Documentos
orientadores
Fichas
Física e Química A • Química
10.º ano
Maria Goreti Matos
João Paiva
António José Ferreira
Carlos Fiolhais
CADERNODEAPOIO
AOPROFESSOR
T
F
Planificações
Testes
Apoio às atividades
laboratoriais
10
NOVO
Guiões de recursos
multimédia
T
F T
F
Fichas Testes
  Editável e fotocopiável © Texto | Novo 10Q  1 
 
Introdução .................................................................. 3 
Apresentação do projeto .................................... 3 
Cumprimento do programa .............................3 
Adequação pedagógica e científica ..................... 3 
Multiplicidade de atividades e 
questões .............................................................. 4 
Diversificação das opções de ensino  
e aprendizagem ................................................... 4 
Valorização da componente 
laboratorial .......................................................... 4 
Componente de química  
do novo programa de Física  
e Química A – 10o
 ano ....................................... 5 
Introdução ........................................................... 6 
Finalidades e objetivos ........................................ 6 
Organização dos conteúdos  
(química do 10.o
 ano)  ......................................... 7 
Orientações gerais ............................................... 8 
Metas curriculares ............................................... 9 
Desenvolvimento do programa ........................... 9 
Metas transversais a todas as atividades da 
componente prática‐laboratorial ...................... 23 
Avaliação ........................................................... 26 
Formulário para a componente de química 
(10.o
 ano)  .......................................................... 27 
Bibliografia 
......................................................... 27 
Planificações ....................................................... 29 
Calendarização anual 
......................................... 29 
Planificação a médio prazo 
................................ 31 
Planos de aula.................................................... 40 
Apoio às atividades laboratoriais ................ 71 
Apoio à componente laboratorial  
do Novo 10Q ...................................................... 71 
Grelhas de registo ............................................. 75 
Respostas às questões das Atividades 
do Novo 10Q ...................................................... 77 
 
Fichas .................................................................... 79 
Fichas de diagnóstico ............................................. 79 
Ficha de diagnóstico sobre o domínio 1 ........... 79 
Ficha de diagnóstico sobre o domínio 2 ........... 86 
Fichas formativas e soluções .................................. 93 
Ficha 1 – Massa e tamanho dos átomos  .......... 93 
Ficha 2 – Energia dos eletrões nos átomos  ...... 96 
Ficha 3 – Tabela Periódica  .............................. 99 
Ficha 4 – Ligação química  
............................. 102 
Ficha 5 – Gases e dispersões  ........................ 105 
Ficha 6 – Transformações químicas  ............... 108 
Ficha global  ................................................ 112 
Soluções das fichas formativas  ..................... 115 
Testes ................................................................. 119 
Testes sobre atividades laboratoriais 
................... 119 
Teste sobre a AL 1.1  .......................................... 119 
Teste sobre a AL 1.2  .......................................... 120 
Teste sobre a AL 1.3  .......................................... 122 
Teste sobre a AL 2.1  .......................................... 124 
Teste sobre a AL 2.2  .......................................... 126 
Teste sobre a AL 2.3  .......................................... 127 
Teste sobre a AL 2.4  .......................................... 128 
Soluções dos testes sobre atividades  
laboratoriais ...................................................... 130 
Testes globais e soluções ..................................... 133 
Teste 1  ............................................................. 133 
Critérios específicos de classificação  ................... 137 
Teste 2  ............................................................. 139 
Critérios específicos de classificação  ................... 144 
Teste 3  ............................................................. 146 
Critérios específicos de classificação  ................... 150 
Questões de exame agrupadas  
por domínio ...................................................... 153 
Guiões de recursos multimédia ................. 197 
Sugestões de bibliografia e sítios 
na Internet ........................................................ 223 
 
