraçãoProcesso completo da extração
Processo completo da extração
 
Apresentação final
Apresentação finalApresentação final
Apresentação final
 
Reaproveitamento de Calor na Indústria Cerâmica
Reaproveitamento de Calor na Indústria CerâmicaReaproveitamento de Calor na Indústria Cerâmica
Reaproveitamento de Calor na Indústria Cerâmica
 
Coque
CoqueCoque
Coque
 
Catálogo geral giacomini portugal 2015 2016
Catálogo geral giacomini portugal 2015 2016Catálogo geral giacomini portugal 2015 2016
Catálogo geral giacomini portugal 2015 2016
 
Pronae aula 13
Pronae aula 13Pronae aula 13
Pronae aula 13
 
CENTRAL DE CICLO COMBINADO DE SINES ESTUDO DE IMPACTE AMBIENTAL
CENTRAL DE CICLO  COMBINADO DE SINES    ESTUDO DE IMPACTE AMBIENTAL CENTRAL DE CICLO  COMBINADO DE SINES    ESTUDO DE IMPACTE AMBIENTAL
CENTRAL DE CICLO COMBINADO DE SINES ESTUDO DE IMPACTE AMBIENTAL
 

Semelhante a Analise energetica forno ceramica a gas natural

Gás natural e a industria.docx
Gás natural e a industria.docxGás natural e a industria.docx
Gás natural e a industria.docxLuigi_matos
 
Combustível 1.pdf
Combustível 1.pdfCombustível 1.pdf
Combustível 1.pdfadao18
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediaisDiego Santos
 
Atc eficiência energética em laminadores 3 5-final
Atc eficiência energética em laminadores 3 5-finalAtc eficiência energética em laminadores 3 5-final
Atc eficiência energética em laminadores 3 5-finalezanghi
 
Caldeira (c lculo vapor por g-s)
Caldeira (c lculo vapor por g-s)Caldeira (c lculo vapor por g-s)
Caldeira (c lculo vapor por g-s)consultor tecnico
 
ApresentaçãO VersãO Fim
ApresentaçãO VersãO FimApresentaçãO VersãO Fim
ApresentaçãO VersãO Fimsousacs
 
Refinaria de plasticos
Refinaria de plasticosRefinaria de plasticos
Refinaria de plasticosRecupera
 
Trabalho de rq
Trabalho de rqTrabalho de rq
Trabalho de rqTatiana BD
 
Artigo 9 reaproveitamento de calor residual em planta de produção de biocom...
Artigo 9   reaproveitamento de calor residual em planta de produção de biocom...Artigo 9   reaproveitamento de calor residual em planta de produção de biocom...
Artigo 9 reaproveitamento de calor residual em planta de produção de biocom...André Bellin Mariano
 
reaproveitamento de calor residual em planta de produção de biocombustível po...
reaproveitamento de calor residual em planta de produção de biocombustível po...reaproveitamento de calor residual em planta de produção de biocombustível po...
reaproveitamento de calor residual em planta de produção de biocombustível po...André Bellin Mariano
 

Semelhante a Analise energetica forno ceramica a gas natural (20)

Gás natural e a industria.docx
Gás natural e a industria.docxGás natural e a industria.docx
Gás natural e a industria.docx
 
Cassinha
CassinhaCassinha
Cassinha
 
Combustível 1.pdf
Combustível 1.pdfCombustível 1.pdf
Combustível 1.pdf
 
84 70-1-pb
84 70-1-pb84 70-1-pb
84 70-1-pb
 
Balanco
BalancoBalanco
Balanco
 
Carvão mineral
Carvão mineralCarvão mineral
Carvão mineral
 
Conservação de energia caldeiras
Conservação de energia caldeirasConservação de energia caldeiras
Conservação de energia caldeiras
 
Gas natural1
Gas natural1Gas natural1
Gas natural1
 
Gas es instalacao-prediais
Gas es instalacao-prediaisGas es instalacao-prediais
Gas es instalacao-prediais
 
09 gas natural(2)
09 gas natural(2)09 gas natural(2)
09 gas natural(2)
 
09 gas natural(2)
09 gas natural(2)09 gas natural(2)
09 gas natural(2)
 
Atc eficiência energética em laminadores 3 5-final
Atc eficiência energética em laminadores 3 5-finalAtc eficiência energética em laminadores 3 5-final
Atc eficiência energética em laminadores 3 5-final
 