Índice 
Editável e fotocopiável © Texto | Novo 10Q 3
Introdução
Este Caderno de Apoio ao Professor fornece alguns recursos complementares para ajudar os
professores que se encontrem a utilizar o manual escolar Novo 10Q. Aqui se explicam as linhas
orientadoras do Novo 10Q e se incluem respostas às questões pré e pós-laboratoriais assim como às
Atividades do manual. Apresentam-se ainda duas fichas diagnóstico, seis fichas formativas, uma
sobre cada um dos capítulos, e uma ficha formativa global, com as respetivas soluções.
Para auxiliar os professores na avaliação dos seus alunos, aqui encontrarão também testes sobre
cada uma das atividades laboratoriais e respetivas soluções, assim como três testes para os
momentos formais de avaliação sumativa, com os respetivos critérios de classificação. Transcrevem-
se ainda as questões de provas nacionais relativas aos conteúdos do 10.o
ano, a partir de 2008,
organizadas por subdomínio. Finalmente, contém uma bibliografia atualizada sobre química,
trabalho laboratorial e o ensino das ciências.
Todos os materiais deste Caderno se encontram disponíveis em formato editável em 20 Aula
Digital, para que os possa utilizar com base e melhor adequar às suas turmas.
Apresentação do projeto
O manual Novo 10Q tem necessariamente como matriz o programa da disciplina de Física e
Química A e as respetivas metas. Respeitámos plenamente o programa no que respeita à sua
estruturação em domínios e subdomínios e aos objetivos gerais enunciados e conteúdos nele
descritos.
Abordámos os conteúdos de modo de modo a enquadrar todas as metas de ensino definidas para
o 10.o
ano de química do ensino secundário. Também, seguimos a grande maioria das abordagens
preconizadas nas orientações e sugestões do programa.
Contudo, há que ter em consideração que qualquer manual representa uma interpretação do
programa, entre inúmeras possíveis. Tal interpretação é enriquecida pelas conceções, convicções e
experiência que os autores possuem acerca do que é, e do que deve ser, o ensino e a aprendizagem
da química no ensino secundário. A interpretação que fizemos no Novo 10Q foi enriquecida pela
nossa ampla experiência como docentes, formadores de professores, divulgadores de ciência e
também fruto do nosso envolvimento na produção de manuais didáticos, de programas oficiais, de
metas e de livros de apoio para o ensino básico e secundário, bem como de livros de divulgação
científica.
O projeto que propomos assenta em algumas linhas orientadoras que sistematizamos em seguida.
Cumprimento do programa
O Novo 10Q aborda, de forma sistemática e pormenorizada, todos os objetivos gerais e conteúdos
descritos no programa de Física e Química A, componente de química, para o 10.o
ano de
escolaridade.
Adequação pedagógica e científica
O manual Novo 10Q está escrito numa linguagem rigorosa mas, ao mesmo tempo, acessível para
os jovens que procuram construir significados científicos, organizando conhecimentos que serão
certamente relevantes no seu futuro. Evitámos apresentar os assuntos de forma demasiado
esquemática, o que apenas ajudaria os alunos que procuram uma memorização superficial. Evitámos
também textos demasiado longos e pormenorizados, que seriam desmotivadores.
A inclusão de resumos no final de cada subdomínio ajudará os alunos a sistematizar informação.
4 Editável e fotocopiável © Texto | Novo 10Q
Multiplicidade de atividades e questões
Para aprender química não basta estar concentrado nas aulas ou ler atentamente o manual.
Propomos, por isso, a realização de atividades que são comuns no ensino da química, como a resolução
de exercícios ou o trabalho laboratorial. Incluímos diversas questões resolvidas, devidamente
intercaladas no texto, para que os alunos se familiarizem progressivamente com processos e métodos
envolvidos na resolução de questões. No final de cada subdomínio, apresentamos questões
complementares, num total de cerca de 300 questões, de várias tipologias e graus de dificuldade.
Incluem-se também questões sobre a componente laboratorial e várias questões transversais no final
de cada subdomínio.
As questões, exercícios e problemas foram construídos com base nas tipologias que são atualmente
usadas em provas nacionais.
Procurámos acentuar as ligações entre a química e o quotidiano, através da exploração de exemplos
concretos ao longo do texto e nas questões.
Algumas atividades com textos complementares incluem questões que permitem uma exploração
na aula. A maioria das soluções estão disponíveis neste caderno. Preferimos não facultar as suas
respostas no manual, para que estas atividades possam ser usadas em sala de aula em atividades que
poderiam ficar comprometidas se os alunos pudessem consultar imediatamente as soluções.
Diversificação das opções de ensino e aprendizagem
A diversidade é uma preocupação permanente do manual Novo 10Q, pois conhecemos bem a
diversidade das escolas e também as diferenças, dentro destas, entre turmas e alunos. Por outro
lado, achamos que os professores devem dispor de uma grande margem de manobra que lhes
permita lidar com essas diferenças do modo que considerarem mais adequado.
O número elevado de +Questões em cada capítulo, muitas delas inspiradas em tipologias usadas
em provas nacionais, permitem ao professor selecionar as que julgue mais apropriadas à sua
perspetiva de ensino e ao nível de aprendizagem dos seus alunos.
O Caderno de Exercícios e Problemas permite diversificar os métodos de ensino e aprendizagem e
apoiar o trabalho autónomo do aluno. Nele incluímos um vasto conjunto de questões adicionais, com
as respetivas soluções (para grande parte das questões apresenta-se, mais do que a solução, a
resolução completa).
Valorização da componente laboratorial
Entendemos o trabalho laboratorial como uma componente privilegiada da educação científica,
pelo que lhe atribuímos uma grande importância no nosso projeto.
A estrutura das atividades que preconizamos permite, a nosso ver, articular bem as componentes
laboratoriais da física e da química, contribuindo para uma melhor compreensão dos processos e
métodos inerentes ao trabalho laboratorial.
A nossa conceção da componente laboratorial de química considera os seguintes aspetos:
• clarificação das principais ideias necessárias para a compreensão da atividade laboratorial;
• estruturação das atividades laboratoriais a partir de questões, problemas ou tarefas que
despertem o interesse dos alunos e que clarifiquem o objetivo do mesmo;
• desenvolvimento da atividade laboratorial tendo em conta a necessidade de explorar
aspetos pré e pós-laboratoriais, necessários à compreensão e interpretação do trabalho
proposto;
• as regras de segurança, medição e descrição das técnicas de manipulação de equipamentos e
reagentes são apresentados em anexo no final do manual, para que possam ser consultadas
sempre que necessário.
Editável e fotocopiável © Texto | Novo 10Q 5
Componente de química do programa
de Física e Química A – 10.o
Ano
10.o
Ano - Componente de química do 1
programa de Física e Química A 2
homologado em 20 de
janeiro de 2014.
Do programa de Física e Química A importa salientar aspetos gerais e destacar a componente de
química. O desenvolvimento a seguir apresentado é suportado pelo constante no programa oficial da
disciplina e transcrito do mesmo (com referência às páginas onde consta cada um dos campos do
mesmo).
1
http://www.dgidc.min-edu.pt/metascurriculares/data/metascurriculares/E_Secundario/programa_fqa_10_11.pdf
2
https://dre.pt/application/dir/pdf2sdip/2014/01/013000002/0000400004.pdf
6 Editável e fotocopiável © Texto | Novo 10Q
1. Introdução (pág. 3)
De acordo com a Portaria n.o
243/2012, de 10 de agosto, a disciplina de Física e Química A faz
parte da componente específica do Curso científico-humanístico de Ciências e Tecnologias. É uma
disciplina bienal (10.o
e 11.o
ano), dá continuidade à disciplina de Físico-Química (Ciências Físico-
-Químicas) do Ensino Básico (7.o
, 8.o
e 9.o
ano) e constitui precedência em relação às disciplinas de
Física e de Química do 12.o
ano.
O programa desta disciplina está elaborado atendendo a uma carga letiva semanal mínima de 315
minutos, sendo a aula de maior duração dedicada a atividades práticas e laboratoriais. Nesta aula,
com a duração máxima de 150 minutos, a turma deve funcionar desdobrada.
Cada uma das componentes, física e química, é lecionada em metade do ano letivo, alternando-se
a ordem de lecionação nos dois anos – o 10.o
ano inicia-se com a componente de química e o 11.o
ano com a componente de física – de modo a haver uma melhor rendibilização dos recursos,
designadamente os referentes à componente laboratorial.
2. Finalidades e objetivos (pág. 3)
A disciplina «visa proporcionar formação científica consistente no domínio do respetivo curso»
(Portaria n.o
243/2012). Por isso, definem-se como finalidades desta disciplina:
− Proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física e da
química, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não
científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e
investigar, extraindo conclusões e tomando decisões, em bases científicas, procurando sempre
um maior bem-estar social.
− Promover o reconhecimento da importância da física e da química na compreensão do mundo
natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no
desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade.
− Contribuir para o aumento do conhecimento científico necessário ao prosseguimento de
estudos e para uma escolha fundamentada da área desses estudos.
De modo a atingir estas finalidades, definem-se como objetivos gerais da disciplina:
− Consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e
teorias que descrevem, explicam e preveem fenómenos assim como fundamentam aplicações.
− Desenvolver hábitos e capacidades inerentes ao trabalho científico: observação, pesquisa de
informação, experimentação, abstração, generalização, previsão, espírito crítico, resolução de
problemas e comunicação de ideias e resultados nas formas escrita e oral.
− Desenvolver as capacidades de reconhecer, interpretar e produzir representações variadas da
informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas,
gráficos, tabelas, equações, modelos e simulações computacionais.
− Destacar o modo como o conhecimento científico é construído, validado e transmitido pela
comunidade científica.
Editável e fotocopiável © Texto | Novo 10Q 7
3. Organização dos conteúdos (química do 10.o
ano) (pág. 4)
Os conteúdos estão organizados por domínios e subdomínios que se referem a temas da química,
sendo considerados estruturantes para a formação científica e prosseguimento de estudos,
permitindo a consolidação, aprofundamento e extensão dos estudos realizados no 3.o
ciclo do ensino
básico.
O quadro seguinte mostra a organização dos domínios e subdomínios da componente de química
do programa para o 10.o
ano de escolaridade, da distribuição de Atividades Laboratoriais (AL) e as
páginas do programa e das metas curriculares incluindo a identificação das páginas do Novo 10Q
onde são desenvolvidos.
10.
o
ano de química
Domínios Subdomínios e AL
Páginas
Programa Metas Novo 10Q
1. Elementos
químicos e sua
organização
(17 aulas)
1.1 Massa e tamanho dos átomos
AL 1.1
(5 aulas)
8
28
43
66
12 a 27
28 a 30
1.2 Energia dos eletrões nos átomos
AL 1.2
(8 aulas)
8
28
43
66
40 a 65
66 a 68
1.3 Tabela Periódica
AL 1.3
(4 aulas)
9
28
45
66
80 a 93
94 a 97
2. Propriedades
e
transformações
da matéria
(23 aulas)
2.1 Ligação química
AL 2.1
(10 aulas)
10
29
45
66
108 a 139
140 a 142
2.2 Gases e dispersões
AL 2.2
AL 2.3
(8 aulas)
11
29
29
46
67
67
152 a 163
164 e 165
166 e 167
2.3 Transformações químicas
AL 2.4
(5 aulas)
11
29
47
67
176 a 191
192 e 193
Os conteúdos foram selecionados procurando manter os aspetos essenciais dos programas
anteriores (Fisica e Quimica A do 10.o
ano, homologado em 2001, e do 11.o
ano, homologado em
2003). Pretendeu-se também valorizar os saberes dos professores a respeito dos processos de ensino
e de aprendizagem, resultantes de quase uma década de prática na sua aplicação.
A terminologia usada tem por base o Sistema Internacional (SI), cujas condições e normas de
utilização em Portugal constam do 3
Decreto-Lei n.o
128/2010, de 3 de dezembro. Outros aspetos de
terminologia e definições seguem recomendações de entidades internacionais, como a União
Internacional de Química Pura e Aplicada (IUPAC), ou nacionais, como o Instituto Português da
Qualidade (IPQ).
3
https://dre.pt/application/dir/pdf1sdip/2010/12/23400/0544405454.pdf
8 Editável e fotocopiável © Texto | Novo 10Q
4. Orientações gerais (pág. 5)
Os domínios, bem como os subdomínios, são temas da física ou da química. Mas, dado o impacto
que os conhecimentos da física e da química, assim como as das suas aplicações têm na
compreensão do mundo natural e na vida dos seres humanos, sugere-se que a abordagem dos
conceitos científicos parta, sempre que possível e quando adequado, de situações variadas que
sejam motivadoras como, por exemplo, casos da vida quotidiana, avanços recentes da ciência e da
tecnologia, contextos culturais onde a ciência se insira, episódios da história da ciência e outras
situações socialmente relevantes. A escolha desses contextos por parte do professor deve ter em
conta as condições particulares de cada turma e escola. Tal opção não só reforçará a motivação dos
alunos pela aprendizagem mas também permitirá uma mais fácil concretização de aspetos formais
mais abstratos das ciências em causa. Em particular, a invocação de situações da história da ciência
permite compreender o modo como ela foi sendo construída.
O desempenho do aluno também deve ser revelado na familiarização com métodos próprios do
trabalho científico, incluindo a adoção de atitudes adequadas face às tarefas propostas, devendo a
realização de trabalho prático-laboratorial constituir um meio privilegiado para a aquisição desses
métodos e desenvolvimento dessas atitudes.
O ensino da Física e Química A deve permitir que os alunos se envolvam em diferentes atividades
de sala de aula, incluindo a resolução de exercícios e de problemas, de modo a que desenvolvam a
compreensão dos conceitos, leis e teorias, interiorizando processos científicos. Na resolução de
problemas, os alunos devem também desenvolver as capacidades de interpretação das informações
fornecidas, de reflexão sobre estas e de estabelecimento de metodologias adequadas para alcançar
boas soluções.
As atividades de demonstração, efetuadas pelo professor, recorrendo a materiais de laboratório
ou comuns, com ou sem aquisição automática de dados, constituem uma forte motivação para
introduzir certos conteúdos científicos ao mesmo tempo que facilitam a respetiva interpretação.
Também o recurso a filmes, animações ou simulações computacionais pode ajudar à compreensão
de conceitos, leis e teorias mais abstratas.
Esta disciplina, pela sua própria natureza, recorre frequentemente a conhecimentos e métodos
matemáticos. Alguns alunos poderão ter dificuldades na interpretação de relações quantitativas
entre grandezas físico-químicas, incluindo a construção de modelos de base matemática na
componente laboratorial, ou na resolução de problemas quantitativos por via analítica, devendo o
professor desenvolver estratégias que visem a superação das dificuldades detetadas. O recurso a
calculadoras gráficas (ou a tablets, ou a laptops) ajudará a ultrapassar alguns desses
constrangimentos, cabendo ao professor, quando necessário, introduzir os procedimentos de boa
utilização desses equipamentos.
Os alunos devem ser incentivados a trabalhar em grupo, designadamente na realização das
atividades laboratoriais. O trabalho em grupo deve permitir uma efetiva colaboração entre os seus
membros, mas, ao mesmo tempo, aumentar o espírito de entreajuda, desenvolver também hábitos
de trabalho e a autonomia em cada um deles.
Os alunos devem igualmente ser incentivados a investigar e a refletir, comunicando as suas
aprendizagens oralmente e por escrito. Devem, no seu discurso, usar vocabulário científico próprio
da disciplina e evidenciar um modo de pensar científico, ou seja, fundamentado em conceitos, leis e
teorias científicas.
Editável e fotocopiável © Texto | Novo 10Q 9
5. Metas curriculares (pág. 6)
Segundo o 4
Despacho n.o
15971/2012, de 14 de dezembro, as metas curriculares «identificam a
aprendizagem essencial a realizar pelos alunos … realçando o que dos programas deve ser objeto
primordial de ensino».
[…]
As metas curriculares permitem:
− identificar os desempenhos que traduzem os conhecimentos a adquirir e as capacidades que
se querem ver desenvolvidas no final de um dado módulo de ensino;
− fornecer o referencial para a avaliação interna e externa, em particular para as provas dos
exames nacionais;
− orientar a ação do professor na planificação do seu ensino e na produção de materiais
didáticos;
− facilitar o processo de autoavaliação pelo aluno.
[…]
6. Desenvolvimento do programa (pág. 6)
Apresenta-se, para a componente de química do 10.o
ano, a sequência dos conteúdos e o seu
enquadramento, incluindo as atividades prático-laboratoriais, por domínio e subdomínio, os
respetivos objetivos gerais, algumas orientações e sugestões, e uma previsão do número de aulas por
subdomínio. Consideram-se, para essa previsão, três aulas semanais (de duração total mínima de 315
minutos e sendo a aula de maior duração, 150 minutos, no máximo, dedicada a atividades práticas e
laboratoriais).
O número de aulas previsto é indicativo e deve ser gerido pelo professor de acordo com as
características das suas turmas.
6.1. Componente de química (10.o
ano) (pág. 7)
A componente de química, no 10.o
ano, contempla dois domínios: «Elementos químicos e sua
organização» e «Propriedades e transformações da matéria» (10.o
ano).
O 10.o
ano desenvolve-se através de ideias organizadoras que vão das propriedades do átomo à
reatividade molecular, passando por aspetos quantitativos das propriedades dos gases e dispersões.
[…]
A seleção dos conteúdos de 10.o
ano fundamenta-se em seis ideias organizadoras:
(1) a matéria comum é constituída por átomos;
(2) as propriedades dos átomos são determinadas pelo modo como se distribuem os eletrões e
pelas respetivas energias;
(3) os elementos químicos estão organizados na Tabela Periódica, baseada nas propriedades dos
átomos;
(4) os átomos podem unir-se para formar moléculas e outras estruturas maiores através de
ligações químicas, envolvendo essencialmente os eletrões de valência;
4
https://dre.pt/application/dir/pdf2sdip/2012/12/242000000/3985339854.pdf
10 Editável e fotocopiável © Texto | Novo 10Q
(5) as propriedades dos materiais são determinadas pelo tipo de átomos, pelas ligações químicas
e pela geometria das moléculas;
(6) a estabilidade relativa, do ponto de vista energético, dos átomos e moléculas influencia a sua
reatividade.
[…]
Como o grau de abstração necessário para compreender conceitos como o de orbital atómica é
elevado, reduziu-se esta temática ao mínimo necessário para chegar às configurações eletrónicas dos
átomos, em especial das suas camadas de valência. As ligações intermoleculares são introduzidas
dada a sua importância para a compreensão das propriedades dos materiais. Relativamente à forma
das moléculas (geometria e estrutura tridimensional) os alunos devem começar a interpretar e a
distinguir estruturas tridimensionais identificando grupos funcionais. Mais importante do que o
domínio da nomenclatura da química orgânica é a capacidade de distinguir estruturas de moléculas e
de lhes atribuir um significado químico.
A enorme utilidade da química no mundo atual aponta para um futuro sustentável em áreas vitais
para a sociedade (energia, recursos naturais, saúde, alimentação, novos materiais, entre outros),
através de avanços significativos na síntese química, na química analítica, na química computacional,
na química biológica e na tecnologia química. Estes aspetos devem, por isso, ser valorizados,
procurando-se que os alunos reconheçam algumas aplicações e outros resultados de investigação
que tenham impacto na sociedade e no ambiente.
Apresentam-se a sequência de conteúdos do 10.o
, os objetivos gerais, as metas curriculares,
algumas orientações e sugestões, e uma previsão da distribuição por tempos letivos. As atividades
laboratoriais (designadas por AL) aparecem identificadas nos respetivos subdomínios e, também para
estas, apresentam-se os respetivos objetivos gerais e algumas sugestões, podendo ser utilizados
outros procedimentos desde que se atinjam as metas definidas.
Editável e fotocopiável © Texto | Novo 10Q 11
Domínio 1: Elementos químicos e sua organização (17 aulas = 14 + 3 AL)
Subdomínio 1.1: Massa e tamanho dos átomos (5 aulas = 4 + AL 1.1)
1. Objetivo geral: Consolidar e ampliar conhecimentos sobre elementos químicos e dimensões à escala atómica.
Conteúdos, orientações e sugestões (pág. 8) Metas curriculares (pág. 43)
Conteúdos
• Ordens de grandeza e escalas de
comprimento
• Dimensões à escala atómica
• Massa isotópica e massa atómica relativa
média
• Quantidade de matéria e massa molar
• Fração molar e fração mássica
• AL 1.1 Volume e número de moléculas de
uma gota de água
Orientações e sugestões
Como indício experimental da existência de
átomos sugere-se a observação de
movimentos brownianos. A grande diferença
de densidades entre as fases condensadas e
gasosa de um material pode também
propiciar uma reflexão sobre a existência de
átomos e as suas dimensões. Estas abordagens
permitem uma contextualização histórica do
assunto, que vai de Brown a Einstein,
passando por Avogadro e Loschmidt.
Para avaliar as dimensões à escala atómica
podem analisar-se imagens de microscopia
de alta resolução às quais estejam associadas
escalas ou fatores de ampliação.
Pode-se também recorrer a informação
sobre a presença de nanopartículas em
situações comuns e sobre aplicações que
resultem da manipulação da matéria à escala
atómica. A análise das vantagens e riscos da
nanotecnologia possibilita a reflexão sobre as
relações entre ciência e sociedade.
1.1 Descrever a constituição de átomos com base no número
atómico, no número de massa e na definição de isótopos.
1.2 Determinar a ordem de grandeza de um número
relacionando tamanhos de diferentes estruturas na natureza
(por exemplo, célula, ser humano, Terra e Sol) numa escala de
comprimentos.
1.3 Comparar ordens de grandeza de distâncias e tamanhos à
escala atómica a partir, por exemplo, de imagens de
microscopia de alta resolução, justificando o uso de unidades
adequadas.
1.4 Associar a nanotecnologia à manipulação da matéria à
escala atómica e molecular e identificar algumas das suas
aplicações com base em informação selecionada.
1.5 Indicar que o valor de referência usado como padrão para
a massa relativa dos átomos e das moléculas é 1/12 da massa
do átomo de carbono-12.
1.6 Interpretar o significado de massa atómica relativa média
e calcular o seu valor a partir de massas isotópicas,
justificando a proximidade do seu valor com a massa do
isótopo mais abundante.
1.7 Identificar a quantidade de matéria como uma das
grandezas do Sistema Internacional (SI) de unidades e
caracterizar a sua unidade, mole, com referência ao número
de Avogadro de entidades.
1.8 Relacionar o número de entidades numa dada amostra com
a quantidade de matéria nela presente, identificando a
constante de Avogadro como constante de proporcionalidade.
1.9 Calcular massas molares a partir de tabelas de massas
atómicas relativas (médias).
1.10 Relacionar a massa de uma amostra e a quantidade de
matéria com a massa molar.
1.11 Determinar composições quantitativas em fração molar
e em fração mássica, e relacionar estas duas grandezas.
AL 1.1 Volume e número de moléculas de uma gota de água (pág. 28)
Objetivo geral: Medir o volume e a massa de uma gota de água e determinar o número de moléculas de água
na gota.
Sugestões
Nesta atividade introduzem-se alguns conceitos sobre medição: algarismos significativos, incerteza
experimental associada à leitura no aparelho de medida, erros que afetam as medições e modo de exprimir
uma medida a partir de uma única medição direta.
A atividade pode começar questionando os alunos sobre um processo de medir a massa e o volume de uma
gota de água, orientando a discussão de forma a concluírem que a medição deve fazer-se a partir da massa e
do volume de um número elevado de gotas.
Sugere-se um número de gotas de água não inferior a 100.
Posteriormente, pode questionar-se qual das grandezas medidas (massa ou volume) deve ser usada para
determinar o número de moléculas de água numa gota, e ainda que informação adicional é necessária e
onde esta pode ser encontrada.
Os resultados obtidos podem ser usados para determinar e comparar ordens de grandeza.
12 Editável e fotocopiável © Texto | Novo 10Q
Metas específicas e transversais (pág. 66)
1. Medir a massa e o volume de um dado número de gotas de água, selecionando os instrumentos de
medição mais adequados.
2. Apresentar os resultados das medições da massa e do volume das gotas de água, atendendo à incerteza de
leitura e ao número de algarismos significativos.
3. Determinar a massa e o volume de uma gota de água e indicar a medida com o número adequado de
algarismos significativos.
4. Calcular o número de moléculas de água que existem numa gota e indicar o resultado com o número
adequado de algarismos significativos.
Editável e fotocopiável © Texto | Novo 10Q 13
Subdomínio 1.2: Energia dos eletrões nos átomos (8 aulas = 7 + AL 1.2)
2. Objetivo geral: Reconhecer que a energia dos eletrões nos átomos pode ser alterada por absorção ou
emissão de energias bem definidas, correspondendo a cada elemento um espetro atómico
característico, e que os eletrões nos átomos se podem considerar distribuídos por níveis e
subníveis de energia.
Conteúdos, orientações e sugestões (pág. 8) Metas curriculares (pág. 43)
Conteúdos
• Espetros contínuos e descontínuos
• O modelo atómico de Bohr
• Transições eletrónicas
• Quantização de energia
• Espetro do átomo de hidrogénio
• Energia de remoção eletrónica
• Modelo quântico do átomo
o níveis e subníveis
o orbitais (s, p e d)
o spin
• Configuração eletrónica de átomos
o Princípio da Construção (ou de Aufbau)
o Princípio da Exclusão de Pauli
• AL 1.2 Teste de chama
Orientações e sugestões
Recomenda-se a observação de espetros
contínuos e descontínuos decompondo a luz com
redes de difração ou espetroscópios e a
visualização de simulações sobre espetroscopia.
Sugere-se ainda o uso de tubos de Pluecker para
visualizar espetros descontínuos.
Deve recorrer-se a dados da espetroscopia
fotoeletrónica (sem exploração nem da técnica
nem dos equipamentos) para estabelecer a
ordem das energias no estado fundamental de
orbitais atómicas até 4s. Este assunto deve ser
abordado sem recurso aos números quânticos.
O Princípio da Exclusão de Pauli deve ser
apresentado de uma forma simplificada, devendo
fazer-se a distribuição eletrónica pelas orbitais
degeneradas.
As energias relativas dos subníveis eletrónicos
ocupados, assim como os números relativos de
eletrões em cada subnível, podem ser
determinados a partir de espetros obtidos por
espetroscopia fotoeletrónica de baixa resolução,
enquanto o número máximo de eletrões
permitido por orbital é dado pelo Princípio da
Exclusão de Pauli. A degenerescência das orbitais
p e d do mesmo nível pode assim ser confirmada
a partir destes resultados.
As configurações eletrónicas devem ser
estabelecidas com base na regra da construção
(conhecida por Princípio de Construção ou de
2.1 Indicar que a luz (radiação eletromagnética ou onda
eletromagnética) pode ser detetada como partículas de
energia (fotões), sendo a energia de cada fotão proporcional à
frequência dessa luz.
2.2 Identificar luz visível e não visível de diferentes
frequências no espetro eletromagnético, comparando as
energias dos respetivos fotões.
2.3 Distinguir tipos de espetros: descontínuos e contínuos;
de absorção e de emissão.
2.4 Interpretar o espetro de emissão do átomo de
hidrogénio através da quantização da energia do eletrão,
concluindo que esse espetro resulta de transições eletrónicas
entre níveis energéticos.
2.5 Identificar a existência de níveis de energia bem
definidos, e a ocorrência de transições de eletrões entre níveis
por absorção ou emissão de energias bem definidas, como as
duas ideias fundamentais do modelo atómico de Bohr que
prevalecem no modelo atómico atual.
2.6 Associar a existência de níveis de energia à quantização
da energia do eletrão no átomo de hidrogénio e concluir que
esta quantização se verifica para todos os átomos.
2.7 Associar cada série espetral do átomo de hidrogénio a
transições eletrónicas com emissão de radiação nas zonas do
ultravioleta, visível e infravermelho.
2.8 Relacionar, no caso do átomo de hidrogénio, a energia
envolvida numa transição eletrónica com as energias dos
níveis entre os quais essa transição se dá.
2.9 Comparar espetros de absorção e de emissão de
elementos químicos, concluindo que são característicos de
cada elemento.
2.10 Identificar, a partir de informação selecionada, algumas
aplicações da espetroscopia atómica (por exemplo,
identificação de elementos químicos nas estrelas,
determinação de quantidades vestigiais em química forense).
2.11 Indicar que a energia dos eletrões nos átomos inclui o
efeito das atrações entre os eletrões e o núcleo, por as suas
cargas serem de sinais contrários, e das repulsões entre os
eletrões, por as suas cargas serem do mesmo sinal.
2.12 Associar a nuvem eletrónica a uma representação da
densidade da distribuição de eletrões à volta do núcleo
atómico, correspondendo as regiões mais densas a maior
probabilidade de aí encontrar eletrões.
2.13 Concluir, a partir de valores de energia de remoção
eletrónica, obtidas por espetroscopia fotoeletrónica, que
átomos de elementos diferentes têm valores diferentes da
energia dos eletrões.
2.14 Interpretar valores de energias de remoção eletrónica,
14 Editável e fotocopiável © Texto | Novo 10Q
Aufbau) e atendendo à maximização do número
de eletrões desemparelhados (conhecida como
regra de Hund).
obtidos por espetroscopia fotoeletrónica, concluindo que os
eletrões se podem distribuir por níveis de energia e subníveis
de energia.
2.15 Indicar que os eletrões possuem, além de massa e carga,
uma propriedade quantizada denominada spin que permite
dois estados diferentes.
2.16 Associar orbital atómica à função que representa a
distribuição no espaço de um eletrão no modelo quântico do
átomo.
2.17 Identificar as orbitais atómicas s, p e d, com base em
representações da densidade eletrónica que lhes está
associada e distingui-las quanto ao número e à forma.
2.18 Indicar que cada orbital pode estar associada, no
máximo, a dois eletrões, com spin diferente, relacionando esse
resultado com o princípio de Pauli.
2.19 Concluir, a partir de valores de energia de remoção
eletrónica, obtidas por espetroscopia fotoeletrónica, que
orbitais de um mesmo subnível np, ou nd, têm a mesma
energia.
2.20 Estabelecer as configurações eletrónicas dos átomos,
utilizando a notação spd, para elementos até Z = 23,
atendendo ao Princípio da Construção, ao Princípio da
Exclusão de Pauli e à maximização do número de eletrões
desemparelhados em orbitais degeneradas.
AL 1.2 Teste de chama (pág. 28)
Objetivo geral: Identificar elementos químicos em amostras de sais usando testes de chama.
Sugestões
Esta atividade pode adquirir um caráter de pesquisa laboratorial, caso se usem amostras desconhecidas de
vários sais. Se forem usadas ansas de Cr/Ni, a atividade deve ser planeada para que a mesma ansa seja
utilizada sempre na mesma amostra, o que evita o recurso a ácido clorídrico concentrado para a sua limpeza.
Devem ser abordados aspetos de segurança relacionados com a utilização de fontes de aquecimento e
manipulação de reagentes.
Os resultados do teste de chama podem ser relacionados com os efeitos observados no fogo-de-artifício.
Metas específicas e transversais (pág. 66)
1. Identificar a presença de um dado elemento químico através da coloração de uma chama quando nela se
coloca uma amostra de sal.
2. Indicar limitações do ensaio de chama relacionadas com a temperatura da chama e com a natureza dos
elementos químicos na amostra.
3. Interpretar informação de segurança presente no rótulo de reagentes e adotar medidas de proteção com
base nessa informação e em instruções recebidas.
4. Interpretar os resultados obtidos em testes de chama.
Editável e fotocopiável © Texto | Novo 10Q 15
Subdomínio 1.3: Tabela Periódica (4 aulas = 3 + AL 1.3)
3. Objetivo geral: Reconhecer na Tabela Periódica um meio organizador de informação sobre os elementos
químicos e respetivas substâncias elementares e compreender que a estrutura eletrónica
dos átomos determina as propriedades dos elementos.
Conteúdos, orientações e sugestões (pág. 9) Metas curriculares (pág. 45)
Conteúdos
• Evolução histórica da Tabela Periódica
• Estrutura da Tabela Periódica: grupos, períodos e blocos
• Elementos representativos e de transição
• Famílias de metais e de não-metais
• Propriedades periódicas dos elementos representativos
o raio atómico
o energia de ionização
• AL 1.3 Densidade relativa de metais
Orientações e sugestões
Devem relembrar-se os principais contributos para a
evolução da Tabela Periódica (de Döbereiner a Moseley,
passando por Mendeleev, e avançando até à atualidade),
podendo realçar-se a fundamentação e discussão das
propostas que foram surgindo e o facto de a Tabela
Periódica ser um documento aberto à incorporação de
novos elementos químicos e de novos conhecimentos.
Essa abordagem permite mostrar o modo como a ciência
evolui.
A diversidade de materiais existentes na natureza mostra
que a maioria dos elementos químicos se encontra na
forma combinada (formando substâncias elementares ou
compostas) e que um número relativamente pequeno de
elementos está na origem de milhões de substâncias
naturais e artificiais.
3.1. Identificar marcos históricos relevantes no
estabelecimento da Tabela Periódica atual.
3.2 Interpretar a organização da Tabela Periódica
com base em períodos, grupos e blocos e
relacionar a configuração eletrónica dos átomos
dos elementos com a sua posição relativa na
Tabela Periódica.
3.3 Identificar a energia de ionização e o raio
atómico como propriedades periódicas dos
elementos.
3.4 Distinguir entre propriedades de um elemento
e propriedades da(s) substância(s) elementar(es)
correspondentes.
3.5 Comparar raios atómicos e energias de ionização
de diferentes elementos químicos com base nas suas
posições relativas na Tabela Periódica.
3.6 Interpretar a tendência geral para o aumento
da energia de ionização e para a diminuição do
raio atómico observados ao longo de um período
da Tabela Periódica.
3.7 Interpretar a tendência geral para a
diminuição da energia de ionização e para o
aumento do raio atómico observados ao longo de
um grupo da Tabela Periódica.
3.8 Explicar a formação dos iões mais estáveis de
metais e de não-metais.
3.9 Justificar a baixa reatividade dos gases nobres.
AL 1.3 Densidade relativa de metais (pág. 28)
Objetivo geral: Determinar a densidade relativa de metais por picnometria.
Sugestões
Sugere-se a utilização de metais como cobre, alumínio ou chumbo, na forma de grãos, lâminas ou fios de
pequena dimensão.
Devem discutir-se erros aleatórios e sistemáticos ligados à influência da temperatura, devidos à formação de
bolhas de ar no interior do picnómetro, a uma secagem inadequada do picnómetro ou à presença de
impurezas no metal em estudo.
Nesta atividade deve introduzir-se o erro percentual associado a um resultado experimental, quando há um
valor de referência, e a sua relação com a exatidão desse resultado.
Metas específicas e transversais (pág. 66)
1. Definir densidade relativa e relacioná-la com a massa volúmica.
2. Identificar a densidade relativa como uma propriedade física de substâncias.
3. Interpretar e utilizar um procedimento que permita determinar a densidade relativa de um metal por
picnometria.
4. Determinar a densidade relativa do metal.
5. Indicar o significado do valor obtido para a densidade relativa do metal.
6. Determinar o erro percentual do resultado obtido para a densidade relativa do metal e relacioná-lo com a
exatidão desse resultado.
7. Indicar erros que possam ter afetado o resultado obtido.
16 Editável e fotocopiável © Texto | Novo 10Q
Domínio 2: Propriedades e transformações da matéria (23 aulas = 19 + 4 AL)
Subdomínio 2.1: Ligação química (10 aulas = 9 + AL 2.1)
1. Objetivo geral: Compreender que as propriedades das moléculas e materiais são determinadas pelo tipo
de átomos, pela energia das ligações e pela geometria das moléculas.
Conteúdos, orientações e sugestões (pág. 10) Metas curriculares (pág. 45)
Conteúdos
• Tipos de ligações químicas
• Ligação covalente
o estruturas de Lewis
o energia de ligação e comprimento de ligação
o polaridade das ligações
o geometria molecular
o polaridade das moléculas
o estruturas de moléculas orgânicas e
biológicas
• Ligações intermoleculares
o ligações de hidrogénio
o ligações de van der Waals (de London, entre
moléculas polares e entre moléculas
polares e apolares)
• AL 2.1 Miscibilidade de líquidos
Orientações e sugestões
A ligação química deve ser considerada um conceito
unificador: a energia de um conjunto de átomos ou
moléculas ligados é menor do que a energia dos
átomos ou moléculas separados, como resultado
das atrações e repulsões envolvendo eletrões e
núcleos atómicos. Devem ser estudadas duas
situações quanto ao tipo de ligação química: (a)
partilha significativa de eletrões entre os átomos
(ligações iónica, covalente e metálica) e (b) partilha
pouco significativa de eletrões entre os átomos ou
moléculas (ligações intermoleculares de van der
Waals e ligações de hidrogénio).
A identificação da partilha de eletrões pode ser
relacionada qualitativamente com representações
da densidade eletrónica das moléculas.
A ligação iónica deve ser apresentada como uma
ligação em que a partilha de eletrões dá origem a
uma cedência significativa de eletrões entre átomos,
podendo realçar--se que essas estruturas com
caráter iónico se dissociam em iões em solução ou
por mudança de estado físico.
A polaridade das moléculas deve ser abordada sem
recorrer ao conceito de momento dipolar. Pode
destacar-se que a assimetria na distribuição da
carga elétrica se traduz na polaridade da molécula,
por exemplo, a partir de representações das
densidades eletrónicas de moléculas. Mais
importante do que a identificação dos vários tipos
de forças de van der Waals será a aquisição pelos
alunos da noção de que, para qualquer tipo de
1.1 Indicar que um sistema de dois ou mais átomos pode
adquirir maior estabilidade através da formação de
ligações químicas.
1.2 Interpretar as interações entre átomos através das
forças de atração entre núcleos e eletrões, forças de
repulsão entre eletrões e forças de repulsão entre
núcleos.
1.3 Interpretar gráficos da energia em função da
distância internuclear durante a formação de uma
molécula diatómica identificando o predomínio das
repulsões a curta distância e o predomínio das atrações a
longas distâncias, sendo estas distâncias respetivamente
menores e maiores do que a distância de equilíbrio.
1.4 Indicar que os átomos podem partilhar eletrões
formando ligações covalentes (partilha localizada de
eletrões de valência), ligações iónicas (transferência de
eletrões entre átomos originando estruturas com caráter
iónico) e ligações metálicas (partilha de eletrões de
valência deslocalizados por todos os átomos).
1.5 Associar as ligações químicas em que não há partilha
significativa de eletrões a ligações intermoleculares.
1.6 Interpretar a ocorrência de ligações covalentes
simples, duplas ou triplas em H2, N2, O2 e F2, segundo o
modelo de Lewis.
1.7 Representar, com base na regra do octeto, as fórmulas
de estrutura de Lewis de moléculas como CH4, NH3, H2O e
CO2.
1.8 Relacionar o parâmetro ângulo de ligação nas moléculas
CH4, NH3, H2O e CO2 com base no modelo da repulsão dos
pares de eletrões de valência.
1.9 Prever a geometria molecular, com base no modelo da
repulsão dos pares de eletrões de valência, em moléculas
como CH4, NH3, H2O e CO2.
1.10 Prever a relação entre as energias de ligação ou os
comprimentos de ligação em moléculas semelhantes, com
base na variação das propriedades periódicas dos
elementos envolvidos nas ligações (por exemplo H2O e H2S
ou HCl e HBr).
1.11 Indicar que as moléculas diatómicas homonucleares
são apolares e que as moléculas diatómicas heteronucleares
são polares, interpretando essa polaridade com base na
distribuição de carga elétrica entre os átomos.
1.12 Identificar ligações polares e apolares com base no tipo
de átomos envolvidos na ligação.
1.13 Indicar alguns exemplos de moléculas polares (H2O,
NH3) e apolares (CO2, CH4).
1.14 Identificar hidrocarbonetos saturados, insaturados e
haloalcanos e, no caso de hidrocarbonetos saturados de
Editável e fotocopiável © Texto | Novo 10Q 17
molécula, incluindo as moléculas não polares e os
átomos de gases nobres, existe atração entre estas
por forças de London e que, em moléculas polares,
a estas atrações se somam as atrações entre as
distribuições assimétricas de carga.
Sugere-se a aplicação dos conhecimentos sobre
ligação química e geometria molecular na análise e
interpretação de estruturas moleculares de
substâncias presentes nos alimentos e em
medicamentos, entre outros, sem exploração da
nomenclatura correspondente a essas moléculas.
A relação entre as miscibilidades e o tipo de ligações
intermoleculares deve ser apresentada como uma
relação genérica cuja explicação é complexa, por
depender de múltiplos fatores, não sendo
necessário fornecer essa explicação aos alunos.
cadeia aberta até 6 átomos de carbono, representar a
fórmula de estrutura a partir do nome ou escrever o nome a
partir da fórmula de estrutura.
1.15 Interpretar e relacionar os parâmetros de ligação,
energia e comprimento, para a ligação CC nas moléculas
etano, eteno e etino.
1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas,
ácidos carboxílicos e aminas) em moléculas orgânicas,
biomoléculas e fármacos, a partir das suas fórmulas de
estrutura.
1.17 Identificar ligações intermoleculares – de hidrogénio e
de van der Waals – com base nas características das
unidades estruturais.
1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos
com as ligações intermoleculares que se estabelecem entre
unidades estruturais.
AL 2.1 Miscibilidade de líquidos (pág. 29)
Objetivo geral: Prever e avaliar a miscibilidade de líquidos.
Sugestões
A atividade pode ter o formato de uma investigação laboratorial, em que se fornecem vários líquidos e
informação sobre as correspondentes fórmulas de estrutura. Os líquidos a utilizar poderão ser: água, etanol,
acetona e hexano.
A atividade pode começar sugerindo aos alunos que formulem hipóteses sobre a miscibilidade dos líquidos
propostos, com base nas respetivas fórmulas de estrutura.
Um líquido que também poderá ser utilizado é o éter de petróleo. Neste caso, deve ser dada a informação
aos alunos que se trata de uma mistura de hidrocarbonetos, essencialmente pentano e hexano.
Deverão ser tomadas medidas para lidar com riscos associados à manipulação de alguns líquidos.
Metas específicas e transversais (pág. 66)
1. Prever se dois líquidos são miscíveis ou imiscíveis, tendo como único critério o tipo de ligações
intermoleculares predominantes em cada um.
2. Identificar e controlar variáveis que afetam a miscibilidade de líquidos.
3. Interpretar informação de segurança nos rótulos de reagentes e adotar medidas de proteção com base
nessa informação e em instruções recebidas.
4. Descrever e realizar um procedimento que permita avaliar a miscibilidade de líquidos.
5. Relacionar a miscibilidade dos líquidos em estudo com os tipos de interações entre as respetivas unidades
estruturais.
18 Editável e fotocopiável © Texto | Novo 10Q
Subdomínio 2.2: Gases e dispersões (8 aulas = 6 + AL 2.2 + AL 2.3)
1. Objetivo geral: Reconhecer que muitos materiais se apresentam na forma de dispersões que podem ser
caracterizadas quanto à sua composição.
Conteúdos, orientações e sugestões (pág. 11) Metas curriculares (pág. 46)
Conteúdos
• Lei de Avogadro, volume molar e massa volúmica
• Soluções, coloides e suspensões
• Composição quantitativa de soluções
o concentração em massa
o concentração
o percentagem em volume e percentagem em massa
o partes por milhão
• Diluição de soluções aquosas
o AL 2.2 Soluções a partir de solutos sólidos
o AL 2.3 Diluição de soluções
Orientações e sugestões
A abordagem destes conteúdos pode partir da descrição da
atmosfera da Terra, no que respeita à presença de gases, com
realce para a composição quantitativa média da troposfera,
para análises químicas da qualidade do ar e o aumento do
efeito de estufa.
Outros contextos igualmente pertinentes, por estarem
relacionados com o quotidiano e a sociedade, em particular
com a informação e a defesa do consumidor, podem ser
encontrados nas indústrias farmacêutica, alimentar e de
cosméticos, na saúde e qualidade da água, entre outros. A
análise, por exemplo, de bulas de medicamentos, de rótulos e
de relatórios de análises pode contribuir para motivar os
alunos e sensibilizá-los para a importância da interpretação de
informação química necessária ao esclarecimento dos
consumidores.
2.1 Definir volume molar e, a partir da Lei de
Avogadro, concluir que tem o mesmo valor
para todos os gases à mesma pressão e
temperatura.
2.2 Relacionar o volume de uma amostra
gasosa e a quantidade de matéria com o
volume molar, definidas as condições de
pressão e temperatura.
2.3 Relacionar a massa volúmica de uma
substância gasosa com a sua massa molar e
volume molar.
2.4 Descrever a composição da troposfera
terrestre, realçando N2 e O2 como os seus
componentes mais abundantes.
2.5 Indicar poluentes gasosos na troposfera e
identificar as respetivas fontes.
2.6 Distinguir solução, dispersão coloidal e
suspensão com base na ordem de grandeza
da dimensão das partículas constituintes.
2.7 Descrever a atmosfera terrestre como
uma solução gasosa, na qual também se
encontram coloides e suspensões de matéria
particulada.
2.8 Determinar a composição quantitativa de
soluções aquosas e gasosas (como, por
exemplo, a atmosfera terrestre), em
concentração, concentração em massa,
fração molar, percentagem em massa e em
volume e partes por milhão, e estabelecer
correspondências adequadas.
AL 2.2 Soluções a partir de solutos sólidos (pág. 29)
Objetivo geral: Preparar uma solução aquosa a partir de um soluto sólido.
Sugestões
O reagente a utilizar deve estar devidamente rotulado para que se possa fazer a necessária avaliação de
riscos. Sugere-se a utilização de compostos corados como sulfato de cobre (II) pentahidratado ou
permanganato de potássio. Não devem usar--se sais contendo catiões de metais pesados (Pb, Hg, Cr, Co, Ni).
Devem ser referidos aspetos relacionados com armazenamento de soluções; as soluções preparadas podem
ser aproveitadas para outros trabalhos.
Devem discutir-se erros aleatórios e sistemáticos.
Metas específicas e transversais (pág. 67)
1. Efetuar cálculos necessários à preparação de soluções a partir de um soluto sólido.
2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução a partir de um
soluto sólido.
3. Medir a massa de sólidos em pó, granulados ou em cristais, usando uma balança digital, e apresentar o
resultado da medição atendendo à incerteza de leitura e ao número de algarismos significativos.
4. Aplicar técnicas de transferência de sólidos e líquidos.
5. Preparar uma solução com um dado volume e concentração.
6. Armazenar soluções em recipiente apropriado sem as contaminar ou sem alterar a sua concentração.
7. Indicar erros que possam ter afetado as medições efetuadas.
Editável e fotocopiável © Texto | Novo 10Q 19
AL 2.3 Diluição de soluções (pág. 29)
Objetivo geral: Preparar soluções aquosas por diluição.
Sugestões
Previamente, usando água, os alunos devem treinar o uso de pipetas na medição de volumes; estas podem ser
da mesma classe, para poderem comparar as respetivas incertezas de leitura.
Cada grupo de alunos deverá preparar várias soluções com diferentes fatores de diluição, selecionando
pipetas e balões volumétricos adequados.
As soluções preparadas podem ser aproveitadas para outros trabalhos.
Sugere-se que a solução a diluir seja a preparada na atividade anterior.
Metas específicas e transversais (pág. 67)
1. Efetuar cálculos necessários à preparação de soluções por diluição, em particular utilizando o fator de
diluição.
2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução por diluição.
3. Distinguir pipetas volumétricas de pipetas graduadas comparando, para volumes iguais, a incerteza de
leitura de ambas.
4. Interpretar inscrições em instrumentos de medição de volume.
5. Medir volumes de líquidos com pipetas, usando a técnica adequada.
6. Apresentar o resultado da medição do volume de solução com a pipeta atendendo à incerteza de leitura e
ao número de algarismos significativos.
7. Preparar uma solução com um dado volume e concentração a partir de uma solução mais concentrada.
20 Editável e fotocopiável © Texto | Novo 10Q
Subdomínio 2.3: Transformações químicas (5 aulas = 4 + AL 2.4)
3. Objetivo geral: Compreender os fundamentos das reações químicas, incluindo reações fotoquímicas, do
ponto de vista energético e da ligação química.
Conteúdos, orientações e sugestões (pág. 11) Metas curriculares (pág. 47)
Conteúdos
• Energia de ligação e reações químicas
o processos endoenergéticos e
exoenergéticos
o variação de entalpia
• Reações fotoquímicas na atmosfera
o fotodissociação e fotoionização
o radicais livres e estabilidade das espécies
químicas
o ozono estratosférico
• AL 2.4 Reação fotoquímica
Orientações e sugestões
A escrita de equações químicas usando fórmulas
de estrutura pode ajudar a compreender o que
se passa na rutura e formação de ligações
durante as reações químicas.
Os exemplos a considerar devem incluir
substâncias estudadas no subdomínio «Ligação
Química», podendo ser introduzidas reações
como a combustão de alcanos, a síntese do
amoníaco e a decomposição da água.
O caso particular do ozono, que na troposfera
atua como poluente enquanto na estratosfera
atua como protetor, pode ser explorado nos
aspetos científico, tecnológico, social e
ambiental. A formação e destruição do ozono
estratosférico podem ser abordadas através da
questão da camada de ozono. Podem discutir-se
as vantagens e desvantagens proporcionadas
pelos clorofluorocarbonetos (CFC), assim como
dos seus substitutos, com base em informação
selecionada.
Também podem ser utilizadas as aplicações da
fotoquímica em diferentes áreas como, por
exemplo, a medicina, a arte e a produção de
energia.
3.1 Interpretar uma reação química como resultado de um
processo em que ocorre rutura e formação de ligações
químicas.
3.2 Interpretar a formação de ligações químicas como um
processo exoenergético e a rutura como um processo
endoenergético.
3.3 Classificar reações químicas em exotérmicas ou em
endotérmicas como aquelas que, num sistema isolado,
ocorrem, respetivamente, com aumento ou diminuição de
temperatura.
3.4 Interpretar a energia da reação como o balanço
energético entre a energia envolvida na rutura e na formação
de ligações químicas, designá-la por variação de entalpia para
transformações a pressão constante, e interpretar o seu sinal
(positivo ou negativo).
3.5 Interpretar representações da energia envolvida numa
reação química relacionando a energia dos reagentes e dos
produtos e a variação de entalpia.
3.6 Determinar a variação de entalpia de uma reação química
a partir das energias de ligação e a energia de ligação a partir
da variação de entalpia e de outras energias de ligação.
3.7 Identificar transformações químicas desencadeadas pela
luz, designando-as por reações fotoquímicas.
3.8 Distinguir fotodissociação de fotoionização e representar
simbolicamente estes fenómenos.
3.9 Interpretar fenómenos de fotodissociação e fotoionização
na atmosfera terrestre envolvendo O2, O3, e N2 relacionando-
os com a energia da radiação envolvida e com a estabilidade
destas moléculas.
3.10 Identificar os radicais livres como espécies muito
reativas por possuírem eletrões desemparelhados.
3.11 Interpretar a formação e destruição do ozono
estratosférico, com base na fotodissociação de O2 e de O3,
por envolvimento de radiações ultravioletas UVB e UVC,
concluindo que a camada de ozono atua como um filtro
dessas radiações.
3.12 Explicar a formação dos radicais livres a partir dos
clorofluorocarbonetos (CFC) tirando conclusões sobre a sua
estabilidade na troposfera e efeitos sobre o ozono
estratosférico.
3.13 Indicar que o ozono na troposfera atua como poluente
em contraste com o seu papel protetor na estratosfera.
AL 2.4 Reação fotoquímica (pág. 29)
Objetivo geral: Investigar o efeito da luz sobre o cloreto de prata.
Sugestões
A reação fotoquímica em estudo envolve a transformação do ião prata em prata metálica e libertação de
cloro, sendo representada por:
2 AgCℓ (s) → 2 Ag (s) + Cℓ2 (g)
Editável e fotocopiável © Texto | Novo 10Q 21
A atividade deve realizar-se em pequena escala para diminuir custos, evitar os riscos associados à libertação
de cloro e reduzir a formação de resíduos.
Devem utilizar-se soluções de cloreto de sódio e de nitrato de prata de igual concentração.
Para investigar o efeito da luz sobre o cloreto de prata deve usar-se luz branca, luz azul e luz vermelha e usar
como termo de comparação uma amostra ao abrigo da luz.
Deve discutir-se o controlo de variáveis.
Metas específicas e transversais (pág. 67)
1. Interpretar e realizar procedimentos que, em pequena escala e controlando variáveis, permitam estudar o
efeito da luz sobre cloreto de prata.
2. Interpretar os resultados obtidos escrevendo equações químicas correspondentes.
3. Descrever e comparar o efeito de diferentes tipos de luz visível sobre o cloreto de prata.
22 Editável e fotocopiável © Texto | Novo 10Q
6.2. Trabalho prático-laboratorial (pág. 26)
Dada a natureza experimental da física e da química, as atividades de caráter prático e
laboratorial, a desenvolver em tempos de maior duração e com a turma desdobrada, merecem uma
referência especial.
O trabalho prático-laboratorial, entendido como todo o trabalho realizado pelos alunos, incluindo
a resolução de problemas, atividades de pesquisa e de comunicação, atividades com ou sem recurso
a material de laboratório (incluindo o controlo de variáveis), é indispensável para o aluno
desenvolver atitudes, capacidades e conhecimentos associadas ao trabalho científico.
As atividades laboratoriais devem ser enquadradas com os respetivos conteúdos e referenciais
teóricos. A sua planificação deve ser realizada com cuidado, procurando clarificar o tema, discutir
ideias prévias dos alunos e identificar as grandezas a medir e as condições a respeitar, de modo a que
os trabalhos possam decorrer com o ritmo adequado.
Os alunos devem identificar, na realização das atividades, possíveis erros aleatórios e
sistemáticos. Recomenda-se que tenham em atenção o alcance e a sensibilidade dos
instrumentos de medida, que indiquem a incerteza associada à escala utilizada no instrumento e
que apresentem as medidas com um número correto de algarismos significativos. Nas medições
diretas, conseguidas com uma única medição, o resultado da medida deve vir afetado da
incerteza associada à escala do instrumento de medida (incerteza absoluta de leitura). Sempre
que possível, uma medição direta deve ser efetuada recorrendo a uma série de medições nas
mesmas condições. Neste caso, o aluno deve proceder do seguinte modo:
• determinar o valor mais provável da grandeza a medir (média aritmética dos valores das
medições);
• determinar a incerteza absoluta de leitura;
• determinar o desvio de cada medição;
• determinar a incerteza absoluta de observação (desvio absoluto máximo);
• tomar para incerteza absoluta a maior das incertezas anteriores (de leitura ou de observação);
• determinar a incerteza relativa em relação à média, exprimindo-a em percentagem (desvio
percentual) e associá-la à precisão das medidas;
• exprimir o resultado da medição direta em função do valor mais provável e da incerteza
absoluta ou da incerteza relativa.
Os alunos devem estar familiarizados com o cálculo da incerteza absoluta de medições diretas e
reconhecer que a precisão das medidas é mais intuitiva quando se exprime a incerteza relativa.
Devem determinar o erro relativo, em percentagem (erro percentual), de uma medida que possa ser
comparada com valores tabelados ou previstos teoricamente e interpretar o seu valor, associando-o
à exatidão da medida. Deve-se sensibilizar os alunos para o facto de a incerteza nas medições diretas
se transmitir às medições indiretas, mas não se exige o respetivo cálculo.
Certas atividades requerem o traçado de gráficos e de retas de ajuste aos dados experimentais,
pelo que os alunos devem, nesses casos, recorrer à calculadora gráfica (ou equivalente).
Os conceitos relativos ao tratamento de dados devem ser introduzidos de modo faseado, ao
longo das atividades laboratoriais, e de acordo com as metas estabelecidas para cada uma delas.
As atividades laboratoriais têm de ser feitas, obrigatoriamente, pelos alunos em trabalho de
grupo.
Editável e fotocopiável © Texto | Novo 10Q 23
Alguns aspetos relativos à segurança na realização de atividades laboratoriais fazem parte da
formação dos alunos e, por isso, as atividades propostas incluem oportunidades para aprenderem a
lidar com riscos associados a técnicas de utilização de equipamentos e reagentes.
A segurança deve ser uma preocupação constante, pressupondo-se o cumprimento de regras
gerais de conduta no laboratório. Outros aspetos mais específicos devem ser integrados de um modo
progressivo, o que se traduz pela definição de metas específicas e transversais relacionadas com a
segurança, que são alcançáveis em diferentes trabalhos laboratoriais.
[…] Podem ser utilizados outros procedimentos desde que se atinjam as metas definidas.
7. Metas transversais a todas as atividades da componente prática-laboratorial (pág. 64)
7.1. Aprendizagem do tipo processual
1. Identificar material e equipamento de laboratório e manuseá-lo corretamente,
respeitando regras de segurança e instruções recebidas.
2. Identificar simbologia em laboratórios.
3. Identificar equipamento de proteção individual.
4. Adotar as medidas de proteção adequadas a operações laboratoriais, com base em
informação de segurança e instruções recebidas.
5. Atuar corretamente em caso de acidente no laboratório tendo em conta procedimentos
de alerta e utilização de equipamento de salvamento.
6. Selecionar material de laboratório adequado a um trabalho laboratorial.
7. Construir uma montagem laboratorial a partir de um esquema ou de uma descrição.
8. Executar corretamente técnicas laboratoriais.
9. Operacionalizar o controlo de uma variável.
10. Identificar aparelhos de medida, analógicos e digitais, o seu intervalo de funcionamento
e a respetiva incerteza de leitura.
11. Efetuar medições utilizando material de laboratório analógico, digital ou de aquisição
automática de dados.
12. Representar um conjunto de medidas experimentais em tabela, associando-lhes as
respetivas incertezas de leitura dos aparelhos de medida utilizados.
7.2. Aprendizagem do tipo conceptual
1. Identificar o objetivo de um trabalho prático.
2. Identificar o referencial teórico no qual se baseia o procedimento utilizado num trabalho
prático, incluindo regras de segurança específicas.
3. Interpretar e seguir um protocolo.
4. Descrever o procedimento que permite dar resposta ao objetivo de um trabalho prático.
5. Conceber um procedimento capaz de validar uma dada hipótese, ou estabelecer relações
entre variáveis, e decidir sobre as variáveis a controlar.
6. Identificar a influência de uma dada grandeza num fenómeno físico através de controlo
de variáveis.
7. Conceber uma tabela de registo de dados adequada ao procedimento.
24 Editável e fotocopiável © Texto | Novo 10Q
8. Representar esquemas de montagens.
9. Utilizar regras de contagem de algarismos significativos.
10. Identificar e comparar ordens de grandeza.
11. Distinguir erros aleatórios de erros sistemáticos.
12. Indicar a medida de uma grandeza numa única medição direta, atendendo à incerteza
experimental associada à leitura no aparelho de medida.
13. Indicar a medida de uma grandeza quando há um conjunto de medições diretas,
efetuadas nas mesmas condições, tomando como valor mais provável o valor médio.
14. Calcular a incerteza absoluta do valor mais provável de um conjunto de medições diretas
(o maior dos desvios absolutos), assim como a incerteza relativa em percentagem
(desvio percentual), e indicar a medida da grandeza.
15. Associar a precisão das medidas à sua maior ou menor dispersão, quando há um
conjunto de medições diretas, e aos erros aleatórios.
16. Determinar o erro percentual associado a um resultado experimental quando há um
valor de referência.
17. Associar a exatidão de um resultado à maior ou menor proximidade a um valor de
referência e aos erros sistemáticos, relacionando-a com o erro percentual.
18. Construir gráficos a partir de listas de dados, utilizando papel ou suportes digitais.
19. Interpretar representações gráficas, estabelecendo relações entre as grandezas.
20. Aplicar conhecimentos de estatística no tratamento de dados experimentais em modelos
lineares, identificando as grandezas físicas na equação da reta de regressão.
21. Determinar valores de grandezas, não obtidos experimentalmente, a partir da equação
de uma reta de regressão.
22. Identificar erros que permitam justificar a baixa precisão das medidas ou a baixa
exatidão do resultado.
23. Avaliar a credibilidade de um resultado experimental, confrontando-o com previsões do
modelo teórico, e discutir os seus limites de validade.
24. Generalizar interpretações baseadas em resultados experimentais para explicar outros
fenómenos que tenham o mesmo fundamento teórico.
25. Elaborar um relatório, ou síntese, sobre uma atividade prática, em formatos diversos.
Editável e fotocopiável © Texto | Novo 10Q 25
Na tabela seguinte estabelece-se uma associação possível entre metas transversais e atividades
laboratoriais que permitem explorações que melhor concorrerão para atingir essas metas.
Aprendizagens
do tipo:
AL 1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4
Processual
1 x x x x x x x
2 x x x x
3 x x x x
4 x x x x
5 x
6 x x x x
7
8 x x
9 x x x
10 x x x x
11 x x x x x
12 x x x x
Conceptual
1 x x x x x x x
2 x x x x
3 x x x x x x
4 x x x x x x
5 x x x
6
7 x x x
8
9 x x x x
10 x
11 x x x x
12 x x x x
13
14
15
16 x
17 x
18
19
20
21
22 x
23 x x
24 x x x
26 Editável e fotocopiável © Texto | Novo 10Q
8. Avaliação (pág. 38)
O processo de avaliação desta disciplina decorre dos princípios gerais da avaliação: deve ser
contínua, apoiada em diversos instrumentos adaptados às aprendizagens em apreciação, ter um
carácter formativo – não só para os alunos, para controlo da sua aprendizagem, mas também para o
professor, como reguladora das suas opções de ensino – e culminar em situações de avaliação
sumativa.
O aluno deve ser envolvido na avaliação, desenvolvendo o sentido crítico relativamente ao seu
trabalho e à sua aprendizagem, através, por exemplo, da promoção de atitudes reflexivas e do
recurso a processos metacognitivos.
Os critérios de avaliação definidos em Conselho Pedagógico, sob proposta dos departamentos
curriculares, devem contemplar os critérios de avaliação da componente prática-laboratorial,
designadamente as atividades laboratoriais de caráter obrigatório. De acordo com o estabelecido no
ponto 5 do art.o
7.o
da Portaria n.o
243/2012, são obrigatórios momentos formais de avaliação da
dimensão prática ou experimentais integrados no processo de ensino. E, de acordo com a alínea c)
do mesmo ponto, na disciplina de Física e Química A, a componente prática laboratorial tem um peso
mínimo de 30% no cálculo da classificação a atribuir em cada momento formal de avaliação.
Dada a centralidade da componente prática-laboratorial na física e na química identificaram-se
nas metas curriculares, para cada uma das atividades laboratoriais, descritores específicos e
transversais, os quais devem servir como referência para a avaliação do desempenho dos alunos
nessas atividades.
Para responder aos diversos itens dos testes de avaliação os alunos podem consultar um
formulário e, no caso da componente de química, a Tabela Periódica, numa versão que contenha,
pelo menos, informação do símbolo químico, do número atómico e da massa atómica relativa.
Editável e fotocopiável © Texto | Novo 10Q 27
9. Formulário para a componente de química (10.o
ano) (pág. 41)
Grupos funcionais
Quantidades, massas e volumes
m = n M N = n NA V = n Vm p =
m
V
Soluções e dispersões
c =
n
V
xA =
nA
ntotal
%(m/m) =
mA
mtotal
× 102
%(V/V) =
VA
Vtotal
× 102
ppm =
mA
mtotal
× 106
ppmV =
VA
Vtotal
× 106
Note-se que a parte do formulário não transcrita do programa não é da componente de química do
10.o
ano sendo quase essencialmente, da componente de Física
10. Bibliografia (pág. 38)
• American Chemical Society, Exploring the Molecular Vision, Conference Report, Society Committee on Education (SOCED),
June 27-29, 2003.
<http://www.acs.org/content/dam/acsorg/about/governance/committees/education/exploring-the-molecular-
vision.pdf> (acedido em 15 de outubro de 2013)
• Australian Curriculum, Chemistry, Senior Secondary Curriculum, Assessment and Reporting Authority (ACARA), 2012.
<http://www.australiancurriculum.edu.au/Static/docs/senior%20secondary/Senior%20Secondary%20Curriculum%20-
%20Chemistry%20November%202012.pdf> (acedido em 15 de outubro de 2013)
• Australian Curriculum, Physics, Senior Secondary Curriculum, Assessment and Reporting Authority (ACARA), 2012.
<http://www.australiancurriculum.edu.au/Static/docs/senior%20secondary/Senior%20Secondary%20Curriculum%20-
%20Physics.pdf> (acedido em 15 de outubro de 2013)
• Bureau International des Poids et Mesures, The International System of Units (SI), Organisation Intergouvernementale de
la Convention du Mètre, 2006
<http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf> (acedido em 15 de outubro de 2013)
• Caldeira, H., Martins, I.P. et al., Programa de Física e Química A, 10.
o
ou 11.
o
ano, Curso Científico-Humanístico de Ciências
e Tecnologias, Ministério da Educação, Departamento do Ensino Secundário, 2001.
• Caldeira, H., Martins, I.P. et al., Programa de Física e Química A, 11.
o
ou 12.
o
ano, Curso Científico-Humanístico de Ciências
e Tecnologias, Ministério da Educação, Departamento do Ensino Secundário, 2003.
• European Union, Using learnings outcomes, European Qualifications Framework Series: Note 4, 2011
<http://ec.europa.eu/education/lifelong-learning-policy/doc/eqf/note4_en.pdf> (acedido em 7 de outubro de 2013).
28 Editável e fotocopiável © Texto | Novo 10Q
• European Association for Chemical and Molecular Sciences (EuCheMS), CHEMISTRY: Developing solutions in a changing
world, 2011.
<www.euchems.eu/fileadmin/user_upload/highlights/Euchems_Roadmap_gesamt_final2.pdf> (acedido em 7 de outubro
de 2013)
• European Association for Chemical and Molecular Sciences (EuCheMS), CHEMISTRY, Finding solutions in a changing world,
2011.
http://ec.europa.eu/research/horizon2020/pdf/contributions/prior/european_association_for_chemical_and_molecular
_sciences.pdf> (acedido em 7 de outubro de 2013)
• Fiolhais, C. et al., Metas Curriculares do 3.
o
Ciclo do Ensino Básico – Ciências Físico-Químicas, Ministério da Educação e
Ciência: Direção Geral da Educação, 2013.
• Gabinete de Avaliação Educacional (GAVE), Ministério da Educação e Ciência, Relatórios dos Exames Nacionais e Testes
Intermédios (2008 a 2012)
<www.gave.min-edu.pt/np3/24.html> (acedido em 16 de janeiro de 2014)
• Government of Ireland, Leaving Certificate Chemistry Syllabus, National Council for Curriculum and Assessment, 1999.
<http://www.curriculumonline.ie/getmedia/7bdd3def-f492-432f-886f-
35fc56bd3544/SCSEC09_Chemistry_syllabus_Eng.pdf > (acedido em 4 de janeiro de 2014)
• Government of Ireland, Leaving Certificate Physics Syllabus, National Council for Curriculum and Assessment, 1999.
<http://www.curriculumonline.ie/getmedia/a789272e-823f-4d40-b095-
4ff8f6f195e4/SCSEC27_Physics_syllabus_eng.pdf> (acedido em 4 de janeiro de 2014)
• Instituto Português da Qualidade, Vocabulário Internacional de Metrologia (VIM), Joint Committee for Guides in
Metrology, 2012.
<http://www1.ipq.pt/PT/Metrologia/Documents/VIM_IPQ_INMETRO_2012.pdf> (acedido em 15 de outubro de 2013)
• Ministère de l’Éducation Nationale, de la Jeunesse et de la Vie Associative, République Française, Enseignement
spécifique et de spécialité de physique-chimie de la série scientifique - classe terminale, Bulletin officiel spécial n° 8, 13
octobre 2011.
<http://cache.media.education.gouv.fr/file/special_8_men/99/0/physique_chimie_S_195990.pdf> (acedido em 15 de
outubro de 2013)
• Ministry of Education, Province of British Columbia, Canada, 2006, Chemistry 11 and 12: integrated resource package
2006.
<http://www.bced.gov.bc.ca/irp/pdfs/sciences/2006chem1112.pdf> (acedido em 7 de outubro de 2013)
• Ministry of Education, Province of British Columbia, Physics 11 and 12: integrated resource package 2006.
<http://www.bced.gov.bc.ca/irp/pdfs/sciences/2006physics1112.pdf> (acedido em 7 de outubro de 2013)
• OECD, PISA 2009 Results: What Students Know and Can Do – Student Performance in Reading, Mathematics and Science
(Volume I), 2010.
• OECD, PISA 2012 Results: What Students Know and Can Do – Student Performance in Mathematics, Reading and Science
(Volume I), 2013.
• OCR Recognising Achievement, GCE Chemistry A v4, AS/A Level GCE, United Kingdom, 2013.
<http://www.ocr.org.uk/Images/81089-specification.pdf> (acedido em 15 de outubro de 2013)
• OCR Recognising Achievement, GCE Physics A v4, AS/A Level GCE, United Kingdom, 2013.
<http://www.ocr.org.uk/Images/81024-specification.pdf> (acedido em 15 de outubro de 2013)
• Royal Society of Chemistry, Chemistry for Tomorrow's World, Report with potential opportunities for the Chemical
Sciences in 41 global challenge areas, 2009.
<http://www.rsc.org/images/Roadmapfull_tcm18-221545.pdf> (acedido em 7 de outubro de 2013)
• Stanco, G.M., Mullis, I.V.S., Martin, M.O. and Foy, P., A., Trends in International Mathematics and Science Study, TIMMS-
2011 International Results in Science, Chestnut Hill, MA: TIMSS and PIRLS International Study Center, Boston College and
International Association for the Evaluation of Educational Achievement: IEA Secretariat, 2012.
• The College Board, AP Chemistry: Curriculum Framework 2013–2014, New York,
2011.<media.collegeboard.com/digitalServices/pdf/ap/11_3461_AP_CF_Chemistry_WEB_110930.pdf> (acedido em 3 de
Dezembro de 2013)
• The College Board, Science: College Board Standards for College Success, New York, 2009.
<http://apcentral.collegeboard.com/apc/public/repository/cbscs-science-standards-2009.pdf> (acedido em 17 de
outubro de 2013)
Editável e fotocopiável © Texto | Novo 10Q 29
O programa de Física e Química A enfatiza de várias formas a flexibilidade. A flexibilidade curricular
implica um trabalho de planificação e calendarização por parte do professor. Apresentamos, por isso,
uma calendarização que pode servir de guia (não rígido) para professores.
Por cada subdomínio inclui-se mais uma ou duas aulas para além das sugeridas no programa da
disciplina dando assim margem para o professor integrar, quando achar conveniente, por exemplo,
momentos de avaliação formativa ou sumativa ou de reforço teórico-prático.
Calendarização anual
30
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
CALENDARIZAÇÃO
(semanas)
1
2
3
4
5
7
8
9
10
11
12
14
15
16
17
18
1.1
Massa
e
tamanho
dos
átomos
AL
1.1
1.2
Energia
dos
eletrões
nos
átomos
AL
1.2
1.3
Tabela
Periódica
AL
1.3
2.1
Ligação
química
AL
2.1
2.2
Gases
e
dispersões
AL
2.2
AL
2.3
2.3
Transformações
químicas
AL
2.4
Editável e fotocopiável © Texto | Novo 10Q 31
Planificação a médio prazo
Apresenta-se uma proposta de planificação a médio prazo dos dois domínios da química
do 10.o
ano de escolaridade, cujas linhas estruturantes passaram por:
• Identificar e ordenar os conteúdos bem como os respetivos descritores das metas curriculares
que lhes correspondem.
• Identificar os recursos que visam contribuir para a consecução das metas delineadas, bem como
a sua localização no manual, Caderno de Exercícios e Problemas, Caderno de Apoio ao Professor
e
Planificação a médio prazo
32
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
Domínio
Elementos
químicos
e
sua
organização
Subdomínio
Massa
e
tamanho
dos
átomos
Objetivo
geral
Consolidar
e
ampliar
conhecimentos
sobre
elementos
químicos
e
dimensões
à
escala
atómica.
Conteúdos
Metas
Curriculares
Recursos
•
Ordens
de
grandeza
e
escalas
de
comprimento
•
Dimensões
à
escala
atómica
•
Massa
isotópica
e
massa
atómica
relativa
média
•
Quantidade
de
matéria
e
massa
molar
•
Fração
molar
e
fração
mássica
•
AL
1.1
Volume
e
número
de
moléculas
de
uma
gota
de
água
1.1
Descrever
a
constituição
de
átomos
com
base
no
número
atómico,
no
número
de
massa
e
na
definição
de
isótopos.
1.2
Determinar
a
ordem
de
grandeza
de
um
número
relacionando
tamanhos
de
diferentes
estruturas
na
natureza
(por
exemplo,
célula,
ser
humano,
Terra
e
Sol)
numa
escala
de
comprimentos.
1.3
Comparar
ordens
de
grandeza
de
distâncias
e
tamanhos
à
escala
atómica
a
partir,
por
exemplo,
de
imagens
de
microscopia
de
alta
resolução,
justificando
o
uso
de
unidades
adequadas.
1.4
Associar
a
nanotecnologia
à
manipulação
da
matéria
a
escala
atómica
e
molecular
e
identificar
algumas
das
suas
aplicações
com
base
em
informação
selecionada.
1.5
Indicar
que
o
valor
de
referência
usado
como
padrão
para
a
massa
relativa
dos
átomos
e
das
moléculas
é
1/12
da
massa
do
átomo
de
carbono-12.
1.6
Interpretar
o
significado
de
massa
atómica
relativa
media
e
calcular
o
seu
valor
a
partir
de
massas
isotópicas,
justificando
a
proximidade
do
seu
valor
com
a
massa
do
isótopo
mais
abundante.
1.7
Identificar
a
quantidade
de
matéria
como
uma
das
grandezas
do
Sistema
Internacional
(SI)
de
unidades
e
caracterizar
a
sua
unidade,
mole,
com
referência
ao
número
de
Avogadro
de
entidades.
1.8
Relacionar
o
número
de
entidades
numa
dada
amostra
com
a
quantidade
de
matéria
nela
presente,
identificando
a
constante
de
Avogadro
como
constante
de
proporcionalidade.
1.9
Calcular
massas
molares
a
partir
de
tabelas
de
massas
atómicas
relativas
(médias).
1.10
Relacionar
a
massa
de
uma
amostra
e
a
quantidade
de
matéria
com
a
massa
molar.
1.11
Determinar
composições
quantitativas
em
fração
molar
e
em
fração
mássica,
e
relacionar
estas
duas
grandezas.
•
Manual:
Apresentação
dos
conteúdos,
questões
resolvidas
e
atividade:
pp.
10
a
26
Resumo:
pp.
27
Atividade
laboratorial
1.1:
pp.
28
–
30
+Questões:
pp.
31
–
38
•
Caderno
de
Exercícios:
pp.
4
a
16
•
Caderno
de
Apoio
ao
Professor:
pp.
41
a
44
•
Recursos
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
33
Domínio
Elementos
químicos
e
sua
organização
Subdomínio
Energia
dos
eletrões
nos
átomos
Objetivo
geral
Reconhecer
que
a
energia
dos
eletrões
nos
átomos
pode
ser
alterada
por
absorção
ou
emissão
de
energias
bem
definidas,
correspondendo
a
cada
elemento
um
espetro
atómico
característico,
e
que
os
eletrões
nos
átomos
se
podem
considerar
distribuídos
por
níveis
e
subníveis
de
energia.
Conteúdos
Metas
Curriculares
Recursos
•
Espetros
contínuos
e
descontínuos
•
O
modelo
atómico
de
Bohr
•
Transições
eletrónicas
•
Quantização
de
energia
•
Espetro
do
átomo
de
hidrogénio
•
Energia
de
remoção
eletrónica
•
Modelo
quântico
do
átomo
–
Níveis
e
subníveis
–
Orbitais
(s,
p
e
d)
–
Spin
2.1
Indicar
que
a
luz
(radiação
eletromagnética
ou
onda
eletromagnética)
pode
ser
detetada
como
partículas
de
energia
(fotões),
sendo
a
energia
de
cada
fotão
proporcional
a
frequência
dessa
luz.
2.2
Identificar
luz
visível
e
não
visível
de
diferentes
frequências
no
espetro
eletromagnético,
comparando
as
energias
dos
respetivos
fotões.
2.3
Distinguir
tipos
de
espetros:
descontínuos
e
contínuos;
de
absorção
e
de
emissão.
2.4
Interpretar
o
espetro
de
emissão
do
átomo
de
hidrogénio
através
da
quantização
da
energia
do
eletrão,
concluindo
que
esse
espetro
resulta
de
transições
eletrónicas
entre
níveis
energéticos.
2.5
Identificar
a
existência
de
níveis
de
energia
bem
definidos,
e
a
ocorrência
de
transições
de
eletrões
entre
níveis
por
absorção
ou
emissão
de
energias
bem
definidas,
como
as
duas
ideias
fundamentais
do
modelo
atómico
de
Bohr
que
prevalecem
no
modelo
atómico
atual.
2.6
Associar
à
existência
de
níveis
de
energia
a
quantização
da
energia
do
eletrão
no
átomo
de
hidrogénio
e
concluir
que
esta
quantização
se
verifica
para
todos
os
átomos.
2.7
Associar
cada
série
espetral
do
átomo
de
hidrogénio
a
transições
eletrónicas
com
emissão
de
radiação
nas
zonas
do
ultravioleta,
visível
e
infravermelho.
2.8
Relacionar,
no
caso
do
átomo
de
hidrogénio,
a
energia
envolvida
numa
transição
eletrónica
com
as
energias
dos
níveis
entre
os
quais
essa
transição
se
dá.
2.9
Comparar
espetros
de
absorção
e
de
emissão
de
elementos
químicos,
concluindo
que
são
característicos
de
cada
elemento.
2.10
Identificar,
a
partir
de
informação
selecionada,
algumas
aplicações
da
espetroscopia
atómica
(por
exemplo,
identificação
de
elementos
químicos
nas
estrelas,
determinação
de
quantidades
vestigiais
em
química
forense).
2.11
Indicar
que
a
energia
dos
eletrões
nos
átomos
inclui
o
efeito
das
atrações
entre
os
eletrões
e
o
núcleo,
por
as
suas
cargas
serem
de
sinais
contrários,
e
das
repulsões
entre
os
eletrões,
por
as
suas
cargas
serem
do
mesmo
sinal.
2.12
Associar
a
nuvem
eletrónica
a
uma
representação
da
densidade
da
distribuição
de
eletrões
à
volta
do
núcleo
atómico,
correspondendo
as
regiões
mais
densas
a
maior
probabilidade
de
aí
encontrar
eletrões.
•
Manual:
Apresentação
dos
conteúdos,
questões
resolvidas
e
atividade:
pp.
40
a
64
Resumo:
pp.
65
Atividade
laboratorial
1.2:
pp.
66
a
68
+Questões:
pp.
69
a
78
•
Caderno
de
Exercícios:
pp.
18
a
28
•
Caderno
de
Apoio
ao
Professor:
pp.
45
a
50
•
Recursos
34
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
•
Configuração
eletrónica
de
átomos
–
Princípio
da
construção
(ou
de
Aufbau)
–
Princípio
da
Exclusão
de
Pauli
•
AL
1.2
Teste
de
chama
2.13
Concluir,
a
partir
de
valores
de
energia
de
remoção
eletrónica,
obtidas
por
espetroscopia
fotoeletrónica,
que
átomos
de
elementos
diferentes
têm
valores
diferentes
da
energia
dos
eletrões.
2.14
Interpretar
valores
de
energias
de
remoção
eletrónica,
obtidos
por
espetroscopia
foto-
eletrónica,
concluindo
que
os
eletrões
se
podem
distribuir
por
níveis
e
subníveis
de
energia.
2.15
Indicar
que
os
eletrões
possuem,
além
de
massa
e
carga,
uma
propriedade
quantizada
denominada
spin
que
permite
dois
estados
diferentes.
2.16
Associar
orbital
atómica
à
função
que
representa
a
distribuição
no
espaço
de
um
eletrão
no
modelo
quântico
do
átomo.
2.17
Identificar
as
orbitais
atómicas
s,
p
e
d,
com
base
em
representações
da
densidade
eletrónica
que
lhes
esta
associada
e
distingui-las
quanto
ao
número
e
à
forma.
2.18
Indicar
que
cada
orbital
pode
estar
associada,
no
máximo,
a
dois
eletrões,
com
spin
diferente,
relacionando
esse
resultado
com
o
princípio
de
Pauli.
2.19
Concluir,
a
partir
de
valores
de
energia
de
remoção
eletrónica,
obtidas
por
espetroscopia
foto-
eletrónica,
que
orbitais
de
um
mesmo
subnível
np,
ou
nd,
têm
a
mesma
energia.
2.20
Estabelecer
as
configurações
eletrónicas
dos
átomos,
utilizando
a
notação
spd,
para
elementos
até
Z
=
23,
atendendo
ao
Principio
da
Construção,
ao
Principio
da
Exclusão
de
Pauli
e
à
maximização
do
número
de
eletrões
desemparelhados
em
orbitais
degeneradas.
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
35
Domínio
Elementos
químicos
e
sua
organização
Subdomínio
Tabela
Periódica
Objetivo
geral
Reconhecer
na
Tabela
Periódica
um
meio
organizador
de
informação
sobre
os
elementos
químicos
e
respetivas
substâncias
elementares
e
compreender
que
a
estrutura
eletrónica
dos
átomos
determina
as
propriedades
dos
elementos.
Conteúdos
Metas
Curriculares
Recursos
•
Evolução
histórica
da
Tabela
Periódica
•
Estrutura
da
Tabela
Periódica:
grupos,
períodos
e
blocos
•
Elementos
representativos
e
de
transição
•
Famílias
de
metais
e
de
não
metais
•
Propriedades
periódicas
–
Raio
atómico
–
Energia
de
ionização
•
Al
1.3
Densidade
relativa
de
metais
3.1
Identificar
marcos
históricos
relevantes
no
estabelecimento
da
Tabela
Periódica
atual.
3.2
Interpretar
a
organização
da
Tabela
Periódica
com
base
em
períodos,
grupos
e
blocos
e
relacionar
a
configuração
eletrónica
dos
átomos
dos
elementos
com
a
sua
posição
relativa
na
Tabela
Periódica.
3.3
Identificar
a
energia
de
ionização
e
o
raio
atómico
como
propriedades
periódicas
dos
elementos.
3.4
Distinguir
entre
propriedades
de
um
elemento
e
propriedades
da(s)
substância(s)
elementar(es)
correspondentes.
3.5
Comparar
raios
atómicos
e
energias
de
ionização
de
diferentes
elementos
químicos
com
base
nas
suas
posições
relativas
na
Tabela
Periódica.
3.6
Interpretar
a
tendência
geral
para
o
aumento
da
energia
de
ionização
e
para
a
diminuição
do
raio
atómico
observados
ao
longo
de
um
período
da
Tabela
Periódica.
3.7
Interpretar
a
tendência
geral
para
a
diminuição
da
energia
de
ionização
e
para
o
aumento
do
raio
atómico
observados
ao
longo
de
um
grupo
da
Tabela
Periódica.
3.8
Explicar
a
formação
dos
iões
mais
estáveis
de
metais
e
de
não-metais.
3.9
Justificar
a
baixa
reatividade
dos
gases
nobres.
•
Manual:
Apresentação
dos
conteúdos,
questões
resolvidas
e
atividade:
pp.
80
a
92
Resumo:
pp.
93
Atividade
laboratorial
1.3:
pp.
94
a
97
+Questões:
pp.
98
a
103
•
Caderno
de
Exercícios:
pp.
30
a
40
•
Caderno
de
Apoio
ao
Professor:
pp.51
a
53
•
Recursos
36
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
Domínio
Propriedades
e
transformações
da
matéria
Subdomínio
Ligação
química
Objetivo
geral
Compreender
que
as
propriedades
das
moléculas
e
materiais
são
determinadas
pelo
tipo
de
átomos,
pela
energia
das
ligações
e
pela
geometria
das
moléculas.
Conteúdos
Metas
Curriculares
Recursos
•
Tipos
de
ligações
químicas
•
Ligação
covalente
–
Estrutura
de
Lewis
–
Energia
de
ligação
e
comprimento
de
ligação
–
Polaridade
das
ligações
–
Geometria
molecular
–
Polaridade
das
moléculas
–
Estrutura
de
moléculas
orgânicas
e
biológicas
•
Ligações
intermoleculares
–
Ligações
de
hidrogénio
–
Forças
de
van
der
Waals
(de
London,
entre
moléculas
polares
e
entre
moléculas
polares
e
apolares)
•
AL
2.1
Miscibilidade
de
líquidos
1.1
Indicar
que
um
sistema
de
dois
ou
mais
átomos
pode
adquirir
maior
estabilidade
através
da
formação
de
ligações
químicas.
1.2
Interpretar
as
interações
entre
átomos
através
das
forças
de
atração
entre
núcleos
e
eletrões,
forças
de
repulsão
entre
eletrões
e
forças
de
repulsão
entre
núcleos.
1.3
Interpretar
gráficos
da
energia
em
função
da
distância
internuclear
durante
a
formação
de
uma
molécula
diatómica
identificando
o
predomínio
das
repulsões
a
curta
distância
e
o
predomínio
das
atrações
a
longa
distância,
sendo
estas
distâncias
respetivamente
menores
e
maiores
do
que
a
distância
de
equilíbrio.
1.4
Indicar
que
os
átomos
podem
partilhar
eletrões
formando
ligações
covalentes
(partilha
localizada
de
eletrões
de
valência),
ligações
iónicas
(transferência
de
eletrões
entre
átomos
originando
estruturas
com
caráter
iónico)
e
ligações
metálicas
(partilha
de
eletrões
de
valência
deslocalizados
por
todos
os
átomos).
1.5
Associar
as
ligações
químicas
em
que
não
há
partilha
significativa
de
eletrões
a
ligações
intermoleculares.
1.6
Interpretar
a
ocorrência
de
ligações
covalentes
simples,
duplas
ou
triplas
em
H
2
,
N
2
,
O
2
e
F
2
,
segundo
o
modelo
de
Lewis.
1.7
Representar,
com
base
na
regra
do
octeto,
as
fórmulas
de
estrutura
de
Lewis
de
moléculas
como
CH
4
,
NH
3
,
H
2
O
e
CO
2
.
1.8
Relacionar
o
parâmetro
ângulo
de
ligação
nas
moléculas
CH
4
,
NH
3
,
H
2
O
e
CO
2
com
base
no
modelo
da
repulsão
dos
pares
de
eletrões
de
valência.
1.9
Prever
a
geometria
molecular,
com
base
no
modelo
da
repulsão
dos
pares
de
eletrões
de
valência,
em
moléculas
como
CH
4
,
NH
3
,
H
2
O
e
CO
2
.
1.10
Prever
a
relação
entre
as
energias
de
ligação
ou
os
comprimentos
de
ligação
em
moléculas
semelhantes,
com
base
na
variação
das
propriedades
periódicas
dos
elementos
envolvidos
nas
ligações
(por
exemplo
H
2
O
e
H
2
S
ou
HCℓ
e
HBr).
1.11
Indicar
que
as
moléculas
diatómicas
homonucleares
são
apolares
e
que
as
moléculas
diatómicas
heteronucleares
são
polares,
interpretando
essa
polaridade
com
base
na
distribuição
de
carga
elétrica
entre
os
átomos.
•
Manual:
Apresentação
dos
conteúdos,
questões
resolvidas
e
atividade:
pp.
108
a
138
Resumo:
pp.
139
Atividade
laboratorial
2.1:
pp.
140
a
142
+Questões:
pp.
143
a
150
•
Caderno
de
Exercícios:
pp.
42
a
54
•
Caderno
de
Apoio
ao
Professor:
pp.
54
a
61
•
Recursos
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
37
1.12
Identificar
ligações
polares
e
apolares
com
base
no
tipo
de
átomos
envolvidos
na
ligação.
1.13
Indicar
alguns
exemplos
de
moléculas
polares
(H
2
O,
NH
3
)
e
apolares
(CO
2
,
CH
4
).
1.14
Identificar
hidrocarbonetos
saturados,
insaturados
e
haloalcanos
e,
no
caso
de
hidrocarbonetos
saturados
de
cadeia
aberta
até
6
átomos
de
carbono,
representar
a
fórmula
de
estrutura
a
partir
do
nome
ou
escrever
o
nome
a
partir
da
fórmula
de
estrutura.
1.15
Interpretar
e
relacionar
os
parâmetros
de
ligação,
energia
e
comprimento,
para
a
ligação
CC
nas
moléculas
etano,
eteno
e
etino.
1.16
Identificar
grupos
funcionais
(álcoois,
aldeídos,
cetonas,
ácidos
carboxílicos
e
aminas)
em
moléculas
orgânicas,
biomoléculas
e
fármacos,
a
partir
das
suas
fórmulas
de
estrutura.
1.17
Identificar
ligações
intermoleculares
–
de
hidrogénio
e
de
van
der
Waals
–
com
base
nas
características
das
unidades
estruturais.
1.18
Relacionar
a
miscibilidade
ou
imiscibilidade
de
líquidos
com
as
ligações
intermoleculares
que
se
estabelecem
entre
unidades
estruturais
38
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
Domínio
Propriedades
e
transformações
da
matéria
Subdomínio
Gases
e
dispersões
Objetivo
geral
Reconhecer
que
muitos
materiais
se
apresentam
na
forma
de
dispersões
que
podem
ser
caracterizadas
quanto
à
sua
composição.
Conteúdos
Metas
Curriculares
Recursos
•
Lei
de
Avogadro,
volume
molar
e
massa
volúmica
•
Soluções,
colóides
e
suspensões
•
Composição
quantitativa
de
soluções
–
Concentração
em
massa
–
Concentração
–
Percentagem
em
volume
e
percentagem
em
massa
–
Partes
por
milhão
•
Diluição
de
soluções
aquosas
•
AL
2.2
Soluções
a
partir
de
solutos
sólidos
•
AL
2.3
Diluição
de
soluções
2.1
Definir
volume
molar
e,
a
partir
da
Lei
de
Avogadro,
concluir
que
tem
o
mesmo
valor
para
todos
os
gases
à
mesma
pressão
e
temperatura.
2.2
Relacionar
a
massa
de
uma
amostra
gasosa
e
a
quantidade
de
matéria
com
o
volume
molar,
definidas
as
condições
de
pressão
e
temperatura.
2.3
Relacionar
a
massa
volúmica
de
uma
substância
gasosa
com
a
sua
massa
molar
e
volume
molar.
2.4
Descrever
a
composição
da
troposfera
terrestre,
realçando
N
2
e
O
2
como
os
seus
componentes
mais
abundantes.
2.5
Indicar
poluentes
gasosos
na
troposfera
e
identificar
as
respetivas
fontes.
2.6
Distinguir
solução,
dispersão
coloidal
e
suspensão
com
base
na
ordem
de
grandeza
da
dimensão
das
partículas
constituintes.
2.7
Descrever
a
atmosfera
terrestre
como
uma
solução
gasosa,
na
qual
também
se
encontram
coloides
e
suspensões
de
matéria
particulada.
2.8
Determinar
a
composição
quantitativa
de
soluções
aquosas
e
gasosas
(como,
por
exemplo,
a
atmosfera
terrestre),
em
concentração,
concentração
em
massa,
fração
molar,
percentagem
em
massa
e
em
volume
e
partes
por
milhão,
e
estabelecer
correspondências
adequadas.
•
Manual:
Apresentação
dos
conteúdos
e
questões
resolvidas:
pp.
152
a
162
Resumo:
pp.
163
Atividades
laboratoriais
2.2
e
2.3:
pp.
164
a
167
+Questões:
pp.
168
a
174
•
Caderno
de
Exercícios:
pp.
56
a
70
•
Caderno
de
Apoio
ao
Professor:
pp.
62
a
65
•
Recursos
Editável
e
fotocopiável
©
Texto
|
Novo
10Q
39
Domínio
Propriedades
e
transformações
da
matéria
Subdomínio
Transformações
químicas
Objetivo
geral
Compreender
os
fundamentos
das
reações
químicas,
incluindo
reações
fotoquímicas,
do
ponto
de
vista
energético
e
da
ligação
química.
Conteúdos
Metas
Curriculares
Recursos
•
Energia
de
ligação
e
reações
químicas
–
Processos
endoenergéticos
e
exoenergéticos
–
Variação
da
entalpia
•
Reações
fotoquímicas
na
atmosfera
–
Fotodissociação
e
fotoionização
–
Radicais
livres
e
estabilidade
das
espécies
químicas
–
Ozono
estratosférico
•
AL
2.4
Reação
fotoquímica
3.1
Interpretar
uma
reação
química
como
resultado
de
um
processo
em
que
ocorre
rutura
e
formação
de
ligações
químicas.
3.2
Interpretar
a
formação
de
ligações
químicas
como
um
processo
exoenergético
e
a
rutura
como
um
processo
endoenergético.
3.3
Classificar
reações
químicas
em
exotérmicas
ou
em
endotérmicas
como
aquelas
que,
num
sistema
isolado,
ocorrem,
respetivamente,
com
aumento
ou
diminuição
de
temperatura.
3.4
Interpretar
a
energia
da
reação
como
o
balanço
energético
entre
a
energia
envolvida
na
rutura
e
na
formação
de
ligações
químicas,
designá-la
por
variação
de
entalpia
para
transformações
a
pressão
constante,
e
interpretar
o
seu
sinal
(positivo
ou
negativo).
3.5
Interpretar
representações
da
energia
envolvida
numa
reação
química
relacionando
a
energia
dos
reagentes
e
dos
produtos
e
a
variação
de
entalpia.
3.6
Determinar
a
variação
de
entalpia
de
uma
reação
química
a
partir
das
energias
de
ligação
e
a
energia
de
ligação
a
partir
da
variação
de
entalpia
e
de
outras
energias
de
ligação.
3.7
Identificar
transformações
químicas
desencadeadas
pela
luz,
designando-as
por
reações
fotoquímicas.
3.8
Distinguir
fotodissociação
de
fotoionização
e
representar
simbolicamente
estes
fenómenos.
3.9
Interpretar
fenómenos
de
fotodissociação
e
fotoionização
na
atmosfera
terrestre
envolvendo
O
2
,
O
3
,
e
N
2
relacionando-os
com
a
energia
da
radiação
envolvida
e
com
a
estabilidade
destas
moléculas.
3.10
Identificar
os
radicais
livres
como
espécies
muito
reativas
por
possuírem
eletrões
desemparelhados.
3.11
Interpretar
a
formação
e
destruição
do
ozono
estratosférico,
com
base
na
fotodissociação
de
O
2
e
de
O
3
,
por
envolvimento
de
radiações
ultravioletas
UVB
e
UVC,
concluindo
que
a
camada
de
ozono
atua
como
um
filtro
dessas
radiações.
3.12
Explicar
a
formação
dos
radicais
livres
a
partir
dos
clorofluorocarbonetos
(CFC)
tirando
conclusões
sobre
a
sua
estabilidade
na
troposfera
e
efeitos
sobre
o
ozono
estratosférico.
3.13
Indicar
que
o
ozono
na
troposfera
atua
como
poluente
em
contraste
com
o
seu
papel
protetor
na
estratosfera.
•
Manual:
Apresentação
dos
conteúdos,
questões
resolvidas
e
atividade:
pp.
176
a
190
Resumo:
pp.
191
Atividade
laboratorial
2.4:
pp.
192
e
193
+Questões:
pp.
194
a
199
•
Caderno
de
Exercícios:
pp.
72
a
80
•
Caderno
de
Apoio
ao
Professor:
pp.
66
a
69
•
Recursos
40 Editável e fotocopiável © Texto | Novo 10Q
Os planos de aula aqui propostos privilegiam, no início da aula e sempre que oportuno, a revisão
dos conteúdos relevantes já abordados.
Essa atenção aos conhecimentos anteriores dos alunos radica-se no reconhecimento de que a
aprendizagem de novos conteúdos é fortemente influenciada pelos conhecimentos prévios que o
aluno possui. Sem prejuízo de outros contextos, recorre-se frequentemente a exemplos do
quotidiano, por esta ser uma estratégia que aproxima a química à realidade dos alunos. Deste modo,
os alunos tenderão a assimilar melhor os conteúdos estudados e a aplicá-los mais e melhor fora da
sala de aula.
Aposta-se na criação de situações de aprendizagem que contribuam para o desenvolvimento dos
alunos, permitindo-lhes observar, experimentar, manipular materiais, relacionar, conjeturar, argumentar,
concluir, comunicar e avaliar. Dá-se particular realce à realização das atividades laboratoriais por estas
serem centrais na formação científica dos alunos bem como à resolução de exercícios e problemas que
contribuem para a consolidação de conhecimentos.
Apresentam-se 16 planos de aula que incluem 2 aulas de 90 minutos cada e 1 aula de 135 minutos.
Nas aulas de 135 minutos que funcionam preferencialmente com turmas desdobradas, é fortemente
recomendado a realização de aulas laboratoriais ou de índole teórico-práticas sendo, no entanto, esta
gestão flexível e variável de escola para escola. Nestes planos de aula não se propôs utilizar como
recurso o Caderno de Exercícios e Problemas o que deixa um amplo leque de tarefas à disposição do
professor para incluir na prática letiva caso ache pertinente ou à disposição do aluno para promover o
estudo autónomo.
Estes planos encontram-se em formato impresso e em formato editável, para que o professor
lhes possa imprimir o seu cunho pessoal e os possa adaptar às necessidades de cada turma.
Planos de aula
Editável e fotocopiável © Texto | Novo 10Q 41
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Massa e tamanho dos átomos
CONTEÚDOS: Ordens de grandeza e escalas de comprimento. Dimensões à escala atómica.
Massa isotópica e massa atómica relativa média.
Metas
Curriculares
1.1 Descrever a constituição de átomos com base no número atómico, no número de massa e na definição de
isótopos.
1.2 Determinar a ordem de grandeza de um número relacionando tamanhos de diferentes estruturas na natureza
(por exemplo, célula, ser humano, Terra e Sol) numa escala de comprimentos.
1.3 Comparar ordens de grandeza de distâncias e tamanhos à escala atómica a partir, por exemplo, de imagens de
microscopia de alta resolução, justificando o uso de unidades adequadas.
1.4 Associar a nanotecnologia à manipulação da matéria à escala atómica e molecular e identificar algumas das
suas aplicações com base em informação selecionada.
Sumário
Constituição dos átomos: número atómico e número de massa. Ordens de grandeza e escalas de comprimentos.
Escala atómica. Massa atómica relativa média.
Atividades
•Em diálogo com os alunos começar por recordar que no 9.° ano já aprenderam que a matéria é constituída por
átomos e que estes estão na base da constituição das moléculas e dos iões.
•De igual forma recordar a impossibilidade de observar os átomos diretamente, por serem muito pequenos, tendo
de se recorrer a microscópios especiais para obter imagens à escala atómica.
•Avançar para o estudo da constituição do átomo e colocar a questão: «Como são constituídos os átomos?».
Incentivar a participação dos alunos e reforçar participações enriquecedoras.
•Apresentar a Fig. 1, da página 10 do Novo 10Q, para que os alunos compreendam que os átomos são constituídos
pelo núcleo (protões e neutrões) e pela nuvem eletrónica (eletrões).
•Recorrendo à interpretação da Tab. 1 da página 10 do Novo 10Q conhecer melhor cada uma das partículas
constituintes do átomo, em particular, carga elétrica, massa e localização no átomo.
•Sistematizar e sublinhar duas ideia-chaves: os átomos são eletricamente neutros; a massa de um átomo está
praticamente concentrada no núcleo.
•Referir a formação de iões como consequência do ganho ou da perda de eletrões por um átomo (ou molécula).
•Reforçar a ideia que, na formação de iões, não há variações do número de protões ou de neutrões pois estes estão
fortemente ligados no núcleo atómico.
•Apresentar os catiões como iões que resultam da perda de eletrões pelo átomo (tem mais protões do que eletrões)
e os aniões como iões que resultam do ganho de eletrões pelo átomo (tem menos protões do que eletrões).
•Ler e interpretar conjuntamente a Questão resolvida 1 da página 11 do Novo 10Q.
•A partir da questão resolvida, concluir que os átomos dos diferentes elementos químicos têm diferente número de
protões.
•Com base nesta ideia avançar para a definição de número atómico (Z) e número de massa (A), recorrendo sempre à
apresentação de alguns exemplos concretos.
•Explicar que para indicar o número atómico e o número de massa de um átomo se utiliza a representação
simbólica: X
Z
A
.
•Ler e interpretar conjuntamente a Questão resolvida 2 da página 13 do Novo 10Q.
•Associar as escalas de comprimento às respetivas ordens de grandeza e referir exemplos de diferentes escalas de
comprimento bem como a sua utilidade para descrever uma dada realidade.
•Analisar conjuntamente as Questões resolvidas 3 e 4 das páginas, respetivamente, 15 e 16 do Novo 10Q para
sintetizar as conversões de unidades e os fatores de conversão entre as escalas.
•Partindo dos exemplos sobre a escala atómica, introduzir o conceito de nanotecnologia a partir da questão «Será
possível manipular os átomos?».
•Levar os alunos a concluir que a nanotecnologia é uma área emergente que se dedica à construção de estruturas à
escala atómica por manipulação de átomos e moléculas.
Plano de aula N.o
1 90 + 135 min
42 Editável e fotocopiável © Texto | Novo 10Q
•Ler conjuntamente e analisar a Questão resolvida 5 da página 18 do Novo 10Q para compreender a escala de
comprimento típica da nanotecnologia.
•Analisar a Tab. 5 da página 19 do Novo 10Q para realçar a importância da nanotecnologia para a sociedade.
•Realizar a atividade «Desafios da nanotecnologia» para aplicar conhecimentos e interpretar informações sobre a
nanotecnologia.
•Salientar que, tal como as dimensões de um átomo são muito reduzidas, também a massa dos átomos são
extremamente pequenas.
•Recordar que, para não se utilizar os valores de massa tão pequenos dos átomos, se estabeleceu um termo de
comparação – 1/12 da massa do carbono-12.
•Definir o conceito de massa atómica relativa.
•Reforçar a ideia que uma grandeza relativa, como é o caso da massa atómica relativa, é uma grandeza adimensional
e, portanto, não tem unidades.
•Relembrar o conceito de isótopo para introduzir o conceito de massa isotópica relativa.
•Avançar para o estudo da massa atómica relativa média, usando como exemplo os isótopos do cloro e as suas
respetivas abundâncias na natureza.
•Analisar conjuntamente a Questão resolvida 6 da página 22 do Novo 10Q para interpretar o facto do valor da massa
atómica relativa média de um elemento ser um valor próximo da massa isotópica do isótopo mais abundante na
natureza.
•Consolidar o conceito de massa atómica relativa média através da sua determinação em diferentes exemplos.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
24 das «+Questões» das páginas 31 a 34 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos: pp.10 a 22
Resumo: pp. 27
TPC
•Caderno de Exercícios e Problemas: pp. 4 a 10
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 43
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Massa e tamanho dos átomos
CONTEÚDOS: Quantidade de matéria e massa molar. Fração mássica e fração molar.
AL 1.1 Volume e número de moléculas de uma gota de água.
Metas
Curriculares
1.5 Indicar que o valor de referência usado como padrão para a massa relativa dos átomos e das moléculas é 1/12
da massa do átomo de carbono-12.
1.6 Interpretar o significado de massa atómica relativa média e calcular o seu valor a partir de massas isotópicas,
justificando a proximidade do seu valor com a massa do isótopo mais abundante.
1.7 Identificar a quantidade de matéria como uma das grandezas do Sistema Internacional (SI) de unidades e
caracterizar a sua unidade, mole, com referência ao número de Avogadro de entidades.
1.8 Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente,
identificando a constante de Avogadro como constante de proporcionalidade.
1.9 Calcular massas molares a partir de tabelas de massas atómicas relativas (médias).
1.10 Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar.
1.11 Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas
grandezas.
Sumário
Quantidade de matéria e massa molar. Fração mássica e fração molar.
Preparação e realização da AL 1.1 Volume e número de moléculas de uma gota.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Introduzir o estudo da quantidade de matéria colocando a seguinte questão «Como se pode quantificar o número
de átomos ou moléculas existentes numa amostra?». Incentivar a participação dos alunos e reforçar participações
enriquecedoras.
•Realçar que a quantidade de matéria é uma das grandezas de base no Sistema Internacional de unidades cuja
unidade é a mole.
•Definir 1 mol como a quantidade de matéria correspondente ao número de Avogadro de entidades.
•Consolidar o conceito de quantidade de matéria com alguns exemplos de determinação do número de átomos,
moléculas ou iões em diferentes amostras.
•Debater conjuntamente as seguintes questões «Como saber quantas moléculas tem uma amostra de uma
substância, por exemplo de água?», «Como medir uma certa quantidade de matéria, isto é, o número de moles de
uma amostra?».
•Concluir que a uma determinada quantidade de matéria corresponde determinada massa e, portanto, haverá uma
relação entre estas duas grandezas.
•Neste sentido, definir a massa molar como uma grandeza que relaciona a massa de uma amostra com a quantidade
de matéria.
•Ler conjuntamente a Questão resolvida 7 da página 24 do Novo 10Q analisando o cálculo das massas molares.
•Calcular a massa molar de várias substâncias.
•Analisar a Questão resolvida 8 da página 25 do Novo 10Q para abordar a relação entre a massa molar, a massa de
uma amostra e a sua quantidade de matéria.
•Avançar para o estudo da fração molar e da fração mássica colocando a questão «Como se pode quantificar um
componente numa mistura?». Referir que há grandezas que expressam a fração de um componente numa mistura: a
fração mássica e a fração molar.
•Num paralelismo entre fração mássica e fração molar, recorrer a exemplos como o oxigénio presente na atmosfera,
para explorar com os alunos que informação é possível retirar de cada um dos valores apresentados.
•Sintetizar e sublinhar, como ideia chave, que a fração molar fornece informação sobre a relação entre o número de
átomos ou moléculas presentes numa mistura e a fração mássica dá informa sobre a relação entre a massa de um
componente de uma mistura.
•Exprimir a relação que permite calcular a fração molar e, de forma análoga, concluir a relação que determina a
fração mássica de um componente numa mistura.
Plano de aula N.o
2 90 + 135 min
44 Editável e fotocopiável © Texto | Novo 10Q
•Colocar a seguinte questão aos alunos «Quais são as unidades corretas para expressar estas grandezas?». Incentivar
a participação dos alunos e reforçar as contribuições enriquecedoras.
•Levar os alunos a concluir que estas duas grandezas são adimensionais, portanto não têm unidades, pois tratam-se
do quociente entre grandezas com as mesmas dimensões.
•Ler conjuntamente a Questão resolvida 9 da página 26 do Novo 10Q para analisar exemplos da determinação das
duas grandezas referidas.
•Consolidar estes conceitos com a determinação da fração mássica e da fração molar de diferentes misturas, como
os componentes do ar ou os elementos presentes no Sol.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 25 a
43 das «+Questões» das páginas 34 a 37 do Novo 10Q.
•Com base nos conteúdos abordados, colocar a questão «Como se pode determinar o número de moléculas de uma
gota de água?».
•Com base nas respostas dos alunos, introduzir a «AL 1.1 Volume e número de moléculas de uma gota de água» a
preparar.
•Na preparação da atividade laboratorial, abordar, com auxílio dos anexos, os conceitos de medição em Química
como algarismos significativos, incerteza experimental associada a leitura no aparelho de medida, erros que afetam
as medições e modo de exprimir uma medida a partir de uma única medição direta.
•Resolver as questões pré-laboratoriais das páginas 28 e 29 do Novo 10Q.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no
Novo 10Q nas páginas 29 e 30.
•Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 30 e as questões 44 a 46 das «+Questões»
das páginas 37 e 38 do Novo 10Q para consolidação dos conhecimentos adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp.23 a 26 e 28 a 30
Resumo: pp. 27
TPC
•Manual: Questões globais pp. 38
•Caderno de Exercícios e Problemas: pp 10 a 14
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 45
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Energia dos eletrões nos átomos
CONTEÚDOS: Espetros contínuos e descontínuos. O modelo atómico de Boh. Transições eletrónicas. Espetro do átomo de hidrogénio.
Metas
Curriculares
2.1 Indicar que a luz (radiação eletromagnética ou onda eletromagnética) pode ser detetada como partículas de
energia (fotões), sendo a energia de cada fotão proporcional a frequência dessa luz.
2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético, comparando as
energias dos respetivos fotões.
2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão.
2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão,
concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos.
2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis
por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr
que prevalecem no modelo atómico atual.
2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir
que esta quantização se verifica para todos os átomos.
2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas
do ultravioleta, visível e infravermelho.
2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos
níveis entre os quais essa transição se dá.
2.9 Comparar espetros de absorção e de emissão de elementos químicos, concluindo que são característicos de
cada elemento.
2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo,
identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense).
Sumário
Espetros contínuos e descontínuos. O modelo atómico de Bohr e o espetro do átomo de hidrogénio.
Transições eletrónicas.
Atividades
•Fazer uma revisão da matéria do subdomínio «1.1 Massa e tamanho dos átomos» recorrendo ao «Resumo» da
página 27 do Novo 10Q.
•Em diálogo com os alunos começar por recordar que no 8.
o
ano já aprenderam que a luz é uma radiação
eletromagnética que se propaga na Terra e no espaço e que nos fornece informação sobre a fonte emissora e sobre
os meios onde se propagou.
•Avançar, desde logo, com a ideia de que a construção do conhecimento científico é um processo lento, e que se
deve ao trabalho de vários cientistas, como tal, só no século XX é que se descobriu a natureza corpuscular da luz
onde os corpúsculos que a constituem são designados por fotões.
•Referir que cada fotão transporta uma pequena porção de energia (que é a menor porção de energia que pode ser
absorvida ou emitida) sendo, por isso, a energia de um feixe luminoso múltipla da energia de um fotão.
•Concluir que a energia de um fotão está associada à frequência da radiação e que estas grandezas são diretamente
proporcionais.
•Relembrar ainda os conteúdos abordados no 8.
o
ano questionando os alunos sobre «O que é o espetro
eletromagnético?». Incentivar a participação dos alunos e reforçar contribuições enriquecedoras.
•Das participações dos alunos, levá-los a concluir que o espetro eletromagnético é o conjunto de todas as radiações
eletromagnéticas – umas visíveis e outras invisíveis.
•Analisar conjuntamente a Fig. 2 da página 41 do Novo 10Q concluindo quais os diferentes tipos de radiação
eletromagnética e debatendo algumas das suas aplicações no dia-a-dia.
•Ainda na exploração da mesma figura, comparar a frequência das diferentes radiações para que os alunos
compreendam a relação de proporcionalidade direta existente entre a frequência da radiação e a energia dos fotões
dessa radiação.
•Ler e interpretar conjuntamente a Questão resolvida 1 da página 41 do Novo 10Q.
Plano de aula N.o
3 90 + 135 min
46 Editável e fotocopiável © Texto | Novo 10Q
Atividades
•Demonstrar com um prisma que a luz branca (policromática) pode ser decomposta nas suas radiações constituintes
para explorar os conceitos de luz monocromática e luz policromática,
•Avançar para a classificação dos espetros colocando a seguinte questão «O espetro do Sol será igual ao espetro de
uma lâmpada de néon?».
• Debater a questão com os alunos, mostrando que os espetros podem ser diferentes e, como tal, são classificados
de acordo com as suas características.
•Referir que os espetros podem ser de emissão ou de absorção ou contínuos ou descontínuos (ou de riscas). Definir
cada tipo de espetro, dando exemplos conhecidos.
•Ler conjuntamente a Questão resolvida 2 da página 44 do Novo 10Q.
•Recordar o modelo atómico de Bohr abordado no 9.
o
ano.
•Referir que as riscas do espetro do átomo de hidrogénio observadas podem ser explicadas com base neste modelo
pois estão relacionadas com a estrutura atómica do átomo de hidrogénio.
•Informar que foi com o surgimento de uma nova área da Física, a Física Quântica, que fenómenos como os espetros
dos elementos puderam ser explicados.
•Concluir que as ideias de quantização da energia introduzidas por Niels Bohr no seu modelo atómico foram
fundamentais para explicar este fenómeno.
•Analisar conjuntamente os diagramas das páginas 46 e 47 do Novo 10Q para sistematizar as ideias de emissão e de
absorção de energia pelo átomo de hidrogénio. Referir que estas energias possuem valores bem definidos e que
correspondem às riscas observadas no seu espetro.
•Avançar para as transições eletrónicas no átomo de hidrogénio colocando a questão «A emissão de luz pelo átomo
de hidrogénio corresponde a «saltos» do seu eletrão para níveis de maior ou de menor energia?».
•Debater a questão com os alunos para que compreendam que, quando o átomo emite radiação, diminui a sua
energia e portanto esse «salto» ocorre para níveis de menor energia.
•Definir esses «saltos» do eletrão no átomo como transições eletrónicas que ocorrem por absorção ou emissão de
energia.
•Analisar conjuntamente a Questão resolvida 3 da página 49 do Novo 10Q.
•Realizar a Atividade «Observação de espetros com tubos de Pluecker» da página 53 do Novo 10Q.
•Concluir que os espetros atómicos são espetros de riscas e que cada espetro é único para cada elemento
funcionando como uma «impressão digital».
•Sintetizar e sublinhar a ideia que os espetros de emissão e de absorção de um determinado elemento são
complementares, isto é, a radiação emitida possui a mesma energia que a radiação absorvida e, por isso, estes
espetros quando sobrepostos originam um espetro contínuo. Realçar que as absorções e emissões de energia
correspondem às transições eletrónicas.
•Introduzir, através da exploração da Fig. 11 da página 48 do Novo 10Q, as séries espetrais do átomo de hidrogénio.
•Determinar a energia das radiações envolvidas nas transições eletrónicas no átomo de hidrogénio através do
cálculo da diferença de energia entre os níveis. Realçar que o sinal negativo associado à energia da transição significa
que o átomo perdeu energia e o sinal positivo significa que o átomo ganhou energia.
•Ler conjuntamente a Questão resolvida 4 da página 51 do Novo 10Q e analisá-la para consolidar os conteúdos.
•Analisar espetros de diferentes estrelas e, por comparação com os espetros de diferentes elementos químicos,
concluir que a espetroscopia é uma técnica que permite identificar os elementos presentes nas estrelas.
•Ler conjuntamente a Questão resolvida 5 da página 52 do Novo 10Q.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
24 das «+Questões» das páginas 69 a 73 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos: pp. 40 a 53
Resumo: pp. 65
TPC
•Caderno de Exercícios e Problemas: pp. 20 a 23
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 47
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Energia dos eletrões nos átomos
CONTEÚDOS: Quantização de energia. Energia de remoção eletrónica. Modelo quântico do átomo: níveis e subníveis.
AL 1.2 Teste de chama.
Metas
Curriculares
2.11 Indicar que a energia dos eletrões nos átomos inclui o efeito das atrações entre os eletrões e o núcleo, por as
suas cargas serem de sinais contrários, e das repulsões entre os eletrões, por as suas cargas serem do mesmo sinal.
2.12 Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões a volta do núcleo
atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões.
2.13 Concluir, a partir de valores de energia de remoção eletrónica obtidas por espetroscopia fotoeletrónica, que
átomos de elementos diferentes têm valores diferentes da energia dos eletrões.
2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia fotoeletrónica, concluindo
que os eletrões se podem distribuir por níveis de energia e subníveis de energia.
Sumário
Quantização da energia: níveis e subníveis de energia. Energia de remoção eletrónica e espetroscopia fotoeletrónica.
Preparação e realização da AL 1.2 Teste de chama.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Recordar o modelo quântico do átomo já abordado no 9.
o
ano, realçando que surgiu como forma de colmatar
algumas das falhas teóricas do modelo atómico de Bohr, nomeadamente a questão das órbitas bem definidas.
•Referir que, neste modelo, os protões e os neutrões constituem o núcleo atómico mas que os eletrões se movem
em orbitais (e não em órbitas) que são representadas por uma nuvem eletrónica que se trata de uma representação
da probabilidade de encontrar os eletrões em torno do núcleo.
•Analisar a Fig. 22 da página 55 do Novo 10Q, para compreender a representação do átomo segundo o modelo
quântico e depois compará-lo com o modelo de Bohr.
•Relembrar o caso particular da ionização do átomo de hidrogénio como introdução do conceito de energia de
remoção eletrónica.
•Colocar a seguinte questão «Em todos os átomos, os eletrões estarão atraídos da mesma forma pelo núcleo?».
Incentivar o debate de ideias e reforçar participações enriquecedoras.
•Do debate de ideias, levar os alunos a compreender que nos diferentes átomos, os eletrões são atraídos de forma
diferente pelo núcleo e que no mesmo átomo, estes são, também, atraídos de forma diferente.
•Informar que as diferentes atrações entre os protões e os eletrões correspondem a diferentes valores de energia
potencial.
•Definir a energia de remoção eletrónica como a energia mínima que é necessário fornecer a um átomo isolado no
estado gasoso para lhe remover um eletrão.
•A partir da análise da Fig. 26 da página 57 do Novo 10Q, debater o que é a espetroscopia fotoeletrónica e
identificar, a partir do espetro fotoeletrónico, a energia de remoção eletrónica dos vários elementos.
•Com base em exemplos concretos, justificar se existe remoção eletrónica quando sobre um átomo de um
determinado elemento incide uma radiação com uma determinada energia e caso haja, determinar a energia
cinética do eletrão removido.
•Ainda tendo por base o espetro fotoeletrónico, promover um debate sobre as ordens de grandeza dos vários
eletrões removidos levando os alunos a concluir a existência de níveis e subníveis de energia.
•Ler conjuntamente as Questões resolvidas 6 e 7 das páginas, respetivamente, 57 e 59 do Novo 10Q e analisá-las
para consolidação de conteúdos.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 25 a
36 das «+Questões» das páginas 73 a 75 do Novo 10Q.
•Para operacionalizar os conteúdos abordados colocar a seguinte questão «Por que será o fogo de artifício tão
colorido?».
•Debater a questão com os alunos e introduzir a «AL 1.2 Teste de chama» como forma de responder à questão.
•Resolver as questões pré-laboratoriais das páginas 66 e 67.
Plano de aula N.o
4 90 + 135 min
48 Editável e fotocopiável © Texto | Novo 10Q
•Na preparação da atividade laboratorial, abordar aspetos de segurança em laboratório relacionados com a
utilização de fontes de aquecimento e a manipulação de reagentes.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no
Novo 10Q nas páginas 68.
•Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 68 do Novo 10Q como forma de
conseguirem obter a resposta à questão inicial.
•Resolver as questões 55 a 59 das «+Questões» da página 77 do Novo 10Q para consolidação dos conhecimentos
adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp. 54 a 59 e 66 a 68
Resumo: pp. 65
TPC
•Caderno de Exercícios e Problemas: pp. 24 a 26
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 49
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Energia dos eletrões nos átomos
CONTEÚDOS: Modelo quântico do átomo: níveis e subníveis, orbitais (s, p e d) e spin.
Configuração eletrónica de átomos: Princípio da Exclusão de Pauli, Princípio da Construção (ou de Aufbau) eRegra de Hund.
Metas
Curriculares
2.15 Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que
permite dois estados diferentes.
2.16 Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico
do átomo.
2.17 Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes está
associada e distingui-las quanto ao número e à forma.
2.18 Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando
esse resultado com o princípio de Pauli.
2.19 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que
orbitais de um mesmo subnível np, ou nd, têm a mesma energia.
2.20 Estabelecer as configurações eletrónicas dos átomos, utilizando a notação spd, para elementos até Z = 23,
atendendo ao Principio da Construção, ao Principio da Exclusão de Pauli e a maximização do número de eletrões
desemparelhados em orbitais degeneradas.
Sumário
O modelo quântico do átomo. Orbitais s, p, e d e spin. Configuração eletrónica dos átomos e regras de construção:
Princípio de Exclusão de Pauli, Princípio de Construção e Regra de Hund.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Relembrar o modelo quântico do átomo já abordado, para introduzir o estudo das orbitais atómicas.
•Em diálogo com os alunos, identificar uma orbital atómica como uma região do espaço em torno do núcleo na qual
há uma probabilidade não nula de encontrar o eletrão.
•Analisar a Fig. 30 da página 60 do Novo 10Q e concluir que as orbitais atómicas têm diferentes formas que são
definidas por diferentes letras s, p e d.
•Ler e analisar conjuntamente a Questão resolvida 8 da página 61 do Novo 10Q.
•Comparando ainda com um espetro de espetroscopia fotoeletrónica, referir que a cada nível de energia podem
estar associados diferentes subníveis que se caracterizam pela forma das suas orbitais.
•Para introduzir o spin dos eletrões colocar a seguinte questão «Terão os eletrões todos as mesmas propriedades?».
Incentivar a participação dos alunos e reforçar participações enriquecedoras.
•Observar a Fig. 31 da página 61 do Novo 10Q e compará-la com as respostas dos alunos.
•Concluir que os eletrões possuem uma propriedade magnética designada spin que pode apresentar dois estados
magnéticos opostos: spin α e spin β.
•Informar que o spin é uma propriedade intrínseca dos eletrões e que está quantizada (pois só admite 2 valores: spin
α e spin β).
•Avançar para o estudo da configuração eletrónica de átomos partindo da questão «Como se distribuem os eletrões
nos átomos?». Proporcionar um momento de debate e reforçar participações enriquecedoras.
•Recordar que as distribuições eletrónicas estudadas no 9.
o
ano são um tratamento muito superficial deste
fenómeno uma vez que só é tido em atenção o número máximo de eletrões existentes em cada nível de energia.
•Introduzir o diagrama de caixas como uma ferramenta que permite identificar esquematicamente a distribuição
dos eletrões no átomo por cada nível e subnível de energia.
•Explorar o Princípio de Exclusão de Pauli que mostra que, numa mesma orbital, só podem existir dois eletrões com
spin contrário.
•Mais uma vez comparando com os espetros fotoeletrónicos, refletir que no subnível p existem 6 eletrões e, que de
acordo com o Princípio de Exclusão de Pauli, existirão 3 orbitais com a mesma energia designando-se, por isso,
orbitais degeneradas.
•Sistematizar o conceito questionando os alunos «Quantas orbitais existem no subnível d?».
Plano de aula N.o
5 90 + 135 min
50 Editável e fotocopiável © Texto | Novo 10Q
•Debater as ideias com os alunos concluindo que no subnível d existem 5 orbitais degeneradas.
•Referir que a distribuição dos eletrões nas orbitais do átomo e a sua configuração obedece a outras regras para
além do Princípio de Exclusão de Pauli: o Princípio de Construção ou princípio de Aufbau e a Regra de Hund.
•Definir o Princípio de Construção como a regra que permite prever a distribuição dos eletrões de um átomo no
estado fundamental (de menor energia).
•Analisar a Fig. 33 da página 63 do Novo 10Q para relacionar cada orbital com a sua energia dando realce às orbitais
do tipo d pois estas orbitais são mais energéticas que as orbitais do tipo s do nível de energia que as sucede.
•Utilizar como exemplo o escândio para demonstrar a sua configuração eletrónica de acordo com o Princípio da
Construção.
•Apresentar a Regra de Hund através de, por exemplo, a configuração eletrónica do nitrogénio num diagrama de
caixas.
•Comparar uma configuração que obedeça à Regra de Hund com uma que não obedeça para concluir que, nas
orbitais degeneradas, a configuração eletrónica tende a maximizar o número de eletrões desemparelhados com o
mesmo spin.
•Ler e analisar conjuntamente a Questão resolvida 9 apresentada na página 64 do Novo 10Q.
•Dados alguns exemplos de elementos representativos, pedir aos alunos que façam a sua configuração eletrónica de
acordo com as regras estabelecidas para consolidação dos conhecimentos, tal como apresentado na questão
resolvida anterior.
•Comparar as configurações eletrónicas representadas e identificar os eletrões de valência como sendo os eletrões
de todas as orbitais do último nível de energia e o cerne do átomo com o conjunto do núcleo e dos eletrões
interiores (excluindo os de valência).
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 37 a
54 das «+Questões» das páginas 75 a 77 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos pp. 60 a 64
Resumo: pp. 65
TPC
•Manual: Questões globais pp. 77
•Caderno de Exercícios e Problemas: pp. 25 e 26
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 51
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Tabela Periódica
CONTEÚDOS: Evolução histórica da Tabela Periódica. Estrutura da Tabela Periódica: grupos, períodos e blocos.
Elementos representativos e de transição. Propriedades periódicas: raio atómico e energia de ionização.
Metas
Curriculares
3.1 Identificar marcos históricos relevantes no estabelecimento da Tabela Periódica atual.
3.2 Interpretar a organização da Tabela Periódica com base em períodos, grupos e blocos e relacionar a
configuração eletrónica dos átomos dos elementos com a sua posição relativa na Tabela Periódica.
3.3 Identificar a energia de ionização e o raio atómico como propriedades periódicas dos elementos.
3.5 Comparar raios atómicos e energias de ionização de diferentes elementos químicos com base nas suas posições
relativas na Tabela Periódica.
3.6 Interpretar a tendência geral para o aumento da energia de ionização e para a diminuição do raio atómico
observados ao longo de um período da Tabela Periódica.
3.7 Interpretar a tendência geral para a diminuição da energia de ionização e para o aumento do raio atómico
observados ao longo de um grupo da Tabela Periódica.
Sumário
Evolução histórica da Tabela Periódica. Organização da Tabela Periódica: grupos, períodos e blocos.
Propriedades periódicas: raio atómico e energia de ionização.
Atividades
•Fazer uma revisão da matéria do subdomínio «1.2 Energia dos eletrões nos átomos» recorrendo ao «Resumo» da
página 65 do Novo 10Q.
•Em diálogo com os alunos referir que a enorme diversidade de materiais da natureza é resultado das variadas
associações de alguns milhões de substâncias conhecidas. Contudo, é muito reduzido o número de elementos
químicos que as constituem, que se encontram organizados na Tabela Periódica dos elementos.
•Iniciar o estudo da Tabela Periódica questionando os alunos: «Quem teve a ideia de ordenar os elementos químicos
numa tabela tão genial?». Debater as diferentes ideias reforçando as participações enriquecedoras.
•A partir das ideias dos alunos, referir que a evolução da estrutura da Tabela Periódica e da organização dos
elementos foi um processo lento que resultou da contribuição de vários cientistas.
•Destacar as contribuições de Döbereiner, Newlands, Mendeleev e Moseley para a organização dos elementos e
para a construção da Tabela Periódica atual.
•Avançar para a interpretação da Tabela Periódica observando-a e analisando a sua organização.
•Enfatizar que os elementos químicos estão dispostos em 18 colunas verticais, a que chamamos grupos e em 7 linhas
horizontais, os períodos. Na parte inferior da Tabela Periódica encontram-se a série dos lantanídeos e dos actinídeos.
•Referir que até à data, a IUPAC – entidade que regulamenta toda a nomenclatura em química – reconhece a
existência de 114 elementos químicos.
•Dar a conhecer aos alunos o site da IUPAC e a sua Tabela Periódica.
•Interrogar os alunos «Como foi feita a organização dos elementos?».
•Debater as ideias com os alunos relembrando o estudo da Tabela Periódica no 9.
o
ano.
•Concluir que os elementos estão organizados por ordem crescente do seu número atómico e que os elementos do
mesmo grupo têm algumas propriedades comuns entre si.
•Identificar que há conjuntos de elementos metálicos, não metálicos e os gases nobres.
•Indicar que, como existem propriedades semelhantes entre vários elementos, estes formam famílias, como as
famílias dos metais alcalinos, dos metais alcalino-terrosos, dos halogénios ou dos gases nobres.
•Apresentar a configuração eletrónica de diferentes elementos, por exemplo o sódio, o vanádio e o cloro, para
identificar a existência de blocos na Tabela Periódica (blocos s, p, d e f) que estão relacionados com as orbitais de
maior energia ocupadas pelos átomos de cada elemento.
•Interpretar as Fig. 3 e 4 da página 82 do Novo 10Q e Fig. 5 da página 83 para identificar os elementos
representativos e de transição e os blocos da Tabela Periódica para sistematizar os conteúdos abordados.
•Relacionar o grupo dos elementos representativos na Tabela Periódica com o número dos seus eletrões de valência.
•De forma semelhante, relacionar o período dos elementos representativos na Tabela Periódica com o número de
níveis de energia ocupados pelos eletrões no átomo.
Plano de aula N.o
6 90 + 135 min
52 Editável e fotocopiável © Texto | Novo 10Q
Atividades
•Ler conjuntamente as Questões resolvidas 1 e 2 das páginas, respetivamente, 83 e 84 do Novo 10Q para sintetizar a
relação entre as configurações eletrónicas dos elementos e a respetiva posição na Tabela Periódica.
•Realçar e sublinhar a ideia chave que apenas se pode relacionar a configuração eletrónica dos elementos com a sua
posição na Tabela Periódica quando estes se encontram no estado fundamental.
•Avançar para o estudo das propriedades periódicas dos elementos colocando a questão «Por que é que esta Tabela
é Periódica?». Proporcionar um momento de debate e reforçar participações enriquecedoras.
•Partir das ideias dos alunos, para que compreendam que a Tabela é periódica porque certas propriedades dos
elementos variam com regularidade.
•Questionar os alunos «Como varia o tamanho dos átomos dos elementos da Tabela Periódica?» para introduzir a
variação do raio atómico. Debater as respostas dos alunos para que compreendam que os átomos terão diferentes
raios atómicos e que terão uma determinada organização. Pedir aos alunos para fazerem a distribuição eletrónica de
elementos como o flúor, o oxigénio, o lítio, o sódio e o potássio, debatendo depois a variação do raio atómico ao
longo de cada grupo e de cada período da Tabela Periódica.
•Da análise das distribuições eletrónicas dos elementos, sintetizar que quanto maior for o seu número quântico
principal, maior será o tamanho da sua nuvem eletrónica, ou seja, maior será o seu raio atómico e que para
elementos com o mesmo número quântico, quanto maior for a carga nuclear do átomo, mais este atrairá os seus
eletrões, logo o seu raio atómico será menor.
•Ler e analisar conjuntamente a Questão resolvida 3 da página 86 do Novo 10Q para consolidar conhecimentos.
•Relembrar os conteúdos sobre a energia de remoção eletrónica abordados anteriormente para introduzir, por
analogia, o conceito de energia de ionização, questionando os alunos «Como é possível remover um eletrão de um
átomo?».
•Debater as suas respostas e concluir que a energia de ionização é uma medida da maior ou menor facilidade com
que o eletrão pode ser removido do átomo.
•Definir a energia de ionização como a energia mínima necessária para remover um eletrão de um átomo no estado
gasoso e no seu estado fundamental, e explicar aos alunos que quanto maior for a energia de ionização mais difícil é
a remoção de um eletrão ao átomo.
•Explicar que cada átomo tem tantas energias de ionização quantos eletrões possui, designando-se a energia
necessária para remover o eletrão mais afastado do núcleo atómico (o eletrão mais energético) de 1.
a
energia de
ionização, para remover o 2.
o
eletrão mais energético do átomo agora ionizado de 2.
a
energia de ionização e assim
sucessivamente.
•Mostrar que o eletrão de valência é o eletrão mais fácil de remover porque tem uma energia maior, ou seja, sente
uma menor atração elétrica do núcleo atómico, por isso, a 1.
a
energia de ionização é menor que a 2.
a
energia de
ionização, e esta é menor que a 3.
a
…
•Questionar os alunos «Se a energia de ionização depende da atração que o núcleo atómico exerce sobre os eletrões
de valência do átomo, como variará esta propriedade ao longo dos elementos da Tabela Periódica?» para introduzir
um pequeno debate, para compreender a variação da energia de ionização ao longo dos grupos e dos períodos da
Tabela Periódica.
•A partir da configurações eletrónicas feitas anteriormente, analisá-las conjuntamente de forma a explorar como a
energia de ionização variará ao longo de cada período e de cada grupo da Tabela Periódica, concluindo que varia de
forma inversa do raio atómico.
•Concluir assim que quanto maior o número quântico principal, menor é sua 1.
a
energia de ionização (se o eletrão se
encontra mais afastado do núcleo atómico, sente uma menor atração por parte deste, logo é mais fácil removê-lo) e,
para átomos com o mesmo número quântico principal, quanto maior a carga nuclear, maior a energia de ionização
(se o eletrão está eletricamente mais atraído pelo núcleo atómico mais difícil é removê-lo do átomo)
•Ler conjuntamente a Questão resolvida 4 da página 88 do Novo 10Q.
•Construir um quadro síntese semelhante à Tab. 2 da página 88 do Novo 10Q para evidenciar os fatores que
influenciam o raio atómico e a energia de ionização.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
23 das «+Questões» das páginas 98 a 101 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos: pp. 80 a 88
Resumo: pp. 93
TPC
•Caderno de Exercícios e Problemas: pp. 32 a 35
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Editável e fotocopiável © Texto | Novo 10Q 53
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Elementos químicos e sua organização
SUBDOMÍNIO: Tabela Periódica
CONTEÚDOS: Famílias de metais e de não metais. Al 1.3 Densidade relativa de metais
Metas
Curriculares
3.4 Distinguir entre propriedades de um elemento e propriedades da(s) substância(s) elementar(es)
correspondentes.
3.8 Explicar a formação dos iões mais estáveis de metais e de não-metais.
3.9 Justificar a baixa reatividade dos gases nobres.
Sumário
Propriedades dos elementos e das substâncias elementares.
Preparação e realização da AL 1.3 Densidade relativa de metais.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Avançar para o estudo das propriedades dos elementos e das substâncias elementares relembrando a classificação
das substâncias de Lavoisier para distinguir propriedades das substâncias elementares como o caráter metálico e as
propriedades dos elementos como o raio atómico ou a energia de ionização já estudadas.
•Pedir aos alunos outros exemplos de propriedades das substâncias elementares e de propriedades dos elementos.
•Completar os exemplos dos alunos com propriedades que possam não ter sido referidas. Registar esses exemplos
numa tabela distinguindo as propriedades dos elementos e as propriedades das substâncias elementares.
•Apresentar configurações eletrónicas de elementos de algumas famílias como por exemplo os metais alcalinos, os
metais alcalino-terrosos, os halogénios e os gases nobres.
•Relacionar a sua configuração eletrónica com os iões mais prováveis desses elementos concluindo que os átomos
da mesma família têm tendência para formar iões semelhantes (por terem uma configuração eletrónica semelhante)
e, portanto, têm também propriedades químicas semelhantes.
•Evidenciar algumas propriedades físico-químicas comuns aos elementos de cada família e fazer a comparação entre
as propriedades dos metais e dos não metais. Ler conjuntamente a Questão resolvida 5 da página 89 do Novo 10Q.
•Construir conjuntamente uma tabela semelhante à Tab. 3 da página 90 para sistematizar os conteúdos.
•Reforçar a ideia chave que os gases nobres são substâncias muito estáveis e, portanto, pouco reativas, porque os
seus átomos possuem as orbitais totalmente preenchidas. Ler conjuntamente a Questão resolvida 6 da página 91.
•Realizar a Atividade «Propriedades dos elementos e das substâncias elementares» da página 92 para consolidar e
aplicar os conhecimentos adquiridos.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 24 a
31 das «+Questões» das páginas 101 e 102 do Novo 10Q.
•Introduzir a «AL 1.3 Densidade relativa de metais» questionando «Como será possível identificar uma amostra
desconhecida?». Incentivar a participação e realçar as participações enriquecedoras.
•Partir das respostas dos alunos para evidenciar que há propriedades que são características das substâncias como
por exemplo a massa volúmica ou a densidade relativa.
•Na preparação da atividade laboratorial, abordar os conceitos de massa volúmica e de densidade relativa tal como
a determinação da densidade relativa de um sólido por picnometria.
•Introduzir, com auxílio dos anexos, os erros de medição (aleatórios e sistemáticos), a determinação do erro
percentual e a escrita dos resultados experimentais com o número correto de algarismos significativos.
•Resolver as questões pré-laboratoriais das páginas 95 e 96 do Novo 10Q. Organizar os alunos em grupos para
realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q nas páginas 96 e 97.
•Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 97 do Novo 10Q.
•Resolver a questão 32 das «+Questões» da página 102 para consolidação dos conhecimentos adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp. 89 a 92 e 94 a 97
Resumo: pp. 93
TPC
•Manual: Questões globais pp. 103
•Caderno de Exercícios e Problemas: pp. 36 a 38
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Plano de aula N.o
7 90 + 135 min
54 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Ligação química
CONTEÚDOS: Tipos de ligação química. Ligação covalente: estrutura de Lewis.
Metas
Curriculares
1.1 Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de
ligações químicas.
1.2 Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de
repulsão entre eletrões e forças de repulsão entre núcleos.
1.3 Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula
diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longas
distâncias, sendo estas distâncias respetivamente menores e maiores do que a distância de equilíbrio.
1.4 Indicar que os átomos podem partilhar eletrões formando ligações covalentes (partilha localizada de eletrões de
valência), ligações iónicas (transferência de eletrões entre átomos originando estruturas com caráter iónico) e
ligações metálicas (partilha de eletrões de valência deslocalizados por todos os átomos).
1.5 Associar as ligações químicas em que não há partilha significativa de eletrões a ligações intermoleculares.
1.6 Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H2, N2, O2 e F2, segundo o modelo
de Lewis.
1.7 Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de moléculas como CH4, NH3, H2O
e CO2.
Sumário
Ligação química: ligação covalente, ligação iónica, ligação metálica e ligações intermoleculares.
Notação de Lewis e regra do octeto.
Atividades
•Fazer uma revisão da matéria do subdomínio «1.3 Tabela Periódica» recorrendo ao «Resumo» da página 93 do
Novo 10Q.
•Em diálogo com os alunos introduzir o conceito de ligação química já abordado no 9.
o
ano, recordando que as
ligações químicas se formam devido a forças atrativas de natureza eletrostática que resultam de um equilíbrio das
repulsões entre os núcleos, das repulsões entre os eletrões e das atrações entre os núcleos e os eletrões.
•Analisar a Fig. 2 da página 108 para compreender que a ligação química se forma quando os átomos estão num
estado de equilíbrio onde há maior estabilidade e menor energia no sistema.
•Concluir que quando os átomos estão completamente afastados a energia do sistema é zero e à medida que se
aproximam, a energia vai diminuindo (atinge valores cada vez mais negativos) até atingir um valor mínimo – a
energia de ligação.
•Realçar que, quando se forma a ligação química, a distância internuclear designa-se por comprimento de ligação e
que este comprimento é um valor médio devido à constante agitação dos átomos.
•Relembrar que eletrões de valência contribuem significativamente para a formação da ligação química. Estes
podem ser partilhados pelos átomos ou transferidos de um átomo para outro. Existindo, por isso, três tipos de
ligações: ligação covalente, ligação iónica e ligação metálica.
•Apresentar a ligação covalente como uma ligação que se estabelece entre átomos de não-metais e na qual há
partilha localizada de eletrões de valência entre os átomos.
•Recorrendo à Fig. 4, da página 110 do Novo 10Q, apresentar o cloreto de sódio como um exemplo de uma
substância iónica e com base nela introduzir a ligação iónica como uma ligação química que se estabelece,
geralmente, por transferência de eletrões entre átomos de metais e alguns não-metais, na qual se formam iões
positivos e negativos (unidades estruturais), originando substâncias iónicas.
•Para conhecer melhor as propriedades das suas substâncias iónicas colocar aos alunos a seguinte questão: «Em que
circunstâncias ocorre a condução elétrica em sais?». Promover a participação dos alunos e reforçar as ideias
enriquecedoras.
•Com base nas participações dos alunos, apresentar algumas das propriedades das substâncias iónicas.
• Definir a ligação metálica e apresentar algumas propriedades dos metais.
•Avançar para o estudo das forças intermoleculares colocando a questão «Se os átomos se atraem para formar
Plano de aula N.o
8 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 55
Atividades
moléculas, será que há alguma interação também entre as próprias moléculas?». Criar um pequeno momento de
debate ordenado realçando as participações mais enriquecedoras.
•Do debate realçar que também há forças de natureza eletrostática entre moléculas vizinhas que se designam por
ligações intermoleculares.
•Informar que nestas ligações a partilha de eletrões entre as moléculas é muito menos acentuada do que aquela que
ocorre entre os átomos sendo estas, portanto, ligações muito mais fracas do que as que existem entre átomos ou
iões.
•Referir que na ligação covalente os átomos nem sempre partilham o mesmo número de eletrões.
•Seguidamente abordar a notação de Lewis para representar os eletrões de valência dos átomos e salientar quais
estão envolvidos diretamente na ligação covalente.
•Sublinhar a ideia chave que apenas os eletrões de valência estão envolvidos na formação das ligações covalentes.
•Apresentar como exemplos as moléculas de H2, N2, O2 e F2 e determinar o número de eletrões de valência de cada
elemento envolvido na ligação.
•Introduzir a regra do octeto como critério (com algumas exceções como o hidrogénio) para determinar o número
de eletrões ligantes (e o tipo de ligação química) que confere maior estabilidade à molécula.
•Com base na notação de Lewis para estas moléculas, identificar o número de pares de eletrões de valência ligantes
e, com base nisso, classificar a ligação como covalente simples, dupla ou tripla. Identificar também os eletrões não
ligantes.
•Para consolidar conhecimentos, realizar uma tarefa análoga para moléculas mais complexas como, por exemplo, as
moléculas de CH4, NH3, H2O e CO2. Classificar cada uma das ligações covalentes envolvidas e indicar os eletrões
ligantes e não ligantes.
•Ler conjuntamente a Questão resolvida 1 da página 116 do Novo 10Q.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
13 das «+Questões» das páginas 143 e 144
Recursos
•Manual
Apresentação dos conteúdos: pp. 108 a 118
Resumo: pp. 139
TPC
•Caderno de Exercícios e Problemas: pp.44 a 46
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
56 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Ligação química
CONTEÚDOS: Ligação covalente: energia de ligação e comprimento de ligação, polaridade das ligações, geometria molecular,
polaridade das moléculas.
Metas
Curriculares
1.8 Relacionar o parâmetro ângulo de ligação nas moléculas CH4, NH3, H2O e CO2 com base no modelo da repulsão
dos pares de eletrões de valência.
1.9 Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões de valência, em
moléculas como CH4, NH3, H2O e CO2.
1.10 Prever a relação entre as energias de ligação ou os comprimentos de ligação em moléculas semelhantes, com
base na variação das propriedades periódicas dos elementos envolvidos nas ligações (por exemplo H2O e H2S ou
HCℓ e HBr).
1.11 Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas diatómicas
heteronucleares são polares, interpretando essa polaridade com base na distribuição de carga elétrica entre os
átomos.
1.12 Identificar ligações polares e apolares com base no tipo de átomos envolvidos na ligação.
1.13 Indicar alguns exemplos de moléculas polares (H2O, NH3) e apolares (CO2, CH4).
Sumário
Ligação química: energia de ligação comprimento de ligação e polaridade das ligações.
Polaridade e geometria das moléculas.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Ainda com base na Fig. 2 da página 108 do Novo 10Q, definir a energia de ligação como a energia que é necessário
fornecer à molécula para quebrar uma determinada ligação, ou seja, é a energia que se deve fornecer a dois átomos
ligados, isolados de quaisquer outros, para os afastar a uma distância infinita.
•Realçar que a energia de ligação é um parâmetro da ligação química que informa sobre a estabilidade das
moléculas. Assim, quanto maior a energia de ligação, mais forte é a ligação química e mais estável é a molécula.
•Avançar para o estudo do comprimento de ligação (já definido anteriormente) questionando «Como estará o
comprimento da ligação química relacionado com a estabilidade da molécula?». Incentivar a participação e reforçar
as ideias positivas.
•Das participações dos alunos, realçar que quanto maior for a energia de ligação, mais próximos se encontram os
núcleos atómicos e menor é o comprimento da ligação.
•Concluir que quanto menor o comprimento de ligação maior a estabilidade da molécula, ou seja, o comprimento de
ligação é inversamente proporcional à energia de ligação.
•Referir também que é possível prever a variação do comprimento de ligação com base no raio atómico dos átomos
envolvidos.
•Apresentar como exemplo o dióxido de enxofre e a água.
•Analisar os raios atómicos dos elementos envolvidos e concluir que o raio atómico do enxofre é superior ao do
oxigénio e, como nestas moléculas o oxigénio e o enxofre estão ligados ao mesmo elemento, é de prever que o
comprimento da ligação H–S seja superior ao comprimento da ligação H–O.
•Ler conjuntamente a Questão resolvida 2 da página 118 do Novo 10Q e analisá-la, realçando as unidades em que se
exprime usualmente o comprimento e a energia de ligação.
•Em diálogo com os alunos, referir que as repulsões entre os pares de eletrões de valência condicionam a geometria
espacial da molécula.
•Realçar que a Teoria de Repulsão de Pares Eletrónicos de Valência (TRPEV) permite prever qual a geometria
molecular adquirida bem como os ângulos entre as ligações na molécula.
•Da abordagem à TRPEV, concluir que há repulsões entre todos os pares de eletrões de valência e, portanto, a
disposição dos átomos na molécula corresponde a repulsões mínimas entre os pares de eletrões de valência (ligantes
e não ligantes) que confere à molécula uma geometria que lhe dá maior estabilidade.
•A partir da Tab. 3 da página 119 do Novo 10Q, debater as diferentes geometrias apresentadas.
Plano de aula N.o
9 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 57
Atividades
•Realçar que as geometrias angular e piramidal trigonal ocorrem devido às repulsões de pares de eletrões de
valência não ligantes no átomo central.
•Ler conjuntamente e analisar a Questão resolvida 3 da página 120.
•Realizar a Atividade «Modelos moleculares e simulações computacionais» da página 121 do Novo 10Q, realçando o
potencial da modelação para a compreensão da geometria molecular pela sua visualização a 3 dimensões.
•Avançar para o estudo da polaridade das moléculas definindo o que é a distribuição de carga elétrica nas
moléculas.
•Analisar as Fig. 10 e 11 da página 122 para evidenciar simetrias e assimetrias na distribuição da carga elétrica em
torno dos átomos.
•Definir mapa de potencial eletrostático e mostrar a sua importância para a determinação da distribuição de carga
elétrica numa molécula.
•Definir moléculas polares como sendo moléculas com distribuição assimétrica de carga elétrica e moléculas
apolares como sendo moléculas com distribuição simétrica de carga elétrica.
•Para introduzir a polaridade das ligações covalentes apresentar um conjunto de moléculas como por exemplo, HBr,
HF, CH4, H2O, N2, O2, C2H6 e NH3. Questionar os alunos sobre qual a polaridade das ligações químicas existentes nas
moléculas apresentadas.
•Das participações dos alunos, levá-los a concluir que apenas em N2, O2 e na ligação C–C em C2H5OH existem ligações
covalentes apolares, porque os átomos envolvidos são do mesmo elemento.
•Sublinhar o facto de, mesmo existindo ligações covalentes polares, as moléculas poderem ser apolares como é o
caso de CH4 pois a molécula possui distribuição simétrica de carga elétrica. Pelo contrário, em C2H5OH existem
ligações covalentes apolares e a molécula é polar.
•Ler a Questão resolvida 4 da página 123 do Novo 10Q para analisar mapas de potencial eletrostático para moléculas
mais complexas.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 14 a
27 das «+Questões» das páginas 144 a 147.
Recursos
•Manual
Apresentação dos conteúdos: pp. 119 a 125
Resumo: pp. 139
TPC
•Caderno de Exercícios e Problemas: pp. 46 a 49
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
58 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Ligação química
CONTEÚDOS: Ligação covalente: estruturas de moléculas orgânicas e biológicas.
Metas
Curriculares
1.14 Identificar hidrocarbonetos saturados, insaturados e haloalcanos e, no caso de hidrocarbonetos saturados de
cadeia aberta até 6 átomos de carbono, representar a fórmula de estrutura a partir do nome ou escrever o nome a
partir da fórmula de estrutura.
1.15 Interpretar e relacionar os parâmetros de ligação, energia e comprimento, para a ligação CC nas moléculas
etano, eteno e etino.
1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas) em moléculas orgânicas,
biomoléculas e fármacos, a partir das suas fórmulas de estrutura.
Sumário
Hidrocarbonetos. Representação de fórmulas de estrutura e nomenclatura de alcanos.
Grupos funcionais e classes de compostos orgânicos.
Atividades
•Em diálogo com os alunos perguntar: «Como se justifica a grande importância do elemento carbono?» Incentivar a
sua participação e levá-los a associar a importância do carbono ao facto de ser o único elemento que pode ligar-se a
si próprio, formando moléculas de cadeias longas ou em anel, através de ligações covalentes, e ao se ligar
frequentemente ao hidrogénio (H), oxigénio (O) e nitrogénio (N) através de ligações covalentes (e menos
frequentemente a outros elementos) que são abundantes nos seres vivos.
•Concluir, portanto, que pela sua importância, o carbono é o elemento central do estudo de uma área da química: a
química orgânica.
•Introduzir o estudo dos hidrocarbonetos relembrando que as suas principais fontes são os combustíveis fósseis e
que hoje em dia existem milhares de compostos orgânicos que nem sequer existem na Natureza.
•Apresentar alguns exemplos de formas de representar os compostos orgânicos, como é o caso da fórmula de
estrutura, de estrutura condensada ou a fórmula de ligação em linha.
•Referir que os compostos orgânicos mais simples são os hidrocarbonetos (que são constituídos unicamente por
átomos de carbono e de hidrogénio) e que os hidrocarbonetos de cadeia aberta que apenas possuem ligações
simples pertencem à família dos alcanos.
•Analisar a Tab. 7 da página 127 do Novo 10Q para compreender que as mesmas fórmulas moleculares podem
corresponder a hidrocarbonetos com diferentes estruturas e, portanto, com diferentes propriedades.
•Referir que os alcanos são designados por hidrocarbonetos saturados por terem apenas ligações covalentes simples
entre os átomos de carbono.
•Por outro lado, referir que os hidrocarbonetos insaturados são os compostos que possuem ligações covalentes
duplas ou triplas entre os seus átomos de carbono.
•Recordar o comprimento de ligação e a energia de ligação já abordados para comparar os valores apresentados
para as diferentes ligações covalentes entre átomos de carbono nos hidrocarbonetos.
•Concluir que a maiores valores de energia de ligação correspondem menores valores de comprimento de ligação e,
portanto, a ligação covalente tripla é mais forte do que a ligação covalente simples.
•Colocar a questão «Será que apenas existem hidrocarbonetos de cadeia aberta?». Incentivar a participação dos
alunos e realçar as participações enriquecedoras.
•Concluir que existem hidrocarbonetos de cadeia fechada também chamados hidrocarboneto cíclicos.
•Apresentar o benzeno como um composto importante que pelas suas propriedades únicas (a partilha deslocalizada
dos eletrões das ligações duplas por todos os átomos de carbono do anel), é a base estrutural dos compostos
aromáticos (uma classe de compostos orgânicos).
•Recordando de novo o que já foi abordado no 9.
o
ano, apresentar a nomenclatura dos hidrocarbonetos saturados
com cadeias lineares ou ramificadas até 6 átomos de carbono, de acordo com as regras IUPAC.
•Analisar a tabela da página 134 do Novo 10Q para sintetizar as regras de nomenclatura destes compostos.
•A partir de alguns exemplos de fórmulas de estrutura pedir aos alunos que apresentem o nome respetivo, segundo
as regras da IUPAC.
Plano de aula N.o
10 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 59
Atividades
•De igual forma, apresentar os nomes de alguns compostos para os alunos representarem as suas fórmulas de
estrutura.
•Introduzir os grupos funcionais colocando a seguinte questão aos alunos «Será que os compostos orgânicos que
constituem os seres vivos são apenas constituídos por átomos de carbono e de hidrogénio?». Promover um pequeno
debate, realçando as ideias enriquecedoras.
•Concluir que os átomos de carbono também se podem ligar a outros elementos como o oxigénio, o nitrogénio e
também os halogéneos que dependendo da sua estrutura possuem propriedades particulares.
•Introduzir assim os grupos funcionais que são característicos de certas classes de compostos orgânicos.
•Apresentar as várias classes de compostos orgânicos – haloalcanos, álcoois, aldeídos, cetonas, ácidos carboxílicos e
aminas – e os respetivos grupos funcionais.
•Sublinhar a importância dos aminoácidos para os seres vivos indicando que estes são compostos orgânicos
formados por um grupo carboxilo (característico dos ácidos carboxílicos) e um grupo amina (característico das
aminas).
•Ler e analisar conjuntamente a Questão resolvida 5 da página 134 do Novo 10Q para consolidar a identificação das
classes de compostos orgânicos.
•Analisar as páginas 132 e 133 para dar a conhecer compostos orgânicos de estruturas mais complexas e realçar a
grande importância destes compostos para o conforto e qualidade de vida do ser humano.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 28 a
36 das «+Questões» das páginas 147 e 148 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos: pp. 126 a 134
Resumo: pp. 139
TPC
•Caderno de Exercícios e Problemas: pp. 49 a 51
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
60 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Ligação química
CONTEÚDOS: Ligações intermoleculares: Ligações de hidrogénio, forças de van der Waals (de London, entre moléculas polares e entre
moléculas polares e apolares). AL 2.1 Miscibilidade de líquidos
Metas
Curriculares
1.17 Identificar ligações intermoleculares – de hidrogénio e de van der Waals – com base nas características das
unidades estruturais.
1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos com as ligações intermoleculares que se estabelecem
entre unidades estruturais.
Sumário
Ligações intermoleculares: ligações de hidrogénio e forças de van der Waals: forças de London, ligações entre
moléculas polares e entre moléculas polares e apolares. Preparação e realização da AL 2.1 Miscibilidade de líquidos.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Em diálogo com os alunos, abordar as ligações intermoleculares já antes referidas colocando a questão «Por que é
que o cloreto de sódio se dissolve em água?». Incentivar a participação e realçar as participações enriquecedoras.
•Concluir que entre os iões do cloreto de sódio e as moléculas de água existem interações intermoleculares de
natureza eletrostática que permitem a dissolução do sólido em água.
•Referir que as ligações intermoleculares existem entre todas as moléculas mas numas são mais intensas que nas
outras.
•Sublinhar a ideia chave que as ligações intermoleculares têm sempre intensidade muito inferior às ligações
intramoleculares.
•Relembrar a polaridade das moléculas e definir as forças de van der Waals.
•Explicar que as forças de van der Waals ocorrem entre moléculas polares, entre moléculas polares e apolares e
entre moléculas apolares (também designadas por forças de London).
•Através da Fig. 20 da página 135 do Novo 10Q, analisar a forma como as moléculas polares interagem entre si: pela
distribuição assimétrica de carga elétrica.
•De forma semelhante, abordar as ligações de London a partir da Fig. 21 da página 136, concluindo que as
assimetrias momentâneas da distribuição da carga elétrica nas moléculas apolares podem induzir assimetrias de
carga nas moléculas vizinhas, interagindo assim umas com as outras.
•Introduzir as ligações entre as moléculas polares e apolares questionando «Como interagem as moléculas polares
com as apolares?». Promover um pequeno debate ordenado e, com base nos exemplos anteriores, concluir que as
ligações entre moléculas polares e as moléculas apolares surgem porque as moléculas polares induzem distribuições
assimétricas de carga nas moléculas apolares.
•Apresentar as ligações de hidrogénio como um caso particular de ligações intermoleculares entre moléculas
polares.
•Justificar esta particularização devido às ligações H–O existentes na molécula de água que possuem uma grande
assimetria de carga (que se verifica também nas ligações H–F e H–N) que tornam estas interações mais acentuadas.
•Realçar que quando existem ligações de hidrogénio entre moléculas, existem, ao mesmo tempo, todos os tipos de
ligações de van der Waals.
•Explicar que a miscibilidade dos líquidos depende, entre muitos fatores, das ligações intermoleculares que se
estabelecem entre eles.
•Concluir a tendência geral para a solubilidade dos líquidos. Realçar que, se se excluir a água, a generalidade das
substâncias líquidas são miscíveis entre si (pela existência de forças de London ou interações induzidas entre as
diferentes moléculas) e que a água é miscível apenas com líquidos que tenham moléculas polares (pela existência de
forças de hidrogénio ou ligações entre moléculas polares).
•Ler conjuntamente a Questão resolvida 6 da página 138 do Novo 10Q para interpretar a solubilidade de diferentes
líquidos com base na polaridade das suas moléculas.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 37
a 41 das «+Questões» da página 148.
Plano de aula N.o
11 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 61
•Introduzir a «AL 2.1 Miscibilidade de líquidos» colocando a seguinte questão «Como prever a miscibilidade de
líquidos com base na sua fórmula química?». Incentivar a participação e realçar as contribuições enriquecedoras.
•Partir das respostas dos alunos para compreender que as ligações intermoleculares existentes entre os líquidos da
mistura definem a sua miscibilidade.
•Na preparação da atividade laboratorial, abordar as questões de segurança no manuseio de alguns reagentes
líquidos.
•Analisar a Tab. 11 da página 137 como auxílio à previsão da miscibilidade das substâncias.
•Resolver as questões pré-laboratoriais da página 141 do Novo 10Q.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido na
página 142.
•Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 142.
•Resolver as questões 42 a 44 das «+Questões» das páginas 148 e 149 do Novo 10Q para consolidação dos
conhecimentos adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp. 135 a 138 e 140 a 142
Resumo: pp. 139
TPC
•Manual: Questões globais: pp. 149
•Caderno de Exercícios : pp. 51 e 52
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
62 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Gases e dispersões
CONTEÚDOS: Lei de Avogadro. Volume molar e massa volúmica. Soluções, coloides e suspensões.
Metas
Curriculares
2.1 Definir volume molar e, a partir da Lei de Avogadro, concluir que tem o mesmo valor para todos os gases à
mesma pressão e temperatura.
2.2 Relacionar a massa de uma amostra gasosa e a quantidade de matéria com o volume molar, definidas as
condições de pressão e temperatura.
2.3 Relacionar a massa volúmica de uma substância gasosa com a sua massa molar e volume molar.
2.4 Descrever a composição da troposfera terrestre, realçando N2 e O2 como os seus componentes mais
abundantes.
2.5 Indicar poluentes gasosos na troposfera e identificar as respetivas fontes.
2.6 Distinguir solução, dispersão coloidal e suspensão com base na ordem de grandeza da dimensão das partículas
constituintes.
2.7 Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e
suspensões de matéria particulada.
Sumário Lei de Avogadro. Volume molar. Massa volúmica. Soluções e dispersões: coloides e suspensões.
Atividades
•Fazer uma revisão da matéria do subdomínio «2.1 Ligação química» recorrendo ao «Resumo» da página 139 do
Novo 10Q.
•Em diálogo com os alunos referir que o estudo da matéria no estado gasoso é particularmente interessante para os
químicos porque nele as moléculas tendem a comportar-se como entidades isoladas, o que facilita a compreensão
de muitos fenómenos.
•Introduzir assim o volume molar como uma grandeza utilizada no estudo de gases e que é definido como o volume
ocupado por uma mole de gás em determinadas condições de pressão e de temperatura.
•Avançar para o estudo da Lei de Avogadro colocando a seguinte questão «Será o volume de uma mole de dióxido
de carbono igual ao volume de uma mole de hidrogénio?». Incentivar a participação e enfatizar as contribuições
enriquecedoras.
•Com base nas participações dos alunos, levá-los a compreender a Lei de Avogadro: volumes iguais de gases
diferentes contêm o mesmo número de moléculas, quando medidos nas mesmas condições de pressão e de
temperatura.
•Explicar que para valores próximos da pressão atmosférica e da temperatura ambiente, as moléculas de um gás
ocupam um espaço ínfimo quando comparado com o volume ocupado pela amostra e, por isso, o volume ocupado
por um gás não depende do tipo de moléculas que o constituem.
•Apresentar que, como o número de moléculas de gás numa amostra é diretamente proporcional à quantidade de
matéria, então volumes iguais de gases (nas mesmas condições de pressão e de temperatura) contêm a mesma
quantidade de matéria. Concluir assim a relação entre o volume molar, o volume ocupado por uma amostra de gás e
a quantidade de matéria dessa amostra.
•Informar que, nas condições normais de pressão e temperatura, o volume molar de qualquer gás é 22,4 dm
3
/mol.
•Ler conjuntamente a Questão resolvida 1 da página 152 do Novo 10Q para sistematizar.
•Demonstrar a relação existente entre a massa volúmica de um gás, a sua massa molar e o seu volume molar.
•Ler conjuntamente a Questão resolvida 2 da página 154 do Novo 10Q.
•Em diálogo com os alunos questionar «Quais são os componentes maioritários da nossa atmosfera?». Promover
um pequeno debate e realçar as participações mais enriquecedoras.
•Complementar o debate com a análise da Fig. 3 da página 155 e concluir que o nitrogénio é o gás mais abundante
na atmosfera, seguido do oxigénio, do árgon e do dióxido de carbono.
•Com base na Tab. 1 da página 155 do Novo 10Q, analisar conjuntamente os principais poluentes na atmosfera e
quais as suas origem.
Plano de aula N.o
12 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 63
•Avançar para o estudo das soluções, coloides e suspensões, recordando as misturas de substâncias abordadas no
7.
o
ano.
•Questionar os alunos sobre «O que é uma suspensão, um coloide e uma suspensão?». Incentivar a participação e
enfatizar as contribuições enriquecedoras.
•Das participações dos alunos, definir solução como uma mistura homogénea onde não é possível distinguir os seus
componentes pois as suas partículas apresentam, tipicamente, diâmetro inferior a 1 nm.
•Por analogia, definir as outras misturas (ou dispersões) em coloides se as suas partículas tiverem diâmetro entre
1 nm e 1 μm ou em suspensões se as suas partículas tiverem diâmetro superior a 1 μm.
•Referir que, tal como nas soluções há o soluto e o solvente, nas dispersões há o meio disperso e o meio
dispersante.
•Demonstrar o efeito de Tyndall utilizando um apontador laser e uma dispersão de água com farinha e caracterizar
este efeito como uma propriedade dos coloides.
•Construir conjuntamente um quadro semelhante à Tab. 2 da página 156 do Novo 10Q para sintetizar o conteúdo.
•Realçar que a presença de material particulado (suspensões e coloides) na atmosfera constitui um dos mais graves
fatores de poluição atmosférica na atualidade.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
22 das «+Questões» das páginas 168 e 169 do Novo 10Q.
Recursos
•Manual
Apresentação dos conteúdos: pp. 152 a 156
Resumo: pp. 163
TPC
•Caderno de Exercícios : pp. 58 a 60
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
64 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Gases e dispersões
CONTEÚDOS: Composição quantitativa de soluções: concentração em massa, concentração.
AL 2.2 Soluções a partir de solutos sólidos.
Metas
Curriculares
2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera
terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes
por milhão, e estabelecer correspondências adequadas.
Sumário Composição quantitativa de soluções: concentração em massa, concentração.
Preparação e realização da AL 2.2 Soluções a partir de solutos sólidos.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Introduzir o estudo da composição quantitativa de soluções perguntando «Como se pode expressar
quantitativamente o soluto existente numa solução?». Incentivar a participação e realçar as participações
enriquecedoras. Relembrar que no 7.
o
ano já foi estudada a concentração mássica que é uma medida da massa de
soluto existente numa determinada solução mas que esta não é a única forma de quantificar o soluto numa solução.
•Analisar a Tab. 3 da página 157 do Novo 10Q para interpretar a concentração mássica de diversos poluentes na
atmosfera.
•Recolher diferentes embalagens de água e comparar a concentração mássica dos iões presentes.
•A partir dos exemplos das concentrações mássicas dos iões em água, resolver conjuntamente problemas, por
exemplo, com vista à determinação da massa total de iões na garrafa ou à determinação do volume de água
necessário ingerir para satisfazer as necessidades diárias de um determinado ião.
•Retomar o conceito de fração molar já abordado anteriormente.
•A partir de um exemplo de uma mistura gasosa de dois ou três componentes, e conhecidas as suas massas,
determinar a fração molar de cada um desses componentes para sistematizar o conteúdo.
•Questionar os alunos sobre «O que é a concentração?». Promover um pequeno debate e realçar as contribuições
enriquecedoras. Das participações dos alunos, informar que o termo «concentração» é usado, em linguagem
comum, para refletir a quantidade de um componente numa mistura. No entanto, sublinhar que este termo tem um
significado científico mais rigoroso.
•Definir concentração como uma medida da quantidade de matéria de soluto existente em cada unidade de volume da
solução. Salientar que a concentração é uma medida da composição quantitativa de soluções particularmente útil em
química.
•Partir do exemplo da concentração mássica dos iões na água engarrafada para determinar a sua concentração
como forma de sistematizar a relação entre as várias formas de identificar a composição qualitativa de soluções.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 22 a
28 das «+Questões» da página 170 do Novo 10Q.
•Introduzir a «AL 2.2 Soluções a partir de solutos sólidos» colocando a seguinte questão «Como preparar uma
solução de sulfato de cobre (II) penta-hidratado de concentração 0,050 mol/dm
3
?». Incentivar a participação e
realçar as participações enriquecedoras. Partir das respostas dos alunos para preparar a atividade laboratorial.
•Abordar os erros sistemáticos e aleatórios associados às medições a efetuar. Resolver as questões pré-laboratoriais
da página 164.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no
Novo 10Q na página 165. Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 165.
•Resolver as questões 40 a 43 das «+Questões» da página 172 para consolidação dos conhecimentos adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp. 157 a 158 e 164 a 168
Resumo: pp. 139
TPC
•Caderno de Exercícios : pp. 61 a 67
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Plano de aula N.o
13 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 65
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Gases e dispersões
CONTEÚDOS: Composição quantitativa de soluções: percentagem em volume e percentagem em massa, fração molar, partes por
milhão. Diluição de soluções aquosas. AL 2.3 Diluição de soluções.
Metas
Curriculares
2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera
terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes
por milhão, e estabelecer correspondências adequadas.
Sumário Composição quantitativa de soluções: percentagem em volume e percentagem em massa, fração molar, partes por
milhão. Diluição de soluções aquosas. Preparação e realização da AL 2.3 Diluição de soluções.
Atividades
•Fazer uma revisão da matéria dada na aula anterior.
•Relembrar o estudo da composição quantitativa de soluções analisando um rótulo de álcool etílico comercial.
Promover um pequeno debate e realçar as participações enriquecedoras. Concluir que existem outras formas de
quantificar o soluto presente nas soluções para além das estudadas na aula anterior.
•Partir do exemplo anterior para introduzir a percentagem em volume e identificar o soluto e o solvente da solução.
Determinar conjuntamente o volume de soluto presente na embalagem em questão.
•Recolher diferentes embalagens de água e comparar a concentração mássica dos iões presentes.
•Por analogia, introduzir o conceito de percentagem em massa. Determinar a massa de água de uma das
embalagens e calcular a massa de alguns dos seus iões para determinar as suas percentagens em massa.
•Ler e analisar a Questão resolvida 3 da página 159 do Novo 10Q.
•Comparar, respetivamente, a percentagem em massa e em volume com as partes por milhão e as partes por milhão
em volume, e mostrar que as percentagens em massa e em volume representam as partes de soluto existentes por
cada 100 partes de solução existente, enquanto que as partes por milhão e as partes por milhão em volume
representam as partes de soluto existentes em cada milhão de partes de solução.
•Partir do exemplo do dióxido de carbono na atmosfera para demonstrar a relação existente, respetivamente, entre
percentagem em massa ou em volume e as partes por milhão ou as partes por milhão em volume.
•Através da exploração de exemplos de soluções, construir conjuntamente uma síntese semelhante à Tab. 4 da
página 162 para sistematizar as relações existentes estre as diferentes expressões da composição quantitativa das
soluções. Ler conjuntamente a Questão resolvida 5 da página 162 para consolidação de conhecimentos.
•Partir do exemplo da concentração mássica dos iões na água engarrafada para determinar a sua concentração
como forma de sistematizar a relação entre as várias formas de identificar a composição qualitativa de soluções.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 29 a
37 das «+Questões» das páginas 170 a 171 do Novo 10Q.
•Introduzir a «AL 2.3 Diluição de soluções» colocando a seguinte questão «Como preparar uma solução diluída de
permanganato de potássio a partir de uma solução inicial mais concentrada?». Incentivar a participação e realçar as
participações enriquecedoras. Partir das respostas dos alunos para preparar a atividade laboratorial.
•Abordar o fator de diluição e explorar alguns exemplos para consolidação.
•Resolver as questões pré-laboratoriais da página 166 do Novo 10Q.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no
Novo 10Q na página 167. Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 167.
•Resolver as questões 38 a 40 e 44 a 45 das «+Questões» da página 172 do Novo 10Q para consolidação dos
conhecimentos adquiridos.
Recursos
•Manual
Apresentação dos conteúdos: pp. 158 a 162 e 166 a 167
Resumo: pp. 139
TPC
•Manual: Questões globais pp. 173
•Caderno de Exercícios e Problemas: pp. 61 a 65 e 67 a 68
•
Avaliação •Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
Plano de aula N.o
14 90 + 135 min
66 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Transformações químicas
CONTEÚDOS: Energia de ligação e reações químicas: processos endoenergéticos e exoenergéticos.
Reações fotoquímicas na atmosfera: fotodissociação e fotoionização.
Metas
Curriculares
3.1 Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações
químicas.
3.2 Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo
endoenergético.
3.3 Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado,
ocorrem, respetivamente, com aumento ou diminuição de temperatura.
3.4 Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de
ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu
sinal (positivo ou negativo).
3.5 Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e
dos produtos e a variação de entalpia.
3.6 Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação
a partir da variação de entalpia e de outras energias de ligação.
3.7 Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas.
3.8 Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos.
3.9 Interpretar fenómenos de fotodissociação e fotoionização na atmosfera terrestre envolvendo O2, O3, e N2
relacionando-os com a energia da radiação envolvida e com a estabilidade destas moléculas.
Sumário
Energia de ionização. Processos endoenergéticos e exoenergéticos.
Reações fotoquímicas: fotoionização e fotodissociação.
Atividades
•Fazer uma revisão da matéria do subdomínio «2.2 Gases e dispersões» recorrendo ao «Resumo» da página 163 do
Novo 10Q.
•Em diálogo com os alunos, explicar que reações químicas são transformações em que determinadas substâncias
originam outras relembrando a matéria já estudada no 3.
o
ciclo. Referir também que as reações químicas obedecem
à Lei de Lavoisier (ou Lei da Conservação da Massa).
•Explicar que para haver transformação de umas substâncias noutras tem de haver ruturas de ligações químicas nos
reagentes e formações de ligações nos produtos da reação.
•Introduzir os processos endoenergéticos como processos onde há absorção de energia, tal como na rutura das
ligações químicas.
•Por comparação, abordar os processos exoenergéticos como processos onde há libertação de energia, como na
formação de ligações químicas.
•Por analogia, questionar sobre «O que são reações endotérmicas e exotérmicas?». Promover a participação e
realçar as ideias enriquecedoras.
•Das participações, concluir que nas reações endotérmicas há absorção de energia o que se traduz, num sistema
fechado, pela diminuição da energia do sistema. Já nas reações exotérmicas há libertação de energia que se traduz,
num sistema fechado, pelo aumento da temperatura do sistema.
•Ler conjuntamente a Questão resolvida 1 da página 177 do Novo 10Q.
•Avançar para o estudo da variação da entalpia sublinhando que, em geral, os sistemas químicos não são isolados e,
portanto, há trocas de energia entre o sistema e a vizinhança.
•Questionar «Como se pode prever se uma reação é endotérmica ou exotérmica?». Promover um pequeno debate e
realçar as participações positivas.
•Partir do debate para compreender que a energia libertada ou absorvida pelo sistema resulta de um balanço entre
a energia absorvida na rutura das ligações químicas e a energia libertada na sua formação.
•Informar que este balanço permite prever se a reação é endotérmica ou exotérmica.
Plano de aula N.o
15 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 67
Atividades
•Analisar a Fig. 6 da página 178 do Novo 10Q para interpretar a variação da entalpia numa reação endotérmica e
numa reação exotérmica.
•Concluir que na reação exotérmica a energia libertada pela formação das ligações químicas é superior à energia
absorvida pelo que há transferência de energia do sistema para a vizinhança, aumentando a temperatura da
vizinhança.
•De igual forma, concluir que na reação endotérmica a energia libertada pela formação das ligações químicas é
inferior à energia absorvida pelo que há transferência de energia da vizinhança para o sistema, diminuindo a
temperatura da vizinhança.
•Definir a variação da entalpia como uma grandeza que meda a energia transferida entre o sistema e a vizinhança
quando a reação química ocorre a pressão constante.
•Indicar que se a variação da entalpia for negativa a reação é exotérmica pois o sistema cedeu energia à vizinhança e
se a variação da entalpia for positiva a reação é endotérmica pois o sistema recebeu energia da vizinhança.
• Para consolidação, analisar a variação da entalpia da reação, por exemplo, de formação da água e a variação da
entalpia da reação da sua decomposição.
•Sublinhar a ideia chave que se uma reação for exotérmica, a sua reação inversa será endotérmica e as respetivas
variações de entalpia serão simétricas (e vice-versa).
•Referir a energia de ligação como a energia mínima necessária para quebrar uma mole de ligações em moléculas.
•A partir de um exemplo, calcular a sua variação da entalpia como a diferença entre a soma das energias de ligação
dos reagentes e a soma das energias de ligação dos produtos.
•Ler e analisar conjuntamente as Questões resolvidas 2 e 3 das páginas, respetivamente, 179 e 182 do Novo 10Q
para sintetizar.
•Avançar para o estudo das reações fotoquímicas questionando «Que exemplos conhecem de reações químicas
desencadeadas pela luz?». Incentivar a participação ordenada e realçar as ideias enriquecedoras.
•Das participações dos alunos, realçar exemplos como o bronzeamento, a fotodegradação dos materiais, o processo
de revelação fotográfica, entre outros.
•Definir que as reações que são desencadeadas pela luz são reações fotoquímicas.
•Apresentar a fotodissociação como uma transformação onde há quebra de ligações químicas (sendo portanto um
processo endotérmico) por ação da radiação.
•Contextualizar as reações de fotodissociação explicando que a atmosfera terrestre atua como um filtro de radiação
que absorve as radiações ultravioleta provocando a fotodissociação das moléculas de nitrogénio, de oxigénio e de
ozono, por exemplo.
•Relembrar exemplos sobre a energia de remoção eletrónica onde a remoção dos eletrões poderia ser feita através
da incidência de radiação nos átomos para introduzir a fotoionização como o processo de remoção de eletrões de
um átomo por ação da radiação.
•Referir que, tal como a fotodissociação, a fotoionização é um processo energético, mas que necessita de absorver
mais energia para ocorrer.
•Contextualizar, por exemplo, com os fenómenos da ionosfera como as auroras boreais.
•Ler conjuntamente a Questão resolvida 4 da página 184 do Novo 10Q.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a
17 das «+Questões» das páginas 194 a 196.
Recursos
•Manual
Apresentação dos conteúdos: pp. 176 a 184
Resumo: pp. 191
TPC
•Caderno de Exercícios e Problemas: pp.74 a 77
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
68 Editável e fotocopiável © Texto | Novo 10Q
Escola__________________________________________________________________________________________________________
Ano _______________________________ Turma _______________Aula N.o
________Data________/________/ ________
DOMÍNIO: Propriedades e transformações da matéria
SUBDOMÍNIO: Transformações químicas
CONTEÚDOS: Reações fotoquímicas na atmosfera: radicais livres e estabilidade das espécies químicas. Ozono estratosférico.
AL 2.4 Reação fotoquímica.
Metas
Curriculares
3.10 Identificar os radicais livres como espécies muito reativas por possuírem eletrões desemparelhados.
3.11 Interpretar a formação e destruição do ozono estratosférico, com base na fotodissociação de O2 e de O3, por
envolvimento de radiações ultravioletas UV-B e UV-C, concluindo que a camada de ozono atua como um filtro
dessas radiações.
3.12 Explicar a formação dos radicais livres a partir dos clorofluorocarbonetos (CFC) tirando conclusões sobre a sua
estabilidade na troposfera e efeitos sobre o ozono estratosférico.
3.13 Indicar que o ozono na troposfera atua como poluente em contraste com o seu papel protetor na estratosfera.
Sumário
Formação de radicais livres. Formação e decomposição do ozono estratosférico. Clorofluorocarbonetos e destruição
da camada do ozono. Preparação e realização da AL 2.4 Reação fotoquímica.
Atividades
•Fazer uma revisão da matéria da aula anterior.
•Em diálogo com os alunos, relembrar que, pelo Princípio de Exclusão de Pauli, uma orbital pode ser ocupada por 2
eletrões com spins opostos e por isso se diz que estão emparelhados.
•Introduzir o conceito de radical livre, referindo que, quando esse emparelhamento não se verifica, ou seja, se uma
orbital tiver apenas um eletrão desemparelhado, diz-se que a espécie química (átomo, molécula ou ião) é um radical
livre, ou simplesmente radical.
•Determinar conjuntamente, a partir de exemplos, quais as espécies químicas que são radicais livres a partir da sua
configuração eletrónica.
•Explicar que estas espécies químicas são muito reativas contextualizando com os antioxidantes nos alimentos.
•Avançar para o estudo do ozono estratosférico, perguntando «Porque será o ozono uma substância tão importante
para a vida na Terra?». Promover um pequeno debate e realçar as ideias enriquecedoras.
•Relembrando que o ozono sofre reações de fotodissociação na atmosfera, compreender, a partir do debate, que o
ozono atua como um filtro solar pois absorve a radiação muito energética (UV-A e UV-B) que é prejudicial para os
seres vivos.
•De seguida, abordar as reações fotoquímicas que estão na base da formação e da decomposição do ozono
estratosférico.
•Sublinhar a ideia chave que as energias de ligação nas moléculas ozono são da ordem da energia das radiações
UV-A e UV-B e que a energia de ligação nas moléculas de oxigénio é da ordem da energia da radiação UV-C que
chega à estratosfera.
•Contextualizar a formação e a decomposição do ozono com a problemática global do «buraco da camada do
ozono».
•Promover um breve debate sobre esta problemática para compreender que a atividade humana foi responsável
pela diminuição da camada do ozono por libertar para a atmosfera compostos capazes de produzir radicais livres na
estratosfera, nomeadamente os clorofluorocarbonetos.
•Realçar a influência do radical cloro na destruição da camada de ozono analisando as reações químicas que
ocorrem em cadeia entre o radical cloro e o ozono.
•Sublinhar que nestas reações o radical cloro é regenerado e, portanto, os efeitos da emissão dos
clorofluorocarbonetos prolongar-se-ão para o futuro.
•Ler e analisar a Questão resolvida 5 da página 188 do Novo 10Q para sistematizar.
•Realizar a atividade a Atividade da página 189 «O Buraco do Ozono» para consolidação.
•Sublinhar também que, apesar da importância do ozono na estratosfera, quando este se encontra na troposfera
(resultado de um conjunto complexo de reações químicas) atua como poluente causando irritações de olhos e pele e
provocando problemas respiratórios.
•Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 18
a 27 das «+Questões» das páginas 196 e 197 do Novo 10Q.
Plano de aula N.o
16 90 + 135 min
Editável e fotocopiável © Texto | Novo 10Q 69
•Introduzir a «AL 2.4 Reação fotoquímica» questionando «Como se pode verificar a existência de uma reação
fotoquímica?». Incentivar a participação e realçar as contribuições enriquecedoras.
•Partir das respostas dos alunos para preparar a atividade laboratorial.
•Abordar as variáveis que afetam a reação fotoquímica e o controlo de variáveis a efetuar.
•Resolver as questões pré-laboratoriais da página 192 do Novo 10Q.
•Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no
Novo 10Q na página 193.
•Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 193.
•Resolver as questões 28 e 29 das «+Questões» da página 198 do Novo 10Q para consolidação dos conhecimentos
adquiridos
Recursos
•Manual
Apresentação dos conteúdos: pp. 185 a 190 e 192 a 193
Resumo: pp. 191
TPC
•Manual: Questões globais pp. 198
•Caderno de Exercícios e Problemas: pp. 77 e 78
•
Avaliação
•Observação direta dos alunos na aula.
•Observação da participação e empenho nas tarefas propostas.
70 Editável e fotocopiável © Texto | Novo 10Q
Notas
Editável e fotocopiável © Texto | Novo 10Q 71
Apoio à componente laboratorial do Novo 10Q
De acordo com o programa de Física e Química A do 10.o
/11.o
ano, o trabalho laboratorial é parte
fundamental da formação do aluno em química. Mas as planificações, as técnicas e as metodologias
associadas ao trabalho de laboratório têm especificidades próprias.
Esta parte do guião pretende ser uma ajuda para o professor nesta vertente. Apresentamos
algumas orientações e materiais de apoio que poderão ser úteis para desenvolver o trabalho de
laboratório.
Respostas às questões das atividades laboratoriais do Novo 10Q
No decurso das atividades laboratoriais exploradas no Novo 10Q são colocadas algumas
questões pré e pós-laboratoriais, às quais procuramos aqui dar algumas respostas, ressalvando que
há questões cuja resposta apenas pode ser obtida após a realização da atividade proposta e que, por
isso, não se encontra aqui resolvida. Preferimos não facultar as respostas no manual, pois essas
questões promovem um esforço de reflexão que poderia ficar comprometido se os alunos pudessem
consultar imediatamente as soluções.
AL 1.1. Volume e número de moléculas
de uma gota de água (pág. 28 a 30)
Questões pré-laboratoriais
1. a) 0,60 mL; b) 0,04 mL; c) 0,60 mL ± 0,04 mL; d) [0,56; 0,64] mL.
2. a) V2 – V1 = 0,65 – 0,60 = 0,05 mL; b) 1 algarismo significativo.
3. a) (V3 – V2)/100 = (6,85 – 0,65)/100 = 0,0620 mL; b) 3 algarismos significativos.
4. A incerteza do valor obtido em 3. é menor do que a incerteza do valor obtido em 2., o que se pode
verificar pelo facto de o valor obtido em 3. ter mais algarismos significativos. Não é razoável medir
o volume de uma só gota com uma pipeta graduada, pois o volume obtido é muito pequeno,
sendo elevada a incerteza correspondente.
5. A massa de 100 gotas tem 3 algarismos significativos enquanto a massa de 1 gota apenas tem
1 algarismo significativo. Assim, a incerteza na determinação indireta da massa de 1 gota usando
3,14/100= 0,0314 g é menor do que na determinação direta da massa de 1 gota.
Questões pós-laboratoriais
4. a) O valor da massa. A informação adicional necessária é a massa molar da água e a constante de
Avogadro.
AL 1.2. Teste de chama (pág. 66 a 68)
Questões pré-laboratoriais
1. Para garantir que a cor da chama resulta apenas do catião em estudo, isto é, que não existe
sobreposição da cor conferida à chama pelo catião com cores que resultem de impurezas
presentes na amostra.
72 Editável e fotocopiável © Texto | Novo 10Q
2. O bico de Bunsen atinge temperaturas mais altas, o que permite excitar os átomos de modo a que
os seus eletrões fiquem em níveis energéticos superiores. Por outro lado, temperaturas mais altas
permitem aumentar a fração de átomos excitados.
3. a) C. b) A, C, D.
Questões pós-laboratoriais
1. a) Deve-se à luz emitida quando ocorrem desexcitações nos átomos presentes na amostra em
estudo.
b) Porque são diferentes os níveis de energia em átomos de diferentes elementos, sendo também
diferentes as transições eletrónicas entre esses níveis.
c) Para proceder à excitação dos átomos e porque as temperaturas mais altas permitem aumentar
a fração de átomos excitados e, assim, obter emissões mais intensas (cores mais nítidas e mais
estáveis).
2. Não. A cor do sal não está relacionada com a cor da chama.
3. C.
4. A cor do fogo de artifício deve-se à emissão de luz como resultado da excitação e desexcitação de
átomos de diversos elementos químicos, tal como sucede nos ensaios de chama.
AL 1.3 Densidade relativa de metais (pág. 94 a 97)
Questões pré-laboratoriais
1. Como ρ =
m
V
vem d =
𝑚metal
𝑉metal
𝑚água
𝑉água
e como Vmetal= Vágua conclui-se que d =
mmetal
mágua
2. a) Corresponde à massa de água com volume igual ao volume das esferas.
b) d =
mA
mB − mC
=
13,44
75,85 − 74,64
= 11,1;
c) erro de medição =
| valor medido-valor verdadeiro |
valor verdadeiro
× 100 =
| 11,1 − 11,35|
11,35
× 100 = 2,2%
d)
𝑚𝐴 𝑚𝐵 𝑚𝐶 𝑚𝐵 − 𝑚𝐶
𝑚𝐴
𝑚𝐵 − 𝑚𝐶
Valor 13,44 75,85 74,64 1,21 11,1
N.
o
de algarismos
significativos
4 4 4 3 3
3. a. Erro sistemático. b. Erro sistemático. c. Erro aleatório. d. Erro aleatório. e. Erro sistemático.
AL 2.1. Miscibilidade de líquidos (pág. 140 a 142)
Questões pré-laboratoriais
1. A, B, C e E.
  Editável e fotocopiável © Texto | Novo 10Q  73 
2. A‐IV‐a‐3; B‐I‐a‐2; C‐II‐a‐3; D‐V‐b‐1; E‐III‐b‐1. 
3.  
  Previsões 
  Água  Etanol  Acetona  Hexano  Xileno 
Água    m  m  i  i 
Etanol      m  m  m 
Acetona        m  m 
Hexano          m 
Xileno           
Trabalho laboratorial 
1. A, C, D, E, F. 
2. Deve usar‐se um só conta‐gotas para cada um dos líquidos, mas todos os conta‐gotas devem ser 
de igual modelo para que, contando igual número de gotas de líquidos diferentes, o volume seja 
sempre igual. 
Questões pós‐laboratoriais 
2.  
  Previsões 
  Água  Etanol  Acetona  Hexano  Xileno 
Água    H‐H; p‐p; L‐L  p‐p; L‐L  L‐L; p‐a  L‐L; p‐a 
Etanol      p‐p; L‐L  L‐L; p‐a  L‐L; p‐a 
Acetona        L‐L; p‐a  L‐L; p‐a 
Hexano          L‐L; p‐a 
Xileno           
AL 2.2 Soluções a partir de solutos sólidos (pág. 164 a 165) 
Questões pré‐laboratoriais 
1.  Sulfato  de  cobre  (II)  penta‐hidratado:  nocivo  por  ingestão,  pode  provocar  irritação  cutânea  e 
irritação  ocular  grave,  muito  tóxico  para  os  organismos  aquáticos  com  efeitos  duradouros.  
Esta informação pode ser encontrada no rótulo da embalagem. 
2. O volume adequado deverá ser 50 ou 100 mL. 
3. Considerando o volume de 50,00 mL: 
n	=	c ×	V  ⇔ 	n 0,050 ×	0,05000	=	0,0025 mol  
m	=	n ×	M	 ⇔ 	m 0,0025 × 249,72 =	0,62 g    
74 Editável e fotocopiável © Texto | Novo 10Q
Questões pós-laboratoriais
4. A concentração da solução preparada pode ser afetada pela perda de massa de soluto entre a
pesagem e a sua dissolução; pela perda de volume de solução na transferência para o balão,
devido a um mau acerto pelo menisco do balão. Não enxaguar convenientemente o recipiente de
armazenamento pode resultar em contaminações da solução ou na alteração da sua composição.
5. É necessário para eliminar do frasco qualquer resto de água que possa alterar a concentração da
solução.
AL 2.3. Diluição de soluções (pág. 166 a 167)
Questões pré-laboratoriais
1. 20,00 mL ± 0,03 mL
2. I = 20; II = 25 mL; III = 20 mL.
3. Caso se opte por usar a solução preparada na AL 2.2: Sulfato de cobre (II) penta-hidratado: nocivo
por ingestão, pode provocar irritação cutânea e irritação ocular grave, muito tóxico para os
organismos aquáticos com efeitos duradouros.
Trabalho laboratorial
I = 20 mL; II = 50 mL; III = 25.
Questões pós-laboratoriais
2. As pipetas volumétricas são instrumentos de medição de volumes mais rigorosos (têm menor
incerteza), no entanto as pipetas graduadas permitem a medição de uma gama maior de volumes.
AL 2.4. Reação fotoquímica (pág. 192 a 193)
Questões pré-laboratoriais
1. A – cloreto de sódio; B – cloreto de prata.
2. C.
Questões pós-laboratoriais
1. E; B; D; C; A.
2. Verde.
3. Haveria escurecimento do cloreto de prata porque a luz violeta é a mais energética do espetro
visível.
4. A folha de alumínio protege o cloreto de prata da luz. Ao retirar a folha de alumínio de todos os
tubos ao mesmo tempo garante-se que o tempo de exposição é o mesmo para todos.
Editável e fotocopiável © Texto | Novo 10Q 75
Grelhas de registo
Grelha de observação das aulas laboratoriais de química
PARÂMETROS A AVALIAR
NA AULA
AL1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4
Cumprimento das regras
de segurança no laboratório
Preparação do trabalho
antes da aula
Organização do trabalho
Manuseamento correto
de material e reagentes
Autonomia na execução
Espírito de observação
Aplicação de conhecimentos
Cooperação com os colegas
do grupo
CLASSIFICAÇÃO
76 Editável e fotocopiável © Texto | Novo 10Q
Grelha de avaliação de relatórios
PARÂMETROS A AVALIAR
NO RELATÓRIO
AL1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4
Cumprimento dos prazos
de entrega
Apresentação do relatório
Apresentação dos objetivos
do trabalho
Registo dos cuidados
a ter durante o trabalho
Registo do material
e reagentes utilizados
Descrição correta
do procedimento efetuado
Apresentação de rigor
científico/técnico
Apresentação correta dos devidos
algarismos significativos
Apresentação correta dos cálculos
Análise dos resultados
Conclusões adequadas e corretas
Apresentação de bibliografia
CLASSIFICAÇÃO
Editável e fotocopiável © Texto | Novo 10Q 77
Atividade: Desafios da nanotecnologia (pág. 20)
1. «A redução das dimensões dos materiais incorporados nos têxteis possibilita a obtenção de
propriedades especiais sem comprometer a sua leveza, flexibilidade e conforto.»
2. D.
3. a) A espessura dos fios de tecido é aproximadamente 200 nm.
b) O diâmetro das nanopartículas de silício é aproximadamente 27 nm.
c) A razão entre a ordem de grandeza da espessura dos fios e a ordem de grandeza do diâmetro
das nanopartículas de silício é:
102
101 =10.
Atividade: Observação de espetros de tubos de Pluecker (pág. 53)
1. Os espetros obtidos são espetros descontínuos de emissão.
2. a) As riscas observadas correspondem a transições dos eletrões de níveis de maior energia para
níveis de menor energia.
b) Cada elemento tem um espetro que lhe é característico porque os valores de energia de cada
nível eletrónico são diferentes de átomo para átomo. Assim, também são diferentes as energias
de cada transição e a luz que lhes está associada.
3. A.
4. Atividade de pesquisa sobre o aspeto da emissão de um elemento químico à escolha do aluno.
Atividade: Propriedades dos elementos e das substâncias
elementares (pág. 92)
1. São substâncias constituídas por um único elemento. Podem chamar-se também substâncias
simples.
2. Informações sobre o elemento: número atómico, massa atómica relativa, raio atómico, energia de
ionização, símbolo químico, nome.
Informações sobre a substância elementar: ponto de fusão, ponto de ebulição, massa volúmica.
3. a) A parte da Tabela Periódica representa o fósforo branco pois a densidade relativa
(numericamente igual à massa volúmica) e o ponto de fusão correspondem aos valores
indicados na Tabela Periódica.
b) O carbono e o oxigénio (entre outros) apresentam alótropos. O carbono pode surgir na forma
de grafite, grafeno ou diamante. Já o oxigénio surge na forma de oxigénio, O2, ou ozono, O3.
4. Atividade de pesquisa sobre Tabelas Periódicas.
Respostas às questões das Atividades do Novo 10Q
78 Editável e fotocopiável © Texto | Novo 10Q
Atividade: Modelos moleculares e simulações
computacionais (pág. 121)
1. Geometria linear.
2. Geometria angular.
3. A geometria da molécula mantém-se mas o ângulo de ligação diminui.
4. A molécula adquire uma geometria triangular plana. Os ângulos de ligação são todos iguais.
5. A molécula adquire uma geometria piramidal trigonal. Os ângulos de ligação são todos iguais mas
inferiores aos ângulos da situação anterior.
6. A molécula adquire uma geometria tetraédrica.
Atividade: O buraco do ozono (pág. 189)
1. «O chefe da expedição, Joe Farman, ao olhar para os valores muito mais baixos do que era
comum, ficou de tal modo surpreendido que esperou pela chegada de um novo instrumento de
Inglaterra, antes de publicar os resultados.»
ou
«as medições efetuadas pelo satélite eram processadas automaticamente e que o computador
tinha sido programado para rejeitar valores de concentração de ozono abaixo de determinado
limite, tal era a confiança na pequena variabilidade da concentração do ozono.»
2. Dimensão tecnológica: Uso de equipamentos de medição e registo «As medições... foram
realizadas com um aparelho que já estava em uso há bastantes anos. (...) medições efetuadas com
o novo equipamento (...). Felizmente os dados rejeitados pelo computador puderam ser
recuperados».
Dimensão ambiental: «Naquela zona da Antártica, o ozono estratosférico tinha diminuído cerca de
30%.»;
Dimensão social: «Estes resultados foram publicados e, a partir daí, desenvolveram-se grandes
esforços para conhecer a causa de tal diminuição.»
3. 1987.
Editável e fotocopiável © Texto | Novo 10Q 79
Grupo I
Subdomínio 1.1: Massa e tamanho dos átomos.
1. A tabela contém informações sobre cinco espécies químicas diferentes.
Número de
Espécie eletrões protões neutrões
H
1
1
H
1
2
H
1
3
H+
1
1
H−
1
1
a) Complete a tabela com o número de eletrões, protões e neutrões.
b) Elabore um texto no qual justifique os valores que escreveu na tabela para a espécie H
1
3
.
c) Que nome dá ao conjunto das duas espécies representadas por H
1
2
e H
1
3
?
d) Faça uma ilustração legendada da espécie representada por H
1
3
, que esclareça sobre a localização
relativa de cada uma das partículas que a constituem.
e) Sabendo que a carga elétrica do protão é 1,6 x 10-19
C diga qual é a carga elétrica do eletrão.
f) Das espécies representadas, indique qual representa um anião.
2. Na figura pode ver-se uma amostra de arroz e uma ampliação de um dos grãos de arroz dessa
amostra. Num quilograma dessa amostra contaram-se 57 600 grãos de arroz.
a) A potência de base 10 mais próxima de 57 600 é:
(A) 102
. (B) 103
. (C) 104
. (D) 105
.
0,50 cm
NOME ___________________________________________________ Turma______ Número______
Subdomínio 1.1: Massa e tamanho dos átomos.
Subdomínio 1.2: Energia dos eletrões nos átomos.
Subdomínio 1.3: Tabela Periódica.
.
Ficha de diagnóstico
Domínio 1: Elementos químicos e sua organização
80 Editável e fotocopiável © Texto | Novo 10Q
b) Escreva uma expressão matemática que permita determinar quantas dúzias de grãos de arroz
existem num quilograma de arroz.
c) O valor médio da massa de cada grão de arroz é:
(A) 17,4 g. (B) 17,4 mg. (C) 1,74 g. (D) 1,74 mg.
d) De acordo com a sua resposta na alínea c), escreva o valor médio da massa de um grão de arroz
expresso em quilogramas.
e)Qual é o comprimento do grão de arroz? Apresente a sua resposta em duas unidades diferentes.
f) Escreva o resultado obtido na alínea e) na unidade do Sistema Internacional de unidades (SI),
usando potências de base 10.
g) Qual foi o fator de ampliação usado na imagem do grão de arroz?
3. A tabela contém informações sobre partículas constituintes dos átomos.
Partícula Eletrão Protão Neutrão
Massa / kg 9,1094 × 10
–31
1,6726 × 10
–27
1,6749 × 10
–27
a) Escreva o nome da partícula subatómica de maior massa.
b) Apresente o valor da massa do protão expressa em gramas.
c) Escreva o nome e o símbolo da unidade de massa no SI.
d) Diga em que parte do átomo é que se concentra a quase totalidade da sua massa.
4. O raio atómico do lítio é 167 pm e no gráfico abaixo encontram-se informações sobre os seus dois
isótopos.
a) O raio atómico do lítio é 167 pm, ou seja:
(A) 0,0167 m. B) 0,00167 m. (C) 0,000167 m. (D) 0,000000000167 m.
b) A massa atómica relativa do lítio é:
(A) 6,516. (B) 6,516 g. (C) 6,940. (D) 6,940 g.
c) Justifique, sem recorrer a cálculos numéricos, a sua resposta a b).
d) Escreva o símbolo químico do lítio.
Editável e fotocopiável © Texto | Novo 10Q 81
5. Numa amostra de água, H2O, de massa 36 g, a contribuição dos átomos de hidrogénio é 4 g.
a) Qual é o valor da massa que corresponde à contribuição dos átomos de oxigénio?
b) A fração que corresponde ao contributo dos átomos de hidrogénio para a massa de água é:
(A)
1
2
(B)
1
3
(C)
1
8
(D)
1
9
c) A água é uma substância:
(A) composta e as suas moléculas são diatómicas.
(B) simples e as suas moléculas são diatómicas.
(C) composta e as suas moléculas são triatómicas.
(D) simples e as suas moléculas são triatómicas.
d) Descreva a composição qualitativa e quantitativa de uma molécula de água.
e) Dos átomos que entram na composição de uma molécula de água:
(A) metade são de hidrogénio. (B) dois terços são de hidrogénio.
(C) metade são de oxigénio. (D) dois terços são de oxigénio.
Grupo II
Subdomínio 1.2: Energia dos eletrões nos átomos.
1. A figura abaixo contém informações sobre o espetro eletromagnético assim como a relação entre
a energia e a frequência da radiação.
a) Identifique, através do nome da cor, a radiação visível de maior frequência.
b) Indique uma informação médica que pode ser obtida através de raios X.
c) A relação entre a energia e a frequência da radiação é de proporcionalidade:
(A) direta, e o produto da energia pela frequência é constante.
(B) direta, e a divisão da energia pela frequência é constante.
(C) inversa, e o produto da energia pela frequência é constante.
(D) inversa, e a divisão da energia pela frequência é constante.
82 Editável e fotocopiável © Texto | Novo 10Q
2. Considere as ilustrações de três modelos atómicos A, B e C apresentados abaixo.
a) Ordene os modelos atómicos do mais antigo para o mais atual.
b) Diga qual das ilustrações corresponde ao modelo atómico de Bohr.
c) No modelo atómico representado pela letra A, a uma maior concentração de pontos
correspondem zonas onde:
(A) há maior número de eletrões.
(B) há menor número de eletrões.
(C) é maior a probabilidade de encontrar eletrões.
(D) é menor a probabilidade de encontrar eletrões.
3. Abaixo pode ver-se uma ilustração do átomo de nitrogénio, N.
a) Os eletrões no átomo de nitrogénio:
(A) distribuem-se por dois níveis de energia.
(B) têm todos a mesma energia.
(C) distribuem-se por sete níveis de energia.
(D) têm todos energia diferente.
b) Diga quantos eletrões existem em cada nível de energia no átomo de nitrogénio.
c) Escreva a distribuição eletrónica dos átomos de nitrogénio.
d) Que nome dá aos eletrões do último nível?
4. Quatro valores de energia para os eletrões do átomo de sódio são –5,118 eV, –31,08 eV, –63,66 eV
e –1074 eV, sendo o valor mais elevado para eletrões mais afastados do núcleo (eV é a simbologia
usada para eletrão-volt e 1 eV = 1,6 × 10–19
J).
A B C
Editável e fotocopiável © Texto | Novo 10Q 83
a) A energia dos eletrões é:
(A) negativa e aumenta com o aumento da distância ao núcleo.
(B) negativa e diminui com o aumento da distância ao núcleo.
(C) positiva e aumenta com o aumento da distância ao núcleo.
(D) positiva e diminui com o aumento da distância ao núcleo.
b) Qual é a energia, expressa em joule, de um dos eletrões mais interiores do átomo de sódio?
c) Escreva o nome e o símbolo da unidade de energia no SI.
Grupo III
Subdomínio 1.3: Tabela Periódica.
1. Observe o extrato da Tabela Periódica do qual constam os primeiros vinte elementos químicos.
a) Dos cientistas, Albert Einstein, Dimitri Mendeleev, Isaac Newton e Louis Pasteur, identifique
qual deles é uma referência histórica relacionada com a Tabela Periódica.
b) Na Tabela Periódica os elementos químicos estão ordenados:
(A) por ordem alfabética.
(B) por ordem crescente de tamanho dos átomos.
(C) por ordem crescente de número atómico.
(D) por ordem crescente de massa atómica relativa.
c) O símbolo químico de um elemento com carácter metálico é:
(A) C (B) Na (C) Ne D) O
d) O número de eletrões do átomo do elemento flúor (F), é:
(A) 2. (B) 9. (C) 13. (D) 17.
e) Dois elementos que originam substâncias elementares com propriedades químicas
semelhantes são:
(A) o oxigénio (O) e o flúor (F).
(B) o azoto (N) e o enxofre (S).
(C) o berílio (Be) e o magnésio (Mg).
(D) o néon (Ne) e o cloro (Cℓ).
84 Editável e fotocopiável © Texto | Novo 10Q
f) Justifique a sua resposta à alínea anterior com base na análise da distribuição eletrónica.
g) Diga qual é a posição (grupo e período) do fósforo, P, na Tabela Periódica e relacione-a com a
distribuição eletrónica do átomo.
2. Um tipo de átomos do elemento potássio pode ser representado simbolicamente por K
19
39
.
a) O núcleo deste tipo de átomos é constituído por:
(A) 20 protões e 19 neutrões. (B) 19 protões e 20 neutrões.
(B) 39 protões e 19 neutrões. (D) 19 protões e 39 neutrões.
b) Diga o nome da família correspondente ao grupo da Tabela Periódica a que pertence o potássio.
3. O magnésio, Mg, e o enxofre, S8, apresentam propriedades bem distintas e são sólidos à
temperatura de 25 o
C.
a) A esta temperatura, o enxofre apresenta:
(A) caráter metálico igual ao do magnésio.
(B) condutividade elétrica igual à do magnésio.
(C) caráter metálico maior do que o magnésio.
(D) condutividade térmica menor do que o magnésio.
b) Represente simbolicamente o ião mais estável que os átomos de magnésio tendem a formar.
4. Cada molécula de água é constituída por dois átomos de hidrogénio e um de oxigénio.
a) O hidrogénio (H) e o oxigénio (O) figuram na Tabela Periódica porque:
(A) os seus átomos são constituintes das moléculas de água.
(B) os seus átomos são constituintes de um grande número de moléculas.
(C) são elementos químicos.
(D) são substâncias elementares.
b) O oxigénio pertence ao grupo 16 da Tabela Periódica, o que permite concluir que um átomo de
oxigénio tem:
(A) seis protões no núcleo.
(B) seis eletrões de valência.
(C) dezasseis eletrões.
(D) seis neutrões no núcleo.
c) Justifique, com base na Tabela Periódica, a formação do ião mais estável do elemento oxigénio.
5. Na Tabela Periódica podem encontrar-se algumas informações sobre o bromo como, por exemplo,
ponto de fusão, massa volúmica, condutividade térmica, número atómico, massa atómica relativa,
distribuição eletrónica e também que, à pressão de uma atmosfera, entra em ebulição à
temperatura de 59 o
C.
a) Das informações que se encontram sublinhadas indique duas que dizem respeito ao elemento
químico e duas que digam respeito à substância elementar.
Editável e fotocopiável © Texto | Novo 10Q 85
b) Quando o bromo passa do estado líquido ao estado gasoso:
(A) a massa de cada uma das suas moléculas diminui.
(B) o volume de cada uma das suas moléculas aumenta.
(C) as suas moléculas são destruídas.
(D) as ligações entre as suas moléculas são destruídas.
a) Durante a ebulição, à pressão de uma atmosfera, a temperatura do bromo:
(A) aumenta a partir de 59 o
C.
(C) mantém-se a 59 o
C.
(B) aumenta até atingir 59 o
C.
(D) mantém-se abaixo de 59 o
C.
b) Durante a ebulição, à pressão de uma atmosfera, o bromo encontra-se:
(A) no estado gasoso.
(C) no estado líquido.
(B) nos estados gasoso e líquido.
(D) nos estados líquido e sólido.
6. As expressões de 1. a 4. dizem respeito a alguns elementos químicos identificados de a. a f..
1. Três eletrões de valência. a. Alumínio e silício.
2. Três níveis de energia. b. Berílio.
3. 2.
o
período e grupo 14. c. Boro e alumínio.
4. Halogéneo do 2.
o
período. d. Carbono.
e. Flúor.
f. Néon.
a) Estabeleça correspondências corretas associando a cada número de 1. a 4. uma letra de a. a f..
b) Justifique uma das correspondências estabelecidas na alínea anterior.
7. A massa volúmica do alumínio é 2,70 g/mL.
a) Diga o significado físico do valor da massa volúmica do alumínio.
b) Determine massa de um cubo de alumínio com 2,0 cm de aresta.
8. Quando se adiciona azeite e água verifica-se que o azeite fica à superfície da água.
Explique este facto aplicando os conceitos de miscibilidade e de densidade.
86 Editável e fotocopiável © Texto | Novo 10Q
Grupo I
Subdomínio 2.1: Ligação química.
1. Considere a seguinte simbologia:
H2, 2H, CO, O2
2+
, Cℓ2, NH4
+
, O2–
, C2H2, Aℓ3+
, 4Fe
1.2 Identifique a simbologia que corresponde a:
a) átomos;
b) moléculas;
c) iões.
1.3 Elabore um texto, ilustrado, no qual esclareça o significado e a diferença das representações
simbólicas H2 e 2 H.
1.4 Determine o número de eletrões na unidade estrutural representada por NH4
+
.
1.5 Escreva a fórmula química da substância formada por O2–
e Aℓ3+
.
2. Classifique como ligação covalente, iónica ou metálica a que existe entre:
a) átomos de carbono, C, no diamante.
b) átomos de prata, Ag, num anel de prata.
c) o cloro, Cℓ, e sódio, Na, no cloreto de sódio.
d) o oxigénio, O, e o hidrogénio, H, na molécula de água.
3. Qualquer ligação química envolve os eletrões dos átomos que estabelecem ligação entre si.
a) Ao estabelecer ligações químicas entre si, os átomos podem formar:
(A) apenas moléculas.
(B) apenas redes de átomos.
(C) moléculas, com dois ou mais átomos, ou redes de átomos.
(D) moléculas, com um máximo de três átomos, ou redes de átomos.
b) A ligação química entre átomos de não-metais chama-se:
(A) covalente e envolve transferência de eletrões entre os átomos.
(B) covalente e envolve partilha de eletrões entre os átomos.
(C) iónica e envolve transferência de eletrões entre os átomos.
(D) iónica e envolve partilha de eletrões entre os átomos.
NOME ___________________________________________________ Turma______ Número______
Subdomínio 2.1: Ligação química.
Subdomínio 2.2: Gases e dispersões.
Subdomínio 2.3: Transformações químicas.
.
Ficha de diagnóstico
Domínio 2: Propriedades e transformações da matéria
Editável e fotocopiável © Texto | Novo 10Q 87
c) A ligação iónica está associada à ligação entre:
(A) aniões e catiões e dá origem a moléculas.
(B) aniões e catiões e dá origem a redes iónicas.
(C) aniões e dá origem a redes iónicas.
(D) catiões e dá origem a moléculas.
d) Os eletrões dos átomos que estão diretamente envolvidos nas ligações químicas são os do
nível:
(A) de valência, ou seja, os mais energéticos.
(B) de valência, ou seja, os menos energéticos.
(C) mais interior, ou seja os mais energéticos.
(D) mais interior, ou seja, os menos energéticos.
e) Justifique, partindo da análise da distribuição eletrónica, a não formação de moléculas
diatómicas de néon, Ne2.
4. Represente, usando notação de Lewis, os átomos de sódio, alumínio, oxigénio, fósforo e cloro.
5. A fórmula de estrutura de Lewis para o cianeto de hidrogénio é
a) Diga o que representa cada ponto e cada traço.
b) Classifique cada uma das ligações como simples, dupla ou tripla.
c) Quantos eletrões de valência existem na molécula de cianeto de hidrogénio?
6. A água é uma substância molecular, líquida à temperatura ambiente e à pressão de uma
atmosfera.
a) Diga qual é a temperatura de ebulição e a temperatura de fusão da água.
b) Usando a notação de Lewis a fórmula de estrutura da água é:
(A) (B) (C) (D)
c) Durante a evaporação da água:
(A) rompem-se ligações H-O em algumas moléculas.
(B) não se rompem ligações H-O em nenhuma molécula.
(C) rompe-se uma ligação H-O em cada molécula.
(D) rompem-se duas ligações H-O em cada molécula.
7. O eteno, C2H4, é uma substância da família dos hidrocarbonetos e a sua fórmula de estrutura é:
a) Diga o que é um hidrocarboneto.
88 Editável e fotocopiável © Texto | Novo 10Q
b) Classifique o eteno como hidrocarboneto saturado ou insaturado, justificando com base na
análise da fórmula de estrutura.
c) O número de pares de eletrões partilhados por cada átomo de carbono no eteno é:
(A) 2. (B) 4. (C) 6. (D) 8.
Grupo II
Subdomínio 2.2: Gases e dispersões.
1. A maior parte dos materiais que nos rodeiam são misturas (soluções, coloides e suspensões). Nas
figuras abaixo encontram-se informações sobre quatro misturas diferentes.
a) O ar seco da atmosfera terrestre é uma mistura homogénea ou heterogénea?
b) Indique qual dos seguintes gráficos diz respeito ao ar seco da atmosfera terrestre.
c) De acordo com a resposta à alínea anterior:
(A) cerca de 21% do volume de ar é nitrogénio. (B) 25% do volume de ar é nitrogénio.
(C) cerca de 21% do volume de ar é oxigénio. (D) 25% do volume de ar é oxigénio.
d) Selecione um dos componentes da água mineral e escreva a informação quantitativa
correspondente. Diga o nome da grandeza a que esse valor se refere.
e) Calcule o volume de água que teria de beber para ingerir 0,10 g do componente que selecionou
na alínea anterior.
Apresente todas as etapas de resolução.
f) Interprete a informação 14% Vol no rótulo da bebida alcoólica.
g) Escreva uma expressão que permita determinar a percentagem de ouro numa aliança.
h) As soluções são misturas:
(A) homogéneas, mostrando-se heterogéneas se observadas ao microscópio.
(B) homogéneas, não sendo possível distinguir os seus componentes.
(C) heterogéneas, mostrando-se homogéneas se observadas ao microscópio.
(D) heterogéneas, sendo possível distinguir os seus componentes.
Ar seco da atmosfera Água mineral Bebida alcoólica Alianças de ouro
Par de alianças com 10 gramas
das quais 7,5 g são de ouro
Editável e fotocopiável © Texto | Novo 10Q 89
i) As soluções podem ser misturas:
(A) líquidas ou gasosas e, por isso, a aliança de não pode ser classificada como solução.
(B) líquidas ou sólidas e, por isso, o ar seco não pode ser classificado como solução.
(C) sólidas, líquidas ou gasosas e todas as misturas ilustradas são soluções.
(D) sólidas ou gasosas e, por isso, a bebida alcoólica não pode ser classificada como solução.
2. Prepararam-se 200 mL de uma solução aquosa de sulfato de cobre (II), de concentração em massa
15,0 g/dm3
, a partir do soluto sólido. Abaixo tem imagens de quatro etapas do procedimento, que
se iniciou com a pesagem do sulfato de cobre (etapa A) seguindo-se a sua dissolução em água
destilada (etapa B).
a) Determine a massa de sulfato de cobre (II) utilizada.
Apresente todas as etapas de resolução.
b) Indique o nome e a capacidade do material de vidro utilizado na etapa D.
c) Descreva o procedimento seguido nas etapas C e D, e identifique o material utilizado.
d) A relação entre a massa do soluto, m, e o volume de solução, V, é de proporcionalidade:
(A) direta, sendo m/V uma constante. (B) direta, sendo m/V variável.
(C) inversa, sendo m/V uma constante. (D) inversa, sendo m/V variável.
e) Elabore uma tabela da qual constem, pelo menos, quatro pares de valores (massa de soluto e
volume de solução).
f) Metade da solução foi guardada num frasco. Elabore a etiqueta para colar no frasco.
g) Para determinar experimentalmente a massa volúmica da solução aquosa de sulfato de
cobre (II) que grandezas deveriam ser medidas?
3. Colocou-se água numa proveta, como indicado em A, e mediu-se a massa de um objeto maciço
tendo-se obtido 11,85 g. Seguidamente, colocou-se este objeto dentro da proveta com água e o
resultado pode ver-se em B.
A B
A B C D
90 Editável e fotocopiável © Texto | Novo 10Q
a) Diga qual é o valor de metade da menor divisão da escala da proveta.
b) Determine a massa por unidade de volume do objeto.
Apresente todas as etapas de resolução.
c) Considere um cubo maciço, de aresta 1 cm, feito do mesmo material do objeto. Indique o valor
da massa do cubo.
4. Numa seringa de vidro encontra-se uma amostra de ar com a qual foi realizada a experiência
ilustrada em A e a experiência ilustrada em B.
a) Descreva a experiência ilustrada em A.
b) Durante a experiência em A, relativamente à amostra de ar, a:
(A) massa aumentou e o volume diminuiu.
(B) massa diminuiu e o volume também.
(C) pressão aumentou e a densidade também.
(D) pressão diminuiu e a densidade aumentou.
c) Diga, justificando, o que prevê que aconteça ao êmbolo da seringa durante a experiência
ilustrada em B.
A
B
Editável e fotocopiável © Texto | Novo 10Q 91
Grupo III
Subdomínio 2.3: Transformações químicas.
1. Considere as equações 1. a 5., representadas na coluna I, e as transformações a. a f. identificadas
na coluna II.
Coluna I Coluna II
1. N2 (g) → N2
+
(g) + e−
a. Decomposição
2. N2 (g) + 3 H2 (g) → 2 NH3 (g) b. Síntese
3. 2 H2O (l) → 2 H2 (g) + O2 (g) c. Combustão
4. CH4 (g) + 2 O2 (g) → CO2 (g) + 2H2O (g) d. Atomização
5. H2O (l) → H2O (g) e. Ionização
6. O2 (g) → 2 O (g) f. Evaporação
a) Associe a cada número da coluna I uma letra diferente da coluna II de forma a estabelecer
correspondências corretas.
b) Faça a leitura da equação representada pelo número 3..
c) Escreva a equação representada pelo número 3. usando estruturas de Lewis para cada uma das
substâncias.
c) Conclua, justificando com base na ligação química que se estabelece entre os átomos, qual das
moléculas N2 ou O2 é mais estável.
2. As transformações dos materiais envolvem ligações químicas e podem ser desencadeadas por
vários fatores.
a) Durante uma reação química há rutura de ligações químicas nos reagentes e:
(A) é alterado o número de átomos.
(B) formam-se novos elementos químicos.
(C) há conservação de volume.
(D) há novos rearranjos dos átomos.
b) A água ao congelar:
(A) absorve energia e um fósforo a arder também.
(B) absorve energia e um fósforo a arder liberta energia.
(C) liberta energia e um fósforo a arder também.
(D) liberta energia e um fósforo a arder absorve energia.
c) Nas folhas das árvores, durante a realização da fotossíntese, ocorrem transformações:
(A) físicas por ação da luz.
(B) físicas por ação do calor.
(A) químicas por ação da luz.
(D) químicas por ação do calor.
92 Editável e fotocopiável © Texto | Novo 10Q
3. Numa fatura relativa ao consumo doméstico de gás natural, constituído essencialmente por
metano, pode ler-se a seguinte informação:
Consumo: 9 m3
Consumo: 105 kW h
O consumo provocou a emissão de 19,32 kg de CO2
a) Indique, em litros, o volume de gás natural consumido.
b) O consumo energético, expresso em joule, é dado pela expressão:
(A) 105×3600 (B)
105
3600
(C) 105 × 3600 × 103
(D)
105 × 103
3600
c) Cada metro cúbico de gás natural é responsável pela emissão de, aproximadamente:
(A) 1,15 kg de CO2 (B) 2,15 kg de CO2 (C) 3,15 kg de CO2 (D) 4,15 kg de CO2
d) A molécula de metano é representada por:
(A) CH4, formada por quatro ligações simples CH.
(B) C2H2, formada por uma ligação tripla CC e duas ligações simples CH.
(C) C2H4, formada por uma ligação dupla CC e quatro ligações simples CH.
(D) C3H8, formada por duas ligações simples CC e oito ligações simples CH.
4. Considere a informação do rótulo de um produto alimentar, correspondente a 100 g desse
produto:
a) A caloria é uma:
(A) grandeza e a energia é uma unidade. (B) grandeza e a energia também.
(C) unidade e a energia é uma grandeza. (D) unidade e a energia também.
b) O valor energético de 100 g de produto é:
(A)
349
1483
kcal. (B)
1483
349
kJ. (C) 349 kcal, ou seja, 1483 kJ. (D) 349 kJ, ou seja, 1483 kcal.
c) O gráfico que traduz a relação entre a energia expressa em joules e em calorias é:
349 kcal/1483 kJ
(A)
(B)
(C)
(D)
Editável e fotocopiável © Texto | Novo 10Q 93
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário.
1. Observe as representações de várias estruturas, nas quais estão indicadas as respetivas dimensões.
a) Indique o nome da estrutura de menor tamanho.
b) A altura de uma criança de 40 cm pode representar-se por:
(A) 4000 m.
(B) 400 m.
(C) 4,0 m.
(D) 0,40 m.
c) Um micrómetro (1 μm) é a milésima parte do milímetro o que significa que o tamanho de um
glóbulo vermelho é:
(A) 0,7 mm. (B) 0,07 mm. (C) 0,007 mm. (D) 0,0007 mm.
d) Sobre o Sol e a Terra podemos afirmar que um diâmetro:
(A) solar, 1 400 000 km, está mais próximo de dez milhões de quilómetros do que de um
milhão de quilómetros.
(B) solar, 1 400 000 km, está mais próximo de um milhão de quilómetros do que de dez
milhões de quilómetros.
(C) terrestre, 12 700 km, está mais próximo de dez mil quilómetros do que de doze mil
quilómetros.
(D) terrestre, 12 700 km, está mais próximo de doze mil quilómetros do que de treze mil
quilómetros.
e) O tamanho do óvulo humano está mais próximo de qual dos seguintes valores?
(A) 100
μm.
(B) 101
μm.
(C) 102
μm.
(D) 103
μm.
f) Indique a ordem de grandeza expressa em metros, do diâmetro da Terra, da célula da pele e do
átomo de berílio.
NOME ___________________________________________________ Turma______ Número______
Ficha 1 – Massa e tamanho dos átomos
Domínio 1: Elementos químicos e sua organização
1400000 km
Sol
12700 km
Terra
40 a 170 cm
Ser humano
120 μm
Óvulo
35 μm
Célula da pele
7 μm
Glóbulo
vermelho
224 pm
Átomo
de berílio
94 Editável e fotocopiável © Texto | Novo 10Q
2. Indique o número de protões, neutrões e eletrões:
a) em Ne
10
22
, S2−
16
34
e A
13
27
l 3+
.
b) em 63
Cu e na prata-107.
c) no isótopo mais abundante do titânio, da figura.
d) indique a posição relativa dos protões, neutrões e eletrões num átomo ou num ião.
3. Observe a imagem obtida por STM (Scanning
Tunneling Microscope), uma técnica de micros-
copia aplicada à escala atómica, para um cristal
do cloreto de sódio.
a) Determine, em unidade SI, o valor
aproximado do raio iónico do ião cloreto.
b) O raio iónico do ião cloreto, obtido através de
mapas de densidade eletrónica de elevada
resolução, é 1,64 Å. Compare com o
resultado obtido em a) com referência às
respetivas ordens de grandeza.
4. A figura permite fazer uma ideia da pequenez das unidades estruturais, átomos e moléculas.
Em 18 g de água existem 602 200 000 000 000 000 000 000 moléculas de água e, como se
compreende, não é prático escrever o número de moléculas desta forma.
a) Indique qual é o número de moléculas de
água que existe em 36 g de água.
b) A massa de uma molécula de estearina é:
(A)
6,022
890 × 1023 g (B)
6,022 × 1023
890
g
(C)
890 × 10−23
6,022
g (D)
890
6,022 × 10– 23
g
c) Um átomo de mercúrio é mais:
(A) leve que uma molécula de água e mais pesado que uma molécula de sacarose.
(B) leve que uma molécula de água e que uma molécula de sacarose.
(C) pesado que uma molécula de água e mais leve que uma molécula de sacarose.
(D) pesado que uma molécula de água e que uma molécula de sacarose.
Isótopos
e abundância
relativa
Editável e fotocopiável © Texto | Novo 10Q 95
d) Determine o número de átomos que existe em 36 g de água.
e) Indique a massa atómica relativa do mercúrio e relacione-a com a duodécima parte da massa
do átomo de carbono-12.
5. Na tabela encontram-se informações sobre o silício.
Isótopo Massa isotópica Abundância relativa/Fração
30
Si 29,973770 0,03092
29
Si 28,976495 0,04685
28
Si 27,976927 0,92223
a) Determine a massa atómica relativa média do silício.
Apresente o resultado com cinco algarismos significativos.
b) O valor da massa atómica relativa média para o silício é apresentado na Tabela Periódica no
formato [28,084; 28,086]. Tal significa que é válida a expressão:
(A) Ar(Si) ≥ 28,084.
(B) Ar(Si) ≤ 28,086.
(C) 28,084 ≤ Ar(Si) ≥ 28,086.
(D) 28,084 ≤ Ar(Si) ≤ 28,086.
c) Relacione o resultado obtido em a) com a informação dada em b).
d) Interprete a proximidade do valor da massa atómica relativa do silício com o valor da massa
isotópica do Si-28.
6. Determine a quantidade (número de moles) de átomos que existem em 23,04 g etanol, C2H6O.
7. Identifique, pelo nome, a substância de fórmula química (Uu)2SO4 sabendo que a massa molar é
142,01 g/mol, e que Uu não representa o verdadeiro símbolo químico do elemento.
8. De 28,87 g de uma amostra de ar, 6,72 g são de oxigénio, O2. Considere que o ar da amostra é
constituído apenas por oxigénio e nitrogénio, N2.
a) Determine a fração molar de cada componente na amostra de ar.
b) Determine a fração mássica de cada componente na amostra de ar.
96 Editável e fotocopiável © Texto | Novo 10Q
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário.
1. Observe o diagrama de energias para o átomo de
hidrogénio.
a) Incidiram fotões de energia 3,4 eV, 10,2 eV e 13,0 eV
sobre átomos de hidrogénio no estado fundamental. O
átomo pode absorver os fotões de energia:
(A) 3,4 eV (B) 3,4 eV e 10,2 eV
(C) 3,4 eV e 13,0 eV (D) 10,2 eV e 13,0 eV
b) Justifique a resposta à alínea anterior, com base em
duas ideias fundamentais do modelo atómico de Bohr
que ainda prevalecem no modelo atual.
c) Determine a energia da radiação envolvida na transição representada por Pα, em joule, e
localize essa radiação no espetro eletromagnético. (1 eV = 1,6 x 10–19
J)
d) Selecione o espetro atómico do átomo de hidrogénio correspondente às transições
representadas por Hα, Hβ e Hγ.
2. A energia dos eletrões nos átomos inclui:
(A) apenas o efeito das atrações entre os eletrões e o núcleo.
(B) apenas o efeito das repulsões entre os eletrões.
(C) o efeito das atrações entre os eletrões e o núcleo e o das repulsões entre os eletrões.
(D) o efeito das repulsões entre os eletrões e o núcleo e o das atrações entre os eletrões.
3. A espetroscopia fotoeletrónica é uma
das técnicas através da qual se
podem obter as energias dos
eletrões nos átomos e moléculas. Ao
lado encontra-se o espetro
fotoeletrónico de um elemento
químico.
Violeta Vermelho
Vermelho
Vermelho
Vermelho
Violeta
Violeta
NOME ___________________________________________________ Turma______ Número______
Ficha 2 – Energia dos eletrões nos átomos
Domínio 1: Elementos químicos e sua organização
Violeta
Editável e fotocopiável © Texto | Novo 10Q 97
a) A altura do pico C é tripla da altura do pico B porque:
(A) a energia de remoção dos eletrões responsáveis pelo pico B é aproximadamente o triplo da
energia de remoção dos eletrões responsáveis pelo pico C.
(B) a energia de remoção dos eletrões responsáveis pelo pico B é aproximadamente um terço
da energia de remoção dos eletrões responsáveis pelo pico C.
(C) o número de eletrões responsáveis pelo pico B é o triplo do número de eletrões responsáveis
pelo pico C.
(D) o número de eletrões responsáveis pelo pico B é um terço do número de eletrões
responsáveis pelo pico C.
b) Os picos A, B e C têm, respetivamente, correspondência com os subníveis de energia:
(A) 2p, 2s e 1s. (B) 1s, 2s e 2p. (C) 2s, 1s e 2p. (D) 1s, 2p e 2s.
c) Qual é a energia de remoção dos eletrões de valência mais energéticos?
d) Escreva o nome e o símbolo químico do elemento.
e) Verifica-se que aos seis eletrões responsáveis pelo pico C corresponde um único valor de
energia. Relacione este resultado com a relação entre as energias das orbitais px, py e pz.
4. Considere o elemento químico de número atómico 8.
a) Escreva a sua configuração eletrónica de forma a evidenciar a aplicação da regra de Hund
(maximização do número de eletrões desemparelhados em orbitais degeneradas) e estabeleça
relações de ordem entre as energias das orbitais ocupadas.
b) O diagrama de distribuição eletrónica permitido pelo Princípio de Exclusão de Pauli é:
c) Escolha uma das opções que não selecionou na alínea anterior e justifique a sua incorreção.
d) Os valores de energias de remoção obtidos para o átomo deste elemento químico são: 16 eV,
42 eV e 543 eV. Associe a cada subnível, 1s, 2s e 2p, um valor de energia de remoção.
e) Escreva uma configuração eletrónica que não respeite o Princípio da Construção.
5. Observe o diagrama de energias para o átomo de sódio.
a) A energia de cada eletrão que ocupa o subnível 2p é:
(A) –0,83 J. (B) –0,83 × 10–18
J.
(C) –4,98 J. (D) –4,98 × 10–18
J.
b) Indique qual é o valor da energia de remoção de um
dos eletrões mais interiores.
c) Escreva a configuração eletrónica deste átomo num
estado excitado.
d) Por espetroscopia fotoeletrónica, quantos valores de
energias de remoção se obtêm para o átomo de sódio?
(A) 11. (B) 6. (C) 4. (D) 3.
(A) (B) (C) (D)
98 Editável e fotocopiável © Texto | Novo 10Q
6. Átomos de diferentes elementos têm entre si valores:
(A) diferentes para as energias dos eletrões e espetros atómicos diferentes.
(B) diferentes para as energias dos eletrões e espetros atómicos iguais.
(C) iguais para as energias dos eletrões e espetros atómicos diferentes.
(D) iguais para as energias dos eletrões e espetros atómicos iguais.
7. Associe a cada uma das seguintes representações, A, B e
C, as orbitais s, p e d, indicando quantas orbitais existem,
de cada tipo e em cada nível.
8. Escreva a configuração eletrónica dos elementos químicos com os valores de número atómico 3, 6,
9, 13, 20, 21 e 23, indicando, para cada, quantos valores diferentes de energias de remoção se
espera que sejam obtidos por espetroscopia fotoeletrónica.
9. Identifique o número de orbitais pelas quais se distribuem os eletrões e o número de eletrões
desemparelhados para os elementos com número atómico 3, 6, 9 e 13.
10. Identifique a configuração eletrónica que não respeita o Princípio da Construção.
(A) 1s 2
2s2
2px
1
2py
1
2pz
2
(B) 1s 2
2s3
2p3
(C) 1s 2
2s2
(D) 1s2
2s1
2p1
Editável e fotocopiável © Texto | Novo 10Q 99
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário.
1. Mendeleev usou o prefixo eka- para nomear provisoriamente elementos desconhecidos que
viriam a ocupar, na Tabela Periódica, o lugar abaixo de elementos já conhecidos na época. Dois
desses elementos foram o eka-alumínio e do eka-silício.
a) As propostas de Mendeleev para a organização dos elementos químicos numa tabela:
(A) eram fechadas à incorporação de novos elementos.
(B) incluíam todos os elementos conhecidos atualmente.
(C) não incluíam a existência de lugares vazios.
(D) previam a existência de novos elementos.
b) Identifique, pelo nome e pelo símbolo químico, os elementos químicos que atualmente
correspondem ao eka-alumínio e ao eka-silício.
2. Abaixo pode ver um excerto da Tabela Periódica dos elementos químicos.
21
Sc
44,96
22
Ti
47,87
23
V
50,94
24
Cr
52,00
25
Mn
54,85
26
Fe
55,85
27
Co
58,93
28
Ni
58,69
29
Cu
63,55
30
Zn
65,41
a) Na Tabela Periódica os elementos químicos estão ordenados por ordem crescente de:
(A) massa atómica relativa, uma consequência dos trabalhos de Mendeleev.
(B) massa atómica relativa, uma consequência dos trabalhos de Moseley.
(C) número atómico, uma consequência dos trabalhos de Mendeleev.
(D) número atómico, uma consequência dos trabalhos de Moseley.
b) Os elementos químicos representados no excerto da Tabela Periódica pertencem ao bloco:
(A) d e são elementos representativos.
(B) s e são elementos representativos.
(C) d e não são elementos representativos.
(D) s e não são elementos representativos.
c) Justificando com base na configuração eletrónica, localize na Tabela Periódica o elemento
químico que antecede o escândio.
NOME ___________________________________________________ Turma______ Número______
Ficha 3 – Tabela Periódica
Domínio 1: Elementos químicos e sua organização
100 Editável e fotocopiável © Texto | Novo 10Q
3. Associe a cada número da coluna I uma ou mais letras da coluna II de modo a estabelecer
correspondências corretas.
Coluna I Coluna II
1. 4.
o
período e grupo 4 a. Forma iões tripositivos estáveis
2. 1s
2
2s
2
2p
6
3s
2
3p
3
b. Ião óxido
3. 1s
2
2s
2
2p
6
3s
2
3p
1
c. Metal de transição
4. 1s
2
2s
2
2p
6
d. 3.
o
período e grupo 15
e. Fósforo
f. 3.
o
período e grupo 13
4. Qual das seguintes correspondências entre um elemento e a configuração eletrónica do respetivo
ião mais estável, está correta?
(A) Enxofre - 1s2
2s2
2p6
3s2
3p4
(B) Lítio - 1s2
2s2
(C) Magnésio - 1s2
2s2
2p6
(D) Cloro - 1s2
2s2
2p6
5. O sódio, que pertence à família dos metais alcalinos, tem ponto de fusão 371 K e energia de
ionização 496 kJ/mol.
a) Explique a formação do ião sódio mais estável.
b) Represente a formação do ião sódio mais estável usando o modelo seguinte:
F ([He]2s2
2p5
) + e–
→ F–
([He]2s2
2p6
)
c) A ionização do sódio corresponde à transformação representada por:
(A) Na (g) → Na+
(g) + e–
com absorção de 496 kJ/mol.
(B) Na (g) → Na+
(g) + e–
com libretação de 496 kJ/mol.
(C) Na (s) → Na+
(s) + e–
com absorção de 496 kJ/mol.
(D) Na (s) → Na+
(s) + e–
com libertação de 496 kJ/mol.
d) A energia de ionização é uma propriedade:
(A) das substâncias elementares e o ponto de fusão é uma propriedade dos elementos.
(B) das substâncias elementares e o ponto de fusão também.
(C) dos elementos e o ponto de fusão é uma propriedade das substâncias elementares.
(D) dos elementos e o ponto de fusão também.
6. Justificando com base na posição relativa dos elementos na Tabela Periódica, preveja a relação
que existe entre os raios atómicos do carbono e do silício.
Editável e fotocopiável © Texto | Novo 10Q 101
7. Associe a cada um dos valores de raios atómicos, 48 pm, 79 pm e 88 pm, um dos átomos de
oxigénio, enxofre e cloro.
8. Os valores de energias de ionização, 1251, 1681 e 2081, em kJ/mol correspondem respetivamente
aos seguintes elementos:
(A) cloro, flúor e néon.
(B) cloro, néon e flúor.
(C) néon, flúor e cloro.
(D) néon, cloro e flúor.
9. Usando como exemplo os elementos sódio e magnésio, interprete a tendência geral para o
aumento da energia de ionização ao longo de um período da Tabela Periódica.
10. Analisando o espetro fotoeletrónico de um elemento químico, os picos correspondentes aos três
valores de energias de remoção permitiram concluir ser este um elemento com um eletrão no
subnível p. Trata-se do elemento da Tabela Periódica de número atómico:
(A) 3, do 2.o
período. (B) 5, do 2.o
período. (C) 11, do 3.o
período. (D) 13, do 3.o
período.
11. Observe o espetro fotoeletrónico de um elemento químico do segundo período da Tabela Periódica.
a) A altura relativa dos picos A, B e C é:
(A) 1,1,1.
(B) 1,1,2.
(C) 2,2,3.
(D) 2,2,5.
b) Indique o bloco a que pertence, e o número de níveis e de subníveis pelos quais se distribuem os
eletrões no átomo.
c) Partindo da configuração eletrónica, identifique o elemento e o grupo da Tabela Periódica a que
pertence.
d) O elemento químico de configuração eletrónica [He] 2s2
2p2
tem energia de ionização:
(A) igual a 2,1 × 10–18
J.
(B) igual a 66 ×10–18
J
(C) inferior a 2,1 ×10–18
J.
(D) superior a 66 ×10–18
J
10
 