Aula 8 incineração
Aula 8 incineraçãoAula 8 incineração
Aula 8 incineração
 
Caldeira (c lculo vapor por g-s)
Caldeira (c lculo vapor por g-s)Caldeira (c lculo vapor por g-s)
Caldeira (c lculo vapor por g-s)
 
ApresentaçãO VersãO Fim
ApresentaçãO VersãO FimApresentaçãO VersãO Fim
ApresentaçãO VersãO Fim
 
Células a combustível
Células a combustível Células a combustível
Células a combustível
 
Refinaria de plasticos
Refinaria de plasticosRefinaria de plasticos
Refinaria de plasticos
 
Trabalho de rq
Trabalho de rqTrabalho de rq
Trabalho de rq
 
Artigo 9 reaproveitamento de calor residual em planta de produção de biocom...
Artigo 9   reaproveitamento de calor residual em planta de produção de biocom...Artigo 9   reaproveitamento de calor residual em planta de produção de biocom...
Artigo 9 reaproveitamento de calor residual em planta de produção de biocom...
 
reaproveitamento de calor residual em planta de produção de biocombustível po...
reaproveitamento de calor residual em planta de produção de biocombustível po...reaproveitamento de calor residual em planta de produção de biocombustível po...
reaproveitamento de calor residual em planta de produção de biocombustível po...
 

Mais de zetec10

Combustao_Combustíveis_UFSC_curso_mto_bom.pdf
Combustao_Combustíveis_UFSC_curso_mto_bom.pdfCombustao_Combustíveis_UFSC_curso_mto_bom.pdf
Combustao_Combustíveis_UFSC_curso_mto_bom.pdfzetec10
 
A12_gestaoenergia.pdf
A12_gestaoenergia.pdfA12_gestaoenergia.pdf
A12_gestaoenergia.pdfzetec10
 
Manual orsat rev_00
Manual orsat rev_00Manual orsat rev_00
Manual orsat rev_00zetec10
 
Manual de instruções Cardall pressurizador
Manual de instruções Cardall pressurizadorManual de instruções Cardall pressurizador
Manual de instruções Cardall pressurizadorzetec10
 
Manual orsat std
Manual orsat stdManual orsat std
Manual orsat stdzetec10
 
Curiosidades sobre explosão de caldeiras
Curiosidades sobre explosão de caldeirasCuriosidades sobre explosão de caldeiras
Curiosidades sobre explosão de caldeiraszetec10
 
Indústrias investem em eficiência energética sulgas - nov 2018
Indústrias investem em eficiência energética   sulgas - nov 2018Indústrias investem em eficiência energética   sulgas - nov 2018
Indústrias investem em eficiência energética sulgas - nov 2018zetec10
 
Acidente glp barueri
Acidente glp barueriAcidente glp barueri
Acidente glp baruerizetec10
 
Cromatografia noções
Cromatografia noçõesCromatografia noções
Cromatografia noçõeszetec10
 
Detector de co american sensors
Detector de co american sensorsDetector de co american sensors
Detector de co american sensorszetec10
 
Detector caldeiras
Detector caldeirasDetector caldeiras
Detector caldeiraszetec10
 
áReas classificadas conceitos
áReas classificadas conceitosáReas classificadas conceitos
áReas classificadas conceitoszetec10
 
Incineracao
IncineracaoIncineracao
Incineracaozetec10
 
Rj gestao ambiental 2011
Rj gestao ambiental 2011Rj gestao ambiental 2011
Rj gestao ambiental 2011zetec10
 
Tecnologia da solda apostila
Tecnologia da solda apostilaTecnologia da solda apostila
Tecnologia da solda apostilazetec10
 
Calcinacao
CalcinacaoCalcinacao
Calcinacaozetec10
 
07 article international-cement_review_march_2018_low_n_ox
07 article international-cement_review_march_2018_low_n_ox07 article international-cement_review_march_2018_low_n_ox
07 article international-cement_review_march_2018_low_n_oxzetec10
 
Forno biscoito a lenha
Forno biscoito a lenhaForno biscoito a lenha
Forno biscoito a lenhazetec10
 
Analise termografica queima_ceramica
Analise termografica queima_ceramicaAnalise termografica queima_ceramica
Analise termografica queima_ceramicazetec10
 

Mais de zetec10 (20)

Combustao_Combustíveis_UFSC_curso_mto_bom.pdf
Combustao_Combustíveis_UFSC_curso_mto_bom.pdfCombustao_Combustíveis_UFSC_curso_mto_bom.pdf
Combustao_Combustíveis_UFSC_curso_mto_bom.pdf
 
A12_gestaoenergia.pdf
A12_gestaoenergia.pdfA12_gestaoenergia.pdf
A12_gestaoenergia.pdf
 
Manual orsat rev_00
Manual orsat rev_00Manual orsat rev_00
Manual orsat rev_00
 
Manual de instruções Cardall pressurizador
Manual de instruções Cardall pressurizadorManual de instruções Cardall pressurizador
Manual de instruções Cardall pressurizador
 
Manual orsat std
Manual orsat stdManual orsat std
Manual orsat std
 
Curiosidades sobre explosão de caldeiras
Curiosidades sobre explosão de caldeirasCuriosidades sobre explosão de caldeiras
Curiosidades sobre explosão de caldeiras
 
Indústrias investem em eficiência energética sulgas - nov 2018
Indústrias investem em eficiência energética   sulgas - nov 2018Indústrias investem em eficiência energética   sulgas - nov 2018
Indústrias investem em eficiência energética sulgas - nov 2018
 
Acidente glp barueri
Acidente glp barueriAcidente glp barueri
Acidente glp barueri
 
Cromatografia noções
Cromatografia noçõesCromatografia noções
Cromatografia noções
 
Detector de co american sensors
Detector de co american sensorsDetector de co american sensors
Detector de co american sensors
 
Detector caldeiras
Detector caldeirasDetector caldeiras
Detector caldeiras
 
áReas classificadas conceitos
áReas classificadas conceitosáReas classificadas conceitos
áReas classificadas conceitos
 
Incineracao
IncineracaoIncineracao
Incineracao
 
Rj gestao ambiental 2011
Rj gestao ambiental 2011Rj gestao ambiental 2011
Rj gestao ambiental 2011
 
Tecnologia da solda apostila
Tecnologia da solda apostilaTecnologia da solda apostila
Tecnologia da solda apostila
 
Calcinacao
CalcinacaoCalcinacao
Calcinacao
 
Gesso
GessoGesso
Gesso
 
07 article international-cement_review_march_2018_low_n_ox
07 article international-cement_review_march_2018_low_n_ox07 article international-cement_review_march_2018_low_n_ox
07 article international-cement_review_march_2018_low_n_ox
 
Forno biscoito a lenha
Forno biscoito a lenhaForno biscoito a lenha
Forno biscoito a lenha
 
Analise termografica queima_ceramica
Analise termografica queima_ceramicaAnalise termografica queima_ceramica
Analise termografica queima_ceramica
 