02 
Consulte 
1. É a p
molé
difere
a) A e
(A)
(B)
(C)
(D
b) A l
(A
(B)
(C)
(D)
2.  Na  fi
intern
NOME	____
Ficha 4
Domínio 
a Tabela Periód
possibilidade 
culas,  que  p
entes.  
energia de um
)  maior  do 
de atrações
)  maior  do  q
e repulsões
)  menor  do 
de atrações
) menor do q
e repulsões
igação quími
) covalente qu
) intermolecu
valência. 
) iónica quand
) metálica qu
de metais.  
igura  abaixo 
nuclear, r, en
___________
4 – Liga
2: Propriedad
ica, tabelas de c
de estabelec
permite  a  d
m conjunto de
que  a  do  m
s envolvendo 
ue  a  do  mes
s envolvendo 
que  a  do  m
s envolvendo 
que a do me
s envolvendo 
ca pode ser c
uando envolve
ular de van de
do envolve tr
ando envolve
pode  observ
tre dois átom
 
__________
ção quí
des e transfo
Editável e fotoco
constantes e for
cimento de li
iversidade  d
e átomos ou m
mesmo  conju
eletrões e nú
smo  conjunto
eletrões e nú
mesmo  conju
eletrões e nú
esmo conjunt
eletrões e nú
classificada co
e partilha sign
er Waals qua
ansferência d
e partilha sign
var‐se  o  gráf
mos de hidrog
___________
mica 
rmações da m
opiável © Texto | 
rmulários sempr
gações quím
e  substância
moléculas liga
nto  dessas  e
úcleos atómic
o  dessas  enti
úcleos atómic
unto  dessas  e
úcleos atómic
to dessas ent
úcleos atómic
omo: 
nificativa e loc
ndo envolve 
de eletrões de
nificativa e loc
fico  da  energ
génio. 
__________
matéria
 Novo 10Q
re que necessár
micas de natu
as  com  prop
ados é:  
entidades  nã
cos. 
idades  não  li
cos. 
entidades  nã
cos. 
tidades não l
cos.  
alizada de ele
partilha pouc
e valência ent
calizada de e
gia  potencial,
__________ 
rio e salvo indica
reza diversa,
priedades  fís
ão  ligadas,  e
igadas,  e  res
ão  ligadas,  e
ligadas, e res
etrões dos cern
co significativ
tre átomos d
letrões de va
,  Ep,  em  fun
 