Analise energetica forno ceramica a gas natural

  • 1. 8º CONGRESSO IBEROAMERICANO DE ENGENHARIA MECANICA Cusco, 23 a 25 de Outubro de 2007 ANÁLISE ENERGÉTICA E EXERGÉTICA DE UM FORNO CERÂMICO OPERANDO COM GÁS NATURAL Ana Cláudia Bento Melchíades*, Siderley Fernandes Albuquerque*, Antonio Gilson Barbosa de Limaº *, º Universidade Federal de Campina Grande, Centro de Ciências e Tecnologia, Unidade Acadêmica de Engenharia Mecânica, ANP/UFCG/PRH-25, Av: Aprígio Veloso, 882 Bodocongó campina Grande-PB Brasil, CEP 58109-970, Caixa Postal 10069 ºe-mail: gilson@dem.ufcg.edu.br RESUMO As vantagens do uso do gás natural como fonte de energia em fornos usados na Indústria de Cerâmica Vermelha já é uma realidade, no entanto ainda não há consenso entre os ceramistas. Visando dar uma contribuição nesse sentido, este trabalho apresenta uma análise energética e exergética do processo de combustão do gás natural usado, por exemplo, em um forno tipo batelada para queima de materiais cerâmicos. O gás natural tem a seguinte composição química na base molar: 87,563% de CH4; 9,586% de C2H6; 0,423% de C3H8; 0,086% de C4H10; 0,050% de C5H12; 0,061% de C6H14; 0,982% de N2 e 1,247% de CO2 O gás é queimado a seco fornecendo produtos de combustão cuja análise na base molar é: 7,82% de CO2; 0,2% de CO; 7% de O2 e 85% de N2. Resultados da quantidade de calor liberada no processo de combustão, eficiência energética e energia residual dos gases de exaustão são apresentados e analisados. Com o modelo matemático apresentado e seu melhor entendimento é possível a otimização do processo de queima e aumento da eficiência do forno a gás. PALAVRAS-CHAVE: Cerâmica vermelha, fornos, queima, consumo de energia, gás natural.
  • 2. Introdução A cerâmica ou material cerâmico compreendem todos os materiais inorgânicos ou não metálicos de emprego em engenharia (materiais de construção em engenharia) ou produtos químicos inorgânicos (com exceção dos metais e suas ligas), que são utilizados geralmente após tratamento em temperaturas elevadas. A cerâmica vermelha, classe que o tijolo pertence, é utilizada pela humanidade desde tempos remotos. O Brasil apresenta um atraso de mais de 50 anos quando comparado com países europeus. A maioria das indústrias tem um ar antiquado e rudimentar. O processo de fabricação da cerâmica consiste no aquecimento da argila, provocando transformações na estrutura do componente, conferindo-lhe resistência, que é a etapa mais importante. As propriedades finais dos produtos cerâmicos dependem fortemente da temperatura a que foram submetidos durante a sua queima e a identificação das temperaturas no interior do empilhamento pode revelar a causa da obtenção ou não de certas propriedades termo-mecânicas. O maior desafio na construção e na operação de um forno consiste na obtenção de uma região de queima de grande uniformidade de temperatura, através da distribuição e da regulagem criteriosa dos queimadores utilizados. O combustível mais utilizado pela indústria cerâmica brasileira ainda é a lenha ou seus derivados. Aqui, no Brasil, o uso da lenha e seus derivados, como a serragem, é bastante difundido, porém, encontra-se ameaçado. No caso da lenha a ameaça é devida às crescentes barreiras impostas pela legislação ambiental, mo que diz respeitoàs madeiras nativas. Já no caso dos derivados de madeira, a ameaça encontra-se no aumento da geração de energia elétrica a partir da biomassa no Brasil, previsto para os próximos anos, e no aumento da utilização destes derivados na fabricação de produtos para a indústria moveleira, como é o caso dos aglomerados [1]. A utilização do gás natural para a secagem e queima nos fornos é uma tendência mundial, por ser um combustível mais nobre, menos poluente, que facilita o controle do processo de queima e a obtenção de produtos de maior qualidade [2]. Ao se usar o gás natural como fonte de energia na indústria cerâmica, pode-se aplicar o calor diretamente ao produto; evita-se impurezas e o depósito de compostos contaminadores; alcança-se curvas de temperaturas ideais; tem-se a garantia de padrão de qualidade; permite um melhor controle da queima e um baixo nível de emissões de partículas e gases, possibilitando a fabricação