 Turma_____
ação em contrár
, entre átomo
sicas  e  quím
e  resulta  ape
sulta  de  atraç
e  resulta  ape
sulta de atraç
nes atómicos.
va de eletrõe
e não metais
lência de áto
ção  da  distâ
__ Número_
 
rio. 
os e 
micas 
enas  
ções  
enas  
ções  
. 
s de 
. 
mos 
ncia 
______ 
Editável e fotocopiável © Texto | Novo 10Q 103
a) O comprimento de ligação na molécula de hidrogénio é:
(A) 45 pm e a energia de ligação é aproximadamente 144 kJ/mol.
(B) 74 pm e a energia de ligação é 432 kJ/mol.
(C) 150 pm e a energia de ligação é aproximadamente –278 kJ/mol.
(D) 350 pm e a energia de ligação é 0 kJ/mol.
b) Indique o tipo de interações, de repulsão ou de atração, que predominam quando os átomos se
encontram à distância de 45 pm.
c) Também as moléculas HX, e X2, em que X é um elemento químico da família dos halogéneos,
são diatómicas como a de hidrogénio, H2. Associe cada um dos mapas de potencial
eletrostático, A, B, C e D, a uma das moléculas, F2, H2, HF e HCℓ.
A B C D
d) Compare, justificando com base na posição relativa dos elementos na Tabela Periódica, as energias
da ligação H-X nas moléculas HCℓ e HBr.
3. Considere as moléculas de hidrogénio, H2, nitrogénio, N2, e oxigénio, O2.
a) Escreva, por ordem crescente das energias de ligação, as fórmulas de estrutura de Lewis das
moléculas.
b) A energia de ionização das moléculas de nitrogénio é 1503 kJ/mol, e dos átomos de nitrogénio,
N, é 1402 kJ/mol. A energia dos eletrões mais energéticos na molécula de nitrogénio é:
(A) maior do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é mais
estável que os dois átomos separados.
(B) maior do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é
menos estável que os dois átomos separados.
(C) menor do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é
mais estável que os dois átomos separados.
(D) menor do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é
menos estável que os dois átomos separados.
4. Considere as moléculas CH4, CO2, H2O e NH3.
a) Indique, sequencialmente, o nome da substância que corresponde a cada uma das simbologias.
b) Descreva a geometria molecular de CH4, identificando a localização relativa dos átomos na
molécula e indicando o valor dos ângulos de ligação.
c) Partindo das fórmulas de estrutura de Lewis das moléculas CO2 e H2O, relacione os ângulos de
ligação nestas moléculas com base no modelo de repulsão dos pares eletrónicos de valência.
d) Indique quais das seguintes moléculas são polares:
(A) CH4 e CO2. (B) CO2 e H2O. (C) H2O e NH3. (D) NH3 e CH4.
e) Indique o nome da geometria molecular de NH3 e classifique a distribuição de carga na molécula
como simétrica ou assimétrica.
104 Editável e fotocopiável © Texto | Novo 10Q
5. Considere as substâncias, identificadas simbolicamente ou pelo nome, C2H2, C(CH3)4, CHCℓ3, cloreto de
sódio, eteno, hélio e 2-metilpentano.
a) Escreva o nome e a fórmula química de uma substância que seja iónica.
b) Escreva o nome das substâncias identificadas simbolicamente, e a respetiva fórmula de estrutura
com base na regra do octeto.
c) Uma amostra de hélio é formada por:
(A) átomos, He, entre os quais não se estabelecem quaisquer ligações.
(B) átomos, He, entre os quais se estabelecem forças de van der Waals.
(C) moléculas, He2, entre as quais não se estabelecem quaisquer ligações.
(D) moléculas, He2, entre as quais se estabelecem forças de van der Waals.
d) Das substâncias identificadas:
(A) C(CH3)4 e CHCℓ3 são haloalcanos.
(B) CHCℓ3 e o cloreto de sódio são haloalcanos.
(C) C2H2 e C(CH3)4 são hidrocarbonetos saturados.
(D) C2H2 e o eteno são hidrocarbonetos saturados.
e) Faça corresponder a cada uma das moléculas, de eteno e C2H2, um dos valores de comprimento
da ligação CC: 1,20 Å e 1,33 Å.
f) Represente a fórmula de estrutura de Lewis para 2-metilpentano.
6. Observe as fórmulas de estrutura de Lewis de cinco substâncias: A, B, C, D e E.
a) Associe a cada uma das estruturas os grupos funcionais ácido carboxílico, aldeído, álcool, amina
e cetona.
b) Classifique cada uma das ligações interatómicas na substância representada por B.
c) Indique as substâncias nas quais se estabelecem ligações intermoleculares de hidrogénio.
(A) A e B. (B) A e C. (C) B e C. (D) B e D.
d) De acordo com a estrutura de Lewis, relativamente ao efeito dos eletrões de valência na
formação da molécula da substância D, há:
(A) 7 eletrões ligantes e 4 eletrões não ligantes.
(B) 8 eletrões ligantes e 4 eletrões não ligantes.
(C) 14 eletrões ligantes e 8 eletrões não ligantes.
(D) 16 eletrões ligantes e 8 eletrões não ligantes.
 
 
Consulte 
1. Amed
em  1
condi
Avoga
No Si
átomo
com 
corres
a) De 
(A)
(B)
(C) 
(D)
b) Ind
c) Sej
da 
um
nAV
2. Na fig
de qu
norm
(PTN)
a)  In
te
b)  O
or
c) As 
(A)
(B)
(C)
(D)
d) De
e) Co
  
NOME	____
Ficha 
Domínio 
a Tabela Periód
deo Avogadro
1811,  incluia 
ições  de  pre
adro, NA, foi a
stema Intern
os de carbono
uma  incertez
spondem à in
acordo com 
) [6,022 140 8
 [6,022 140 8
[6,022 140 8
) [6,022 140 8
dique o núme
am dois gase
definição de 
m  dos  gases, 
VB = nBVA.  
gura ao lado 
uatro gases d
mais  de  pres
). 
dique  os  va
mperatura co
Ordene  as  a
dem crescent
amostras têm
) massa de gá
) massa de gá
) número de á
) quantidade 
etermine a qu
nsidere a mist
___________
5 – Gase
2: Propriedad
ica, tabelas de c
o (1776‐1856
a  sua  famos
ssão  e  de  te
assim nomea
acional de un
o‐12 em 12 g d
za  relativa  de
certeza absolu
 (in h
a informação
82(18) ± 0,000
82(18) ± 0,000
82 ± 0,000000
82 ± 0,000000
ero de átomos
es, A e B, nas 
volume mola
nA  e  nB,  e  os
podem ver‐s
diferentes na
ssão  e  de  t
alores  da  pre
onsiderados n
mostras  de 
te de densida
m igual: 
ás.     
s por unidade
átomos. 
de gás por un
antidade de 
tura das quatr
__________
es e disp
des e transfo
Editável e fotoco
constantes e for
6), cientista it
sa  hipótese: 
emperatura, 
da em sua ho
nidades (SI) a
de carbono‐12
e  30  partes 
uta lendo‐se «
ttp://www.nist.
o do texto, o m
000018]  102
000018]  102
018]  1023
 mo
018]  1023
 m
s de carbono‐
mesmas con
ar e da Lei de
s  respetivos 
se amostras 
s condições 
emperatura 
essão  e  da 
normais.  
gases  por 
ade.  
e de volume.
nidade de vol
matéria que e
ro amostras d
 
___________
persões
rmações da m
opiável © Texto | 
rmulários sempr
taliano, num 
iguais  volum
contêm  igua
omenagem. 
 constante d
2. O melhor va
por  mil  milh
«mais ou men
.gov/pml/si‐rede
melhor valor 
23
 mol–1
 , com
23
 mol–1
 , com
ol–1
 , com um
mol–1
 , com um
‐12 que existe
ndições de pre
 Avogadro, q
volumes,  VA
ume. 
existe em 5,6
e gases. Indiq
__________
s 
matéria
 Novo 10Q
re que necessár
 paper public
mes  de  gases
al  número  de
e Avogadro é
alor medido é
hões.  Os  dois
nos 0,0000001
ef/kg_new_silico
de NA medido
m uma incerte
m uma incerte
ma incerteza re
ma incerteza r
em em 12 g d
essão e de te
ue a relação 
e  VB,  pode 
6 dm3
 de O2 (g
que a fração m
__________ 
rio e salvo indica
cado no Jour
s  diferentes, 
e  moléculas. 
é definida com
é 6,022 140 82
s  algarismos 
18 mol–1
». 
on.cfm, acedido
o é: 
eza relativa de
eza relativa de
elativa de 3,0
relativa de 3,0
de carbono‐1
emperatura. 
entre as qua
ser  traduzida
g) nas condiçõ
molar de cada 
 Turma_____
ação em contrár
rnal de Physiq
sob  as  mes
A  constante
mo o número
2(18)   1023
 m
entre  parent
 em janeiro de 2
e 3,0  10–9
.
e 3,0  10–8
.
0  10–9
. 
0  10–8
. 
2.  
Mostre, parti
ntidades de c
a  pela  expres
ões PTN.  
gás na mistur
__ Número_
105 
rio. 
que, 
smas 
e  de 
o de 
mol‐1
, 
eses 
2015) 
indo 
cada 
ssão 
ra. 
______ 
106 Editável e fotocopiável © Texto | Novo 10Q
3. A troposfera é uma mistura de gases formada por cerca de 78%, em volume, de nitrogénio, e 21%,
em volume, de oxigénio. Outros gases, como vapor de água, dióxido de carbono (CO2), árgon, etc.,
existem em percentagens muito baixas, sendo a do CO2 de cerca de 3,9 x 10–2
% em volume na
atmosfera atual.
a) O teor de CO2 na troposfera, expresso em partes por milhão em volume (ppmV), pode ser
determinado pela expressão:
b)
b) Determine a percentagem, em massa, de carbono numa amostra de dióxido de carbono.
c) Indique o valor da fração molar do nitrogénio e do oxigénio na troposfera.
d) Determine a concentração em massa de nitrogénio na troposfera, a 20 °C.
(Vmolar, 20 °C = 24,2 dm3
/mol)
4. A atmosfera terrestre é uma solução gasosa na qual se pode encontrar matéria particulada
dispersa, líquida ou sólida, constituída por partículas de diâmetro inferior a 2,5 µm, PM2,5, e
inferior a 10 µm, PM10, como, por exemplo, nevoeiro e pó de cimento respetivamente.
a) Ordene por ordem decrescente de dimensão das partículas, o nevoeiro, o oxigénio, e o pó de
cimento.
b) Classifique o nevoeiro como coloide ou suspensão, justificando com base na dimensão relativa
das partículas constituintes destas dispersões.
5. O Decreto-Lei n.o
102/2010, de 23 de setembro estabelece o
regime de avaliação e gestão da qualidade do ar ambiente.
Para efeitos de proteção da saúde humana, nesse diploma
são definidos os valores dos limiares de alerta à população
para alguns poluentes atmosféricos. Ao lado podem ler-se
informações retiradas desse diploma.
a) Disponha os poluentes referidos no Decreto-Lei por
ordem crescente de riscos para a saúde.
b) O limiar de alerta para o dióxido de nitrogénio, NO2,
expresso em μmol/m3
, é:
(A) 4,00 (B) 5,00 (C) 7,80 (D) 8,69
c) A expressão que representa o limiar de alerta, registado na figura, para qualquer um dos
poluentes gasosos é:
d) Indique fontes antropogénicas e naturais de dióxido de enxofre.
6. A densidade do vapor de água, à temperatura de 100 °C e à pressão de 1 atm, é 0,590 g dm–3
.
Determine o volume ocupado por 3,01 × 1023
moléculas de H2O, contidas numa amostra pura de
vapor de água, nas condições de pressão e de temperatura referidas.
(A)
102
× 106
3,9 × 10−2 (B)
3,9 × 10−2
× 106
102 (C)
3,9 × 10−2
102
× 106 (D)
102
3,9 × 10−2
× 106
(A)
npoluente
Var
(B)
mpoluente
Var
(C)
mpoluente
Vpoluente
(D)
npoluente
Vpoluente
Editável e fotocopiável © Texto | Novo 10Q 107
7. O amoníaco é um gás à pressão e à temperatura ambientes. Considere que a densidade do NH3 (g)
nas condições normais de pressão e de temperatura é 1,08 vezes maior do que a densidade desse
gás à pressão e à temperatura ambientes.
Determine o número de moles de amoníaco que existem numa amostra pura de 200 cm3
de
NH3 (g), à pressão e à temperatura ambientes.
8. Consulte, no rótulo apresentado ao lado, informações sobre
uma solução aquosa.
a) Identifique o soluto e o solvente.
b) Qual das seguintes expressões permite determinar a
concentração da solução em mol/dm3
?
9. Leia as informações sobre a solução designada como Dextrose em Soro Fisiológico usada no
tratamento da desidratação:
a) Indique a concentração, em mol/L, de cloreto de sódio na solução.
b) A um adulto de 60 kg, pode ser administrado diariamente, no máximo:
(A) 1,5 L de solução, correspondente a 0,223 g de sódio.
(B) 1,5 L de solução, correspondente a cerca de 13,5 g de sódio.
(C) 2,4 L de solução, correspondente a cerca de 8,28 g de sódio.
(D) 2,4 L de solução, correspondente a cerca de 21,6 g de sódio.
10. Na figura ao lado pode ver-se a montagem experimental
usada para determinar o teor de álcool, C2H6O, num vinho. Na
tabela abaixo pode ver-se a correspondência entre o teor de
álcool e a densidade, ρ, de vinhos, a 20 °C.
A partir de 120 mL de um vinho, à temperatura de 20 °C, o
volume de álcool obtido foi 12,84 mL.
a) Escreva a expressão matemática do volume de álcool em
função do volume de vinho na forma Válcool = f(Vvinho).
b) Determine a densidade do vinho, a 20 °C.
c) Determine a percentagem em massa, %(m/m), de álcool no vinho
sabendo que a a densidade do álcool, a 20 °C, é 0,79 g/cm3
.
d) Determine a concentração em massa de álcool no vinho.
(A)
0,95 × 98,08
1840
(B)
0,95 × 1840
98,08
(C)
1840
0,95 × 98,08
(D)
98,08
98,08 × 1840
ρ, 20 °C,vinho
(g mL
-1
)
Teor
de álcool
(%V/V)
0,9859 10,52
0,9858 10,61
0,9857 10,70
0,9856 10,78
APROVADO EM 24-04-2013
INFARMED 50 mg de glicose/mL + 9 mg de cloreto de sódio/mL (ou seja, 154 mmol de Na
+
/L e 154 mmol de Cℓ
-
/L) .
Dose máxima diária: 40 mL por kg de massa corporal, correspondente a 6 mmol de sódio por kg de massa corporal.
Ácido sulfúrico, H2SO4(aq)
95%(m/m)
1 L = 1,84 g/mol
M = 98,08 g/mol
10
08 
Consulte 
e salvo in
As figura
1. No di
a)  Int
pr
b) Co
en
2. Uma 
do sis
(A) e
pa
(B) e
pa
(C) ex
pa
(D) e
p
NOME	____
Ficha 
Domínio 
os dados da tab
ndicação em con
as dos exercíc
agrama de ní
terprete  a  co
ocesso que e
ompare a ent
ntalpia é posit
reação quími
stema. Tal sig
ndotérmica, 
ara o sistema
ndotérmica, 
ara o exterior
xotérmica, e 
ara o sistema
exotérmica, e
ara o exterio
___________
6 – Tran
2: Propriedad
bela seguinte, a
ntrário.  
cios 1, 9 e 8 c
Ligaç
O	–	
H	–
O	–
O
N ≡
íveis de ental
ombustão  do
nvolve ligaçõ
alpia dos pro
tiva ou negati
ica, que ocorr
gnifica que a r
e se o sistem
a. 
e se o sistem
r. 
se o sistema
. 
e se o sistem
r. 
__________
nsforma
des e transfo
Editável e fotoco
a Tabela Periódi
contêm hiperl
ção 
O	 
H	 
H	 
O 
≡ N  
pia da figura 
o  metano,  do
ões químicas. 
odutos da rea
iva.  
reu num siste
reação é:  
ma não fosse 
ma não fosse 
a não fosse i
a não fosse 
___________
ações qu
rmações da m
opiável © Texto | 
ica, tabelas de c
ligação à font
Energia méd
está represen
o  ponto  de 
 
ação com a d
ema isolado, 
isolado ocor
isolado ocor
isolado ocorr
isolado ocorr
 
__________
uímicas
matéria
 Novo 10Q
constantes e fo
te. 
dia da ligação /
142 
436 
463 
496 
941 
ntada a comb
vista  energé
dos reagente
provocou um
rreria transfe
rreria transfe
reria transfer
reria transfer
__________ 
ormulários semp
/ kJ mol‐1
 
bustão do me
 
ético,  como  r
es e conclua 
ma diminuição
rência de en
erência de en
rência de ene
rência de en
 Turma_____
pre que necessá
etano.  
resultado  de 
se a variação
o de tempera
ergia do exte
ergia do siste
ergia do exte
ergia do siste
__ Número_
 
ário 
um 
o de 
tura 
erior 
ema 
erior 
ema 
______ 
Editável e fotocopiável © Texto | Novo 10Q 109
3. O gráfico da figura traduz a evolução da
energia de um sistema reacional, em
que os reagentes A e B, (estado inicial),
originam o produto da reação C,
(estado final), segundo A + B → C,
durante 20 s.
a) Conclua, justificando com base na
comparação das energias dos
reagentes e do produto da reação,
se esta reação é endoenergética ou
exoenergética.
b) Determine a taxa média de variação temporal da energia do sistema reacional até aos 20
segundos.
c) Indique o sinal da variação de temperatura do sistema reacional caso a reação tivesse ocorrido
num sistema isolado.
d) Compare a soma das energias de ligação nos reagentes A e B com a soma das energias de
ligação no produto C.
4. Na síntese do amoníaco, traduzida pela equação N2 (g) + 3 H2 (g) + 3 H2 (g) → 2 NH3 (g), é envolvida
uma energia X que resulta das energias das ligações NN, HH e NH, respetivamente ENN, EHH e ENH.
a) A formação da ligação NH é um processo
(A) endoenergético e a rutura da ligação HH também.
(B) endoenergético e a rutura da ligação NN é um processo exoenergético.
(C) exoenergético e a rutura da ligação HH também.
(D) exoenergético e a rutura da ligação NN é um processo endoenergético.
b) Pode saber-se o valor da energia X recorrendo à expressão:
(A) ENN + 3EHH – 2EHN (B) ENN + 3EHH – 6EHN
(C) 2ENN + 6EHH – 2ENH (D) 2ENN + 6EHH – 6ENH
c) Sabendo que o resultado obtido pela expressão identificada em b) é negativo pode concluir-se
que a síntese do amoníaco é um processo:
(A) endotérmico, ocorrendo com absorção de energia.
(B) endotérmico, ocorrendo com libertação de energia.
(C) exotérmico, ocorrendo com absorção de energia.
(D) exotérmico, ocorrendo com libertação de energia.
d) Considerando que a síntese do amoníaco ocorre a pressão constante, como designa o valor
obtido pela expressão identificada em b)?
5. As equações (1) e (2) representam a formação de água a partir das substâncias elementares,
H2 e O2, a 25 o
C.
(1) H2 (g) + ½ O2 (g) → H2O (l) ΔH = –286 kJ mol–1
(2) H2 (g) + ½ O2 (g) → H2O (g) ΔH = –242 kJ mol–1
110 Editável e fotocopiável © Texto | Novo 10Q
a) A formação de uma mole de água líquida dá-se com:
(A) absorção de 44 kJ de energia a mais relativamente à formação da mesma quantidade de
água gasosa.
(B) absorção de 44 kJ de energia a menos relativamente à formação da mesma quantidade de
água gasosa.
(C) libertação de 44 kJ de energia a mais relativamente à formação da mesma quantidade de
água gasosa.
(D) libertação de 44 kJ de energia a menos relativamente à formação da mesma quantidade de
água gasosa.
b) Conclua, justificando a partir da determinação da variação de entalpia (usando os valores
médios das energias de ligação), sobre o caráter energético da transformação inversa da
representada por (2).
6. A síntese do óxido nítrico é traduzida pela seguinte equação:
N2 (g) + O2 (g) → 2 NO (g) ΔH = +181 kJ mol–1
a) Desenhe um diagrama de níveis de entalpia para a síntese do NO.
b) Determine o valor médio da energia da ligação NO.
c) Indique o valor da variação de entalpia da reação de decomposição do óxido nítrico,
correspondente à transformação inversa da representada pela equação.
7. A tabela abaixo contém informações sobre ionização e dissociação dos dois gases mais abundantes
na atmosfera terrestre, e sobre o ozono que é o gás mais importante na estratosfera.
Substância
Energia
de 1.
a
ionização / J
Energia de dissociação
(atomização) / J
N2 2,5 × 10
–18
1,6 × 10
–18
O2 1,9 × 10
–18
8,2 × 10
–19
O3 – 6,0 × 10
–19
a) Represente, através de uma equação, a dissociação do oxigénio, O2.
b) O valor da energia envolvida na transformação representada por N2 (g)→ N2
+
(g) + e–
é:
(A) 1,6 × 10–18
J
(B) 3,2 × 10–18
J
(C) 2,5 × 10–18
J
(D) 5,0 × 10–18
J
c) Como se designa a transformação representada em b) pelo facto de ocorrer por ação da luz
(na atmosfera terrestre)?
d) Interprete as reações fotoquímicas que envolvem as moléculas N2, O2 ou O3 na atmosfera
terrestre, relacionando-as com a energia da radiação e com a estabilidade dessas moléculas.
Editável e fotocopiável © Texto | Novo 10Q 111
8. Na figura ao lado pode ver-se uma represen-
tação do processo de produção do ozono
estratosférico.
a) A equação que pode traduzir globalmente o
processo de formação do ozono
estratosférico representado é:
(A) O2 → 2 O
(B) O + O2 → O3
(C) O + 2 O2 → 2 O3
(D) 3 O2 → 2 O3
b) Interprete, com base nas fotodissociações do oxigénio e do ozono estratosféricos, que a
estratosfera atue como um filtro de radiações ultravioletas UV–B e UV–C. Comece por escrever as
equações correspondentes.
c) Discuta a validade da seguinte afirmação: Os átomos de oxigénio são radicais livres.
9. Em zonas de grande tráfego rodoviário, óxidos de carbono e de nitrogénio, em determinadas
condições de temperatura e na presença da luz, podem reagir com oxigénio e conduzir à
formação de ozono o qual provoca ou agrava problemas respiratórios das populações.
Na atmosfera terrestre pode encontrar-se ozono na:
(A) estratosfera, onde atua como poluente.
(B) estratosfera, onde atua como poluente e como protetor de radiação ultravioleta.
(C) troposfera, onde atua como poluente.
(D) troposfera, onde atua como poluente e como protetor de radiação ultravioleta.
10. Medições da concentração de CFC, como CFCℓ3 e CF2Cℓ2, e de CH3CCℓ3 na troposfera, revelaram
que a taxa de diminuição temporal da concentração dos CFC era inferior à taxa de diminuição
temporal da concentração do CH3CCℓ3.
a) De acordo com o texto, CFC são substâncias formadas por cloro, flúor,
(A) carbono e hidrogénio, mais estáveis na troposfera que CH3CCℓ3.
(B) carbono e hidrogénio, mais reativas na troposfera que CH3CCℓ3.
(C) e carbono, mais estáveis na troposfera que CH3CCℓ3.
(D) e carbono, mais reativas na troposfera que CH3CCℓ3.
b) Explique a formação de radicais livres traduzida
pela equação seguinte, identificando a camada da
atmosfera onde tem maior probabilidade de
ocorrer.
c) Com base nas equações (1) e (2) explique o efeito do uso de CFCℓ3 na concentração de ozono
estratosférico.
(1) Cℓ + O3 → O2 + CℓO
(2) CℓO + O3 → 2 O2 + Cℓ
112 Editável e fotocopiável © Texto | Novo 10Q
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário, salvo indicação em contrário.
1. Considere o gráfico do número de átomos em
função da quantidade de matéria (de átomos).
a) Como classifica a relação matemática que
existe entre as duas variáveis em estudo?
b) Determine o número de átomos por unidade de
quantidade de matéria (de átomos). Apresente
o resultado arredondado às décimas e em
notação científica.
2. Um recipiente contém uma mistura gasosa, nas
condições PTN, constituída por 5,5 g de dióxido
de carbono, CO2, e 7,5 x 1022
moléculas de
oxigénio, O2.
Determine a:
a) fração molar do oxigénio. Apresente o resultado na forma de fração.
b) capacidade do recipiente na unidade do SI.
c) percentagem, em volume, de dióxido de carbono.
d) densidade da mistura.
3. Na primeira figura pode observar-se a realização de um teste de chama a uma amostra de sal e na
segunda figura, o espetro de emissão do átomo de hidrogénio obtido por espetroscopia atómica.
Ambas as técnicas são usadas na identificação de elementos químicos.
a) Indique sumariamente em que é que se fundamenta qualquer uma das técnicas, e o que é que
se pode concluir do facto do espetro de emissão do átomo de hidrogénio ser descontínuo.
b) Descreva sucintamente o espetro atómico de emissão do átomo de hidrogénio.
c) Indique o valor lógico da seguinte afirmação «Elementos do mesmo grupo da Tabela Periódica
originam espetros atómicos de absorção iguais».
4. O átomo de um elemento representativo, no estado fundamental, tem um eletrão de valência
desemparelhado no terceiro nível de energia.
a) O elemento pode ser:
(A) lítio, sódio ou potássio. (B) sódio, alumínio ou cloro.
(C) sódio, alumínio ou silício. (D) sódio, silício ou fósforo.
NOME ___________________________________________________ Turma______ Número______
Ficha global
Editável e fotocopiável © Texto | Novo 10Q 113
b) Para um dos elementos selecionados em a) escreva uma configuração eletrónica num estado
excitado.
c) Indique o que significa átomo no estado fundamental (do ponto de vista energético).
5. Os iões mais estáveis de um elemento químico têm a seguinte configuração eletrónica.
[Ne]3s2
2p6
a) O número atómico do elemento é:
(A) 8 e os iões são dinegativos.
(B) 9 e os iões são monopositivos.
(C) 19 e os iões são mononegativos.
(D) 20 e os iões são dipositivos.
b) Conclua sobre o número de orbitais p que foram ocupadas, partindo da indicação do número
de eletrões de valência nestas orbitais, e justificando com base no Princípio de Exclusão de
Pauli.
6. A energia de ionização ao longo do grupo da Tabela Periódica não evolui da mesma forma do que ao
longo do período. Os fatores que determinam essa evolução ao longo do grupo e do período são
diferentes.
De um modo geral a energia de ionização aumenta ao longo do:
(A) grupo devido ao efeito predominante do aumento da carga nuclear.
(B) grupo devido ao efeito predominante do aumento do número de eletrões.
(C) período devido ao efeito predominante do aumento da carga nuclear.
(D) período devido ao efeito predominante do aumento do número de eletrões.
7. Os átomos estabelecem ligações entre si, formando moléculas, e as posições relativas dos átomos
na molécula definem a sua geometria molecular.
a) Estabeleça correspondências corretas entre as informações das colunas I, II e III.
Coluna I – molécula Coluna II – geometria Coluna III – ligação covalente
1. Nitrogénio, N2 a. Angular A. Simples
2. Fosfina, PH3 b. Linear B. Dupla
3. Sulfureto de carbono, CS2 c. Piramidal C. Tripla
3. Sulfureto de hidrogénio, H2S
b) Em qual das seguintes opções é que as moléculas se encontram dispostas por ordem crescente
da energia da ligação interatómica?
(A) HBr, HCℓ, HI. (B) HCℓ, HBr, HI (C) HI, HBr, HCℓ. (D) HI, HCℓ, HBr.
c) Classifique o sulfureto de carbono como uma substância polar ou apolar.
d) Determine a energia da ligação H–F a partir das informações abaixo.
H2 + F2 → 2HF ∆H = –530 kJ
H2 → H + H ∆H = 436 kJ
F + F → F2 ∆H = –158 kJ
114 Editável e fotocopiável © Texto | Novo 10Q
8. As moléculas também estabelecem ligações entre si, como se ilustra na primeira figura para a
molécula de fluoreto de hidrogénio, com o seu mapa de potencial eletrostático ao lado. As
ligações intermoleculares podem ser relacionadas com a miscibilidade de substâncias.
a) A molécula HF é:
(A) apolar, de geometria angular, e a ligação intermolecular é mais fraca que a ligação interatómica.
(B) apolar, de geometria linear, e a ligação intermolecular é mais forte que a ligação interatómica.
(C) polar, de geometria angular, e a ligação intermolecular é mais forte que a ligação interatómica.
(D) polar, de geometria linear, e a ligação intermolecular é mais fraca que a ligação interatómica.
b) Entre moléculas de fluoreto de hidrogénio estabelecem-se:
(A) apenas ligações de hidrogénio.
(B) apenas forças de van der Waals entre moléculas polares.
(C) apenas ligações de hidrogénio e forças de van der Waals entre moléculas polares.
(D) ligações de hidrogénio e forças de van der Waals entre moléculas polares e forças de London.
c) Preveja se o fluoreto de hidrogénio e o sulfureto de carbono são substâncias miscíveis.
9. Observe as estruturas de Lewis de quatro moléculas diferentes.
a) Identifique sequencialmente a família de compostos orgânicos correspondente a cada substância.
b) Indique o número de eletrões de valência da molécula representada em último lugar.
c) Indique o número e a localização dos eletrões de valência com caráter não ligante na molécula
representada em primeiro lugar.
10. Pretende-se preparar 50 mL de uma solução aquosa de sacarose de concentração 0,050 g cm–3
, a
partir de uma solução aquosa do mesmo soluto de concentração 0,40 g cm–3
.
a) Determine o volume necessário de solução concentrada.
b) Dos materiais seguintes identifique o que deve ser utilizado na medição do volume necessário
de solução concentrada e indique qual deve ser a sua capacidade.
(A) Balão volumétrico. (B) Pipeta graduada.
(C) Pipeta volumétrica. (D) Proveta graduada.
Editável e fotocopiável © Texto | Novo 10Q 115
Soluções das fichas formativas
Ficha 1 – Massa e tamanho dos átomos
Domínio 1: Elementos químicos e sua organização
1. a) Átomo de berílio. b) (D) 0,40 m. c) (C) 0,007 mm.
d) (B) solar, 1 400 000 km, está mais próximo de um milhão de
quilómetros que de dez milhões de quilómetros.
e) (C) 10
2
μm. f) Diâmetro da Terra 10
7
m, célula da pele
10
–5
m, átomo de Be 10
–10
m.
2. a) Ne
10
22
(10,12,10),
−
2
34
16 S (16, 18, 18) e
+
3
27
13 Al (13,14,10).
b) 29, 34 e 29 em
63
Cu e 47, 60 e 47 na prata-107.
c) 22, 26 e 22 no Ti-48.
d) Os protões e os neutrões no núcleo e os eletrões à volta
deste.
3. a) Aproximadamente 2,0 × 10
–10
m.
b) O valor obtido em a) é 1,21 vezes superior sendo da mesma
ordem de grandeza que é 10
–10
m.
4. a) 12,044 × 10
23
moléculas. b) (C)
890 × 10–23
6,022
g
c) (C) pesado que uma molécula de água e mais leve que uma
molécula de sacarose.
d) 3,613 × 10
24
átomos.
e) 200,59. A massa dos átomos de mercúrio é, em média,
200,59 vezes superior à massa de 1/12 do átomo de carbono-
12.
5. a) 28,085. b) (D) 28,084 ≤ Ar(Si) ≤ 28,086.
c) O resultado obtido em a), 28,085, encontra-se no intervalo de
valores possíveis para a massa atómica relativa do Si,
[28,084; 28,086].
d) A massa atómica relativa é mais próxima da massa do isótopo
mais abundante, neste caso Si-28, pois o seu valor resulta da
média ponderada das massas isotópicas tendo maior contributo
a massa do isótopo mais abundante.
6. 4,5 mol.
7. Sulfato de sódio.
8. a) 0,21 e 0,79. b) 0,23 e 0,77.
Ficha 2 – Energia dos eletrões nos átomos
Domínio 1: Elementos químicos e sua organização
1. a) (D) 10,2 eV e 13,0 eV.
b) A existência de níveis atómicos de energias bem definidas e a
possibilidade de ocorrerem transições eletrónicas por absorção
ou emissão de energias são as duas ideias fundamentais do
modelo atómico de Bohr que prevalecem no modelo atual
(modelo quântico do átomo). Temos, então, que a energia dos
eletrões nos átomos está quantizada (níveis de energia bem
definidos) e, por isso, o átomo de hidrogénio no estado
fundamental (n = 1) pode absorver fotões de energia que
permitam transições eletrónicas para níveis permitidos
(n = 2,3,4...), o que só acontece para os fotões de energia
10,2 eV (–13,6 eV + 10,2 eV = –3,4 eV, energia do nível 2) e
13,0 eV (–13,6 eV + 13,0 eV = –0,6 eV, energia do nível 5).
c) 9,6 × 10
–20
J , IV.
d) (C)
2. (C) o efeito das atrações entre os eletrões e o núcleo e o das
repulsões entre os eletrões.
3. a) (D) o número de eletrões responsáveis pelo pico B é um
terço do número de eletrões responsáveis pelo pico C.
b) (B) 1s, 2s e 2p. c) 22 eV (pico C). d) Néon, Ne.
e) Os seis eletrões têm todos a mesma energia e, de acordo com
o Princípio de Exclusão de Pauli (dois eletrões por orbital, no
máximo), terão então de existir três orbitais do mesmo tipo
(tipo p, subnível 2p), px, py e pz. Havendo um único valor de
energia tal significa que estas três orbitais têm todas a mesma
energia designando-se, por essa razão, por orbitais
degeneradas.
4. a) 1s2 2s2 2p x
22p y
12p z
1 ; E1s < E2s < E2px
= E2py
= E2pz
b) (B)
c) (A) - No diagrama, a utilização de setas ( → ) ilustra o spin dos
eletrões em cada orbital. De acordo com o Princípio de Exclusão
de Pauli, cada orbital pode ter no máximo, 2 eletrões com spins
opostos o que não acontece na 3.
a
orbital onde se verifica que
os 2 eletrões têm o mesmo spin.
d) 1s-543 eV, 2s-42 eV, 2p-16 eV. e) 1s2 2s2 2p3 3p1
5. a) (D) – 4,98 × 10
-18
J. b) 172 × 10
–18
J. c) 1s
2
2s
2
2p
6
3p
1
d) (C) 4.
6. (A) diferentes para as energias dos eletrões e espetros atómicos
diferentes.
7. A – d, cinco orbitais em cada nível para n ≥ 3; B – p, três
orbitais em cada nível para n ≥ 2; C – s, uma orbital em cada
nível.
8. 1s
2
2s
1
, dois; 1s
2
2s
2
2p
2
, três; 1s
2
2s
2
2p
5
, três;
1s
2
2s
2
2p
6
3s
2
3p
1
, cinco; 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
, seis;
1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
1
, sete; 1s
2
2s
2
2p
6
3s
2
3p
6
3s
2
3p
6
4s
2
3d
3
, sete
9. 2 e 1; 4 e 2; 5 e 1; 7 e 1.
10. (D) 1s
2
2s
1
2p
1
Ficha 3 – Tabela Periódica
Domínio 1: Elementos químicos e sua organização
1. a) (D) previam a existência de novos elementos.
b) gálio, Ga e germânio, Ge.
2. a) (D) número atómico, uma consequência dos trabalhos de
Moseley. b) (C) d e não são elementos representativos.
c) 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
; 4.
o
período, porque os eletrões se
distribuem por 4 níveis de energia, e grupo 2 por ter 2 eletrões
de valência.
3. 1-c, 2-d-e, 3-a-f, 4-b.
4. (C) magnésio - 1s
2
2s
2
2p
6
.
5. a) Os átomos de sódio apresentam um eletrão de valência e
baixo valor de energia de ionização tendo, por isso, elevada
tendência para perder esse eletrão transformando-se num ião
monopositivo ao qual corresponde uma configuração eletrónica
de gás nobre (Ne, oito eletrões de valência), ou seja,
transformando-se, dessa forma, numa partícula mais estável.
b) ([Ne]3s1) → Na+ ([Ne])+e–
c) (A), Na (g) → Na+ (g) + e– com absorção de 496 kJ/mol.
d) (C) dos elementos e o ponto de fusão é uma propriedade das
substâncias elementares.
6. rSi > rC porque o carbono antecede o silício no mesmo grupo
da Tabela Periódica e o raio atómico aumenta ao longo do
grupo.
7. 48 pm-O, 79 pm-Cℓ, 88 pm-S
8. (A) cloro, flúor e néon.
9. Na – 1s
2
2s
2
2p
6
3s
1
e Mg – 1s
2
2s
2
2p
6
3s
2
Os eletrões distribuem-se pelo mesmo número de níveis pelo
que predomina o efeito do aumento da carga nuclear. A carga
116 Editável e fotocopiável © Texto | Novo 10Q
nuclear é superior no magnésio (+12) sendo, por isso, a atração
nuclear sobre os eletrões maior para este átomo; consequen-
temente será necessário maior energia (energia de ionização)
para remover qualquer um dos eletrões de valência no átomo
de magnésio que no de sódio.
10. (B) 5, do 2.
o
período.
11. a) (C) 2,2,3.
b) bloco p, 2 níveis (n = 1 e n = 2), 3 subníveis (1s, 2s, e 2p)
c) 1s
2
2s
2
2p
3
, nitrogénio, grupo 15.
d) (C) inferior a 2,1 × 10
–18
J.
Ficha 4 – Ligação química
Domínio 2: Propriedades e transformações da matéria
1. a) (D) menor do que a do mesmo conjunto dessas entidades
não ligadas, e resulta de atrações e repulsões envolvendo
eletrões e núcleos atómicos.
b) (B) intermolecular de van der Waals quando envolve partilha
pouco significativa de eletrões de valência.
2. a) (B) 74 pm e a energia de ligação é 432 kJ/mol.
b) Repulsão.
c) A)F2, B)H2, C)HF, D)HCℓ
d) Os elementos químicos cloro e bromo pertencem ao mesmo
grupo da Tabela Periódica encontrando-se o bromo abaixo do
cloro. Como o raio atómico aumenta ao longo do grupo, o raio
atómico do bromo é superior ao do cloro. Sendo o hidrogénio
um elemento comum às duas moléculas, e o elemento
diferenciador o halogéneo, o comprimento de ligação (valor
médio da distância internuclear de equilíbrio) é superior para a
molécula com o átomo de halogéneo de maior raio, ou seja,
HBr. Sendo maior o comprimento de ligação, a ligação H–Br é
mais frágil e, por isso, de menor energia de ligação que a ligação
H-Cℓ.
3. a) H –H
b) (C) menor do que a energia dos eletrões mais energéticos no
átomo isolado, e a molécula é mais estável que os dois átomos
separados.
4. a) Metano, dióxido de carbono, água e amoníaco.
b) Cada um dos quatro átomos de hidrogénio ocupa um dos
vértices de um tetraedro, situando-se o átomo de carbono no
centro do tetraedro, sendo cada um dos ângulos de ligação igual
a 109,5
o
.
c)
A disposição espacial dos átomos numa molécula define a
geometria que corresponde à minimização da repulsão entre
todos os pares eletrónicos de valência na molécula. Na molécula
CO2 não existem pares eletrónicos não ligantes no átomo
central (C), dispondo-se os três átomos na molécula em
posições correspondentes à maximização da distância entre os
pares eletrónicos ligantes e não ligantes correspondente a uma
geometria linear, ou seja, um ângulo de ligação 180
o
. Na
molécula de água existem dois pares eletrónicos não ligantes no
átomo central (O), e as repulsões mútuas entre pares
eletrónicos não ligantes, ligantes, não ligantes e ligantes são
minimizadas para uma disposição espacial dos três átomos
correspondente a uma geometria angular para um ângulo de
104,5
o
(inferior ao da molécula CO2).
d) (C) H2O e NH3.
e) Geometria piramidal; distribuição assimétrica de carga.
5. a) Cloreto de sódio, NaCℓ.
b) C2H2, etino, ; H – C≡C – H , dimetilpropano,
; CHCℓ3, triclorometano,
c) (B) átomos, He, entre os quais se estabelecem forças
de van der Waals.
d) (D) C2H2 e o eteno são hidrocarbonetos saturados.
e) Eteno-1,33 Å; C2H2-1,20 Å.
f)
6. a) A-amina, B-aldeído, C-álcool, D-ácido carboxílico, E-cetona.
b) CH-ligação covalente simples polar, CC-ligação covalente
simples apolar, CO-ligação covalente dupla polar.
c) (B) A e C.
d) (D) 16 eletrões ligantes e 8 eletrões não ligantes.
Ficha 5 – Gases e dispersões
Domínio 2: Propriedades e transformações da matéria
1. a) (D) [6,022 140 82 ± 0,00000018] × 10
23
mol
–1
com uma
incerteza relativa de 3,0 × 10
-8
.
b) 6,022 140 82(18) × 10
23
átomos
c) Volume molar, Vm, é o volume ocupado por uma mole de
qualquer gás e, de acordo com a Lei de Avogadro, é igual para
para todos os gases que se encontrem nas mesmas condições
de pressão e de temperatura.
Vm =
V
n
; gás A, Vm =
VA
nA
; gás B,
VB
nB
como o volume molar é
igual para os dois gases
VB
nB
=
VA
nA
⇔ nA × VB = nB × VA
2. a) p = 1 atm e T = 0 °C. b) He, O2, F2, Ar.
c) (D) quantidade de gás por unidade de volume.
d) 0,25 mol. e) 1/4.
3. a) (B)
3,9 × 10–2
× 106
102
b) 27,29%. c) N2 - 0,78; O2 - 0,21. d) 0,90 g/dm
3
.
4. a) Pó de cimento, nevoeiro e oxigénio.
b) As suspensões são constituídas por partículas de maiores
dimensões que os coloides e, por isso, o nevoeiro é um coloide
pois é constituído por partículas de diâmetro inferior a 2,5 µm,
menor que o diâmetro das partículas de pó de cimento
(<10 µm).
5. a) SO2, NO2, O3. b) (D) 8,69.
c) (B)
mpoluente
Var
d) Uso de combustíveis fósseis nos transportes e em indústrias;
naturais – atividade vulcânica.
6. 153 dm
3
.
7. 8,27 x 10
-3
mol.
8. a) Soluto, H2SO4; solvente, água.
b) (B)
0,95 × 1840
98,08
9. a) 0,154 mol/L.
b) (C) 2,4 L de solução, correspondente a cerca de 8,28 g de
sódio.
10. a) Válcool = 0,107 × Vvinho. b) 0,9857 g/mL.
c) 8,6%. d) 0,085 g/mL.
Editável e fotocopiável © Texto | Novo 10Q 117
Ficha 6 – Transformações químicas
Domínio 2: Propriedades e transformações da matéria
1. a) A combustão do metano inicia-se com a rutura das ligações
químicas nos reagentes, CH4 e O2, num processo endoener-
gético que corresponde à atomização dos reagentes. Segue-se a
formação de novas substâncias, os produtos da reação, CO2 e
H2O, que decorre do rearranjo dos átomos de C, O e H. Como
são o resultado da formação de novas ligações, este é um
processo exoenergético. Como a energia libertada na formação
de novas ligações é superior à energia absorvida na rutura de
ligações, a combustão do metano ocorre com libertação de
energia.
b) A entalpia dos produtos é inferior à entalpia dos reagentes e,
por isso, a variação de entalpia é negativa.
2. (A) endotérmica, e se o sistema não fosse isolado ocorreria
transferência de energia do exterior para o sistema.
3. a) A energia do produto (aproximadamente 280 kcal) é
inferior à energia dos reagentes (aproximadamente 340 kcal) o
que significa que houve libertação de energia pelo sistema
reacional concluindo-se, por isso, que a reação que ocorreu é
exoenergética.
b) –3 kcal/s. c) Positivo.
d) A soma das energias de ligação no produto C é superior à
soma das energias de ligação nos reagentes A e B.
4. a) (D) exoenergético e a rutura da ligação N-N é um processo
endoenergético.
b) (B) ENN + 3EHH – 6ENH.
c) (D) exotérmico, ocorrendo com libertação de energia.
d) Variação de entalpia.
5. a) (C) libertação de 44 kJ de energia a mais relativamente à
formação da mesma quantidade de água gasosa.
b) ΔH = 242 kJ/mol, um valor positivo e, por isso, trata-se de
uma transformação endotérmica.
6. a)
b) 628 kJ/mol.
c) –181 kJ/mol.
7. a) O2 (g) → O (g) + O (g) b) (C) 2,5 x 10
–18
J.
c) Fotoionização.
d) As reações fotoquímicas podem ser de dissociação:
N2 → 2 N, O2 → 2 O e O3 → O2 + O ou de ionização:
N2 → N2
+
+ e-
; O2 → O2
+
+ e-
. As moléculas de N2 podem sofrer
fotodissociação, atomização por ação da luz, necessitando, para o
efeito, de absorver radiação mais energética que as de O2 e de O3
sendo, por isso, mais estáveis do que estas. Esta estabilidade resulta
diretamente da força da ligação entre os respetivos átomos: a
ligação em N2 é mais forte que em O2 e em O3 (tripla em N2 - 6
pares de eletrões ligantes, dupla em O2 - 2 pares de eletrões
ligantes e, 1,5 pares de eletrões ligantes, em média, por cada
ligação OO em O3), sendo a energia de ligação superior para N2. N2
também pode sofrer fotoionização, ionização por ação da luz
(N2 → N2
+
+ e-
), necessitando para o efeito de absorver radiação
mais energética que O2 o que também significa que N2 são
moléculas mais estáveis que as de O2 (o que se relaciona com os
eletrões de valência na molécula: os eletrões mais energéticos em
N2 ocuparão níveis de menor energia que os de O2).
8. a) (D) 3 O2 → 2 O3
b) Na estratosfera ocorrem simultaneamente as dissociações de
O2 e de O3, respetivamente, O2 → 2 O e O3 → O + O2. A
dissociação de O2 ocorre com absorção de radiação mais
energética, UV–C, e a de O3 envolve radiação de menor energia,
UV–B. Sendo estas radiações absorvidas na estratosfera tal
significa que esta camada é opaca a estas radiações sendo, por
isso, considerada um filtro dessas mesmas radiações.
c) Radical livre é a designação de espécies químicas que, por
possuírem eletrões desemparelhados, são muito reativas. A
distribuição eletrónica dos átomos de oxigénio revela a
existência de (dois) eletrões desemparelhados (em orbitais p),
1s2 2s22p x
2 2p y
1 2p z
1 e, por isso, prevê-se que os átomos de
oxigénio sejam muito reativos. Conclui-se, então, que a
afirmação é verdadeira.
9. (C) troposfera, onde atua como poluente.
10. a) (C) e carbono, mais estáveis na troposfera que CH3CCℓ3.
b) Por serem muito estáveis na troposfera, moléculas da CFCℓ3
atingem a estratosfera onde, por ação da radiação ultravioleta,
têm grande probabilidade de originar dois radicais livres, CFCℓ2
e Cℓ, devido à rotura de ligações CCℓ. A formação destes
radicais livres resulta, assim, de uma reação fotoquímica.
c) O CFCℓ3 origina radicais livres Cℓ· os quais, por serem muito
reativos, reagem com ozono, O3, de acordo com a equação (1)
dando origem a outro radical livre CℓO·. Este radical, por sua
vez, reage também com outra molécula de ozono originando
outro Cℓ·, equação (2). Como se verifica, ambos os processos
representados, (1) e (2), correspondem ao consumo de ozono o
que significa que o CFCℓ3 (um CFC) conduz à diminuição do
ozono estratosférico (diminuição de duas moléculas de ozono
por cada radical livre Cℓ· formado a partir de CFCℓ3.
Ficha global
Domínio 1: Elementos químicos e sua organização.
Domínio 2: Propriedades e transformações da matéria
1. a) Relação de proporcionalidade direta.
b) 6,0 × 10
23
átomos mol
–1
2. a) 1/2. b) 5,6 × 10
–3
m
3
. c) 50%. d) 1,7 g dm
–3
.
3. a) Nos átomos podem ocorrer transições eletrónicas por
absorção de energia (excitação) e por libertação de energia
(desexcitação). O espetro revela que a energia do eletrão no
átomo está quantizada (admite valores de energia bem
definidos).
b) Três conjuntos diferenciados de riscas bem definidas (sobre
um fundo preto) em três zonas do espetro eletromagnético na
seguinte sequência: infravermelho, visivel e ultravioleta. Em
cada conjunto, as riscas vão ficando cada vez menos espaçadas,
à medida que se aproxima a transição para o conjunto seguinte.
c) Falsa.
4. a) (B) sódio, alumínio ou cloro.
b) Na, 1s
2
2s
2
2p
6
3p
1
.
c) Átomo no estado de menor energia.
5. a) (D) 20 e os iões são dipositivos.
b) Podem haver até 6 eletrões no subnível p. De acordo com o
Principío de Exclusão de Pauli, cada orbital só pode ser ocupada,
no máximo, por dois eletrões o que significa que existem 6 ÷ 2
(ou seja, 3) orbitais tipo p.
118 Editável e fotocopiável © Texto | Novo 10Q
6. (C) período devido ao efeito predominante do aumento da
carga nuclear.
7. a) 1-b-C; 2-c-A; 3-b-B; 4-a-A b) (C) HI, HBr, HCℓ.
c) Apolar. d) 562 kJ.
8. a) (D) polar, de geometria linear, e a ligação intermolecular é
mais fraca que a ligação interatómica.
b) (D) ligações de hidrogénio e forças de van der Waals entre
moléculas polares e forças de London.
c) Não são miscíveis.
9. a) Amina, aldeído, álcool, ácido carboxílico.
b) 24.
c) 2 eletrões localizados no átomo de nitrogénio.
10. a) 6,3 mL.
b) (B) Pipeta graduada. Deverá ter uma capacidade de 10 mL
Editável e fotocopiável © Texto | Novo 10Q 119
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário.
Para medir a massa e o volume de uma gota de água utilizou-se uma balança digital, obtendo-se
9,527 g para 220 gotas de água. A montagem usada para a realização da atividade e ampliações de
partes da escala do aparelho utilizado na medição do volume estão ilustradas na figura.
1. Conforme a informação disponível, indique o nome e as características dos aparelhos de medida
utilizados como, por exemplo, o menor valor que pode ser medido, a menor divisão da escala, a
incerteza de leitura e a capacidade.
2. Descreva o procedimento experimental realizado, de forma a incluir, também, a identificação do
material ilustrado na figura.
3. Registe os valores da massa, do volume inicial e do volume final atendendo às incertezas de
leitura.
4. Determine o volume de 220 gotas de água.
5. Determine a massa e o volume de uma gota de água, indicando a medida com um número
adequado de algarismos significativos.
6. Determine o número, N, de moléculas de água que existem numa gota, indicando o resultado com
um número adequado de algarismos significativos.
7. O valor da massa de 220 gotas de água foi obtido por:
(A) medição direta e a medição do volume por medição indireta.
(B) medição direta e a medição do volume também.
(C) medição indireta e a medição do volume também.
(D) medição indireta e a medição do volume por medição direta.
NOME ___________________________________________________ Turma______ Número______
AL 1.1 – Volume e número de moléculas de uma gota de água
Teste sobre a AL 1.1
Domínio 1: Elementos químicos e sua organização
120 Editável e fotocopiável © Texto | Novo 10Q
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário.
Numa aula experimental, usou-se um fio de platina com o qual se retirou uma pequena amostra de
sal de um frasco que foi submetida ao calor de uma chama de metanol num cadinho de porcelana.
Foi também realizado um novo ensaio com outro sal. Os resultados obtidos estão ilustrados na
figura.
1. Escreva uma frase que traduza o objetivo da atividade.
2. Com base na tabela de cores, sabendo que em A foi testado o sal BaCℓ2 e em B o sal SrCℓ2, indique
o nome dos sais e que cores esperaria observar em cada cadinho.
3. Classifique o teste realizado como um teste de análise qualitativa ou quantitativa.
Elemento químico Cor da chama
bário verde
cálcio vermelha alaranjada
cobre verde azulada
estrôncio vermelha sangue
lítio vermelha
potássio violeta
sódio amarela intensa
A B
NOME ___________________________________________________ Turma______ Número______
AL 1.2 – Teste de chama
Teste sobre a AL 1.2
Domínio 1: Elementos químicos e sua organização
B
A
Editável e fotocopiável © Texto | Novo 10Q 121
4. Antes de realizar o teste de chama com cada um dos sais os alunos realizaram o procedimento
ilustrado abaixo. Justifique este procedimento, relacionando-o com limitações deste tipo de
análise.
5. No rótulo do frasco de metanol constavam os seguintes pictogramas
de perigo:
Identifique algumas informações de perigo associadas, assim como
algumas medidas de segurança e proteção a tomar.
___________________________________________________________________________________________
_________________________________________________________________________________________
6. Interprete os resultados obtidos nos testes de chama e indique uma aplicação prática relacionada
com a coloração das chamas.
7. Analisando as chamas coloridas com um espetroscópio deveria observar-se um espetro:
(A) contínuo de absorção.
(B) contínuo de emissão.
(C) descontínuo de absorção.
(D) descontínuo de emissão.
8. Identifique duas características do espetro que indicou em 7. e ilustre-o.
122 Editável e fotocopiável © Texto | Novo 10Q
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário.
Os resultados de medições obtidos por um grupo de alunos, necessários à determinação da
densidade relativa do cobre por picnometria, estão registados na seguinte tabela:
Massa de cobre 6,31 g
Massa de cobre e do picnómetro com água 84,30 g
Massa do picnómetro com água e o cobre no seu interior 83,60 g
Na figura seguinte podem ver-se alguns dos materiais que se encontravam sobre a mesa de trabalho
quando se preparavam para iniciar a atividade.
1. Selecione o material de vidro B, C, D ou E, imprescindível para a realização desta atividade e diga o
seu nome.
2. Determine a massa de água que ocupa o mesmo volume que a amostra de cobre utilizada.
3. Compare, justificando com base no resultado anterior e na equação de definição de densidade
(massa volúmica), a densidade do cobre com a densidade da água.
4. Determine a densidade relativa do cobre.
5. Indique, no contexto da atividade, a importância da utilização do termómetro.
6. Indique o significado do valor obtido para a densidade relativa do cobre.
7. Consulte uma tabela de densidades e determine o erro percentual do resultado obtido em 4.
NOME ___________________________________________________ Turma______ Número______
AL 1.3 – Densidade relativa de metais
Teste sobre a AL 1.3
Domínio 1: Elementos químicos e sua organização
A B C D E F
Editável e fotocopiável © Texto | Novo 10Q 123
8. Discuta a exatidão do resultado obtido para a densidade relativa do cobre.
9. Indique fatores (de erro) que poderiam afetar a exatidão do resultado obtido.
10. De acordo com os resultados obtidos indique o valor da massa volúmica do cobre, em unidades
do SI.
11. Se a massa da amostra de cobre fosse 12,62 g seria de esperar que o valor obtido para a
densidade relativa (em relação ao resultado obtido em 4.) fosse:
(A) metade.
(B) o dobro.
(C) igual.
124 Editável e fotocopiável © Texto | Novo 10Q
Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário.
Grupo I
As misturas de substâncias líquidas podem ser
homogéneas ou heterogéneas, como se pode
observar ao lado. Os tubos de ensaio, que contêm
as misturas, estão sobre um fundo.
1. Classifique macroscopicamente cada uma das
misturas.
2. Quando da mistura de dois líquidos resulta uma solução diz-se que os dois líquidos são:
(A) imiscíveis. (B) insolúveis. (C) miscíveis. (D) solúveis.
3. Identifique, justificando, qual das misturas pode ser classificada como solução.
4. A expressão «igual dissolve igual», no contexto da miscibilidade de líquidos, significa que:
(A) dois líquidos são miscíveis se tiverem igual massa molar.
(B) dois líquidos são miscíveis se forem constituídos pelos mesmos elementos químicos.
(C) líquidos polares são miscíveis em líquidos polares e líquidos apolares em líquidos apolares.
(D) líquidos polares são miscíveis em líquidos apolares e líquidos apolares em líquidos polares.
Grupo II
Considere os pares de líquidos (A) a (G).
(A) CCℓ4 e H2O. (B) H2O e NH3. (C) NH3 e HF. (D) H2O e Br2.
(E) CCℓ4 e C6H6. (F) C6H6 e C6H12. (G) CS2 e CCℓ4.
1. Tendo como único critério o tipo de ligações intermoleculares predominantes em cada líquido,
preveja os pares de líquidos que formarão uma mistura heterogénea.
2. Indique, justificando, as interações predominantes entre as substâncias do par (C) e as do par (G).
3. Antes de responder a este grupo, um aluno efetuou uma pesquisa e, entre outras, registou a
seguinte informação: CCℓ4, 1,58 g/mL e C6H6, 0,878 g/mL. Um dos pares selecionados pelo aluno,
no item 1, foi o par (E).
Discuta a validade da escolha do par (E) por este aluno.
NOME ___________________________________________________ Turma______ Número______
AL 2.1 – Miscibilidade de líquidos
Teste sobre a AL 2.1
Domínio 2: Propriedades e transformações da matéria
Editável e fotocopiável © Texto | Novo 10Q 125
Grupo III
A figura e a tabela abaixo foram retiradas do relatório elaborado por um aluno sobre uma atividade
laboratorial realizada numa aula de química no âmbito do estudo da miscibilidade de líquidos.
A atividade foi realizada na hotte, com o exaustor ligado, e foi registada a temperatura nesse local.
Proveta com 2 mL de:
Adição de 3 mL de tetraclorometano, CCℓ4, incolor
Resultados obtidos:
Sulfureto de carbono, CS2 uma fase líquida incolor
Bromo, Br2 uma fase líquida vermelha
Água, H2O duas fases líquidas incolores
Etilenoglicol, C2H6O2 duas fases líquidas incolores
1. Indique o estado físico dos reagentes utilizados.
2. Identifique o objetivo da atividade.
3. Identifique três variáveis que foram controladas.
4. Identifique a variável da qual se esperava depender o resultado da atividade, e como se manifestaria
esse resultado.
5. Indique as cores do sulfureto de carbono e do bromo.
6. Identifique as misturas que não podem ser consideradas soluções.
7. Conclua, face aos resultados obtidos, sobre a miscibilidade do CCℓ4 nas substâncias utilizadas.
8. Relacione, com base nas interações intermoleculares predominantes em cada um dos líquidos, o
resultado obtido com a água.
9. Na tabela abaixo encontra-se informação retirada do rótulo do frasco contendo CCℓ4.
a) NFPA 70
3 - azul; 0 - vermelho; 0 - amarelo
b) Frases R R23/24/25, R40, R48/23, R59,R52/53
c) Frases S S1/2, S23, S36/37, S45, S59, S61
d) Pictogramas de perigo
Pesquise sobre a informação apresentada e, para cada uma das linhas da tabela, a), b), c) e d),
escreva uma frase que traduza uma dessas informações.
126 Editável e fotocopiável © Texto | Novo 10Q
Numa aula de laboratório pretende-se preparar, com rigor, 50,0 mL de uma solução aquosa de
sulfato de cobre (II) pentahidratado, CuSO4.5H2O, de concentração 0,200 mol/dm3
.
O sulfato de cobre (II) pentahidratado é o sólido
apresentado ao lado e foi pesado dentro de um gobelé,
na balança da figura.
1. Identifique o soluto e o solvente na solução a
preparar.
2. Indique o significado físico da informação 0,200 mol/dm3
.
3. Calcule a massa de soluto necessário para preparar a solução.
4. A balança usada na medição da massa do soluto é
(A) analógica e a incerteza de leitura é 0,00 g. (C) digital e a incerteza de leitura é 0,00 g.
(B) analógica e a incerteza de leitura é 0,01 g. (D) digital e a incerteza de leitura é 0,01 g.
5. Registe o valor da massa de soluto a medir, tendo em atenção as regras de registo de resultados
de medições diretas.
6. Indique três etapas principais de procedimento que se devem realizar, após a pesagem do soluto,
para dar cumprimento ao objetivo da atividade, identificando material a utilizar.
7. Desenhe o aparelho que deve ter sido usado na preparação de 50,0 mL de solução.
8. Caracterize macroscopicamente a solução preparada.
9. Indique como deve proceder para armazenar a solução.
10. Desenhe um rótulo com informações sobre a solução preparada.
11. No final da atividade o professor disse a um dos grupos de trabalho que a solução por ele
preparada tinha uma concentração inferior a 0,200 mol/dm3
.
Identifique três possíveis observações, relacionadas com incorreções procedimentais, que o
professor terá registado durante a aula, e que possam justificar a apreciação feita.
12. Classifique, como aleatório ou sistemático, o erro experimental associado ao facto de, num dos
grupos, a balança não se encontrar nivelada.
NOME ___________________________________________________ Turma______ Número______
AL 2.2 – Soluções a partir de solutos sólidos
Teste sobre a AL 2.2
Domínio 2: Propriedades e transformações da matéria
Editável e fotocopiável © Texto | Novo 10Q 127
Nesta atividade pretende-se preparar, com rigor, 100,0 mL de uma
solução aquosa aquosa de sulfato de cobre (II) pentahidratado,
CuSO4.5H2O, de concentração 0,050 mol/L, a partir da solução azul
preparada na atividade AL 2.2 da qual se conhecem as informações
presentes no respetivo rótulo.
Ao lado podem ver-se partes de dois aparelhos diferentes, A e B, que se
encontravam disponíveis no laboratório, entre outros, onde decorreu a
atividade, e que poderão ser usados na medição de volumes de líquidos
com o auxílio de uma pompete.
1. Indique o volume máximo de líquido que pode ser medido com cada um
dos aparelhos e a incerteza de leitura associada.
2. Selecione o aparelho que deveria utilizar na medição do volume de
líquido que indicou em 1. e diga o seu nome.
3. Calcule o fator de diluição usado na preparação da solução diluída.
4. Um grupo de alunos usou os dois instrumentos de vidro, A e B, para medir o volume de solução
concentrada necessário à preparação da solução diluída.
Comente este procedimento no contexto da atividade em causa.
5. Registe o volume de solução concentrada medido pelo grupo de alunos referido em 4., assumindo
como incerteza de leitura a do instrumento de vidro A ou B, de medição menos menos rigorosa.
6. Dos recipientes de vidro A, B, C e D, selecione o que deve
ser utilizado para preparar a solução diluída. Indique o seu
nome e a sua capacidade.
7. Descreva o procedimento experimental que deveria ser
seguido na preparação da solução diluída de CuSO4.5H2O,
com rigor, referindo, sequencialmente, as três principais
etapas envolvidas nesse procedimento.
8. Conclua, com base no conceito de concentração de uma
solução, sobre as diferenças ao nível da cor das duas
soluções: a inicial e a diluída.
NOME ___________________________________________________ Turma______ Número______
AL 2.3 – Diluição de soluções
Teste sobre a AL 2.3
Domínio 2: Propriedades e transformações da matéria
A B
CuSO4.5H2O (aq)
0,200 mol/dm
3
Laboratório escolar, jan 2016
A B C D
Figura 3
128 Editável e fotocopiável © Texto | Novo 10Q
(Em alternativa à realização deste teste podem explorar-se recursos didáticos online como, por
exemplo, Cool Science: Silver Chloride Photochemistry ou Photochemical decomposition of silver
chloride e elaborar o respetivo relatório.)
Durante a atividade utilizaram-se soluções aquosas previamente preparadas, de acordo com a tabela
abaixo.
Frasco de reagente
Amostra
de reagente
Solução aquosa Informações adicionais
Cloreto de sódio, NaCℓ
----------------------
Nitrato de prata, AgNO3
(guardar ao
abrigo da luz)
No diagrama abaixo apresentam-se etapas de procedimento e os resultados obtidos, durante uma
atividade realizada em ambiente escurecido, retirados de uma experiência documentada no vídeo
Photosensitivity of silver chloride.
NOME ___________________________________________________ Turma______ Número______
AL 2.4 – Reação fotoquímica
Teste sobre a AL 2.4
Domínio 2: Propriedades e transformações da matéria
NaCℓ (aq) AgNO3 (aq)
filtração
mistura
NaCℓ
AgNO3
Editável e fotocopiável © Texto | Novo 10Q 129
1. Identifique características comuns aos dois reagentes.
2. Com base nas informações adicionais, identifique um dos efeitos de um dos reagentes sobre a
pele, e indique uma medida de proteção adequada.
3. Descreva, em quatro etapas, a sequência de procedimentos realizados.
4. Identifique o sólido constituinte da mistura e escreva a equação química que traduz a reação que
teve lugar.
5. Classifique a mistura como solução, coloide ou suspensão.
6. Identifique o principal resultado obtido e interprete-o escrevendo a equação química correspondente.
7. Estabeleça conclusões.
8. Diga que alterações deveria introduzir na atividade para verificar o efeito de diferentes radiações
vísiveis sobre a amostra, com referência a variáveis a controlar.
9. A caixa de Petri foi tapada, em determinado momento da atividade, com papel de alumínio.
Justifique este procedimento.
10. Indique o objetivo da atividade.
11. Preveja, justificando, se a luz tem algum efeito sobre o nitrato de prata.
130 Editável e fotocopiável © Texto | Novo 10Q
Soluções dos testes sobre atividades laboratoriais
Teste sobre a AL 1.1 – Volume e número
de moléculas de uma gota de água
Domínio 1: Elementos químicos e sua organização
Subdomínio 1.1: Massa e tamanho dos átomos
1. A - Bureta graduada: menor divisão da escala e menor valor
que pode ser medido 0,10 mL, incerteza de leitura 0,05 mL, e
capacidade 20 mL.
C - Balança digital: incerteza de leitura e menor valor que pode
ser medido 0,001 g.
2. Segurar a bureta (A) num suporte; colocar água na bureta
com o auxílio de um funil. Ligar a balança digital (C), colocar um
erlenmeyer (B) sobre o prato e tarar. Colocar a bureta alinhada
verticalmente com a entrada do erlenmeyer e proceder ao
escoamento da água, gota a gota, num total de 220 gotas.
3. m = (9,527 ± 0,001) g; Vi = (0,25 ± 0,05) mL ; Vf = (9,45 ± 0,05) mL
4. V = 9,20 mL
5. m = 0,04330 g; V = 0,0425 mL
6. N = 1,447 x 10
21
moléculas.
7. (A) medição direta e a medição do volume por medição indireta.
Teste sobre a AL 1.2 – Teste de chama
Domínio 1: Elementos químicos e sua organização
Subdomínio 1.2: Energia dos eletrões nos átomos
1. Identificar elementos químicos em amostras de sais através
da cor que conferem a uma chama.
2. Resultado A: BaCℓ2, cloreto de bário, verde
Resultado B: SrCℓ2, cloreto de estrôncio, vermelha sangue.
3. Qualitativa.
4. Limpeza do fio para que não ocorra contaminação das
amostras. Caso o fio estivesse sujo, contaminado com outros
elementos químicos (metálicos), poderia mascarar a cor da
chama e tornar mais difícil a identificação do elemento químico
presente. O uso de uma chama do bico de Bunsen garante uma
melhor limpeza do fio uma vez que esta chama atinge
temperaturas mais elevadas que a chama de metanol. Após a
descontaminação pela chama, molhar o fio em HCℓ facilita a
aderência do sal ao fio.
A subjetividade na visão das cores é outra limitação deste teste.
5. Reagente inflamável, tóxico e muito perigoso para a saúde.
Manter afastado de fontes de ignição e evitar qualquer forma
de contacto corporal. Manusear na hote e usar bata, luvas,
máscara e óculos de proteção.
6. Devido ao calor da chama, os catiões (metálicos) presentes
nos sais sofrem excitação eletrónica (transitam para níveis de
maior energia) por aumento de temperatura. Uma vez
excitados, segue-se a emissão de radiação (transições
eletrónicas para níveis de menor energia) que, sendo da zona
visível do espetro eletromagnético, é responsável pela
coloração da chama.
A existência de diferentes colorações, de elemento para
elemento, é uma evidência experimental da existência de
transições que envolvem valores diferentes e bem definidos de
energias para cada elemento, o que significa que as energias
dos eletrões nos átomos são diferentes de elemento para
elemento e também bem definidas, ou seja, a energia dos
eletrões nos átomos está quantizada.
Aplicação prática: fogo de artifício.
7. (D) descontínuo de emissão.
8. É um espetro que apresenta riscas coloridas sobre um fundo
preto (por exemplo, espetro de emissão para o lítio).
Teste sobre a AL 1.3 – Densidade relativa de metais
Domínio 1: Elementos químicos e sua organização
Subdomínio 1.3: Tabela Periódica
1. D, picnómetro (de sólidos).
2. 0,70 g.
3. 𝜌 =
𝑚
𝑉
; para o mesmo volume, a densidade é tanto maior
quanto maior for a massa. A massa de água que ocupa o mesmo
volume da amostra de cobre é 0,70 g, menor que a massa de
cobre (6,31 g), então a densidade do cobre é superior à da água.
4. 9,01.
5. O padrão de referência para a determinação da densidade
relativa de sólidos é a água líquida a 4
o
C pelo facto de, a essa
temperatura, a massa volúmica da água ser 1,00 g/mL. Por esta
razão a densidade relativa de um material sólido (em estudo
nesta atividade) é numericamente igual à sua massa volúmica.
6. O cobre é 9,01 vezes mais denso que a água líquida a 4
o
C.
7. 1%; (valor tabelado, 8,92 g/mL).
8. A exatidão considera-se elevada, pois o erro percentual é
(muito) pequeno.
9. A temperatura da água, a existência de bolhas de ar dentro
de água, impurezas na amostra de cobre, erros de paralaxe…
10. 9,01 x 10
3
kg m
–3
.
11. (C) igual.
Teste sobre a AL 2.1 – Miscibilidade de líquidos
Domínio 2: Propriedades e transformações da matéria
Subdomínio 2.1: Ligação química
Grupo I
1. Água e diclorometano: mistura heterogénea formada por
duas fases líquidas incolores e transparentes.
Água e acetona: mistura homogénea, formada por uma fase
líquida, incolor e transparente.
2. (C) miscíveis.
3. Água e acetona porque é uma mistura homogénea.
4. (C) líquidos polares são miscíveis em líquidos polares e líquidos
apolares em líquidos apolares.
Grupo II
1. (A) CCℓ4 e H2O. (D) H2O e Br2.
2. (C) –Ligações de hidrogénio por haver átomos de hidrogénio
ligados a nitrogénio, N, e a flúor, F; (G)–Forças de van der Waals
(forças de London) porque ambas as moléculas são apolares.
3. A informação registada corresponde à densidade do CCℓ4 e
do C6H6. Sendo substâncias de diferentes densidades será de
prever que a mistura resultante seja heterogénea, com a fase
mais densa (CCℓ4) sob a fase menos densa (C6H6). A resposta do
aluno seria válida se o critério a usar na previsão do resultado
fosse a densidade dos dois líquidos, não sendo esse o critério a
escolha do aluno não é válida, pois os dois líquidos são apolares
e, por isso, são miscíveis formando uma mistura homogénea.
Grupo III
1. Líquido.
2. Classificar pares de líquidos quanto à miscibilidade.
Editável e fotocopiável © Texto | Novo 10Q 131
3. O líquido adicionado, CCℓ4, foi sempre o mesmo e sempre
com o mesmo volume, 3 mL (ou o volume de líquido na proveta,
que foi sempre 2 mL, ou a temperatura foi sempre a mesma).
4. Variável: cada um dos líquidos contidos na proveta; aspeto
macroscópico da mistura (formação de uma ou mais fases).
5. CS2 – incolor; Br2 – vermelho.
6. CCℓ4 com água e CCℓ4 com etilenoglicol.
7. O CCℓ4 é miscível em Br2 e em CS2 mas imiscível em água e
em etilenoglicol.
8. A molécula de água é polar e possui átomos de hidrogénio
ligados a átomos de oxigénio. Assim, na água predominam
ligações intermoleculares de hidrogénio e de van der Waals
entre moléculas polares. A molécula de tetracloreto de carbono
é apolar. Assim, no tetracloreto de carbono predominam forças
de van der Waals (forças de London) entre moléculas apolares.
Os dois líquidos são imiscíveis devido a não possuírem
semelhanças entre as respetivas forças intermoleculares.
9. a) 3, no campo azul: Exposição curta pode causar sérios danos
residuais temporários ou permanentes.
b) R40: Possibilidade de efeitos cancerígenos.
c) S36/37: Usar luvas e vestuário de proteção adequados.
d) Danos para o ambiente (e meio aquático).
Teste sobre a AL 2.2 – Soluções a partir
de solutos sólidos
Domínio 2: Propriedades e transformações da matéria
Subdomínio 2.2: Gases e dispersões
1. Soluto: CuSO4.5H2O; solvente: água.
2. Se o volume de solução for 1 L (1 dm
3
), contém 0,200 mol de
soluto dissolvido.
3. 2,50 g.
4. (D) digital e a incerteza de leitura é 0,01 g.
5. m = (2,50 ± 0,01) g.
6. 1) Dissolver o soluto numa parte do solvente (água destilada),
num gobelé.
2) Transferir a solução para um balão volumétrico de 50 mL.
3) Perfazer o volume de solução acrescentando água destilada
até ao traço de referência do balão volumétrico.
7. Desenho de um balão volumétrico de 50 mL.
8. Líquido, azul e transparente com aspeto homogéneo.
9. 1) Lavar o frasco de armazenamento com um pouco da
solução preparada.
2) Transferir a solução restante para o frasco, fechar e rotular.
10.
11. 1) O volume de solução ultrapassava o traço de referência
no balão volumétrico.
2) O gobelé estava molhado com solução azul.
3) Os alunos ultrapassaram o traço de referência no balão
volumétrico e retiraram, a seguir, o excesso de solução com um
conta gotas.
12. Sistemático.
Teste sobre a AL 2.3 – Diluição de soluções
Domínio 2: Propriedades e transformações da matéria
Subdomínio 2.2: Gases e dispersões
1. A – 10,00 mL, incerteza de 0,05 mL;
B – 10,00 mL, incerteza de 0,02 mL.
2. B – pipeta volumétrica de 10 mL.
3. 4.
4. Tópicos de resposta: o volume a medir da solução mais
concentrada (inicial) é 25 mL; a solução diluída deve ser
preparada com rigor; possibilidade de mais erros associados; o
procedimento poderia ser considerado adequado caso não
houvesse, no laboratório, uma pipeta volumétrica de 25 mL.
5. V = (25,00 ± 0,05) mL.
6. C, balão volumétrico de 100 mL.
7. 1) Pipetar 25 mL de solução concentrada com uma pipeta
volumétrica.
2) Transferir os 25 mL de solução concentrada para um balão
volumétrico de 100,0 mL.
3) Adicionar água destilada até ao traço de referência do balão
volumétrico, perfazendo o volume de 100,0 mL.
8. Ambas as soluções são azuis, pois são do mesmo soluto
(azul). Na solução mais concentrada, a inicial, há mais
quantidade de soluto (azul) por unidade de volume de solução
e, por isso, a sua cor é mais intensa que a da solução final que,
sendo diluída (menos concentrada), apresenta menor
quantidade de soluto (azul) por unidade de volume de solução.
Teste sobre a AL 2.4 – Reação fotoquímica
Domínio 2: Propriedades e transformações da matéria
Subdomínio 2.3: Transformações químicas
1. Sólidos brancos, e soluções aquosas incolores.
2. AgNO3 provoca manchas escuras na pele; usar luvas.
3. 1) Misturar as soluções aquosas de NaCℓ e AgNO3.
2) Filtrar o precipitado formado, transferi-lo para uma caixa de
Petri e tapar com papel de alumínio.
3) Destapar o precipitado e colocar sobre ele uma chave.
4) Expor a amostra a uma fonte de radiação e, seguidamente,
retirar a chave.
4. Cloreto de prata, AgCℓ:
NaCℓ (aq) + AgNO3 (aq) → AgCℓ (s) + NaNO3 (aq)
5. Suspensão.
6. Ao ser iluminada, a amostra escureceu (alteração de cor de
branco para acinzentado) na área não protegida pela chave. A
mudança de cor revela a ocorrência de transformações
químicas, desencadeadas pela luz. O AgCℓ transformou-se em
prata metálica com libertação de cloro gasoso:
2 AgCℓ (s) → 2 Ag (s) + Cℓ2 (g).
7. A luz provoca alterações químicas do cloreto de prata, ou
seja, o AgCℓ sofreu uma reação fotoquímica.
8. Iluminar cada uma de três amostras com fontes de radiação
diferentes, por exemplo, vermelha, verde e azul. Variáveis a
controlar: as potências das fontes de radiação e as distâncias de
cada amostra à respetiva fonte devem ser iguais.
9. Uso de uma amostra de referência, evitando alterações da
mesma por incidência de luz antes da realização do teste com a
chave.
10. Investigar o efeito da luz sobre cloreto de prata.
11. O nitrato de prata sofre transformações químicas se exposto
à luz, o que se infere da informação adicional «guardar ao
abrigo da luz».
CuSO4.5H2O (aq)
0,200 mol/dm
3
Laboratório escolar, jan 2016
132 Editável e fotocopiável © Texto | Novo 10Q
Notas
 
 
Consulte 
Nos itens
corretame
Nos itens 
Junto de c
Outubro
domínio
(pratica
entidade
correram
o que u
é longa,
e tão ve
Na  Físic
natureza
anos‐luz
element
Na  Quím
inventou
homem,
acompa
1. (8p) Po
(A
(B
(C
(D
NOME	____
Teste 
Duração:
a Tabela Periód
s de escolha mú
ente à questão 
de construção q
cada item apres
o de 2014 aco
o da luz! O p
mente) à velo
e à qual seria
m mundo con
m aluno do s
 no espaço e 
elha quanto a 
ca,  o  prémio 
a também cr
z da Terra. É 
tos químicos 
mica,  o  prém
u o nanomun
,  de  1,7  m 
nhando os ca
ode afirmar‐se
A) distância d
B) distância d
C) idade de um
D) observação
turma.  
__________
1 
: 90 a 100 m
ica, tabelas de c
últipla escreva a
colocada. 
que envolvam c
senta‐se a respe
ordou‐nos co
prémio Nobel
ocidade da lu
a dedicado o
ntrastou com 
ecundário de
no tempo! D
idade do me
reconheceu 
iou corpos az
no centro d
existentes no
mio  reconhece
ndo, o homem
de  altura,  p
aminhos e a v
e que a 
a Bellatrix à T
a Bellatrix à T
m aluno do se
o da Belatrix d
 
___________
in 
Editável e fotoco
constantes e for
a letra da única
cálculos numéric
etiva pontuação
G
m a luminosi
l da Física e 
uz, como que
 ano de 2015
a lentidão do
emorou nas v
Digamos que é
smo, 109
 ano
a  importânc
zuis como, po
e estrelas co
o universo, at
eu  a  importâ
m a nanotec
pode  entrar 
vida de moléc
Terra é inferio
Terra é superi
ecundário é da
deve‐se à luz
___________
opiável © Texto | 
rmulários sempr
a opção que per
cos é obrigatório
entre parêntes
Grupo I 
dade própria
o da Químic
 antecipando
5, Internation
o  processo d
voltas que já d
é tão comprid
os. Tudo tem o
cia  da  invenç
or exemplo, a
omo a Bellatr
té Z = 26 (de r
ância  do  dese
nologia! Ago
e  desvenda
culas individu
Figura 1 
or a 1025
 m. 
ior a 1025
 m.
a mesma orde
por ela emit
__________
 Novo 10Q
re que necessár
rmite obter um
o apresentar to
es. 
a de (mais) du
ca. Uma e ou
o o reconheci
nal Year of Li
de investigaçã
deu ao Sol, 1
da quanto o t
o seu ritmo!
ção  de  diodo
a estrela Bell
rix que ocorr
raio atómico 
envolvimento
ra, é nesse (n
r,  através  d
ais no interio
em de grande
ida depois do
__________ 
rio. 
ma afirmação co
das as etapas d
uas conquista
utra notícia c
imento da im
ight (IYL). A r
ão (muito ma
09
 s !). A traje
tamanho do u
os  azuis  emis
latrix, que se
re a formaçã
156 pm).  
o  da  nanosco
nano)mundo
a  luz  visível
or de células v
eza que a idad
o nascimento
 Turma____
orreta ou respon
e resolução. 
as do homem
orreram mun
mportância de
rapidez com q
is tempo do q
etória da ciên
universo, 1025
ssores  de  luz
e encontra a 2
o de alguns 
opia.  A  natur
 que o (gigan
,  observando
vivas, Figura 1
de do Univers
o de um aluno
___ Número_
133 
nder 
m no 
ndo 
essa 
que 
que 
ncia 
5
 m, 
z.  A 
250 
dos 
reza 
nte) 
o  e 
1. 
 
o. 
o da 
______ 
134 Editável e fotocopiável © Texto | Novo 10Q
2. (8p) Indique o valor do diâmetro do átomo com Z = 26, expresso em unidade SI e em notação
científica.
3. (8p) Localize, na escala da Figura 1, o átomo com Z = 26.
4. (8p) A ordem de grandeza da altura do (gigante) homem é quantas vezes superior à ordem de
grandeza da dimensão de uma proteína?
5. (8p) Indique uma área de aplicação da nanotecnologia.
Grupo II
Os excertos retirados Tabela Periódica, da Figura 2, reúnem informações diversas sobre o hidrogénio
e o bromo.
Figura 2
1. (8p) Legende as informações numéricas sobre o bromo.
2. (8p) Em relação a um átomo de hidrogénio, o átomo de bromo é
(A) 35 vezes mais pesado. (B) 44,904 vezes mais pesado.
(C) 79,270 vezes mais pesado. (D) 79,904 vezes mais pesado.
3. (12p) Indique o tipo de orbitais ocupadas por eletrões que se encontrem no nível n = 3 dos átomos
de bromo assim como o número de eletrões em cada tipo de orbital.
4. (8p) Indique o número de massa do isótopo mais abundante do bromo.
5. (8p) Represente simbolicamente o ião bromo mais estável.
6. (8p) Em que modelo está ilustrada a espécie química representada por −
H
2
1 ?
A B C D
Editável e fotocopiável © Texto | Novo 10Q 135
Grupo III
A massa da amostra de uma substância, contida no frasco da Figura 3, é 6,9 g.
1. (12p) Determine o número de moléculas contidas em 5,0 g de substância.
2. (8p) Na amostra da substância contida no frasco há
(A) 0,15 mol de átomos de carbono e 0,15 mol de átomos de oxigénio.
(B) 0,15 x 6,02 x 1023
átomos de carbono e 0,30 mol de átomos de oxigénio.
(C) 0,30 x 6,02 x 1023
átomos de carbono e 0,15 mol de átomos de oxigénio.
(D) 0,30 mol de átomos de carbono e 0,30 mol de átomos de oxigénio.
3. (12p) Escreva, justificando, a fórmula molecular da substância concretizando o valor de y.
Grupo IV
Considere que os componentes do ar são apenas árgon, Ar, oxigénio, O2, e nitrogénio, N2. As frações
molares do árgon e do oxigénio são respetivamente 0,01 e 0,21, e numa amostra de
de 28,98 g de ar, 6,67 g são de oxigénio.
1. (8p) A fração molar do nitrogénio pode ser determinada pela expressão
(A) 1 + 0,21 + 0,01 (B) 1 – 0,21 – 0,01 (C) 0,21 + 0,01 (D) 0,21 – 0,01
2. (8p) Escreva a equação que traduz a relação entre a quantidade de matéria de árgon e a
quantidade de matéria total de gases numa amostra de ar na forma nAr = f(ntotal).
3. (8p) A fração mássica de oxigénio no ar é
(A) 0,21 (B) 0,78 (C) 6,67 ÷ 28,98 (D) 28,98 ÷ 6,67
4. (8p) Identifique a representação gráfica A ou B, que mais se aproxima da representação da massa
de oxigénio em função da massa de ar.
Figura 3
136 Editável e fotocopiável © Texto | Novo 10Q
Grupo V
Na tabela abaixo podem consultar-se valores de energias de remoção eletrónica, Er, obtidos por
espetroscopia fotoeletrónica, para o sódio e o magnésio. Na Figura 4 está um diagrama de energias
para o átomo de hidrogénio.
Energia de remoção / x 10
–18
J
Sódio, Na Magnésio, Mg
0,82 1,23
4,98 8,24
10,72 14,3
172 209
Figura 4
1. (16p) Indique quantos níveis e subníveis de energia existem no magnésio. Justifique com base na
estrutura atómica e na energia dos eletrões no átomo. Comece por comparar as respetivas
ordens de grandeza.
2. (12p) Conclua, justificando a partir dos valores de energias de remoção, qual apresentará nas
mesmas condições maior reatividade química, Na ou Mg.
3. (16p) Sobre um átomo de hidrogénio no estado fundamental incidiu uma radiação correspondente
a uma energia Einc = 11,3 eV. (1 eV = 1,6 × 10-19
J)
Apresente todos os cálculos necessários que permitam verificar se ocorreu, ou não, transição
eletrónica, e explicite a sua conclusão, justificando com referência a uma das ideias
fundamentais do modelo quântico do átomo.
Editável e fotocopiável © Texto | Novo 10Q 137
Critérios específicos de classificação
Grupo I
1. (A) distância da Bellatrix à Terra é inferior a 1025
m. ............................................................. 8 pontos
2. 3,12 × 10 –10
m. ....................................................................................................................... 8 pontos
3. À direita da pequena molécula. ............................................................................................. 8 pontos
4. 108
. .......................................................................................................................................... 8 pontos
5. ................................................................................................................................................. 8 pontos
Área da saúde, por exemplo, com o uso de nanosensores no mapeamento
de tecidos biológicos e com técnicas de diagnóstico.
Grupo II
1. Elementos de resposta. ......................................................................................... (2 + 2 + 2) 8 pontos
35: número atómico; 79,904: massa atómica relativa; 2-8-18-7: distribuição
eletrónica por níveis de energia.
2. (C) 79,270 vezes mais pesado. ............................................................................................... 8 pontos
3. Elementos de resposta: A) s com 2 eletrões; B) p com 6 eletrões;...................................................................
C) d com 18 eletrões. ....................................................................................................... (4 + 4 + 4) 12 pontos
4. 80 ............................................................................................................................................ 8 pontos
5. Br–
........................................................................................................................................... 8 pontos
6. D ............................................................................................................................................. 8 pontos
Grupo III
1. Duas etapas de resolução de cálculo. ...................................................................... (6 + 6) 12 pontos
A) Quantidade de matéria em 5,0 g (0,1087 mol)
B) Número de moléculas (6,5 × 1022
)
2. (C) ........................................................................................................................................... 8 pontos
3. Três etapas de resolução de cálculo ...................................................................... (4 + 6 + 2) 12 pontos
A) Massa molar (46 g/mol)
B) Valor de y (5,9)
C) C2H6O
Grupo IV
1. (B) 1 – 0,21 – 0,01. .................................................................................................................. 8 pontos
2. nAr = 0,01 × ntotal. ...................................................................................................................... 8 pontos
3. (C) 6,67 ÷ 28,98. ...................................................................................................................... 8 pontos
4. A............................................................................................................................................... 8 pontos
138 Editável e fotocopiável © Texto | Novo 10Q
Grupo V
1. Elementos de resposta ........................................................................................................ 16 pontos
A) Quatro valores diferenciados de Er, com três ordens de grandeza
diferentes e crescentes, 1,23 (100
), 8,24 e 14,4 (101
) e 209 (102
) –
distribuição dos 12 eletrões por 3 níveis, n = 3, n = 2 e n = 1, havendo
dois subníveis em n = 2, 2s e 2p (dois valores de energia da mesma
ordem de grandeza).
B) Er coincide com o simétrico da energia dos eletrões no átomo: maior Er
corresponde a eletrões mais interiores (menos energéticos).
C) Energia dos eletrões/ × 10–18
J: n = 1 (eletrões s, energia= –209), n = 2
(eletrões s, energia = –14,3 e eletrões p, energia = –8,24) e n = 3
(eletrões s, energia = –1,23).
2. Elementos de resposta ......................................................................................................... 12 pontos
A) A reatividade química envolve os eletrões de valência.
B) Quanto menor for a energia mínima de remoção maior a reatividade.
C) Menor energia mínima de remoção para Na.
D) Conclusão: Na é mais reativo.
3. Quatro elementos de referência ........................................................................................... 16 pontos
A) Einc numa unidade diferente, e coerente com o raciocínio exposto
(1088 kJ/mol).
B) Soma da Einc com a energia do eletrão em n = 1 (–224 kJ/mol).
C) Modelo quântico: energia dos eletrões nos átomos está quantizada
(bem definida); só ocorre transição se a soma da Ei com a energia do
eletrão em n = 1 for igual à energia de qualquer um dos níveis n ≥ 2.
D) Conclusão: não ocorreu transição uma vez que –244 kJ/mol não
coincide com a energia de nenhum nível.
 
Consulte 
Nos itens
corretame
Nos itens 
Junto de c
 
A quí
os quím
complex
atribuiçã
Um e
líquido 
frutos, v
maior, c
(em que
1. (16p) 
2. (8p) A
(A
(B
(C
(D
3. (8p) N
(A
NOME	____
Teste 
Duração:
a Tabela Periód
s de escolha mú
ente à questão 
de construção q
cada item apres
ímica dos com
micos que con
xas  a  partir 
ão do prémio
exemplo de s
incolor  usado
vegetais, noze
com a formaç
e nos anéis he
Localize o ca
com  base  na
eletrónica ide
ligação carbo
A) dupla e o b
B) dupla e o e
C) tripla e o b
D) tripla e o e
os anéis hexa
A) 2.        (B) 5
__________
2 
: 90 a 100 m
ica, tabelas de c
últipla escreva a
colocada. 
que envolvam c
senta‐se a respe
mpostos de c
nseguem, em
de  outras  m
o Nobel da Qu
íntese de mo
o  no  fabrico 
es, bebidas e
ção de uma n
exagonais não
rbono na Tab
a  análise  da 
entificando o
ono‐carbono 
bromobenzen
estireno é um
romobenzeno
stireno é um 
agonais, o nú
5.        (C) 10.  
___________
min 
Editável e fotoco
constantes e for
a letra da única
cálculos numéric
etiva pontuação
G
arbono é a ba
m laboratório,
mais  simples. 
uímica em 20
oléculas comp
da  esferovit
e carnes. Nest
nova ligação 
o estão repre
bela Periódica
sua  configur
o elemento co
na olefina é c
no é um hidro
 hidrocarbon
o é um hidroc
hidrocabone
mero de ligaç
      (D) 11.
___________
opiável © Texto | 
rmulários sempr
a opção que per
cos é obrigatório
entre parêntes
Grupo I 
ase de toda a
 imitar a nat
Trabalhos  n
010.  
plexas relacio
e,  que  tamb
ta síntese, du
carbono‐carb
sentadas as l
a, indicando 
ração  eletrón
omo represen
covalente 
ocarboneto. 
eto.  
carboneto. 
eto. 
ções a átomo
Figura 1
__________
 Novo 10Q
re que necessár
rmite obter um
o apresentar to
es. 
a vida na Terr
tureza sinteti
neste  domínio
ona‐se com a 
bém  se  encon
uas moléculas
bono, como s
igações com 
o bloco, o gr
nica.  Comece
ntativo ou não
os de hidrogén
__________ 
rio. 
ma afirmação co
das as etapas d
ra e, por isso, 
izando moléc
o  de  investig
síntese do es
ntra  na  natur
s dão origem
se pode obse
átomos de h
rupo e o perí
e  por  escreve
o.  
nio em falta é
 
 Turma____
orreta ou respon
e resolução. 
um fascínio p
culas de carb
gação  levara
stireno, C8H8,
reza  em  plan
m a uma molé
ervar na Figu
idrogénio). 
 
íodo, justifica
er  a  distribu
é 
___ Número_
139 
nder 
para 
bono 
m  à 
, um 
ntas, 
écula 
ra 1 
ando 
ição 
______ 
140 Editável e fotocopiável © Texto | Novo 10Q
4. (8p) A rutura da ligação do átomo de bromo ao anel hexagonal, no bromobenzeno, é um processo
(A) endoenergético e a formação da ligação HBr é exoenergética.
(B) endoenergético e a formação da ligação HBr também.
(C) exoenergético e a formação da ligação HBr é endoenergética.
(D) exoenergético e a formação da ligação HBr também.
Grupo II
Numa transformação química as substâncias reagem entre si e originam novas substâncias. Neste
processo rompem-se e formam-se ligações. É o caso da combustão do metano:
CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l)
Numa transformação física, não há formação de novas substâncias, é o caso da fusão da água, por
exemplo.
H2O (s) → H2O (l)
1. (8p) Escreva a equação de combustão do metano usando fórmulas de estrutura de Lewis.
2. (8p) Indique o número e o tipo de ligações que foram rompidas durante a reação.
3. (8p) A geometria da molécula CO2 é
(A) angular e o ângulo de ligação é 0°.
(B) angular e o ângulo de ligação é 180°.
(C) linear e o ângulo de ligação é 0°.
(D) linear e o ângulo de ligação é 180°.
4. (8p) Tendo como referência a ilustração da estrutura do gelo da Figura 2, identifique o tipo de
ligações que são envolvidas na sua fusão.
5. (8p) Classifique, do ponto de vista energético, a fusão do gelo.
6. (12p) Descreva a localização relativa dos átomos na molécula CH4.
Figura 2
 
O  á
compon
da  artr
plasma 
especial
monitor
Resu
o  uso 
reumató
se  apres
sanguín
função d
fármaco
 
1.  (12p) 
concent
2. (8p) A 
(A
(B
(C
(D
3. (12p) D
Hein
remoção
está mo
uma int
fotões.  
 
Expe
remove
ácido  aceti
nente da aspi
ite  reumató
sanguíneo do
l  e,  freque
rização. 
ltados obtido
de  AAS,  e
óide, podem 
senta  a  conc
eo  (em  dua
do tempo dec
o. 
Descreva  ge
tração de AAS
relação que e
A) direta e a c
B) direta e a c
C) inversa e a 
D) inversa e a
Determine o v
rich  Hertz  (1
o de eletrões
ostrado na Fig
terpretação c
eriências vária
r eletrões de 
lsalisílico  (A
rina, é usado
ide.  Os  níve
os pacientes 
ntemente,  é
os durante u
em  paciente
ver‐se no Gr
centração  de 
as  unidades 
corrido após 
enericamente
S no plasma s
existe entre a c
constante de 
constante de 
constante de
 constante de
valor da mass
1857–1894), 
 de superfície
gura 3. Outros
correta do fe
as permitiram
uma superfíc
Editável e fotoco
G
AAS),  princi
o no tratame
eis  de  AAS 
merece aten
é  feita  a 
m estudo so
es  com  art
ráfico 1 em q
AAS  no  plas
diferentes) 
a ingestão de
e  como  evolu
sanguíneo. 
concentração 
proporcional
proporcional
e proporciona
e proporciona
sa molar do A
G
físico  alemã
es metálicas, 
s se lhe segui
nómeno, ao 
m concluir que
cie metálica d
opiável © Texto | 
Grupo III
ipal 
nto 
no 
ção 
sua 
bre 
rite 
que 
sma 
em 
este 
uiu  a 
de AAS em m
idade é a ma
idade é o inv
alidade é a m
alidade é o in
AAS a partir d
rupo IV
ão,  foi  quem
por incidênci
iram mas foi 
admitir que 
 
 
 
 
 
 
 
 
e o valor de e
depende do m
Figura 3 
 Novo 10Q
mg/L e em mm
ssa molar. 
erso da mass
assa molar.
nverso da mas
de dados do g
m  primeiro  o
ia ultravioleta
Albert Einste
a luz é form
energia mínim
metal utilizado
mol/L é de prop
sa molar. 
ssa molar. 
gráfico. 
bservou  e  p
a ou de radia
ein, em 1905,
mada por part
ma a partir d
o. 
Gráfico 1 
porcionalidad
publicou  sobr
ção visível, co
 quem viria a
tículas chama
o qual é poss
141 
e  
re  a 
omo 
a dar 
adas 
sível 
142 Editável e fotocopiável © Texto | Novo 10Q
1. (8p) A energia mínima de remoção eletrónica para o potássio é
(A) 1,77 eV e superior à do sódio.
(B) igual a 2,25 eV e superior à do sódio.
(C) superior a 1,77 eV e inferior à do sódio.
(D) inferior a 1,77 eV e superior à do sódio.
2. (12p) Fundamente a sua resposta ao item anterior.
3. (8p) A energia dos eletrões nos átomos é
(A) positiva e pode assumir qualquer valor.
(B) negativa e tem valores bem definidos.
(C) positiva e tem valores bem definidos.
(D) negativa e pode assumir qualquer valor.
Grupo V
A Figura 4 informa sobre abundâncias relativas de alguns elementos
químicos no Universo e no corpo humano.
Do corpo humano também é conhecido o teor de água, presente na
Figura 5.
1. (8p) De acordo com a Figura 4,
(A) a percentagem de carbono no corpo humano é dupla da percentagem de hélio no
Universo.
(B) o oxigénio é o elemento mais abundante no Universo.
(C) a percentagem de hidrogénio no corpo humano é um sexto da percentagem de hidrogénio
no Universo.
(D) o oxigénio é o elemento menos abundante no corpo humano.
2. (16p) Determine o número de moléculas de água que existem no seu corpo.
Comece por escrever o valor da sua massa corporal.
Figura 4 Figura 5
Editável e fotocopiável © Texto | Novo 10Q 143
Grupo VI
As três amostras de gases, da Figura 6, estão associadas a valores numéricos de várias grandezas
físicas.
Volume / L 1 L 1 L 1 L
Pressão / atm 1 atm 1 atm 1 atm
Temperatura /
o
C 0 0 0
Massa de gás / g 1,783 1,250 0,0899
Número de partículas 2,66 x 10
22
2,66 x 10
22
2,66 x 10
22
1. (8p) Indique o valor lógico da afirmação «As três amostras encontram-se em condições diferentes
de pressão e de temperatura».
2. (8p) Escreva o nome dos gases por ordem crescente de massa volúmica.
3. (8p) A constante de Avogadro pode ser determinada pela expressão
(A)
28,02 × 2,66 × 1022
1,250
e o volume molar pela expressão
39,95
1,783
(B)
1,250 × 2,66 × 1022
28,02
e o volume molar pela expressão
39,95
1,783
(C)
1,250 × 2,66 × 1022
28,02
e o volume molar pela expressão
1,783
39,95
(D)
28,02 × 2,66 × 1022
1,250
e o volume molar pela expressão
1,250
28,02
Figura 6
144 Editável e fotocopiável © Texto | Novo 10Q
Critérios específicos de classificação
Grupo I
1. Elementos de resposta.......................................................................................................... 16 pontos
A) 1s2
2s2
2p2
; elemento representativo.
B) bloco p: orbital de valência mais energética.
C) 2.o
período; nível onde se localizam os eletrões de valência.
D) grupo 14 por ser um elemento representativo com 4 eletrões de valência.
2. (B) dupla e o estireno é um hidrocarboneto. ......................................................................... 8 pontos
3. (B) 5. ....................................................................................................................................... 8 pontos
4. (A) endoenergético e a formação da ligação HBr é exoenergética. ....................................... 8 pontos
Grupo II
1. ................................................................................................................................................. 8 pontos
2. ................................................................................................................................................. 8 pontos
Ligações interatómicas: 4 ligações simples C-H e 2 ligações duplas O-O,
todas covalentes.
3. (D) linear e o ângulo de ligação é 180°.................................................................................... 8 pontos
4. Ligações intermoleculares por pontes de hidrogénio............................................................. 8 pontos
5. Processo endotérmico............................................................................................................. 8 pontos
6. Cada átomo de H ocupa um vértice de um tetraedro e o átomo C o centro do
tetraedro................................................................................................................................................. 12 pontos
Grupo III
1. Elementos resposta ............................................................................................................. 12 pontos
A) A concentração atingiu um valor máximo de 14 mg/L (0,075 mmol/L),
cerca de 30 min após a ingestão.
B) diminuindo de seguida até 1 mg/L aproximadamente em 60 min.
Editável e fotocopiável © Texto | Novo 10Q 145
2. (A) direta e a constante de proporcionalidade é a massa molar............................................ 8 pontos
3. Duas etapas de resolução de cálculo ......................................................................... (6+6) 12 pontos
A) Seleção correta de um par de valores de concentrações (leitura correta das duas escalas)
B) Cálculo (187,5 g/mol)
Grupo IV
1. (C) superior a 1,77 eV e inferior à do sódio............................................................................. 8 pontos
2. Elementos de resposta ........................................................................................................ 12 pontos
A ) O sódio e o potássio são elementos do mesmo grupo e o potássio sucede o sódio no grupo.
B) Eletrão de valência de potássio ocupa um nível de energia superior (n = 4) estando, por isso,
mais afastado (e menos atraído) ao núcleo.
3. (B) negativa e tem valores bem definidos. ............................................................................. 8 pontos
Grupo V
1. (C) a percentagem de hidrogénio no corpo humano é um sexto da percentagem de hidrogénio no
Universo. ................................................................................................................................. 8 pontos
2. Três etapas de resolução de cálculo .................................................................... (6 + 5 + 5) 16 pontos
A) massa de água (para aluno com m = 50 kg): 37 kg
B) quantidade (n.o
de moles) de água, n = m/M: 2053 mol
C) número de moléculas N = n x NA (1,24 x 1027
moléculas)
Grupo VI
1. Falsa ........................................................................................................................................ 8 pontos
2. Hidrogénio, nitrogénio, árgon ................................................................................................ 8 pontos
3. (A)
28,02 × 2,66 × 1022
1,250
e o volume molar pela expressão
39,95
1,783
.................................................. 8 pontos
14
 
46 
Consulte 
Nos itens
corretame
Nos itens 
Junto de c
A luz, ou
fotões, e
Na  Figu
radiaçõe
1. (8p) A r
(A
2. (8p) Um
(A
(B
(C
(D
3. (8p) Qu
(A
4. (8p) Do
(A
(B
(C
(D
NOME	____
Teste 
Duração:
a Tabela Periód
s de escolha mú
ente à questão 
de construção q
cada item apres
u seja, a radia
e a energia E 
ura  1  encont
es visíveis e n
relação entre
A) E + f = cons
m fotão de lu
A) invisível e d
B) invisível e d
C) visível e de
D) visível e de
uando compa
A) 1,7 vezes s
o vermelho ao
A) contínuo, c
B) contínuo, o
C) descontínu
D) descontínu
__________
3 
: 90 a 100 m
ica, tabelas de c
últipla escreva a
colocada. 
que envolvam c
senta‐se a respe
ação eletrom
de cada fotão
ram‐se  infor
não visíveis).  
e a energia e a
stante  (B) E 
z infravermel
de maior ene
de menor ene
 maior energ
e menor energ
arado com um
uperior.   (B) 
o violeta o es
como os espe
ou seja, difere
o, como os e
uo, ou seja, di
 
___________
in 
Editável e fotoco
constantes e for
a letra da única
cálculos numéric
etiva pontuação
G
magnética, pod
o é diretamen
mações  sobr
a frequência d
– f = constan
lha é  
rgia que um f
ergia que um 
ia que a um f
gia que um fo
m fotão de luz
3,2 vezes sup
petro aprese
etros atómico
ente dos espe
spetros atóm
iferente dos e
___________
opiável © Texto | 
rmulários sempr
a opção que per
cos é obrigatório
entre parêntes
Grupo I 
de ser deteta
nte proporcio
re  o  espetro 
Figura 1 
de uma radia
nte  (C) E
fotão de luz v
fotão de luz v
fotão de luz v
otão de luz ve
z vermelha, u
perior.  (C) 1,
ntado é 
s de absorção
etros atómico
micos de abso
espetros atóm
__________
 Novo 10Q
re que necessár
rmite obter um
o apresentar to
es. 
ada como par
onal à frequê
eletromagné
ação pode rep
× f = constan
vermelha. 
vermelha. 
vermelha. 
ermelha. 
m fotão de lu
,7 x 1014
 veze
o. 
os de absorçã
rção. 
micos de abso
__________ 
rio.  
ma afirmação co
das as etapas d
rtículas de en
ncia f da radi
ético  (conjun
 
presentar‐se p
te   (D)
uz violeta tem
s superior.   (
o. 
orção. 
 Turma____
orreta ou respon
e resolução. 
nergia chama
ação.  
nto  de  todas
por 
  constan
f
E

m uma energi
(D) 3,2 x 1014
___ Número_
 
nder 
das 
s  as 
te 
a 
vezes superio
______ 
or. 
 