de produtos finais com maior qualidade e, conseqüentemente, maior valor agregado. Verifica-se ainda menor nível de rejeitos; proporciona uma regulagem fácil e rápida do forno para a queima de produtos diferentes quanto ao tamanho, forma e matéria-prima, permitindo maior flexibilidade na diversificação da linha de produção. Quanto às vantagens operacionais, o gás natural apresenta uma combustão completa; reduz o número e o tempo de paradas para a manutenção; aumenta a disponibilidade e vida útil dos equipamentos; proporciona elevado rendimento térmico; composição química constante isenta de compostos pesados; estabilidade e formatos de chama adequados para cada aplicação. Quanto às vantagens econômicas, o gás natural não tem frete rodoviário; dispensa área de armazenamento (lenha e óleo) e elimina gasto com energia de nebulização (óleo); diminui os custos de manutenção; retarda os investimentos em troca de equipamentos; é pago após a utilização; não necessita de aquecimento e possui reservas medidas acima de 150 bilhões de m3 [3]. Do ponto de vista ambiental, o gás natural apresenta elevado rendimento e eficiência, pela combustão completa com menor excesso de ar; reduz a emissão de CO2; limpeza dos produtos de combustão; redução drástica de emissões (SOx e NOx), que são chuva ácida e destruição da camada de ozônio e redução do desmatamento. Segundo [3], esse aspecto muitas vezes pode significar a ampliação da capacidade de produção de indústrias ou a implantação de novas empresas, permitindo o desenvolvimento regional, tendo em vista a possibilidade de não degradar a qualidade de vida da região, tornando possível uma perfeita integração do setor produtivo com a população. Diante do exposto, muitos trabalhos têm sido desenvolvidos em várias regiões do país, visando à busca de novas tecnologias para o setor, um aperfeiçoamento do produto e uma racionalização no consumo de energia. A idéia central visa à utilização do gás natural como combustível para a indústria de cerâmica vermelha. Nesse sentido, este trabalho visa modelar e analisar energética e exergeticamente um forno-secador operando com gás natural para ser usado na indústria cerâmica. MODELAGEM MATEMÁTICA Equacionamento químico O estudo apresentado aqui é apenas teórico, representando uma situação em que o forno mostrado acima funciona apenas com gás natural. Nesta condição, considera-se que o gás natural utilizado para o funcionamento do forno apresenta a seguinte composição química na base molar: 87,563% de CH4; 9,586% de C2H6; 0,423% de C3H8; 0,086% de C4H10; 0,050% de C5H12; 0,061% de C6H14; 0,982% de N2 e 1,247% de CO2. O gás é queimado a seco fornecendo produtos de combustão cuja análise na base molar é: 7,82% de CO2; 0,2% de CO; 7% de O2 e 85% de N2. Considera-se a mistura combustível, para efeitos de cálculo como um gás ideal. Para 1 kmol da mistura combustível, temos a seguinte equação química a ser balanceada: (0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 + 0,00982N2) + a(O2 + 3,76N2) → b(0,078CO2 + 0,002CO + 0,07O2 + 0,85N2) + c(H2O) (1) onde a, b e c são coeficientes a serem determinados da Ec. (1).
  • 3. A razão ar combustível em base molar é: ( ) 1 76,31073874875,3 + =AC (2) A massa molecular do ar é: Ma r= 28,84 kg/kmol de ar. A massa molecular do combustível é. Mc = 18,0753266 kg/kmol de combustível Logo, em base mássica, a razão ar combustível é dada pela equação (3): c ar M M ACAC = (3) A quantidade teórica de ar é obtida através do balanceamento da equação química para combustão completa dada por: (0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 + 0,00982N2) + a’(O2 + 3,76N2) → b’CO2 + c’N2 + d’H2O (4) onde a’, b’, c’ e d’ são coeficientes a serem determinados da equação química (4). Equações de energia e exergia para o forno Para a análise do forno, o combustível entra em combustão no mesmo operando em regime permanente com uma vazão mássica de mc ao ser misturado com uma quantidade de ar ma. O combustível entra no forno à temperatura Tc e à pressão Pc, enquanto o ar entra com a temperatura Ta e à pressão Pa. A mistura queima completamente e os produtos da combustão deixam o forno à temperatura Tp e a pressão Pp com o fluxo de massa