A  inform
informa
element
칼칼, 전
1. (8p) Es
2. (16p) C
35
17
3. (8p) O칼
(A
(B
(C
(D
4. (12p) Es
5. (8p) Pr
gr
A
6.  (12p)  C
A conce
O  recip
solução 
1. (8p) O 
(A
2. (8p) So
(A
(B
(C
(D
3.  (12p)D
A
mação  seguin
ções  sobre 
tar. 
전자 배열 [Ar]4
screva a confi
Conclua, justi

C
5
7 , pertence
칼칼pertence
A) metais e a 
B) metais e a 
C) não metais
D) não metais
screva o valo
roponha um 
rupo, o eleme
presente o re
Classifique,  q
formar, expli
ntração de so
iente  represe
diluída de ác
fator de dilui
A) 0,1. 
obre o volume
A) 24,85 cm3
 
a 63,0 g/L. 
B)  24,85  cm3
superior a 6
C) 249,85 cm3
a 63,0 g/L. 
D) 249,85  cm
superior a 6
Determine  a  c
presente o re
nte,  retirada 
propriedades
4s2
, 180 pm, 밀
guração eletr
ificando com 
em ao mesmo
e à família dos
substância el
substância el
s e a substânc
s e a substânc
r da densidad
valor para o
ento칼칼sabe
esultado em u
uanto  à  carg
cando a sua f
oluções come
entado  na  F
cido nítrico, a 
M(H
ção usado fo
(B) 0,25. 
e V da solução
≤ V ≤ 25,15 c
3
  ≤  V  ≤  25,15
63,0 g/L. 
3
 ≤ V ≤ 250,15
3
  ≤  V  ≤  250,
63,0 g/L. 
concentração 
esultado em g
Editável e fotoco
G
de  um  trab
s  físicas  do 
밀도는 에서 1,5
rónica do칼칼
base na aná
o período, gr
s 
lementar fund
ementar fund
cia elementar
cia elementar
de relativa da
raio atómico
endo que é d
unidade SI e e
ga,  os  iões  m
formação. Inc
Grupo III
erciais de ácid
igura  2  foi  u
partir de 25,
HNO3) = 63,0
i 
(
o diluída pod
m3
, e que a c
5  cm3
,  e  que
5 cm3
, e que a
15  cm3
,  e  qu
em  massa  d
g/cm3
.
opiável © Texto | 
Grupo II 
balho  de  pes
elemento  qu
550 g/cm3
, 끓는
칼usando a no
álise das con
upo e bloco d
de a 842 ºC.
de a 1484 ºC.
r funde a 842 
r funde a 148
 substância e
o do element
da mesma ord
em notação c
mais  estáveis 
clua na sua re
 
do nítrico, HN
utilizado  para
0 mL da soluç
g mol–1
 
(C) 2,5
e dizer‐se qu
oncentração 
e  a  concentr
a concentraçã
ue  a  concent
da  solução  d
 Novo 10Q
quisa  de  um
uímico 칼칼
는점은 1484°C
otação spd. 
figurações el
da Tabela Per
 
ºC. 
4 ºC. 
elementar e in
to da Tabela
dem de grand
científica.
que  os  átom
esposta referê
NO3 (aq), é 15
a  preparar  c
ção comercia
(D) 10
e é 
em massa da
ração  em  ma
ão em massa d
tração  em  m
iluída,  sem  r
m  aluno  estra
칼 e  da  respe
C, 이며, 녹는
letrónicas, se
riódica. 
ndique o seu 
 Periódica qu
deza do raio a
mos  de칼칼t
ência a um gá
,3 mol dm–3
. 
om  rigor  um
al.  
0. 
a solução com
assa  da  soluç
da solução co
assa  da  solu
recorrer  ao  fa
angeiro,  cont
etiva  substân
점은 842°C, 이
e o칼칼 e clo
significado. 
ue antecede,
atómico do칼
têm  tendênci
ás nobre.  
 
ma 
mercial é infe
ção  comercia
mercial é infe
ção  comercia
ator  de  diluiç
Figura 2
147 
tém 
ncia 
이고
oro, 
 no 
칼칼. 
ia  a 
rior 
al  é 
erior 
al  é 
ção. 
 
148 Editável e fotocopiável © Texto | Novo 10Q
4. (8p) Para medir o volume de 25,0 mL de solução comercial deve utilizar-se
(A) uma pipeta graduada.
(B) uma pipeta volumétrica.
(C) um balão Erlenmeyer.
(D) um balão volumétrico.
5. (8p) Ao diluir a solução um aluno ultrapassou ligeiramente o traço de referência do recipiente da
Figura 2 e procedeu ao acerto do volume, pelo traço de referência, retirando um pouco de
solução com uma pipeta de Pasteur.
O aluno realizou um procedimento
(A) correto e a solução ficou com uma concentração inferior à que se pretendia.
(B) correto e a solução ficou com uma concentração superior à que se pretendia.
(C) incorreto e a solução ficou com uma concentração inferior à que se pretendia.
(D) incorreto e a solução ficou com uma concentração superior à que se pretendia.
Grupo IV
A água é uma substância molecular e a sua densidade depende das condições de pressão e de
temperatura a que se encontra.
A densidade do vapor de água, à temperatura de 100 o
C e à pressão de 1 atm, é 0,590 kg m–3
.
1. (12p) Determine o volume ocupado por uma amostra de vapor de água que, nas condições referidas,
contém 3,03 × 1024
moléculas de água.
2. (8p) A molécula de água tem geometria
(A) angular e é apolar.
(B) angular e é polar.
(C) triangular e é apolar.
(D) triangular e é polar.
3. (8p) O número de eletrões de valência numa molécula de água é
(A) dez, dos quais cinco são não ligantes.
(B) dez, dos quais quatro são não ligantes.
(C) oito, dos quais cinco são não ligantes.
(D) oito, dos quais quatro são não ligantes.
4. (8p) Tendo como único critério a possibilidade de estabelecimento de ligações por pontes de
hidrogénio, selecione o conjunto de substâncias miscíveis na água.
(A) HF, CH3OH, NH3. (B) HF, CH3OCH3, NH3. (C) H2S, CH3OH, CH4. (D) H2S, CH3OCH3, CH4.
Editável e fotocopiável © Texto | Novo 10Q 149
Grupo V
A energia necessária para dissociar uma molécula de oxigénio, O2, é 8,27 x 10–19
J e as energias de
ligação H-H e H-O são, respetivamente, 436 kJ/mol e 463 kJ/mol.
1. (16p) Classifique a reação de síntese da água como endotérmica ou exotérmica, justificando com
base no resultado obtido para a variação de entalpia da reação traduzida pela equação
2 H2 (g) + O2 (g) → 2 H2O (g).
2. (8p) A dissociação do oxigénio pode ocorrer por ação de radiação ultravioleta. Escreva a equação
que traduz a dissociação da molécula de oxigénio e diga como se designa pelo facto de
ocorrer por ação da luz.
150 Editável e fotocopiável © Texto | Novo 10Q
Critérios específicos de classificação
Grupo I
1. (D) constante
f
E
= . ................................................................................................................. 8 pontos
2. (B) invisível e de menor energia que um fotão de luz vermelha. . ......................................... 8 pontos
3. (A) 1,7 vezes superior. ............................................................................................................ 8 pontos
4. (B) contínuo, ou seja, diferente dos espetros atómicos de absorção. ................................... 8 pontos
Grupo II
1. 1s2
2s2
2p6
3s2
3p6
4s2
................................................................................................................... 8 pontos
2. Elementos de resposta ........................................................................................................ 16 pontos
A) Explicitação da correspondência entre o grupo, o período e o bloco,
assim como a configuração eletrónica (de valência).
B) Escrita e análise comparativa das duas configurações eletrónicas com
caráter justificativo.
C) Conclusão: não pertencem ao mesmo período, grupo e bloco.
3. (A) metais e a substância elementar funde a 842 ºC. ............................................................. 8 pontos
4. Elementos de resposta ............................................................................................. (5 + 7) 12 pontos
A) 1,550 (sem unidade).
B) Significado: a substância elementar é 1,550 vezes mais densa que a água
líquida a 4 °C.
5. 1,50 x 10-10
m. ......................................................................................................................... 8 pontos
6. Elementos de resposta ........................................................................................................ 12 pontos
A) Iões dipositivos, que se formam por perda de dois eletrões de valência
do átomo.
B) Uma distribuição eletrónica igual à de um gás nobre corresponde a maior
estabilidade das espécies químicas.
C) Ao perder dois eletrões os iões que se formam têm configuração
eletrónica igual à do árgon (Ar), 1s2
2s2
2p6
3s2
3p6
.
Grupo III
1. (D) 10....................................................................................................................................... 8 pontos
2. (D)249,85 cm3
≤ V ≤ 250,15 cm3
, e que a concentração em massa da solução
comercial é superior a 63,0 g/L.............................................................................................. 8 pontos
3. Etapas de resolução de cálculo ................................................................................. (6 + 6) 12 pontos
A) n(HNO3) na solução diluída.
B) [HNO3] em massa na solução diluída=0,0964 g cm–3
.
4. (B) uma pipeta volumétrica. ................................................................................................... 8 pontos
Editável e fotocopiável © Texto | Novo 10Q 151
5. (C) incorreto e a solução ficou com uma concentração inferior à que se pretendia.............. 8 pontos
Grupo IV
1. Etapas de resolução de cálculo: ................................................................................ (6 + 6) 12 pontos
A) Massa da amostra (90,10 g).
B) Volume (0,153 m3
).
2. (B) angular e é polar................................................................................................................ 8 pontos
3. (D) oito, dos quais quatro são não ligantes. ........................................................................... 8 pontos
4. (A) HF, CH3OH, NH3. ................................................................................................................ 8 pontos
Grupo V
1. Etapas de resolução de cálculo ............................................................................ (5 + 6 + 5) 16 pontos
A) Energia de dissociação do O2 em kJ/mol (498).
B) ΔH em kJ/mol (–482)
C) ΔH < 0 – reação exotérmica.
2.O2 → O + O, dissociação fotoquímica........................................................................... (4 + 4) 8 pontos
152 Editável e fotocopiável © Texto | Novo 10Q
Notas
  Editável e fotocopiável © Texto | Novo 10Q  153 
 
Questões  de  provas  nacionais  realizadas  entre  2008  e  2014  organizados  por  subdomínio  e  por 
secção, por ordem cronológica. 
Os itens estão identificados por data e de acordo com o tipo de prova: 
I – teste intermédio 
1F – exame nacional ‐ primeira fase 
2F – exame nacional ‐ segunda fase 
E – exame nacional ‐ época especial 
Algumas  questões  foram  adaptadas  para  melhor  se  enquadrarem  no  programa  atual.  Algumas 
secções não apresentam qualquer item nas provas nacionais realizadas ente 2008 e 2014. 
Domínio 1 ‐ Elementos químicos e sua organização 
1.1 Massa e tamanho dos átomos 
1.1.1 Ordens de grandeza e escalas de comprimento 
2008 I. No Universo atual, as distâncias entre os corpos celestes são de tal maneira grandes 
que  houve  necessidade  de  utilizar  unidades  de  medida  especiais.  A  luz  que,  num  dado 
instante, é emitida pela estrela Alfa de Centauro só é detetada na Terra 4,24 anos depois. 
Calcule a distância entre a Terra e a estrela Alfa de Centauro, em unidades SI. 
Apresente todas as etapas de resolução. 
2011 E. O ano‐luz é uma unidade de 
(A) distância. 
(B) tempo. 
(C) velocidade. 
(D) luminosidade. 
2012 1F. Os átomos dos isótopos 12 e 13 do carbono têm 
(A) números atómicos diferentes. 
(B) números de massa iguais. 
(C) igual número de eletrões. 
(D) igual número de neutrões. 
1.1.2 Dimensões a escala atómica 
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 
1.1.3 Massa isotópica e massa atómica relativa 
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)   
Questões de exame 
154 Editável e fotocopiável © Texto | Novo 10Q
1.1.4 Quantidade de matéria e massa molar
2012 E. A elevada acidez da água da chuva, registada em diversos locais da Terra, é
atribuída à emissão para a atmosfera de dióxido de enxofre, SO2 (g), e de óxidos de
nitrogénio. Existem várias fontes de SO2 atmosférico, entre as quais as erupções vulcânicas
e a queima de combustíveis fósseis em diversas atividades humanas.
Também a extração de alguns metais, a partir dos respetivos minérios, é uma importante
fonte, de natureza antropogénica, de emissão daquele gás para a atmosfera. Por exemplo,
a obtenção de zinco, a partir do sulfureto de zinco, ZnS (s), envolve, numa primeira fase, a
reação deste composto com o oxigénio atmosférico. Nesta reação, forma-se óxido de
zinco, ZnO (s), e dióxido de enxofre, SO2 (g).
Estima-se que sejam libertados para a atmosfera cerca de 6 x 1010
kg de SO2 (g) em cada
ano.
Chang, R., Química, McGrawHill, 8.
a
ed., 2005 (adaptado)
a) O número aproximado de moléculas de SO2 (g) libertadas para a atmosfera, por ano,
pode ser calculado pela expressão
(A)
6 × 1010
× 103
× 64,07
6,02 × 1023 (B)
6 × 1010
× 64,07
6,02 × 1023
× 103
(C)
6 × 1010
× 103
× 6,02 × 1023
64,07
(D)
6 × 1010
× 6,02 × 1023
103
× 64,07
b) Considere uma amostra de SO2 (g) com metade do volume de uma amostra de SO3 (g),
nas mesmas condições de pressão e de temperatura.
Comparando com a amostra de SO3 (g), a amostra de SO2 (g) contém
(A) o dobro do número total de átomos.
(B) metade do número total de átomos.
(C) o dobro do número de átomos de enxofre.
(D) um terço do número de átomos de oxigénio.
2008 I. Selecione a alternativa que corresponde ao número de átomos existente em 22,0 g
de dióxido de carbono, CO2.
(A) 3,01 × 1023
(B) 6,02 × 1023
(C) 9,03 × 1023
(D) 1,20 × 1024
2009 I. Selecione a única alternativa que corresponde ao número aproximado de átomos
que existem em 48,0 g de oxigénio, O2 (g).
(A) 6,02 × 1023
(B) 9,03 × 1023
(C) 1,20 × 1024
(D) 1,81 × 1024
2010 I. Calcule o número de átomos que existe numa amostra de 48 g de oxigénio, O2 (g).
Apresente todas as etapas de resolução.
2012 I. Determine a quantidade total, em mol, de átomos existente numa amostra de
20,0 g de metano, CH4 (g). Apresente todas as etapas de resolução.
Editável e fotocopiável © Texto | Novo 10Q 155
2014 2F. Quantos átomos de hidrogénio existem em 5,0 moles de moléculas de ácido
acético, CH3COOH?
(A) 2,4 × 1025
(B) 3,0 × 1024
(C) 2,4 × 1024
(D) 1,2 × 1025
1.1.5 Fração molar e fração mássica
2011 2F. A tabela seguinte apresenta a composição de uma amostra de ar.
Gás Quantidade / mol
N2 0,174
O2 0,047
Outros gases 0,002
Qual das expressões seguintes permite calcular a fração molar de O2 (g), 𝑥O2
nessa
amostra?
(A) 𝑥O2
=
0,047
0,174 × 0,047 × 0,002
(B) 𝑥O2
=
0,047
0,174 × 0,047+0,002
(C) 𝑥O2
=
0,174 × 0,047 × 0,002
0,047
(D) 𝑥O2
=
0,174 + 0,047 × 0,002
0,047
Atividade laboratorial
2010 1F. Na figura está representado o nível de titulante na bureta num determinado ponto da
titulação.
Selecione a única opção que apresenta o resultado da medição do volume de titulante
gasto até àquele ponto da titulação.
(A) (18,60 ± 0,05) cm3
(B) (17,40 ± 0,05) cm3
(C) (17,4 ± 0,1) cm3
(D) (18,6 ± 0,1) cm3
2009 I. Selecione a alternativa que corresponde ao material de vidro que deve ser utilizado na
medição do volume de NaOH (aq).
(A) Pipeta graduada. (B) Proveta graduada.
(C) Copo de precipitação. (D) Pipeta de Pasteur.
156 Editável e fotocopiável © Texto | Novo 10Q
1.2 Energia dos eletrões nos átomos
1.2.1 Espetros contínuos e descontínuos
2008 2F A figura representa o espetro de emissão do átomo de hidrogénio.
Escreva um texto no qual analise o espetro de emissão do átomo de hidrogénio,
abordando os seguintes tópicos:
– descrição sucinta do espetro;
– relação entre o aparecimento de uma qualquer risca do espetro e o fenómeno
ocorrido no átomo de hidrogénio;
– razão pela qual esse espetro é descontínuo.
2013 2F. Na figura, está representado, a preto e branco,
o espetro de emissão atómico do lítio, na
região do visível.
Represente, utilizando a mesma escala, o espetro de absorção atómico do lítio,
na região do visível.
1.2.2 O modelo atómico de Bohr
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
1.2.3 Espetro do átomo de hidrogénio
2008 I. As transições eletrónicas que ocorrem entre níveis de energia, n, no átomo de
hidrogénio, estão associadas às riscas que se observam nos espetros de emissão
e de absorção desse átomo.
Relativamente a essas transições classifique como verdadeira (V) ou falsa (F),
cada uma das afirmações seguintes.
(A) A transição eletrónica de n = 3 para n = 1 ocorre com emissão de radiação
ultravioleta.
(B) A transição eletrónica de n = 3 para n = 4 está associada a uma risca vermelha
no espetro de absorção do átomo.
(C) A transição eletrónica de n = 5 para n = 3 ocorre com emissão de radiação
infravermelha.
(D) A transição eletrónica de n = 4 para n = 2 está associada a uma risca colorida
no espetro de emissão do átomo.
(E) Qualquer transição eletrónica para n = 2 está associada a uma risca da série
de Balmer.
(F) Os valores absolutos das energias envolvidas nas transições eletrónicas de n = 4
para n = 1, e de n = 1 para n = 4, são iguais.
(G) A série de Lyman corresponde às transições eletrónicas de qualquer nível
para n = 1.
(H) A uma risca colorida no espetro de absorção do átomo corresponde uma risca
negra no respetivo espetro de emissão.
Editável e fotocopiável © Texto | Novo 10Q 157
2008 I. Relativamente ao átomo de hidrogénio, selecione a alternativa correta.
(A) O átomo encontra-se no estado de energia máxima quando o eletrão está no
nível de energia n = 1.
(B) Quando o átomo passa de um estado excitado para o estado fundamental,
emite radiação ultravioleta.
(C) O espetro de emissão do átomo é descontínuo, mas o seu espetro de absorção
é contínuo.
(D) Quando o eletrão transita entre quaisquer dois níveis, o valor da energia
emitida pelo átomo é sempre o mesmo.
2009 I. No Sol, o hidrogénio também é o elemento predominante, sendo o combustível
que permite a sua (e nossa) existência.
Selecione a alternativa correta, relativamente ao átomo de hidrogénio.
(A) Nas transições eletrónicas entre estados excitados, não há emissão de radiações
na zona do ultravioleta.
(B) Nas transições eletrónicas entre estados excitados, ocorre sempre emissão de
radiação.
(C) O conjunto de todas as radiações emitidas na desexcitação do átomo de
hidrogénio constitui um espetro contínuo.
(D) O átomo de hidrogénio, no estado de menor energia, pode ser excitado por
radiações na zona do visível.
2009 I. Os espetros de emissão e de absorção
atómica são espetros de riscas,
estando estas riscas relacionadas com
as transições eletrónicas que ocorrem
nos átomos.
Na figura estão esquematizados alguns
níveis de energia do átomo de
hidrogénio (sendo n o número
quântico principal correspondente a
cada um desses níveis de energia),
bem como algumas transições
eletrónicas, T1 a T4.
Tendo em consideração o esquema da figura podemos afirmar que:
(A) A transição eletrónica T1 pode ocorrer por absorção de energia sob a forma
de uma radiação eletromagnética na zona do visível.
(B) A transição eletrónica T2 corresponde a uma risca, na zona do infravermelho,
do espetro de emissão do átomo de hidrogénio.
(C) A transição eletrónica T3 pode ocorrer por emissão de energia sob a forma
de uma radiação eletromagnética na zona do infravermelho.
(D) A transição eletrónica T4 corresponde a uma risca negra, na zona do
ultravioleta, do espetro de absorção do átomo de hidrogénio.
158 Editável e fotocopiável © Texto | Novo 10Q
1.2.4 Transições eletrónicas
2009 E. Indique o valor da energia da radiação emitida na transição eletrónica entre os
níveis n = 3 e n = 2 do átomo de hidrogénio, com base nos valores de energia
desses níveis, respetivamente –0,24 × 10–18
J e 0,54 × 10–18
J.
2009 1F. As potencialidades da espetroscopia, como método de análise utilizado para
detetar e identificar diferentes elementos químicos, foram descobertas no
século XIX, e desenvolvidas depois por vários investigadores, nomeadamente
por Gustav Kirchoff que, a partir de estudos iniciados em 1859, provou a
existência do sódio na atmosfera solar.
Nas lâmpadas de vapor de sódio, muito usadas nos candeeiros de iluminação
pública, ocorre emissão de luz de cor amarela. A corrente elétrica, que passa
através do vapor de sódio, faz deslocar os eletrões dos átomos de sódio para níveis
energéticos mais elevados. Quando aqueles eletrões descem pela escada
energética, ocorre a emissão de radiação de frequências bem definidas, originando,
entre outras riscas em zonas diferenciadas do espetro eletromagnético, duas riscas
brilhantes na zona do amarelo, que são características do sódio, permitindo
identificá-lo.
Cada elemento químico possui, de facto, o seu próprio padrão de riscas espetrais,
que funciona como uma impressão digital. Não há dois elementos com o mesmo
espetro, tal como não há duas pessoas com as mesmas impressões digitais.
Fazendo a análise espectral da luz que nos chega das estrelas, captada pelos
telescópios, é possível determinar as suas composições químicas. Descobriu-se,
assim, que os elementos constituintes das estrelas são os mesmos que existem
na Terra.
John Gribbin, Um Guia de Ciência para quase toda a gente, Edições Século XXI, 2002 (adaptado)
Máximo Ferreira e Guilherme de Almeida, Introdução à Astronomia e às Observações
Astronómicas, Plátano Edições Técnicas, 6.
a
edição, 2001 (adaptado)
a) Selecione a única alternativa que contém os termos que preenchem,
sequencialmente, os espaços seguintes, de modo a obter uma afirmação
equivalente à expressão «(...) aqueles eletrões descem pela escada
energética (...)».
Aqueles eletrões transitam de níveis energéticos _____ para níveis
energéticos _____, assumindo valores _____de energia.
(A) inferiores ... superiores ... contínuos
(B) superiores ... inferiores ... contínuos
(C) inferiores ... superiores ... discretos
(D) superiores ... inferiores ... discretos
b) Indique, com base no texto, o que se deverá observar no espetro de
absorção do sódio, na região do visível.
c) Descreva como é possível tirar conclusões sobre a composição química das
estrelas, a partir dos seus espetros, tendo em conta a informação dada no
texto.
Editável e fotocopiável © Texto | Novo 10Q 159
2009 2F. Na figura está representado um diagrama de níveis de energia, no qual estão
assinaladas algumas transições eletrónicas que podem ocorrer no átomo de
hidrogénio.
a) Selecione a única alternativa que apresenta o valor da energia de ionização
do hidrogénio, expresso em J mol–1
.
(A) 2,18 × 105
J mol–1
(B) 7,86 × 106
J mol–1
(C) 1,09 × 105
J mol–1
(D) 1,31 × 106
J mol–1
b) Considere que um átomo de hidrogénio se encontra no primeiro estado
excitado (n = 2) e que, sobre esse átomo, incide radiação de energia igual a
3,6 × 10–19
J.
Indique, justificando, se ocorrerá a transição do eletrão para o nível
energético seguinte.
2010 I Os hidrocarbonetos são
compostos químicos
constituídos por átomos de
carbono (um dos elementos
mais abundantes no espaço
interestelar) e de hidrogénio (o
elemento mais abundante no
Universo).
A figura representa um
diagrama de níveis de energia
do átomo de hidrogénio.
Selecione a única opção que apresenta o valor da energia da radiação envolvida na
transição do eletrão, do nível energético correspondente ao primeiro estado
excitado do átomo de hidrogénio, para o nível energético correspondente ao
estado fundamental do mesmo átomo.
(A) 0,30 × 10–18
J (B) 2,18 × 10–18
J
(C) 0,14 × 10–18
J (D) 1,64 × 10–18
J
160 Editável e fotocopiável © Texto | Novo 10Q
2010 I. Apesar das enormes distâncias que nos separam das estrelas, os astrónomos
conseguem obter uma grande quantidade de informação a partir da luz que nos
chega desses astros.
A composição química da atmosfera das estrelas pode ser determinada por
comparação dos espetros da radiação por elas emitida com os espetros dos
elementos químicos conhecidos.
A figura representa, à mesma escala, parte de um espetro atómico de emissão e
parte de um espetro atómico de absorção.
Por que motivo se pode concluir que os dois espetros apresentados se referem a
um mesmo elemento químico?
2011 2F. Na figura está representado o espetro da estrela Rigel na região do visível.
a) Selecione a única opção que contém os termos que preenchem,
sequencialmente, os espaços seguintes.
O espetro representado na figura resulta da sobreposição de um espetro de
_______ contínuo e de um conjunto de riscas negras resultantes da _______ de
radiação pelas espécies presentes na atmosfera da estrela.
(A) absorção ... absorção (B) emissão ... emissão
(C) absorção ... emissão (D) emissão ... absorção
b) O espetro de emissão do hélio atómico na região do visível apresenta, entre
outras, uma risca a 587 nm e uma risca a 667 nm. Conclua, justificando a
partir da informação fornecida, se é provável que o hélio esteja presente na
atmosfera da estrela Rigel.
2011 2F. O espetro de emissão do átomo de hidrogénio apresenta uma risca vermelha
originada por uma transição eletrónica que envolve a emissão de radiação de
energia igual a 3,03 × 10–19
J.
O nível energético, n, para o qual o eletrão transita e a variação de energia, ΔE,
associada a essa transição eletrónica são, respetivamente,
(A) n = 3 e ΔE = +3,03 × 10–19
J (B) n = 2 e ΔE = +3,03 × 10–19
J
(C) n = 2 e ΔE = –3,03 × 10–19
J (D) n = 3 e ΔE = –3,03 × 10–19
J
Editável e fotocopiável © Texto | Novo 10Q 161
2011 E. O hidrogénio é o elemento mais abundante no Universo. A figura representa o
diagrama de níveis de energia do átomo de hidrogénio, no qual está assinalada
uma transição eletrónica.
a) A variação de energia associada à transição eletrónica assinalada é
(A) –2,4 × 10–19
J (B) –1,4 × 10–19
J
(C) –1,0 × 10–19
J (D) –3,8 × 10–19
J
b) Selecione a única opção que contém os termos que preenchem,
sequencialmente, os espaços seguintes.
A transição eletrónica assinalada no diagrama representado na figura
origina uma risca na região do ______ no espetro de ______ do átomo de
hidrogénio.
(A) infravermelho ... absorção (B) ultravioleta ... emissão
(C) infravermelho ... emissão (D) ultravioleta ... absorção
2012 I. Na figura está representado um
diagrama de níveis de energia
do átomo de hidrogénio.
A figura seguinte representa parte do espetro de emissão do átomo de
hidrogénio, na região do visível.
162 Editável e fotocopiável © Texto | Novo 10Q
Calcule, para a transição eletrónica que origina a risca assinalada pela letra R na
última figura, a energia do nível em que o eletrão se encontrava inicialmente.
Apresente todas as etapas de resolução.
2014 1F. A tabela seguinte apresenta os valores de energia dos níveis n = 1, n = 2, n = 3 e
n = 4 do átomo de hidrogénio.
n En / J
1 –2,18 × 10
–18
2 –5,45 × 10
–19
3 –2,42 × 10
–19
4 –1,40 × 10
–19
a) Qual é a energia mínima necessária para remover o eletrão de um átomo de
hidrogénio no estado fundamental?
b) Considere um átomo de hidrogénio no estado fundamental, no qual incide
radiação de energia 1,80 × 10–18
J. Conclua, justificando, se ocorre ou não,
transição do eletrão.
c) As transições eletrónicas no átomo de hidrogénio originam riscas
diferenciadas nos espetros atómicos deste elemento.
O espetro de emissão do átomo de hidrogénio na região do visível
apresenta, entre outras riscas, uma risca a uma energia de 4,84 × 10–19
J.
Considerando a transição que origina essa risca, a energia do nível em que o
eletrão se encontrava inicialmente pode ser calculada pela expressão
(A) (–5,45 × 10-19
+ 4,84 ×10–19
) J
(B) (–5,45 × 10-19
– 4,84 × 10–19
) J
(C) (–2,18 × 10-19
+ 4,84 × 10–19
) J
(D) (–2,18 × 10-19
– 4,84 × 10–19
) J
1.2.5 Quantização da energia
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
1.2.6 Energia de remoção eletrónica
2009 I. A espetroscopia fotoeletrónica é um processo que pode ser usado para
determinar a energia de cada eletrão de um átomo.
A energia mínima para remover um eletrão do átomo de sódio, Na,
é 8,24 × 10–19
J.
Determine o módulo da velocidade do eletrão ejetado de um átomo de sódio,
quando nele incide uma radiação de energia 2,00 × 10–18
J / fotão.
Apresente todas as etapas de resolução.
m(eletrão) = 9,11 × 10–31
kg
Editável e fotocopiável © Texto | Novo 10Q 163
2010 I. O césio é um metal alcalino bastante utilizado em células fotoelétricas.
Fazendo incidir, sobre uma placa de césio, quer radiação verde, quer radiação
violeta, ocorre remoção de eletrões. Justifique a afirmação seguinte:
«Considerando eletrões com a mesma energia de remoção, a radiação violeta
provoca ejeção de eletrões com maior energia cinética do que a radiação verde.»
2013 1F O carbono é um elemento químico que entra na constituição de um grande
número de compostos.
Quantos valores diferenciados de energia apresentam os eletrões de um átomo
de carbono no estado fundamental?
(A) Seis. (B) Quatro.
(C) Três. (D) Dois.
1.2.7 Modelo quântico do átomo
2011 1F. O átomo de hidrogénio no estado fundamental apresenta um eletrão na
orbital 1s .
Nesta notação o número 1 indica:
(A) a energia da orbital. (B) a orientação espacial da orbital.
(C) a simetria da orbital. (D) o número de eletrões na orbital.
2012 1F. Como se designa uma região do espaço onde, em torno do núcleo de um átomo,
existe uma elevada probabilidade de encontrar um eletrão desse átomo?
1.2.8 Configuração eletrónica de átomos
2008 2F. Um composto derivado do metano, mas com características bem diferentes, é o
diclorometano, CH2Cℓ2, que é um solvente orgânico volátil, não inflamável e de
cheiro agradável.
O diclorometano é um composto cuja unidade estrutural é constituída por
átomos de carbono, de cloro e de hidrogénio.
Selecione a afirmação CORRETA.
(A) A configuração eletrónica do átomo de carbono, no estado de energia
mínima, é 1s2
2s2
3s2
.
(B) Os eletrões do átomo de cloro, no estado de energia mínima, estão
distribuídos por três orbitais.
(C) A configuração eletrónica 1s2
2s2
2p1
3s1
pode corresponder ao átomo de
carbono.
(D) A notação 3s1
pode corresponder a um dos eletrões mais energéticos do
átomo de cloro, no estado de energia mínima.
2008 I. A configuração eletrónica de um átomo de nitrogénio no estado fundamental é
1s2
2s2
2px
1
2py
1
2pz
1
. Embora em qualquer orbital possam existir dois eletrões, cada
orbital p encontra-se semipreenchida.
Indique o nome da regra aplicada no preenchimento das orbitais 2p.
164 Editável e fotocopiável © Texto | Novo 10Q
2008 1F. O dióxido de enxofre é um composto cujas unidades estruturais são constituídas
por átomos de enxofre, S, e de oxigénio, O.
Relativamente a estes átomos e tendo em conta a posição relativa dos
respetivos elementos na Tabela Periódica, selecione a afirmação correta.
(A) A notação 2px
1
pode corresponder a um dos eletrões de valência de
qualquer dos átomos, no estado de energia mínima.
(B) Os eletrões de valência de ambos os átomos, no estado de energia mínima,
distribuem-se pelo mesmo número de orbitais.
(C) Os eletrões de valência de qualquer dos átomos, no estado de energia
mínima, distribuem-se por orbitais p e d.
(D) As configurações eletrónicas de ambos os átomos, no estado de energia
mínima, diferem no número de eletrões de valência.
2009 I. Selecione a única alternativa que corresponde a uma afirmação correta,
relativamente ao átomo de hélio, He.
(A) No estado de menor energia, a configuração eletrónica do átomo de hélio é
1s1
2s1
.
(B) No estado de menor energia, os eletrões do átomo de hélio têm spins
diferentes.
(C) Num estado excitado, um dos eletrões do átomo de hélio pode estar numa
orbital 3py.
(D) No átomo de hélio, um eletrão na orbital 2s tem a mesma energia que um
eletrão numa das orbitais 2p.
2009 I. O oxigénio é o terceiro elemento mais abundante no Universo.
Selecione a única alternativa que apresenta a configuração eletrónica correta de
um possível estado excitado do átomo de oxigénio.
(A) 1s2
2s2
2px
2
2py
1
2pz
1
(B) 1s2
2s3
2px
1
2py
1
2pz
1
(C) 1s2
2s1
2px
2
2py
2
2pz
1
(D) 1s2
2s2
2px
1
2py
1
2pz
2
2009 E. No estado de energia mínima, os átomos dos elementos carbono, nitrogénio e
oxigénio apresentam o mesmo número de...
(A) orbitais s e p totalmente preenchidas.
(B) orbitais p semipreenchidas.
(C) orbitais s totalmente preenchidas.
(D) orbitais p totalmente preenchidas.
2010 I Os hidrocarbonetos são compostos químicos constituídos por átomos de carbono
(um dos elementos mais abundantes no espaço interestelar) e de hidrogénio (o
elemento mais abundante no Universo).
Selecione a única opção que contém os termos que preenchem, sequencialmente,
os espaços seguintes, de modo a obter uma afirmação correta.
Editável e fotocopiável © Texto | Novo 10Q 165
Os átomos de carbono (C), no estado fundamental, apresentam eletrões de ______
valência, distribuídos por______.
(A) dois ... uma orbital
(B) dois ... duas orbitais
(C) quatro ... duas orbitais
(D) quatro ... três orbitais
2010 I. Selecione a única opção que corresponde a uma configuração eletrónica possível
de um átomo de enxofre num estado excitado.
(A) 1s2
2s2
2p7
3s2
3p3
(B) 1s2
2s2
2p5
3s2
3p5
(C) 1s2
2s1
2p6
3s3
3p4
(D) 1s2
2s2
2p6
3s2
3p4
2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra na
constituição de muitas moléculas biologicamente importantes. O nitrogénio
molecular (N2) é um gás à temperatura e pressão ambientes, sendo o
componente largamente maioritário da atmosfera terrestre.
Selecione a única opção que permite obter uma afirmação correta.
No átomo de nitrogénio no estado fundamental, existem...
(A) cinco eletrões de valência, distribuídos por duas orbitais.
(B) três eletrões de valência, distribuídos por quatro orbitais.
(C) cinco eletrões de valência, distribuídos por quatro orbitais.
(D) três eletrões de valência, distribuídos por uma orbital.
2010 2F. Escreva a configuração eletrónica do átomo de cálcio no estado fundamental.
2011 I. Considere a configuração eletrónica do átomo de nitrogénio, no estado
fundamental.
Quantos eletrões se encontram em orbitais p?
(A) 2 (B) 3
(C) 4 (D) 5
2011 E. Num átomo de oxigénio, no estado fundamental, existem diversas orbitais
preenchidas. Dessas orbitais, apenas
(A) duas se encontram completamente preenchidas.
(B) duas de valência se encontram semipreenchidas.
(C) uma de valência se encontra completamente preenchida.
(D) uma se encontra semipreenchida.
2012 I. No átomo de carbono no estado fundamental, os eletrões de valência encontram-
-se distribuídos por
(A) uma orbital. (B) duas orbitais.
(C) três orbitais. (D) quatro orbitais.
166 Editável e fotocopiável © Texto | Novo 10Q
2012 1F. Qual das configurações eletrónicas seguintes pode corresponder a um átomo de
carbono no estado fundamental?
(A) 1s2
2s1
2px
1
2py
1
2pz
1
(B) 1s2
2s2
2px
1
2py
0
2pz
1
(C) 1s2
2s2
2px
2
(D) 1s2
2s1
2px
2
2py
1
2012 2F. Considere átomos de cloro no estado fundamental.
Num átomo de cloro, no estado fundamental, existem, no total,
(A) cinco eletrões de valência distribuídos por três orbitais.
(B) cinco eletrões de valência distribuídos por duas orbitais.
(C) sete eletrões de valência distribuídos por duas orbitais.
(D) sete eletrões de valência distribuídos por quatro orbitais.
2013 1F O carbono é um elemento químico que entra na constituição de um grande
número de compostos.
Qual das configurações eletrónicas seguintes pode corresponder a um átomo
de carbono num estado excitado?
(A) 1s2
2s2
2px
1
2py
1
2pz
𝑜
(B) 1s2
2s1
2px
1
2py
1
2pz
1
(C) 1s2
2s2
2px
1
2py
0
2pz
1
(D) 1s2
2s1
2px
0
2py
0
2pz
3
2013 E. A molécula de Cℓ2 é constituída por átomos de cloro.
Num átomo de cloro, no estado fundamental, o número de orbitais ocupadas é
(A) 3 (B) 5
(C) 8 (D) 9
2014 1F. Considere a configuração eletrónica do átomo de nitrogénio no estado
fundamental.
a) Quantos valores diferenciados de energia apresentam os eletrões desse
átomo?
(A) Sete.
(B) Cinco.
(C) Três.
(D) Dois.
b) Quantos eletrões se encontram em orbitais s, nesse átomo?
(A) Dois. (B) Três.
(C) Quatro. (D) Cinco.
Editável e fotocopiável © Texto | Novo 10Q 167
Atividade laboratorial
2011 I. Verifica-se que os sais de potássio conferem uma cor violeta à chama de um bico de Bunsen,
pelo que o teste de chama pode ser utilizado para averiguar a presença desse elemento, em
amostras sólidas.
Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços
seguintes, de modo a obter uma afirmação correta.
A cor observada deve-se à _____ de radiação, quando eletrões do ião potássio transitam de
níveis energéticos _____para níveis energéticos _____
(A) emissão ... inferiores ... superiores (B) emissão ... superiores ... inferiores
(C) absorção ... inferiores ... superiores (D) absorção ... superiores ... inferiores
2011 1F. O ião Cu2+
confere à chama uma cor verde azulada, que resulta da sobreposição das
radiações
(A) emitidas pelos iões Cu2+
em processos de excitação.
(B) emitidas pelos iões Cu2+
em processos de desexcitação.
(C) absorvidas pelos iões Cu2+
em processos de excitação.
(D) absorvidas pelos iões Cu2+
em processos de desexcitação.
1.3 Tabela Periódica
1.3.1 Evolução histórica da Tabela Periódica
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos
2009 1F. O sódio (Na) e o magnésio (Mg) são elementos consecutivos do 3.o
período da
Tabela Periódica.
Átomos representados por Na
11
23
e Mg
12
24
, no estado de energia mínima, têm o
mesmo número de:
(A) orbitais completamente preenchidas.
(B) protões nos respetivos núcleos.
(C) neutrões nos respetivos núcleos.
(D) eletrões em orbitais s.
1.3.3 Propriedades periódicas dos elementos representativos
2008 1F. As moléculas de água e de dióxido de carbono são constituídas, no seu conjunto, por
átomos de hidrogénio, carbono e oxigénio.
Selecione a afirmação correta.
(A) A configuração eletrónica do átomo de oxigénio no estado de energia mínima é
1s2
2s2
2p6
.
(B) O raio do átomo de oxigénio é superior ao raio do átomo de carbono.
(C) A primeira energia de ionização do oxigénio é superior à do carbono.
(D) O raio do átomo de oxigénio é superior ao raio do anião O2–
.
16
 
68 
2008  2
2009 1F
2012  2
2008 E.
2012 1F
2009 
F.  A  tabela 
elementos
Interprete
diferentes 
F. O sódio (Na
Periódica. 
i) Selecione
os espaço
A energia
vez que, 
tendênci
(A) super
(C) super
F.  Como  se 
átomo  de
no estado
. O gráfico da
a  energia  d
dos  elemen
Tabela Perió
Justifique  o 
apresentar 
aumentar  ao
Periódica. 
F. Como se de
E.  Selecione
sequenc
O  carbo
mesmo_
carbono
(A) perío
(C) grupo
seguinte  ap
s flúor, cloro, 
Eleme
Flúor 
Cloro (
Bromo
Iodo 
 a variação e
halogéneos c
a) e o magnés
e a única altern
os seguintes, d
a de ionizaçã
dado o _____
a a _____ . 
rior … aumen
rior … decrésc
designa  a  en
e  cloro,  isolad
 fundamenta
a figura repre
e  ionização 
tos,  ao  long
ódica. 
 
facto  de  a 
uma  tend
o  longo  do  2
esignam os el
e  a  única 
cialmente, os 
no  e  o  nitrog
_____ da Tabe
 seja_____ à e
odo ... superio
o ... inferior   
 
Editável e fotoco
presenta  os  v
bromo e iodo
ento 
(F) 
(Cℓ) 
o (Br) 
(I) 
encontrada n
considerados
sio (Mg) são e
nativa que con
de modo a obt
o do magnés
_ da carga nu
nto … diminui
cimo   aume
nergia  mínim
do  e  em  fase
l? 
esenta a relaç
e  o  número 
go  do  2.o
  pe
energia  de  i
dência  ger
2.o
  período  d
letrões que p
alternativa 
espaços segu
génio  são  ele
ela Periódica, 
nergia de ion
or 
opiável © Texto | 
valores  da  p
o. 
Energia de
os valores da
s, atendendo 
elementos co
ntém os term
ter uma afirm
sio é _____ à e
uclear ao lon
r    (B
entar  (D
ma  necessária
e  gasosa, 
ção entre 
atómico 
eríodo  da 
ionização 
al  para 
da  Tabela 
articipam nas
que  conté
uintes, de mo
ementos  que
sendo de pr
nização do nit
(B) grupo 
(D) períod
 Novo 10Q
primeira  ene
e ionização / k
1680 
1260 
1140 
1010 
a primeira en
aos valores d
onsecutivos d
os que preen
mação correta.
energia de io
ngo do períod
B) inferior … d
D) inferior … a
a  para  remov
s reações quí
ém  os  term
odo a obter um
e  ocupam  po
rever que a e
trogénio. 
... superior 
do ... inferior
ergia  de  ioni
kJ mol–1
 
nergia de ion
da tabela. 
o 3.o
 período
chem, sequen
. 
onização do s
do, o raio ató
decréscimo …
aumento … di
ver  um  eletr
ímicas? 
mos  que  p
ma afirmação
osições conse
energia de ion
zação  dos 
ização dos 
o da Tabela 
ncialmente, 
sódio, uma 
ómico tem 
 aumentar 
iminuir 
rão  de  um 
reenchem, 
o correta. 
ecutivas  no 
nização do 
 