mf. Na combustão uma quantidade de calor Q é transferida para o interior do forno. O balanço de energia para o sistema reagente em regime permanente quando a energia cinética e potencial são desprezíveis, é da forma [4], [5], [6]. sseevc hmhmQ ∑∑ =+ &&& (5) Para as entalpias expressas por mol de combustível, o balanço de energia toma a forma: ∑∑ =−=−= R RPee p ssRP c vc hhnhnhh n Q ˆˆ & & (6a) onde cn& é a vazão molar do combustível; Ph e Rh simbolizam, respectivamente, as entalpias dos produtos e dos reagentes por mol de combustível; n& correspondem aos respectivos coeficientes na reação química que fornecem os moles dos reagentes e produtos por mol de combustível e RPh é a entalpia de combustão na base molar. A entalpia específica de um composto em um estado que não o estado padrão é determinada pela adição da variação de entalpia específica h∆ entre o estado padrão e o estado de interesse e a entalpia de formação como dado abaixo: ( )[ ] ∫+=+=−+= T refT dTPc0 fhh0 fh)refP,refT(hP,Th0 fh)P,T(h ∆ (6b) A entalpia 0 fh está associada com a formação do composto a partir de seus elementos e h∆ está relacionada a uma variação de estado em uma composição constante. O poder calorífico inferior (PCI) do combustível é dado por: ∑∑= iiiC yPCIyPCI / (7) onde yi simboliza a fração molar do componente i na mistura a T0, P0.
  • 4. A eficiência da combustão, ηcomb, será: atmC cvc comb PCI mQ 1,250)( / && =η (8) A exergia, X, associada a um estado especificado é composta por duas contribuições: a contribuição termomecânica, Xterm, e a contribuição química, Xqui. Em uma base unitária de massa, a exergia total, x, será: ( ) ( ) quixgz 2 2V 0ss0T0hhquixtermxx + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ++−−−=+= (9) em que o termo entre colchetes é a contribuição termomecânica e qui x é a contribuição química. Quando se avalia uma variação de exergia, ou de exergia de fluxo entre dois estados onde a composição química da substância é a mesma, a contribuição química se cancela, permanecendo apenas a diferença das contribuições termomecânicas. Entretanto, em várias avaliações torna-se necessário levar em conta explicitamente à contribuição da exergia química. Alguns exemplos são os problemas que envolvem reações químicas, como é o caso da combustão. A exergia química para uma mistura de gases ideais a T0 e P0 é obtida pela soma das contribuições de cada componente. O resultado, por mol da mistura, é: i i i qui i i ie i i i i qui qui yyTRxy y y yTR M x x lnln 00 ∑∑∑ +=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ == (10) Se a quantidade de calor liberada para o forno é tomada como o produto do forno e se os gases produzidos na saída são vistos como perdas, uma expressão para a eficiência exergética, ε, que mede o quanto de exergia na entrada do forno é convertida em produtos é: c vc X Q & =ε (11) onde qui ccc xmX .. = significa a taxa pela qual a exergia entra com o combustível. Todas as entalpias de formação, exergia química, calor específico e poder calorífico inferior do combustível e gases de exaustão foram obtidas em [4], [7]. RESULTADOS E DISCUSSÕES Partindo da equação (1) e aplicando a conservação da massa, temos: a = 3,073874875 b = 13,776375 c = 2,06733 Então, a equação (1) balanceada assume a forma: (0,87563CH4 + 0,09586C2H6 + 0,00423C3H8 + 0,00086C4H10 + 0,0005C5H12 + 0,00061C6H14 + 0,01247CO2 + 0,00982N2) + 3,073874875(O2 + 3,76N2) → 13,776375(0,078CO2 + 0,002CO + 0,07O2 0,85N2) + 2,06733H2O Neste caso a razão ar combustível em base molar dada pela a Eq. (2) será: ( ) lcombustívedekmol ardekmol AC 631664441,14 1 76,31073874875,3 = + = Logo, em base mássica, a razão ar combustível utilizando a Eq. (3) será:
  • 5. lcombustívedekg ardekg M M ACAC c ar 34544952,23 0753266,18 84,28 63164441,14 === Por outro lado, aplicando a conservação da massa na Eq. (4), é a’ = 2,123305 b’ = 1,10211 c’ = 7,9934468 d’ = 2,06733 onde a razão ar-combustível teórica em base molar será: ( ) lcombustívedekmol ardekmola AC 1069318,10 1 )76,4(123305,2 1 76,31 == +′ = Então, a percentagem de ar teórico será: %14545,1 1069318,10 63164441,14 % ou lcombustívedekmol ardekmol lcombustívedekmol ardekmol teóricoarde == Isto é, o sistema está operando com 45% de excesso de ar. Com referência ao armazenamento, a quantidade de combustível em kmoles, nc, presente em 10 m3 de mistura combustível a 300 K e a 1 bar (105 N/m2), é dada por: lcombustívedekmol Kx Kkmol Nm mN TR PV nc 400930158,0 3008314 /10 25 === Isto corresponde a uma massa de combustível: lcombustívedekg kmol kg xkmolMnm ccc 24694355,70753266,18400930158,0 === A quantidade total de produtos da combustão é dada por: b+c =13,776375 + 2,06733 kmol de produto/kmol de combustível =15,843705 kmol de produto/kmol de combustível. Conseqüentemente, a quantidade de mistura de produtos que será formada por 10 m3 de misturas de combustível será: np = 15,843705 x 0,400930158 = 6,352219149 kmoles de produto gasoso. A massa total dos produtos será: mp=np x Mp onde: ( )[ ] produtodekmol produtodekg x xxxM p 02640463,28 843705,15 06733,2 )1601,12( )142(85,0)162(07,0)1612(002,016212078,0 843705,15 776375,13 =+ ++++++= e portanto mp=167,05136 kg de produto . Combinando as equações (1), (5) e (6), o balanço de energia para o forno assume a forma:
  • 6. ( ) ( ) ( ) ( ) ] ( ) } ( ) ( ){ ( ) ( ) ( ) ]})( 76,3)[(073874875,3)(00982,0)(01247,0)( 00061,00005,000086,000423,0 09586,087563,006733,285,0 07,0002,0078,0776375,13 2 222146 12510483 62422 22 0 0000 000 0000 000 Nf OfNfCOfHCf HCfHCfHCf HCfCHfOHfNf OfCOff c vc hh hhhhhhhh hhhhhh hhhhhhhh hhhhhh n Q CO ∆+ +∆++∆++∆++∆+ +∆++∆++∆++ +∆++∆+−∆++∆++ ⎩ ⎨ ⎧ ⎢⎣ ⎡ ∆++∆++∆++= & & Considerando como exemplo que 0072,0=cm& kg/s, Tc=Ta=27 0C, Pc=Pa=1 atm, e Tp=616 0C, então tem-se que a vazão molar do combustível é dada por: 000398333,0 0753266,18 0072,0 === c c c M m n & & kmol de combustível/s Sendo assim, supondo que o forno está isolado de vizinhança, a transferência de calor para o interior do forno será: kW hhnQ RPcvc 2345882,217 ))34831,78083(5426,623442(000398333,0)( −= =−−−=−= && Para o combustível, usando a Eq. (7) tem-se que: PCI = 48622,54911kJ/Kg A eficiência da combustão dada pela Eq. (8), será: %05242451,62620524245,0 54911,48622 2007,0/2345882,217 )( / 1,250 ou PCI mQ atmC cvc = − == && η Outra definição para a eficiência da combustão seria: ( ) ( ) %0758435,69690758435,0 63164441,14 1069318,10 ou AC AC real teórico ===η No que se refere aos aspectos exergéticos, nas condições ambientais, a exergia termomecânica é nula. Então, a exergia total para o gás natural é justamente a exergia química dada pela Eq. (10). lcombustívedekmol kJ x x xxxx xxxxx qui c qui c 4303,891588 )92491,10763(00982,0 260187,927701247,0884,411625000061,0217,34582180005,0864,2801441 00086,0698,214964800423,0424,149855009586,09496,83618087563,0 = −+ ++++ +++= ou ainda kg kJ M x x c qui cqui c 26945,49326 0753266,18 4303,891588 === Para obtenção da eficiência exergética do forno, um balanço de exergia deve ser utilizado. Em regime permanente, a taxa pela qual a exergia entra no forno é igual à taxa pela qual a exergia sai acrescentada da taxa pela qual a exergia é destruída no interior do forno. Conforme o ar de combustão entra na condição ambiente, e conseqüentemente com um valor nulo de exergia, apenas o combustível fornece exergia ao forno. A exergia sai do forno acompanhando o calor, e os produtos da combustão.Já
  • 7. que o combustível entra a 270C e 1 atm, o que corresponde aos valores aproximados de T0 e P0 do ambiente (25ºC e 1 atm), e sendo os efeitos de energia cinética e potencial desprezíveis, a exergia do combustível é considerada ser apenas a sua exergia química. Não existe contribuição termomecânica alguma. Assim sendo, kWxxmX qui ccc 14914,35526945,493260072,0 === && Então, a eficiência exergética será encontrada através da Eq. (11) será: %16714465,61611671446,0 14914,355 2345882,217 . . ou X Q c vc ===ε Como visto, de entrada os parâmetros a são: o consumo do combustível (gás natural), valores de entalpia e exergia de acordo com a variação da temperatura na entrada e na saída do forno-secador, dando como resultado, a perda de calor. Sendo assim, pode-se verificar em quais temperaturas de entrada e saída ocorrem maiores e menores rendimentos energéticos e exergéticos. Nesse sentido, as Figuras 1 e 2, ilustram a influência da temperatura dos produtos de combustão na saída e do ar na entrada, na eficiência do forno e perda calor de combustão para o forno. 400 450 500 550 600 650 700 750 800 850 45 50 55 60 65 70 75 80 Tp [C] ηPCI[%] 400 450 500 550 600 650 700 750 800 850 -270 -250 -230 -210 -190 -170 -150 Tp [C] Q[kW] Figura 1: (a) rendimento exergético do forno em função da temperatura dos gases de exaustão (b) calor fornecido durante a combustão em função da temperatura dos gases de combustão na saída do forno. Verifica-se na Figura 1 (a) que a medida que a temperatura dos gases de combustão na saída do forno aumenta, a quantidade de calor disponível para ser usada no forno diminui. Isto ocorre de forma linear e está em concordância com a Figura 1 (b). Observa-se que enquanto a quantidade de calor disponível varia de ≅ 262 kw até ≅ 165 kw, seu rendimento energético variou de ≅ 77 % para ≅ 47 %, respectivamente. Na Figura 2 (a) apresenta-se o rendimento energético em função da temperatura do ar na entrada do forno. Verifica- se que quanto maior esta grandeza, maior será o rendimento do forno e a quantidade de calor disponível para ser usada no mesmo, no entanto, esta variação não foi tão significativa. 20 22 24 26 28 30 32 34 36 38 63,4 63,6 63,8 64 64,2 64,4 64,6 Ta [C] ηPCI[%] 20 22 24 26 28 30 32 34 36 38 -219,5 -219 -218,5 -218 -217,5 -217 -216,5 -216 Ta [C] Q[kW] Figura 2: (a) rendimento energético do forno em função da temperatura do ar na entrada do forno. (b) calor fornecido durante a combustão em função da temperatura do ar na entrada do forno. (a) (b) (a) (b)
  • 8. CONCLUSÕES Os resultados obtidos com o código computacional apresentam boa concordância com dados teóricos. O gás natural mostra ser viável, econômico, eficiente, rentável e ambientalmente correto. A medida que a temperatura dos gases de combustão aumenta, o rendimento do forno diminui. Para dias mais quentes, ou seja, temperatura ambiente mais elevada observa-se um maior rendimento energético do forno. O rendimento do energético do forno também se eleva com o aumento da temperatura ambiente, porém em menor proporção do que a temperatura dos gases de exaustão. A eficiência exergética do forno apresentou resultados muito próximos da eficiência energética. AGRADECIMENTOS Os autores agradecem a FINEP, CT-PETRO, PETROBRÁS, ANP, JBR ENGENHARIA Ltda. e ao CNPq pelo apoio financeiro concedido e aos pesquisadores referenciados que com suas pesquisas, ajudaram no melhoramento deste trabalho. REFERÊNCIAS 1. M. Tolmasquim e A. Skilo (coord.), A Matriz Energética Brasileira na Virada do Milênio. COPPE/UFRJ, ENERGE, Rio de Janeiro, 2000, 2. R. E. C. Tapia, S. C. Villar, M. F., Henrique Jr., et al., Manual para a indústria de cerâmica vermelha. Série uso eficiente de energia. SEBRAE, Rio de Janeiro, 2000. 3. V. P. Nicolau, R. F. Hartke, W. A. Lehmkuhl, W. M. Kawaguti e G. M. Santos, Análise numérica e experimental de um forno túnel utilizado em cerâmica vermelha. ENCIT 2002 – Congresso Brasileiro de Eng. e Ciências Térmicas. Caxambu, 2002. CD-Rom 4. M. S. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 5a Edição, Jonh Wiley & Sons. New York, 2002. 5. Çengel, Yunus A. and Boles, Michael A., 1998 “Thermodynamics: An Engineering Approach”, Third Edition, McGraw-Hill,1001p. 6. R. E. Sonntag, C. Borgnakke and G. J. VanWylen, Fundamentos da Termodinâmica, Tradução da 6a Edição Americana, Editora Edgard Blucher Ltda, 2003, 7. T. J. Kotas, The exergy method of thermal plant analysis. Butterworths, 1985. UNIDADES E NOMENCLATURA M massa molecular (Kg/Kmol) AC razão ar combustível (adimensional) em • fluxo de massa na entrada (m3 /s) sm • fluxo de massa na saída (m3 /s) he entalpia de entrada (J/mol) hs entalpia de saída (J/mol) hp entalpia dos produtos (J/mol) hp entalpia dos reagentes (J/mol) ch • vazão molar do combustível (moles/s) h∆ variação de entalpia (J/mol) T temperatura (K) P pressão (N/m2 ) fh __ o entalpia de formação (J/mol) PCIc poder calorífico do combustível (J/kg) i componente de uma mistura (adimensional) y fração molar (adimensional) combη eficiência da combustão (adimensional) X exergia (J) Xterm exergia devido a contribuição termomecânica (J) Xquim exergia devido a contribuição química (J) R constante dos gases (J/mol.K) ε eficiência exergética (adimensional)