Editável e fotocopiável © Texto | Novo 10Q 169
2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra na
constituição de muitas moléculas biologicamente importantes. O nitrogénio
molecular (N2) é um gás à temperatura e pressão ambientes, sendo o componente
largamente maioritário da atmosfera terrestre.
Justifique a afirmação seguinte, com base nas posições relativas dos elementos
nitrogénio (N) e fósforo (P), na Tabela Periódica.
«A energia de ionização do nitrogénio é superior à energia de ionização do
fósforo.»
2010 2F. Justifique a afirmação seguinte, com base nas posições relativas dos elementos
cálcio (Ca) e manganês (Mn), na Tabela Periódica.
«O raio atómico do cálcio é superior ao raio atómico do manganês.»
2010 E. O nitrogénio (N) é um dos elementos químicos presentes na molécula de ácido nítrico.
Relacione a posição do elemento representativo nitrogénio na Tabela Periódica com
a configuração eletrónica de valência dos seus átomos no estado fundamental.
2010 I. Justifique a afirmação seguinte, com base na configuração eletrónica de valência dos
átomos dos elementos considerados, no estado fundamental.
«A energia de ionização do césio (Cs) é inferior à energia de ionização do potássio (K).»
2011 1F. Preveja, justificando com base nas configurações eletrónicas de valência dos átomos
de flúor (F) e de cloro (Cℓ) no estado fundamental, em qual desses átomos a
remoção de um dos eletrões de valência mais energéticos deverá requerer menor
energia.
2011 2F. Considere o período da Tabela Periódica onde se encontra o elemento oxigénio.
Qual é o elemento desse período cujos átomos, no estado fundamental,
apresentam menor raio atómico?
2013 2F. A energia de ionização do átomo de oxigénio, isolado e em fase gasosa, é a energia
mínima necessária para que, a partir do átomo no estado fundamental, se forme
o ião.
(A) O–
(g) (B) O2–
(g)
(C) O+
(g) (D) O2+
(g)
2008 I. No estado fundamental, a configuração eletrónica do átomo de carbono, C, é 1s2
2s2
2p2
,
enquanto a do átomo de silício, Si, é [Ne] 3s2
3p2
.
Relativamente a estes dois elementos, selecione a alternativa que contém os termos
que devem substituir as letras (a) e (b), respetivamente, de modo a tornar verdadeira
a afirmação seguinte.
O átomo de carbono tem __(a)__ energia de ionização e __(b)__raio atómico do que o
átomo de silício.
(A) ... maior ... menor ... (B) ... maior ... maior ...
(C) ... menor ... menor ... (D) ... menor ... maior ...
170 Editável e fotocopiável © Texto | Novo 10Q
2008 I. Relativamente aos elementos dos grupos 1 e 17 da Tabela Periódica, nos quais se
incluem, respetivamente, o lítio e o flúor, selecione a afirmação correta.
(A) O raio atómico do lítio é superior ao raio atómico do flúor.
(B) A energia de ionização do flúor é inferior à energia de ionização do lítio.
(C) O elemento metálico do grupo 1 que tem maior raio atómico é o lítio.
(D) O elemento do grupo 17 que tem menor energia de ionização é o flúor.
2009 I. As configurações eletrónicas dos átomos dos metais alcalinos, no estado de menor
energia, apresentam uma característica comum.
a) Indique essa característica.
b) Selecione a única alternativa que contém os termos que preenchem,
sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta.
A energia de ionização do átomo de sódio, Na, é ______ do que a do átomo de
magnésio, Mg, enquanto o raio do átomo de sódio é ______ do que o do átomo
de magnésio.
(A) maior ... maior (B) maior ... menor
(C) menor ... menor (D) menor ... maior
2009 I. A Tabela Periódica dos Elementos é um instrumento organizador de conhecimentos
sobre os elementos químicos. Após várias tentativas de organização desses
conhecimentos, é com Dmitri Mendeleev (1834-1898) que surge, embora com
imprecisões, uma tabela muito semelhante à atual.
Escreva um texto sobre a localização dos elementos representativos na Tabela
Periódica e o modo como variam algumas das suas propriedades, abordando os
seguintes tópicos:
• Relação entre a configuração eletrónica dos átomos dos elementos e o período e o
grupo aos quais esses elementos pertencem;
• O raio atómico, em função do aumento do número atómico, para elementos de
um mesmo período, assim como para elementos de um mesmo grupo;
• A energia de ionização, em função do aumento do número atómico, para
elementos de um mesmo período, assim como para elementos de um mesmo
grupo.
2009 I. O enxofre e o oxigénio situam-se no mesmo grupo da Tabela Periódica.
Selecione a única alternativa que contém os termos que preenchem,
sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta.
O átomo de enxofre tem ____ raio atómico e ____ energia de ionização do que o
átomo de oxigénio.
(A) maior ... maior (B) menor ... maior
(C) menor ... menor (D) maior ... menor
2010 I. Justifique a afirmação seguinte, com base nas posições relativas dos elementos sódio
e enxofre na Tabela Periódica.
«O raio atómico do sódio é superior ao raio atómico do enxofre.»
Editável e fotocopiável © Texto | Novo 10Q 171
2011 I. O ião fluoreto, F–
, e o ião sódio, Na+
, são partículas que, no estado fundamental,
apresentam a mesma configuração eletrónica.
Preveja, justificando, qual dessas partículas deverá apresentar maior raio.
2012 I. Considere o período da Tabela Periódica onde se encontra o elemento enxofre.
Qual é o elemento desse período cujos átomos, no estado fundamental, apresentam
maior energia de ionização?
1.3.4 Propriedades dos elementos e das substâncias elementares
2012 E. Os átomos de enxofre formam facilmente iões sulfureto.
Conclua, justificando com base na posição do elemento enxofre (S) na Tabela
Periódica, qual será a carga desses iões.
2008 I. Considere as configurações eletrónicas dos átomos dos elementos P, Q, R, e S (as
letras não correspondem aos símbolos químicos reais desses elementos), no estado
fundamental.
P – [Ne] 3s1
Q – 1s2
2s2
2p5
R – 1s2
2s2
2p6
3s2
S – [Ar] 4s1
a) Tendo em conta as configurações eletrónicas dos átomos dos elementos P, R e S,
selecione a alternativa que corresponde à ordenação correta dos valores das
respetivas energias de ionização, Ei.
(A) Ei (P) < Ei (R) < Ei (S) (B) Ei (S) < Ei (P) < Ei (R)
(C) Ei (S) < Ei (R) < Ei (P) (D) Ei (P) < Ei (S) < Ei (R)
b) Selecione a alternativa que contém, respetivamente, as configurações eletrónicas
dos iões Q–
e R2+
, no estado fundamental.
(A) 1s2
2s2
2p6
e 1s2
2s2
2p6
(B) 1s2
2s2
2p4
e 1s2
2s2
2p6
3s2
3p2
(C) 1s2
2s2
2p4
e 1s2
2s2
2p6
(D) 1s2
2s2
2p6
e 1s2
2s2
2p6
3s2
3p2
c) Selecione a alternativa que corresponde à fórmula química do composto
constituído pelos iões Q–
e R2+
.
(A) R2Q (B) RQ2
(C) R2Q3 (D) R3Q2
2008 2F. Tendo em conta a posição dos elementos iodo e flúor na Tabela Periódica, selecione
a alternativa que completa corretamente a frase seguinte.
O iodo e o flúor apresentam comportamento químico semelhante, porque...
(A) ... pertencem ao mesmo período da Tabela Periódica.
(B) ... apresentam valores muito baixos de energia de ionização.
(C) ... apresentam o mesmo número de eletrões de valência.
(D) ... apresentam valores muito semelhantes de raio atómico.
172 Editável e fotocopiável © Texto | Novo 10Q
2008 E. A Tabela Periódica corresponde a uma forma de organização dos elementos químicos
de acordo com a periodicidade das suas propriedades físico-químicas, que reflete a
periodicidade das suas configurações eletrónicas.
Considerando os elementos que constituem os três primeiros períodos da Tabela
Periódica e tendo em conta as suas posições relativas nessa Tabela, classifique como
verdadeira (V) ou falsa (F) cada uma das afirmações seguintes.
(A) O átomo de alumínio origina um ião tripositivo, Aℓ3+
, cuja configuração eletrónica
é idêntica à do átomo de néon.
(B) O sódio é o elemento que apresenta o valor mais baixo de raio atómico.
(C) O sódio forma com o cloro um composto cujas ligações são covalentes.
(D) O flúor é, dos elementos do seu grupo, aquele que apresenta maior energia de
ionização.
(E) O átomo de oxigénio origina um ião dinegativo, O2–
, cuja configuração eletrónica é
idêntica à do átomo de néon.
(F) O átomo de alumínio tem, no estado fundamental, a configuração eletrónica
1s2
2s2
2p6
3s2
3p3
.
Domínio 2 - Propriedades e transformações da matéria
2.1 Ligação química
2.1.1 Tipos de ligações químicas
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
2.1.2 Ligação covalente
2008 I. Atualmente, a troposfera é constituída por espécies maioritárias, como o
nitrogénio, N2, o oxigénio, O2, a água, H2O, e o dióxido de carbono, CO2, além de
diversas espécies vestigiais, como o hidrogénio, H2, o metano, CH4, e o amoníaco,
NH3.
Considerando as moléculas de N2 e de O2, selecione a alternativa que corresponde
à representação correta de uma dessas moléculas.
2009 E. Muitos dos refrigerantes que contêm cafeína são gaseificados por adição
de CO2 (g), sob pressão.
Selecione a única alternativa que permite obter uma afirmação correta.
Na molécula de CO2, existem...
(A) duas ligações covalentes duplas.
(B) apenas dois pares de eletrões não ligantes.
(C) apenas dois pares de eletrões ligantes.
(D) duas ligações covalentes simples.
Editável e fotocopiável © Texto | Novo 10Q 173
2010 I. O etino, C2H2, é um hidrocarboneto, de fórmula de estrutura H–C≡C–H.
Classifique, justificando, a ligação que se estabelece entre os átomos de carbono,
na molécula considerada.
2010 2F. Selecione a única opção que contém os termos que preenchem, sequencialmente, os
espaços seguintes, de modo a obter uma afirmação correta.
Na molécula de NH3, existem, no total, ___ eletrões de valência não ligantes e ___
eletrões de valência ligantes.
(A) três ... dois (B) dois ... seis
(C) dois ... três (D) três ... seis
2011 I. Na molécula N2, os átomos de nitrogénio partilham entre si
(A) dois eletrões. (B) três eletrões.
(C) quatro eletrões. (D) seis eletrões.
2011 2F. Represente a molécula O2, utilizando a notação de Lewis.
2011 E. Identifique o tipo de ligação que se estabelece entre os átomos de cloro na
molécula Cℓ2 e refira o número de pares de eletrões de valência não ligantes
que existem nesta molécula.
2012 1F. As moléculas de H2S e de H2O têm ambas geometria angular, apresentando o
mesmo número de eletrões de valência.
Na molécula de H2S existem, no total, ___ eletrões de valência, sendo ____ deles
não ligantes.
(A) oito ... dois (B) seis ... quatro
(C) seis ... dois (D) oito ... quatro
2012 1F. Como se designam os eletrões que participam nas reações químicas?
2012 E. Qual é a representação da molécula de oxigénio utilizando a notação de Lewis?
2013 1F. O ião cianeto, CN–
, constituído pelos elementos químicos carbono e nitrogénio,
é muito tóxico.
O ião cianeto apresenta, no total, o mesmo número de eletrões que a molécula
N2. O ião CN–
apresenta, assim, no total,
(A) catorze eletrões, seis dos quais são de valência.
(B) dez eletrões, sete dos quais são de valência.
(C) dez eletrões, seis dos quais são de valência.
(D) catorze eletrões, dez dos quais são de valência.
174 Editável e fotocopiável © Texto | Novo 10Q
2013 2F. Considere que se representa a molécula de O2 utilizando a notação de Lewis.
Quantos pares de eletrões de valência não ligantes devem ser representados em
cada um dos átomos de oxigénio?
(A) Um par. (B) Dois pares.
(C) Três pares. (D) Quatro pares.
2013 E. Represente a molécula de metano, utilizando a notação de Lewis.
Refira o número total de eletrões de valência ligantes dessa molécula.
2014 I. Numa molécula de água,
(A) não existem eletrões de valência não ligantes, e existem, no total, quatro
eletrões ligantes.
(B) existem eletrões de valência não ligantes, e existem, no total, quatro eletrões
ligantes.
(C) não existem eletrões de valência não ligantes, e existem, no total, dois eletrões
ligantes.
(D) existem eletrões de valência não ligantes, e existem, no total, dois eletrões
ligantes.
2014 2F. A molécula de CH3COOH pode ser representada através da notação de Lewis por
A molécula de CH3COOH apresenta, no total,
(A) 24 eletrões de valência. (B) 16 eletrões de valência.
(C) 12 eletrões de valência. (D) 8 eletrões de valência.
Energia de ligação e comprimento de ligação
2008 I.O monóxido de carbono, CO, e o dióxido de carbono, CO2, são gases que existem na
atmosfera, provenientes de fontes naturais (fogos florestais, emissões vulcânicas) e de
fontes antropogénicas (combustões domésticas e industriais, escapes de veículos
motorizados).
As moléculas CO e CO2 podem ser representadas, respetivamente, por:
Selecione a alternativa que contém os termos que devem substituir as letras (a) e (b),
respetivamente, de modo a tornar verdadeira a afirmação seguinte.
A ligação carbono-oxigénio na molécula CO2 tem __(a)__ energia e __(b)__
comprimento do que a ligação carbono-oxigénio na molécula CO.
(A)... maior ... maior ... (B)... menor ... maior ...
(C)... menor ... menor ... (D)... maior ... menor ...
Editável e fotocopiável © Texto | Novo 10Q 175
2008 I. Os átomos de carbono e de nitrogénio podem ligar-se entre si de modos diferentes. Em
alguns compostos a ligação carbono-nitrogénio é tripla (C≡N), enquanto noutros
compostos a ligação carbono-nitrogénio é simples (C–N).
O valor da energia média de uma dessas ligações é 276 kJ mol–1
, enquanto o valor
relativo à outra ligação é 891 kJ mol–1
. Em relação ao comprimento médio dessas
ligações, para uma o valor é 116 pm, enquanto para a outra é 143 pm.
Selecione a alternativa que contém os termos que devem substituir as letras (a) e (b),
respetivamente, de modo a tornar verdadeira a afirmação seguinte.
O valor da energia média da ligação tripla carbono-nitrogénio (C≡N) é __(a)__, e o valor
do comprimento médio dessa ligação é __(b)__.
(A)... 276 kJ mol–1
... 116 pm. (B)... 276 kJ mol–1
... 143 pm.
(C)... 891 kJ mol–1
... 116 pm. (D)... 891 kJ mol–1
... 143 pm.
2011 1F. O triclorofluorometano, CFCℓ3, é um derivado halogenado do metano.
Na molécula CFCℓ3 ___ pares de eletrões de valência não ligantes, apresentando a
molécula um total de ____pares de eletrões de valência ligantes.
(A) existem ... oito (B) existem ... quatro
(C) não existem ... oito (D) não existem ... quatro
2. A energia média da ligação C—F é 467 kJ mol—1
.
O valor médio da energia, em joule (J), que é libertada quando se estabelece uma
ligação C—F é
(A)
6,02 × 1023
467 × 103 J (B)
103
467 × 6,02 × 1023 J
(C)
467 × 6,02 × 1023
103 J (D)
467 × 103
6,02 × 1023 J
2013 1F. O ião cianeto, CN–
, constituído pelos elementos químicos carbono e nitrogénio, é
muito tóxico.
No ião cianeto, a ligação entre o átomo de carbono e o átomo de nitrogénio é uma
ligação covalente tripla, tal como a ligação entre os átomos de nitrogénio na
molécula N2.
Preveja, justificando com base nas posições relativas dos elementos carbono e
nitrogénio na Tabela Periódica, qual das ligações, C≡N ou N≡N, apresentará maior
energia de ligação.
Geometria molecular
2008 I. Atualmente, a troposfera é constituída por espécies maioritárias, como o nitrogénio,
N2, o oxigénio, O2, a água, H2O, e o dióxido de carbono, CO2, além de diversas espécies
vestigiais, como o hidrogénio, H2, o metano, CH4, e o amoníaco, NH3.
Relativamente à geometria molecular, selecione a alternativa correta.
(A) A molécula H2O tem geometria linear.
(B) A molécula NH3 tem geometria piramidal trigonal.
(C) A molécula CH4 tem geometria quadrangular plana.
(D) A molécula CO2 tem geometria angular.
176 Editável e fotocopiável © Texto | Novo 10Q
2008 I. Considerando que a molécula de amoníaco, NH3, possui três pares de eletrões de
valência ligantes e um par de eletrões de valência não ligante, selecione a alternativa
que completa corretamente a frase seguinte.
A geometria da molécula de amoníaco é piramidal trigonal, sendo os ângulos de
ligação menores do que os ângulos de um tetraedro regular, porque...
(A) apenas o par de eletrões não ligante exerce repulsão sobre os pares de eletrões
ligantes.
(B) as repulsões entre o par de eletrões não ligante e os pares de eletrões ligantes
têm a mesma intensidade que as repulsões entre os pares ligantes.
(C) as repulsões entre o par de eletrões não ligante e os pares de eletrões ligantes são
mais fortes do que as repulsões entre os pares ligantes.
(D) apenas os pares de eletrões ligantes exercem repulsão sobre o par de eletrões
não ligante.
2008 E. Justifique o facto de a molécula de água apresentar uma geometria angular, e também
o facto de o ângulo de ligação nesta molécula (104,5°) ser inferior ao ângulo
correspondente a uma geometria tetraédrica regular (109,5°).
2009 I. Um átomo de oxigénio ligado a dois átomos de hidrogénio forma uma molécula de
água. Justifique a seguinte afirmação: «a molécula de água tem geometria angular».
2009 I.O dióxido de carbono, CO2 (g), é um dos principais gases que contribuem para o efeito
de estufa, sendo conhecidas diversas ações conducentes à redução das suas emissões
para a atmosfera.
No entanto, além do dióxido de carbono, o vapor de água, H2O (g), e o metano, CH4 (g),
também contribuem para esse efeito.
Tanto a molécula H2O como a molécula CO2 têm um átomo central, respetivamente de
oxigénio e de carbono.
Selecione a alternativa que corresponde à geometria correta dessas moléculas.
(A) A molécula H2O é linear, assim como a molécula CO2.
(B) A molécula H2O é linear, enquanto a molécula CO2 é angular.
(C) A molécula H2O é angular, assim como a molécula CO2.
(D) A molécula H2O é angular, enquanto a molécula CO2 é linear.
2009 E. Qual é a geometria da molécula de CO2?
2010 I. O amoníaco é um composto molecular que se encontra em fase gasosa à temperatura
e pressão ambientes. Qual é a geometria da molécula de amoníaco?
2010 E. Atendendo apenas à estequiometria do composto, a molécula de água, H2O, poderia
assumir uma geometria linear. No entanto, aquela molécula apresenta uma geometria
angular.
Apresente uma explicação para o facto de a molécula de água adotar uma geometria
angular.
Editável e fotocopiável © Texto | Novo 10Q 177
2011 2F. Atendendo apenas à estequiometria do composto, a molécula H2O poderia assumir
uma geometria linear. No entanto, aquela molécula apresenta uma geometria
angular.
Explique por que é que a geometria da molécula de água é angular.
2011 I. Atendendo apenas à estequiometria do composto, a molécula NH3 poderia assumir
uma geometria triangular plana. No entanto, aquela molécula apresenta uma
geometria piramidal trigonal.
Apresente uma explicação para o facto de a molécula de amoníaco adotar uma
geometria piramidal trigonal.
2011 1F. A molécula CH4 apresenta uma geometria tetraédrica.
Indique as posições relativas dos átomos constituintes da molécula CH4 no tetraedro
e refira o tipo de ligações que se estabelecem entre o átomo de carbono e os átomos
de hidrogénio.
2012 I. As moléculas de metano apresentam geometria tetraédrica. Nestas moléculas,
(A) não existem eletrões de valência não ligantes, e existem, no total, oito eletrões
ligantes.
(B) existem eletrões de valência não ligantes, e existem, no total, quatro eletrões
ligantes.
(C) não existem eletrões de valência não ligantes, e existem, no total, quatro eletrões
ligantes.
(D) existem eletrões de valência não ligantes, e existem, no total, oito eletrões ligantes.
2012 2F. A composição do gás natural depende, entre outros fatores, da localização do
reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás
natural é sempre maioritariamente constituído por metano, CH4 (g), embora possa
conter outros gases, como, por exemplo, metilbutano, dióxido de carbono, vapor de
água e sulfureto de hidrogénio.
a) Explique porque é que a geometria da molécula de dióxido de carbono, CO2, é
linear.
b) As moléculas de água, H2O, e de sulfureto de hidrogénio, H2S, apresentam
geometria semelhante.
Preveja, justificando com base nas posições relativas dos elementos oxigénio e
enxofre na Tabela Periódica, qual das ligações, H–O ou H–S, terá maior
comprimento, na respetiva molécula.
2014 I. Qual é a geometria da molécula de água?
2014 1F A representação da molécula de NH3 através da notação de Lewis evidencia
(A) a geometria da molécula.
(B) apenas os eletrões de valência partilhados da molécula.
(C) a orientação espacial da molécula.
(D) todos os eletrões de valência da molécula.
178 Editável e fotocopiável © Texto | Novo 10Q
2014 1F Qual das opções seguintes pode representar um modelo tridimensional da molécula
de NH3 que evidencie as ligações que se estabelecem entre os átomos?
Estrutura de moléculas orgânicas e biológicas
2008 I. Os principais constituintes do petróleo bruto e do gás natural são compostos orgânicos
pertencentes à família dos alcanos, também designados por hidrocarbonetos saturados.
Relativamente aos alcanos, classifique cada uma das seguintes afirmações como
verdadeira (V) ou falsa (F).
(A) Os alcanos têm fórmula geral CnH2n + 2 (com n = 1,2 3, ..., sendo n o número de
átomos de carbono).
(B) O alcano designado por heptano tem apenas seis átomos de carbono.
(C) Os alcanos podem ter ligações carbono-carbono simples e duplas.
(D) Um dos átomos de carbono do 2,2-dimetilpropano está ligado a quatro átomos de
carbono.
(E) Os alcanos são hidrocarbonetos por só conterem átomos de carbono e de hidrogénio.
(F) Um alcano com apenas três átomos de carbono pode ser ramificado.
(G) O hexano tem mais átomos de carbono do que o 2,3-dimetilbutano.
(H) Os CFC podem ser considerados derivados halogenados dos alcanos.
2009 I.O dióxido de carbono, CO2 (g), é um dos principais gases que contribuem para o efeito de
estufa, sendo conhecidas diversas ações conducentes à redução das suas emissões para a
atmosfera.
No entanto, além do dióxido de carbono, o vapor de água, H2O (g), e o metano, CH4 (g),
também contribuem para esse efeito.
O metano, CH4, é o alcano mais simples, com apenas um átomo de carbono por
molécula. A cadeia carbonada dos alcanos pode ser ramificada ou não ramificada,
ocorrendo a ramificação apenas a partir do butano, C4H10.
Considere o alcano de cadeia ramificada, cuja fórmula
de estrutura está representada na figura.
Selecione a alternativa que corresponde ao nome deste
alcano, de acordo com as regras da IUPAC.
(A) 3-metil-heptano. (B) 2,4-dimetil-hexano.
(C) 2-etil-4-metilpentano. (D) 3-etil-1,1-dimetilbutano.
Editável e fotocopiável © Texto | Novo 10Q 179
2010 2F. O carbono, elemento presente nas moléculas de CO2, dá origem a uma grande
variedade de compostos orgânicos, nos quais se incluem os hidrocarbonetos
saturados, também designados por alcanos.
Selecione a única opção que corresponde à representação correta de uma molécula
de propano.
2012 2F. A composição do gás natural depende, entre outros fatores, da localização do
reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás
natural é sempre maioritariamente constituído por metano, CH4 (g), embora possa
conter outros gases, como, por exemplo, metilbutano, dióxido de carbono, vapor de
água e sulfureto de hidrogénio.
Qual das fórmulas de estrutura seguintes pode representar a molécula de metilbutano?
2.1.3 Ligações intermoleculares
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
2.2 Gases e dispersões
2.2.1 Lei de Avogadro, volume molar e massa volúmica
2008 I. Muitos dos sistemas de aquecimento utilizados, tanto a nível industrial, como
doméstico, recorrem às reações de combustão dos alcanos, uma vez que estas
reações são fortemente exotérmicas.
O metano, CH4, o etano, C2H6, o propano, C3H8, e o butano, C4H10, são gases nas
condições normais de pressão e temperatura (PTN).
Nessas condições, a densidade de um desses gases é aproximadamente
1,343 g dm–3
. Selecione a alternativa que refere o gás que apresenta esse valor de
densidade.
(A) Metano, CH4
(B) Etano, C2H6
(C) Propano, C3H8
(D) Butano, C4H10
180 Editável e fotocopiável © Texto | Novo 10Q
2008 I. Em 1811, Avogadro concluiu que volumes iguais de gases diferentes, medidos nas
mesmas condições de pressão e de temperatura, contêm o mesmo número de
partículas.
A partir deste princípio, tornou-se possível calcular o volume molar, Vm, de um gás
e, também, a sua densidade, em quaisquer condições de pressão e temperatura.
a) Calcule a densidade do dióxido de carbono (CO2), em condições normais de
pressão e temperatura (condições PTN).
Apresente todas as etapas de resolução.
b) Tendo em conta a conclusão de Avogadro, selecione a opção que completa
corretamente a frase seguinte.
Em condições PTN, ...
(A)... uma mistura de 0,25 mol de O2 e 0,75 mol de N2 ocupa 22,4 dm3
.
(B)... 1,0 mol de O2 ocupa um volume menor do que 1,0 mol de CO2.
(C)... a densidade de um gás é tanto maior quanto menor for a sua massa
molar.
(D)... massas iguais de N2 e de O2 ocupam o mesmo volume.
2008 1F. O dióxido de enxofre, SO2, conhecido por ser um gás poluente, tem uma faceta
mais simpática e, certamente, menos conhecida: é usado na indústria alimentar,
sob a designação de E220, como conservante de frutos e de vegetais, uma vez
que preserva a cor natural destes.
O dióxido de enxofre, SO2, e o oxigénio, O2, são duas substâncias com
propriedades químicas diferentes, sendo ambas gasosas nas condições
ambientais de pressão e temperatura.
a) O gráfico seguinte traduz o modo como varia o volume, V, de uma amostra
de um gás ideal com a quantidade de substância, n, a pressão e temperatura
constantes.
Com base no gráfico, e admitindo que SO2 e O2 se comportam como gases
ideais, selecione a alternativa que completa corretamente a frase seguinte.
Em duas amostras gasosas, uma de SO2 e outra de O2, nas mesmas condições
de pressão e temperatura, se os gases tiverem...
(A)... volumes iguais, têm massas iguais.
(B) ... volumes iguais, têm a mesma densidade.
(C) ... o mesmo número de moléculas, têm volumes iguais.
(D) ... o mesmo número de moléculas, têm a mesma densidade.
b) Calcule o número de moléculas de SO2 (g) que existem numa amostra de
50,0 cm3
desse gás, em condições normais de pressão e temperatura (PTN).
Apresente todas as etapas de resolução.
Editável e fotocopiável © Texto | Novo 10Q 181
2009 I. Nas mesmas condições de pressão e temperatura, o volume ocupado por 4,00 g
de hélio, He (g), é aproximadamente ______ volume ocupado por 4,00 g de
hidrogénio, H2 (g).
(A) igual ao (B) o dobro do
(C) metade do (D) o quádruplo do
2009 I. Em condições normais de pressão e temperatura (condições PTN), a substância
nitrogénio, N2, é um gás.
Selecione a única alternativa que contém a expressão que permite obter o valor
da densidade do nitrogénio, N2 (g), nessas condições, expresso em g cm–3
.
(A)
14,01
22,4
(B)
28,02
22,4 × 103
(C)
28,02
22,4
(D)
14,01
22,4 × 103
2009 E. Sendo NA a Constante de Avogadro, considere que NA/2 moléculas de CO2 (g)
(M = 44,01 g mol-1
) ocupam um volume igual a 12,2 dm3
, à pressão de 1 atm e à
temperatura de 25 °C.
Calcule a densidade do CO2 (g), expressa em g dm–3
, nessas condições de pressão
e de temperatura. Apresente todas as etapas de resolução.
2010 I. Nas mesmas condições de pressão e temperatura, o volume ocupado por 0,5 mol
de oxigénio, O2 (g), é aproximadamente...
(A) um quarto do volume ocupado por 32 g desse mesmo gás.
(B) um meio do volume ocupado por 32 g desse mesmo gás.
(C) o dobro do volume ocupado por 32 g desse mesmo gás.
(D) o quádruplo do volume ocupado por 32 g desse mesmo gás.
2010 I. Considere que a densidade do amoníaco, à pressão de 0,989 atm e a 55 °C,
é 0,626 g dm-3
. Calcule o número de moléculas de amoníaco que existem numa
amostra de 500 cm3
desse gás, naquelas condições de pressão e de temperatura.
Apresente todas as etapas de resolução.
2010 E. Considere várias amostras de CO2 (g), contidas em recipientes fechados, sob as
mesmas condições de pressão e de temperatura.
Selecione a única opção que apresenta um esboço do gráfico que pode traduzir a
relação entre a densidade das amostras de CO2 (g) e o número de moléculas
desse gás existentes nessas amostras.
182 Editável e fotocopiável © Texto | Novo 10Q
2010 1F. O gráfico seguinte representa o volume, V, de diferentes amostras de nitrogénio
(N2), em função da quantidade de gás, n, existente nessas amostras, à pressão de
752 mmHg e à temperatura de 55 °C.
Que significado físico tem o declive da reta representada?
2010 2F. Considere que a densidade do CO2 (g), à pressão de 1 atm e à temperatura de
25 °C, é igual a 1,80 g dm–3
.
Calcule o volume ocupado por NA/2 moléculas de CO2 (g) nas condições de
pressão e de temperatura referidas, sendo NA a constante de Avogadro.
Apresente todas as etapas de resolução.
2011 I. Em determinadas condições de pressão e de temperatura, 0,5 mol de N2 (g) ocupa
o volume V1. Nas mesmas condições de pressão e de temperatura, 0,5 mol de
NO2 (g) ocupa o volume
(A)
2
3
V1 (B) V1
(C)
3
2
V1 (D) 2 V1
2011 1F. Considere uma amostra de 8,24 mol de CH4 (g) e uma amostra de 0,398 mol de
CO (g), nas mesmas condições de pressão e de temperatura.
Quantas vezes é que o volume ocupado pela amostra de metano é maior do que
o volume ocupado pela amostra de monóxido de carbono?
Apresente o resultado com três algarismos significativos.
2011 E. Em condições normais de pressão e de temperatura (PTN), o volume ocupado por
13 g de ozono é
(A) �
48,0
13
× 22,4� dm3
(B) �
13
48,0
× 22,4� dm3
(C) �
13
22,4
× 48,0� dm3
(D) (13 × 22,4 × 48,0) dm3
Editável e fotocopiável © Texto | Novo 10Q 183
2012 I. A atmosfera terrestre é uma faixa gasosa que cobre a superfície da Terra, sendo
retida pela atração gravítica exercida pelo planeta.
Na atmosfera, a densidade e a pressão decrescem exponencialmente com a
altitude. A temperatura apresenta, no entanto, uma variação mais complexa,
decrescendo com o aumento da altitude em algumas camadas da atmosfera e
aumentando noutras.
O ar que constitui a camada mais baixa da atmosfera, a troposfera, é uma mistura
de gases composta essencialmente por cerca de 78%, em volume, de nitrogénio e
21%, em volume, de oxigénio. Os restantes gases — árgon, vapor de água, dióxido
de carbono, néon, etc. — existem em percentagens relativamente baixas, embora
alguns deles sejam muito importantes para a vida na Terra.
F. Duarte Santos, Que Futuro? Ciência, Tecnologia, Desenvolvimento e Ambiente, Gradiva, 2007 (adaptado)
O número de moléculas de oxigénio que existem em 100 dm3
de ar, na troposfera,
em condições normais de pressão e de temperatura, pode ser calculado através
da expressão
(A) �
100
6,02 × 1023� × 22,4 (B) �
100
0,21 × 6,02 × 1023� × 22,4
(C)�
100
22,4
� × 6,02 × 1023
(D) �
100 × 0,21
22,4
� × 6,02 × 1023
2012 1F. O sulfureto de hidrogénio, H2S (g), é um gás incolor que tem um cheiro
característico a ovos podres.
a) A tabela seguinte apresenta os volumes, V, de diferentes amostras de H2S (g)
e as respetivas massas, m, à pressão de 1 atm e à temperatura de 55 °C.
V / dm3 m / g
3,4 4,3
6,7 8,5
10,1 12,8
13,5 17,1
Determine o volume molar do gás, nas condições de pressão e de
temperatura referidas.
Comece por obter a densidade (ou massa volúmica) do gás, a partir do
declive da reta que melhor se ajusta ao conjunto de valores apresentados na
tabela (utilize a calculadora gráfica).
Apresente todas as etapas de resolução.
b) Considere uma amostra de H2S (g) com o dobro do volume de uma amostra
de metano, CH4 (g), nas mesmas condições de pressão e de temperatura.
Nessas condições, as amostras contém
(A) o mesmo número de moléculas.
(B) a mesma quantidade de moléculas.
(C) o mesmo número de átomos de hidrogénio.
(D) a mesma quantidade de átomos.
184 Editável e fotocopiável © Texto | Novo 10Q
2013 I. O amoníaco é um gás à pressão e à temperatura ambientes.
Considere que a densidade do NH3 (g) nas condições normais de pressão e de
temperatura é 1,08 vezes maior do que a densidade desse gás à pressão e à
temperatura ambientes.
Determine o número de moléculas de amoníaco que existem numa amostra pura
de 200 cm3
de NH3 (g), à pressão e à temperatura ambientes.
Apresente todas as etapas de resolução.
2013 1F. Considere que a densidade do HCN (g) (M = 27,03 g mol–1
), à pressão de 1 atm e
à temperatura de 30 °C, é 1,086 g dm–3
.
Qual das expressões seguintes permite calcular a quantidade de HCN (g) que
existe numa amostra pura de 5,0 dm3
desse gás, nas condições de pressão e de
temperatura referidas?
(A) �
1,086 × 5,0
27,03
� mol
(B) �
27,03
1,086 × 5,0
� mol
(C) �
1,086
27,03 × 5,0
� mol
(D) �
27,03 × 5,0
1,086
� mol
2013 2F. Considere que o ar contém cerca de 21%, em volume, de oxigénio e que Vm
representa o volume molar de um gás, em dm3
mol–1
, em quaisquer condições
de pressão e de temperatura.
Qual das expressões seguintes permite calcular a quantidade aproximada de
oxigénio que existia no balão?
(A) �
800 × 10 × 0,21
𝑉m
� mol
(B) �
800 × 10
0,21
× Vm � mol
(C) �
800 × 10 3 × 0,21
𝑉m
� mol
(D) �
800 × 10 3
0,21
× Vm� mol
2013 2F. Quantas vezes é que a densidade do SO3 (g) é maior do que a densidade do
SO2 (g), nas mesmas condições de pressão e de temperatura?
Apresente o resultado com três algarismos significativos.
2.2.2 Soluções, coloides e suspensões
(secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
Editável e fotocopiável © Texto | Novo 10Q 185
2.2.3 Composição quantitativa de soluções
2009 2F. Na água do mar têm-se dissolvido, ao longo de milhares de milhões de anos,
várias substâncias que incluem sais inorgânicos, gases e compostos orgânicos
provenientes dos organismos marinhos.
Na tabela seguinte, indica-se a composição média aproximada da água do mar,
relativa aos seus componentes maioritários.
Componente mol / kg de água do mar
NaCℓ 0,4186
MgCℓ2 0,0596
Na2SO4 0,02856
KCℓ 0,01
CaCℓ2 0,005
Fonte: Boletim da Sociedade Portuguesa de Química, n.
o
101, Abril-Junho 2006
a) Selecione a única alternativa que identifica o ião presente em maior
quantidade na água do mar.
(A) Na+
(B) Cℓ–
(C) SO4
2–
(D) Ca2+
b) Selecione a única alternativa que permite calcular a composição, em ião
sulfato, SO4
2–
, (M = 96,07 g mol–1
), da água do mar, expressa em ppm.
(A) �
0,02856 × 96,07 × 4
103 × 106
� ppm
(B) �
0,02856 × 103
96,07
× 106
� ppm
(C) �
0,02856 × 103
96,07 × 4
× 106
� ppm
(D) �
0,02856 × 96,07
103 × 106
� ppm
2010 I. Numa análise efetuada a uma amostra de 500 g de água de um poço, destinada a
ser utilizada para fins agrícolas, determinou-se um teor em ião sulfato, SO4
2–
, de
6,0 ppm (m/m).
Calcule a quantidade de ião SO4
2−
que existia naquela amostra de solução.
Apresente todas as etapas de resolução.
186 Editável e fotocopiável © Texto | Novo 10Q
2010 E. Chuva ácida é a designação dada à água da chuva cuja acidez seja superior à
resultante da dissolução do dióxido de carbono atmosférico em água. Esta
dissolução determina, só por si, um pH de cerca de 5,6.
A principal causa deste aumento de acidez é a emissão para a atmosfera, em
quantidades significativas, de compostos gasosos contendo enxofre e nitrogénio,
que originam ácidos fortes em meio aquoso.
Os efeitos ambientais da chuva ácida levaram à adoção, pela generalidade dos
países, de medidas restritivas da queima de combustíveis fósseis.
a) Identifique a principal causa de origem antropogénica, referida no texto,
responsável pela emissão para a atmosfera de compostos gasosos contendo
enxofre e nitrogénio.
b) A percentagem, em volume, de dióxido de carbono, CO2, na atmosfera
terrestre atual é 0,39%.
Determine o número de moléculas de dióxido de carbono presentes numa
amostra de 10 dm3
de ar, nas condições PTN.
Apresente todas as etapas de resolução.
2012 1F Se o teor de sulfureto de hidrogénio numa solução aquosa for 22 ppm, a massa,
expressa em mg, de H2S em 1 kg dessa solução é
(A) 22 × 106
(B) 22
(C) 22 × 10–3
(D) 22 × 103
2012 2F. A composição do gás natural depende, entre outros fatores, da localização do
reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás
natural é sempre maioritariamente constituído por metano, CH4 (g), embora
possa conter outros gases, como, por exemplo, metilbutano, dióxido de carbono,
vapor de água e sulfureto de hidrogénio.
Considere que se extrai, de um determinado reservatório subterrâneo, gás
natural contendo 70%, em volume, de metano.
Determine o número de moléculas de metano que existem numa amostra de
5,0 dm3
do gás natural, nas condições normais de pressão e de temperatura.
Apresente todas as etapas de resolução.
2013 2F. O SO3 (g) é usado na preparação do ácido sulfúrico comercial, por reação com
vapor de água. A reação que ocorre pode ser traduzida por
SO3 (g) + H2O (g) → H2SO4 (aq)
Considere que se obtém uma solução concentrada de ácido sulfúrico, de
densidade 1,84 g cm–3
, que contém 98%, em massa, de H2SO4.
Determine a massa de H2SO4 que existe em 100 cm3
da solução.
Apresente todas as etapas de resolução.
Editável e fotocopiável © Texto | Novo 10Q 187
2014 2F. A densidade de uma solução de ácido acético de concentração 0,50 mol dm–3
é
1,0025 x 103
g dm–3
, a 20 o
C. Qual das expressões seguintes permite calcular a
quantidade de ácido acético que existe em 100 g da solução?
(A) �
0,50 × 100
1,025 × 103 � mol (B) �
100
0,50 × 1,0025 × 103 � mol
(C) �
1,0025 × 103
0,50 × 100
� mol (D) �
0,50 × 1,0025 × 103
100
� mol
Conversão de unidades
2008 I Em termos médios, a %(V/V) do CO2 na atmosfera é 0,035%. Outra maneira de indicar
essa concentração é em ppmV (partes por milhão em volume).
Selecione a alternativa que corresponde a essa concentração, expressa em ppmV.
(A) 3,5 × 10–2
(B) 3,5 × 10–1
(C) 3,5 × 102
(D) 3,5 × 104
2008 E Nos laboratórios químicos, as soluções aquosas de amoníaco, com as quais se trabalha
habitualmente, são preparadas a partir de soluções aquosas comerciais, em geral
muito concentradas.
Uma solução aquosa comercial de amoníaco, NH3 (aq) (M = 17,04 g mol–1
), tem uma
concentração, expressa em percentagem em massa, igual a 25%, e uma densidade
igual a 0,91 g cm–3
, a uma determinada temperatura.
Calcule a concentração, expressa em mol dm–3
, dessa solução de amoníaco. Apresente
todas as etapas de resolução.
2009 I. O mercúrio contribui para a poluição atmosférica como material particulado. Já um dos
seus compostos, o metilmercúrio, quando em soluções aquosas, entra na cadeia
alimentar, originando intoxicações. A toxicidade do mercúrio e dos seus compostos
deve-se à sua interferência em processos enzimáticos, impedindo a respiração e o
metabolismo celular.
Nos seres humanos, a concentração mínima de metilmercúrio (M = 215,63 g mol–1
) no
sangue, normalmente associada ao aparecimento de sintomas de intoxicação, é
0,20 mg/L.
Indique o valor desta concentração, expresso em mol dm–3
.
2011 1F. Um dos componentes minoritários que pode existir no gás natural é o nitrogénio,
N2(g).
A composição em N2 (g), expressa em partes por milhão em volume, de uma amostra
de gás natural que contém 1,3%, em volume, de nitrogénio, pode ser determinada a
partir da expressão
(A)
1,3 × 10 –6
102 (B)
1,3 × 102
106
(C)
106
× 10
3
1,3 × 102 (D)
102
1,3 × 106
188 Editável e fotocopiável © Texto | Novo 10Q
2012 E. Uma outra solução aquosa de hidróxido de sódio, NaOH (aq) (M = 40,00 g mol–1
),
contém 20%, em massa, de soluto. A densidade da solução é 1,219 g cm–3
.
Determine a concentração, em mol dm–3
, desta solução.
Apresente todas as etapas de resolução.
2013 I. O amoníaco é uma base fraca, cuja reação de ionização em água pode ser traduzida
por NH3 (aq) + H2O (l) → NH4
+
(aq) + OH–
(aq)
As soluções aquosas de amoníaco habitualmente utilizadas em laboratório são
preparadas por diluição de soluções aquosas comerciais, muito concentradas.
Considere uma solução aquosa comercial de amoníaco, de concentração 13 mol dm–3
e de densidade 0,91 g cm–3
, que é posteriormente diluída 500 vezes.
Qual das expressões seguintes permite calcular a percentagem, em massa, de
amoníaco (M = 17,04 g mol–1
) na solução comercial?
(A)
0,91 × 1000
13 × 17,04
× 100
(B)
13 × 0,91
17,04 × 1000
× 100
(C)
17,04 × 1000
13 × 0,91
× 100
(D)
13 × 17,04
0,91 × 1000
× 100
2013 1F. Um teor de HCN, no ar, de 0,860 ppm corresponde a um teor, expresso em
percentagem em massa, de
(A) 8,60 × 10–7
% (B) 8,60 × 10–5
%
(C) 8,60 × 10–2
% (D) 8,60 × 10–3
%
Diluição de soluções aquosas
2010 I. Admita que dispunha de uma solução aquosa de amoníaco de concentração mássica
2,50 x 102
g dm–3
, e que pretendia preparar, a partir daquela solução concentrada,
500 cm3
de uma solução diluída, de concentração 0,400 mol dm–3
.
Calcule o volume de solução concentrada que teria de medir para preparar a solução
pretendida. Apresente todas as etapas de resolução.
2011 I. Transferem-se 20,0 cm3
de uma solução aquosa de amoníaco, de concentração
7,34 mol dm–3
, para um balão volumétrico de 100,0 mL, adicionando-se água até ao
traço de referência do balão. Calcule a concentração da solução diluída.
Apresente todas as etapas de resolução.
2012 I. A última fase da preparação do ácido sulfúrico consiste em fazer reagir o SO3 (g) com
vapor de água, obtendo-se uma solução concentrada de ácido sulfúrico. Considere que
a concentração desta solução é 18,3 mol dm–3
.
Determine o volume de solução concentrada que teria de ser utilizado para preparar
250,0 cm3
de uma solução aquosa de ácido sulfúrico de concentração 0,50 mol dm–3
.
Apresente todas as etapas de resolução.
Editável e fotocopiável © Texto | Novo 10Q 189
2013 E. O grau de acidez de um vinagre é expresso em termos da massa de ácido acético,
CH3COOH (M = 60,06 g mol–1
), em gramas, dissolvida em 100 cm3
desse vinagre.
Um vinagre comercial de grau de acidez 6,0% é diluído 20 vezes, preparando-se um
volume total de 500,0 cm3
de solução diluída.
Determine a quantidade de ácido acético dissolvido na solução diluída de vinagre.
Apresente todas as etapas de resolução.
(A) 2,0 cm3
(B) 5,0 cm3
(C) 200,0 cm3
(D) 500,0 cm3
2014 2F As soluções aquosas de ácido acético a partir das quais se obteve a curva de calibração
representada no gráfico abaixo foram preparadas a partir de uma solução inicial de
concentração 4,50 mol dm–3
.
Qual é o fator de diluição a considerar na preparação da solução de ácido acético de
concentração 0,50 mol dm–3
?
(A) 9
(B) 5
(C) 4
(D) 2
Atividades laboratoriais
2008 I. As soluções são misturas homogéneas, sendo constituídas por uma única fase. A
composição quantitativa de uma solução traduz-se, frequentemente, pela concentração
expressa em mol dm–3
.
Para uma determinada atividade experimental, um grupo de alunos tem de preparar
250 cm3
de uma solução aquosa de hidróxido de sódio, NaOH, com a concentração
2,00 mol dm–3
.
Calcule a massa de hidróxido de sódio sólido que os alunos devem medir para
preparar essa solução. Apresente todas as etapas de resolução.
190 Editável e fotocopiável © Texto | Novo 10Q
2008 2F. A preparação de soluções aquosas de uma dada concentração é uma
atividade muito comum, quando se trabalha num laboratório químico.
No decurso de um trabalho laboratorial, um grupo de alunos preparou, com
rigor, 250,00 cm3
de uma solução aquosa, por pesagem de uma substância
sólida.
a) Na figura está representado um balão volumétrico calibrado de 250 mL,
semelhante ao utilizado pelos alunos na preparação da solução.
No balão estão indicadas a sua capacidade, a incerteza associada à sua
calibração e a temperatura à qual esta foi efetuada.
No colo do balão está marcado um traço de referência em todo o
perímetro.
i. Tendo em conta as indicações registadas no balão volumétrico, indique o
intervalo de valores no qual estará contido o volume de líquido a ser medido
com este balão, à temperatura de 20 °C.
ii. Os alunos deverão ter alguns cuidados ao efetuarem a leitura do nível de líquido
no colo do balão, de modo a medirem corretamente o volume de solução
aquosa preparada.
Selecione a alternativa que corresponde à condição correta de medição.
b) O grupo de alunos teve que preparar, com rigor, 250,00 cm3
de solução de
tiossulfato de sódio penta-hidratado, Na2S2O3 . 5H2O (aq) (M = 248,22 g mol–1
), de
concentração 3,00 × 10–2
mol dm–3
, por pesagem do soluto sólido.
Calcule a massa de tiossulfato de sódio penta-hidratado que foi necessário pesar,
de modo a preparar a solução pretendida.
Apresente todas as etapas de resolução.
c) Considere que os alunos prepararam ainda, com rigor, 50,00 cm3
de uma solução
de concentração 6,00 × 10–3
mol dm–3
, por diluição da solução 3,00 × 10–2
mol dm–3
de tiossulfato de sódio penta-hidratado.
i. Selecione a alternativa que permite calcular corretamente o volume, expresso
em cm3
, da solução mais concentrada, que os alunos tiveram que medir, de
modo a prepararem a solução pretendida.
(A) V =
3,00 × 10–2
× 50,00
6,00 × 10–3
cm3
(B) V =
6,00 × 10–3
× 50,00
3,00 × 10–2
cm3
(C) V =
3,00 × 10–2
× 6,00 × 10 –3
50,00
cm3
(D) V =
6,00 × 10–3
50,00 × 3,00 × 10–2
cm3
Editável e fotocopiável © Texto | Novo 10Q 191
ii. Para medirem o volume da solução mais concentrada, os alunos utilizaram
material de laboratório adequado.
Selecione a alternativa que refere o tipo de instrumento de medição de
volumes de líquidos que deverá ter sido utilizado naquela medição.
(A) Balão de Erlenmeyer (B) Proveta
(C) Pipeta (D) Gobelé
2010 I. Considere que foi pedido que preparasse, com rigor, 500,0 mL de uma solução aquosa
de etanol mais diluída, a partir da solução aquosa de etanol que encontrou na sua
bancada de laboratório.
Descreva o procedimento seguido na preparação da solução diluída de etanol,
considerando, por ordem cronológica, as três principais etapas que devem ser
realizadas nesse procedimento.
2.3. Transformações químicas
2.3.1 Energia de ligação e reações químicas
2013 1F. «[...] se não houver trocas, nem de matéria nem de energia, entre o sistema e
o exterior [...]», o sistema químico será um sistema
(A) fechado e a sua energia interna manter-se-á constante.
(B) isolado e a sua energia interna manter-se-á constante.
(C) fechado e a sua energia interna variará.
(D) isolado e a sua energia interna variará.
2013 2F. A reação de decomposição do SO3 (g) é uma reação endotérmica, em que o
sistema químico absorve 9,82 × 104
J por cada mole de SO3 que se decompõe.
A variação de energia, em joule (J), associada à decomposição de duas moles de
SO3 (g) será
(A) – (9,82 × 104
× 2) J (B) + �
9,82 × 104 × 2
1,025 × 103 � J
(C) + (9,82 × 104
× 2) J (D) �
9,82 × 104
2
� J
2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra
na constituição de muitas moléculas biologicamente importantes. O
nitrogénio molecular (N2) é um gás à temperatura e pressão ambientes, sendo
o componente largamente maioritário da atmosfera terrestre.
Considere que a energia média de ligação N–N é igual a 193 kJ mol–1
e que, na
molécula de nitrogénio (N2), a ligação que se estabelece entre os átomos é
uma ligação covalente tripla.
A quebra das ligações triplas em 1 mol de moléculas de nitrogénio, no estado
gasoso, envolve a ___de uma energia__a 193 kJ.
(A) libertação ... inferior (B) libertação ... superior
(C) absorção ... superior (D) absorção ... inferior
b) Represente a molécula de nitrogénio (N2), utilizando a notação de Lewis.
192 Editável e fotocopiável © Texto | Novo 10Q
2010 2F. O amoníaco, NH3 (g), obtém-se industrialmente através do processo de Haber,
podendo a reação de síntese ser representada por:
3 H2 (g) + N2 (g) → 2 NH3 (g) ΔH = – 92,6 kJ mol–1
a) Se a reação de síntese do amoníaco ocorrer em sistema isolado,
____transferência de energia entre o sistema e o exterior, e a energia
interna do sistema______.
(A) não há ... mantém-se (B) não há ... diminui
(C) há ... diminui (D) há ... mantém-se
b) A tabela seguinte apresenta dois valores de energia média de ligação.
Ligação Energia de ligação / kJ mol
–1
H—H 436,4
N—H 393
Selecione a única opção que apresenta a expressão que permite estimar a
energia envolvida na quebra da ligação tripla (EN≡N) na molécula de
nitrogénio, expressa em kJ mol–1
.
(A) –3(436,4) – EN≡N + 6(393) = –92,6
(B) +3(436,4) + EN≡N – 6(393) = –92,6
(C) +3(436,4) + EN≡N – 2(393) = –92,6
(D) –3(436,4) – EN≡N + 2(393) = –92,6
2010 E. A reação de síntese do amoníaco, muito estudada do ponto de vista do
equilíbrio químico, pode ser representada por:
N2 (g) + 3 H2 (g) → 2 NH3 (g) ΔH = –92,6 kJ mol–1
Indique o valor da energia libertada no estabelecimento das ligações químicas
que correspondem à formação de 2 mol de NH3 (g), sabendo que a energia
total gasta para quebrar as ligações de 1 mol de N2 (g) e de 3 mol de H2 (g) é
2,25 × 103
kJ.
2013 I. O amoníaco obtém-se industrialmente através do processo de Haber-Bosch,
fazendo reagir, em condições apropriadas, hidrogénio e nitrogénio gasosos.
A reação de síntese do amoníaco pode ser traduzida por
3 H2 (g) + N2 (g) → 2 NH3 (g)
Considere que a variação de energia associada à formação de 2 moles de
amoníaco, a partir da reação acima indicada, é –92 kJ.
A formação de 12 moles de amoníaco, a partir da mesma reação, envolverá
(A) a libertação de (12 × 92) kJ. (B) a libertação de (6 × 92) kJ.
(C) a absorção de (12 × 92) kJ. (D) a absorção de (6 × 92) kJ.
Editável e fotocopiável © Texto | Novo 10Q 193
2014 1F. A reação de síntese do amoníaco pode ser traduzida por
N2 (g) + 3 H2 (g) → 2 NH3 (g) ΔH = –92,6 kJ mol–1
Na reação de síntese do NH3 (g) considerada
(A) libertam-se 92 kJ por cada mole de NH3 (g) que se forma.
(B) libertam-se 92 kJ por cada duas moles de NH3 (g) que se formam.
(C) são absorvidos 92 kJ por cada mole de NH3 (g) que se forma.
(D) são absorvidos 92 kJ por cada duas moles de NH3 (g) que se formam.
2.3.2 Reações fotoquímicas na atmosfera
2010 1F. As reações entre o óxido de nitrogénio, NO (g), e o ozono, O3 (g), podem ser
traduzidas por um mecanismo reacional (em cadeia), no qual ocorrem,
sucessivamente, a destruição de uma molécula de O3 (g) e a regeneração de
uma molécula de NO (g).
a) Selecione a única opção que refere as fórmulas químicas que preenchem,
sequencialmente, os espaços seguintes, de modo a obter um esquema
correto do mecanismo reacional considerado.
O3 (g) + NO (g) → NO2 (g) + _____
NO2 (g) + O (g) → _____+ O2 (g)
(A) O (g) ... N2 (g)
(B) O (g) ... NO (g)
(C) O2 (g) ... NO (g)
(D) O2 (g) ... N2 (g)
b) À semelhança do que acontece com o NO (g), também a emissão de CFC para
a atmosfera contribui para uma diminuição acentuada da concentração de
ozono estratosférico.
Refira duas das características dos CFC responsáveis por esse efeito.
2013 E. Os átomos de cloro são agentes destruidores da camada de ozono
estratosférico.
Um mecanismo reacional que traduz a destruição do ozono pode ser
representado pelas seguintes equações:
Cℓ + O3 → CℓO + O2
CℓO + O → Cℓ + O2
Escreva a equação que corresponde à soma destas duas equações.
2011 E. O ozono, O3 (g), existente na estratosfera tem grande importância na preservação
da vida na Terra. Qual é a radiação, nociva para os seres vivos, que é absorvida
pelo ozono na estratosfera?
194 Editável e fotocopiável © Texto | Novo 10Q
2012 2F. Considere que a energia necessária para dissociar uma mole de moléculas de
Cℓ2 (g) é 242,7 kJ.
A variação de energia associada à formação de duas moles de átomos de
cloro, em fase gasosa, a partir de uma mole de Cℓ2 (g) é
(A) + (2 × 242,7) kJ (B) – (2 × 242,7) kJ
(C) + 242,7 kJ (D) – 242,7 kJ
2008 I. Leia atentamente o seguinte texto.
A atividade humana tem efeitos potencialmente desastrosos nas camadas
superiores da atmosfera. Certos produtos químicos libertados no ar, em
particular os compostos genericamente denominados CFC, vastamente usados
em refrigeração e na indústria eletrónica, estão a destruir o ozono na
estratosfera. Sem esta camada de ozono estratosférica, a radiação ultravioleta
solar atingiria a superfície da Terra com uma intensidade muito elevada,
destruindo a maioria das moléculas que constituem o tecido vivo.
Em 1985, cientistas descobriram um «buraco» na camada de ozono, sobre a
Antártida, que, de um modo geral, tem vindo a aumentar de ano para ano.
Através de acordos internacionais, a utilização dos CFC tem vindo a ser
abandonada, sendo estes substituídos por compostos que não destroem o
ozono, permitindo que a luz solar produza naturalmente mais ozono
estratosférico.
No entanto, serão necessárias várias décadas para reparar os danos causados
na camada do ozono.
Esta situação é um exemplo de que comportamentos que foram adotados no
passado, e que ajudaram a assegurar a sobrevivência dos nossos antepassados,
podem não ser os comportamentos mais sensatos no futuro.
Adaptado de Freedman, R. A., Kaufmann III, W. J., UNIVERSE, 6
th
edition,
W. H. Freeman and Company, New York 2002
a) «Comportamentos que foram adotados no passado, e que ajudaram a
assegurar a sobrevivência dos nossos antepassados, podem não ser os
comportamentos mais sensatos no futuro.»
Escreva um texto no qual relacione esta frase com o restante conteúdo do
texto acima apresentado, referindo-se a:
• Comportamentos anteriormente adotados pela indústria e que vieram a
revelar-se nocivos;
• Efeitos nocivos resultantes desses comportamentos;
• Medidas tomadas para minorar esses efeitos.
b) Indique a principal função da camada de ozono.
c) A energia de ionização da molécula de oxigénio é 1,9 × 10–18
J, enquanto a sua
energia de dissociação é 8,3 × 10–19
J.
As radiações, que são absorvidas pelas espécies químicas existentes na
estratosfera, têm valores de energia entre 6,6 × 10–19
J e 9,9 × 10–19
J.
Com base nestes dados, indique, justificando, se o processo que ocorre na
estratosfera será a dissociação ou a ionização da molécula de oxigénio.
Editável e fotocopiável © Texto | Novo 10Q 195
2009 I. A Terra é o único planeta do Sistema Solar que possui uma atmosfera rica em
oxigénio.
A atmosfera terrestre constitui um filtro natural para as radiações provenientes
do Sol, em especial para as radiações ultravioleta de maior energia, as UV-C, e
as radiações ultravioleta de energia intermédia, as UV-B.
Elabore um texto relativo às radiações ultravioleta provenientes do Sol,
abordando os tópicos seguintes:
Camadas da atmosfera onde as radiações ultravioleta UV-C e UV-B são
predominantemente absorvidas.
• Reações que traduzem o efeito das radiações ultravioleta nas moléculas de
oxigénio (O2) e de ozono (O3), na estratosfera.
• Significado de o índice de proteção solar (IPS) de um dado creme protetor ser
igual a 20.
2009 I. A atmosfera terrestre funciona como um filtro da radiação solar, como
resultado das interações desta com a matéria existente nas diversas camadas
da atmosfera.
Selecione a alternativa correta, relativamente às radiações ultravioleta (UV)
provenientes do Sol.
(A) Na troposfera é absorvida a maior parte das radiações UV de maior energia.
(B) Na estratosfera são absorvidas praticamente todas as radiações UV de
energia intermédia.
(C) Na termosfera é absorvida a maior parte das radiações UV de menor
energia.
(D) Na mesosfera são absorvidas praticamente todas as radiações UV.
2010 I. Pensa-se que a atmosfera primordial da Terra tenha sido substancialmente
diferente da atmosfera atual, contendo muito pouco, ou nenhum, oxigénio, O2.
Este terá sido libertado para a atmosfera por organismos unicelulares, como
produto secundário da fotossíntese. O oxigénio terá, assim, começado a surgir
na atmosfera há, pelo menos, 3,5 × 109
anos, embora os registos geoquímicos
indiquem que a concentração de oxigénio na atmosfera só tenha começado a
aumentar de modo significativo há 2,3 × 109
anos.
O aumento da concentração de oxigénio na atmosfera terrestre permitiu
iniciar a formação da camada de ozono estratosférico, o que, por sua vez,
permitiu a conquista da terra firme pelos organismos vivos. Nessa camada,
moléculas de oxigénio dissociam-se, por ação da radiação ultravioleta (UV)
solar. Os átomos resultantes dessa dissociação combinam-se com oxigénio
molecular para formar ozono, O3. Este, por sua vez, ao ser dissociado pela
radiação UV, produz oxigénio atómico e molecular, que acaba por se
recombinar de novo.
F. D. Santos, Que Futuro? Ciência, Tecnologia, Desenvolvimento e Ambiente,
Gradiva, 2007 (adaptado)
a) Identifique o fenómeno, fundamental para a vida na Terra, que ocorre na
camada de ozono estratosférico.
b) Escreva as duas equações químicas que traduzem o mecanismo reacional
de produção do ozono estratosférico, com base na informação dada no
texto.
196 Editável e fotocopiável © Texto | Novo 10Q
2012 I. O ozono, O3, encontra-se na estratosfera, formando a chamada camada de
ozono, que se estende por vários quilómetros de altitude.
Na estratosfera, a interação da radiação ultravioleta B (UV-B) com as moléculas
de oxigénio dá origem à formação de radicais livres (átomos) de oxigénio. São
estes radicais que, reagindo com outras moléculas de oxigénio, na estratosfera,
produzem o ozono.
Por seu lado, as moléculas de ozono também interagem com a radiação UV-B,
na estratosfera, dissociando-se.
Se não houvesse interferência de outras espécies químicas presentes na
estratosfera, a concentração de ozono nesta camada da atmosfera permaneceria
aproximadamente constante — a formação e a decomposição deste gás
ocorreriam à mesma velocidade.
No entanto, alguns radicais livres também presentes na estratosfera,
nomeadamente os radicais livres (átomos) de cloro, reagem com o ozono, que
passa a decompor-se a uma velocidade superior à velocidade a que se forma.
Como resultado da ação destes radicais livres, ocorre, assim, uma diminuição da
concentração de ozono na estratosfera, fenómeno que é habitualmente designado
por «buraco do ozono».
Maria Teresa Escoval, A Ação da Química na Nossa Vida, Editorial Presença, 2010 (adaptado)
a) Escreva as equações químicas que traduzem as reações referidas no
segundo parágrafo do texto.
b) A reação dos radicais livres de oxigénio com as moléculas de oxigénio, na
estratosfera, envolve a libertação de cerca de 105 kJ por cada mole de
moléculas de ozono que se formam.
A variação de energia, em joule (J), associada à formação de uma
molécula de ozono, poderá ser traduzida pela expressão
(A)
+ 1,05 × 10 5
6,02 × 10 23 (B)
– 1,05 × 10 5
6,02 × 10 23
(C) – 1,05 × 105
× 6,02 × 1023
(D) + 1,05 × 105
× 6,02 ×1023
c) Explique porque é que as moléculas de oxigénio e de ozono constituem
filtros da radiação UV-B na estratosfera.
d) Os CFC (clorofluorocarbonetos) são compostos que, interagindo com a
radiação UV-B, constituem a principal fonte de radicais livres de cloro na
estratosfera.
Nas moléculas de CFC que chegam à estratosfera, verifica-se assim a
quebra das ligações C–Cℓ, mais fracas, não ocorrendo, no entanto, a
quebra das ligações C–F, mais fortes.
Indique o motivo que justifica que a quebra das ligações C–F não ocorra.
2011 E. A troposfera é a camada da atmosfera mais próxima da superfície da Terra.
Dos gases presentes na troposfera, são determinantes para a regulação da
temperatura na vizinhança da superfície da Terra
(A) os gases que existem em maior percentagem.
(B) o ozono e o oxigénio.
(C) o ozono e o nitrogénio.
(D) os gases com efeito de estufa.
Editável e fotocopiável © Texto | Novo 10Q 197
Guiões de recursos multimédia
O é uma ferramenta inovadora que possibilita, em sala de aula, a fácil exploração
do projeto Novo 10Q através das novas tecnologias. Permite o acesso a um vasto conjunto de
conteúdos multimédia associados ao manual:
• Simuladores
• Animações
• Animações laboratoriais
• Animações de resolução de exercícios
• Apresentações PowerPoint®
• Vídeos temáticos
• Atividades
• Testes interativos
• Grelhas de avaliação em formato editável
• Imagens e soluções projetáveis
• Links internet
• Simulador de testes
Simuladores
Descrição geral
Os simuladores do Novo 10Q facilitam a exposição de conteúdos de mais difícil compreensão para
os alunos. São constituídos por três secções:
Os professores adotantes do Novo 10Q terão ao seu dispor os seguintes simuladores, assim como
os respetivos guias e fichas de exploração:
• Espetro do átomo de hidrogénio (disponível na versão de demonstração)
• Volume molar e Lei de Avogadro
• Composição quantitativa de soluções
• Variação de entalpia
Introdução teórica
Contextualiza e expõe
os conteúdos.
Simulador
Permite relacionar
grandezas e explorar
as suas variações
num determinado
sistema.
Atividades
Permitem consolidar
e testar os conceitos
abordados no recurso.
198 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Simulador – Espetro do átomo de hidrogénio» Pág. 48
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização
da energia do eletrão, concluindo que esse espetro resulta de transições
eletrónicas entre níveis energéticos.
2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de
transições de eletrões entre níveis por absorção ou emissão de energias bem
definidas, como as duas ideias fundamentais do modelo atómico de Bohr que
prevalecem no modelo atómico atual.
2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no
átomo de hidrogénio e concluir que esta quantização se verifica para todos os
átomos.
2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com
emissão de radiação nas zonas do ultravioleta, visível e infravermelho.
2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição
eletrónica com as energias dos níveis entre os quais essa transição se dá.
Sugestões
de exploração
por secção
1.
a
secção - Introdução teórica
• Interpretar a formação do espetro do átomo de hidrogénio relacionando com
as transições do eletrão entre níveis de energia no átomo.
2.
a
secção – Simulador
• Relacionar uma determinada transição eletrónica com a sua representação num
diagrama de energia e com a respetiva risca do espetro do átomo de hidrogénio.
• Associar a emissão de energia a uma transição do eletrão no átomo de
hidrogénio de um nível de energia superior para um nível de energia inferior.
• Associar a absorção de energia a uma transição do eletrão no átomo de
hidrogénio de um nível de energia inferior para um nível de energia superior.
• Compreender que a energia envolvida numa transição eletrónica está rela-
cionada com as energias dos níveis entre os quais essa transição se dá.
3.
a
secção – Atividades
• Permitem verificar os conhecimentos adquiridos pelos alunos.
Possíveis
modalidades
de aplicação
• Projetar o recurso didático e fazer uso da Introdução teórica (secção 1), para
apresentar o subcapítulo “1.2.3 Espetro do átomo de hidrogénio”.
• Questionar os alunos e confrontar as suas respostas com os resultados
obtidos através da interação com o simulador.
• Pedir aos alunos que resolvam as Atividades (Secção 3) projetando-as para a
turma. Alternativamente pedir aos alunos que resolvam as Atividades como
trabalho de casa.
• Caso disponha de um computador para cada aluno ou grupo de alunos,
aceder à plataforma para disponibilizar o recurso didático e a
respetiva ficha de exploração.
Editável e fotocopiável © Texto | Novo 10Q 199
Informações/Indicações operacionais Print do recurso multimédia
1. Clicar na 2.
a
secção do recurso (Simulador:
Espetro de hidrogénio) para ter acesso
ao simulador.
2. Clicar em dois botões associados aos níveis
de energia para que o eletrão faça a respetiva
transição.
3. Observar a transição na representação
do modelo de Bohr do átomo de hidrogénio,
a transição no diagrama de energia e a risca
no espetro de emissão do átomo de hidrogénio.
4. Por fim, analisar o valor da energia emitida
ou absorvida pelo eletrão durante a transição.
Nome ________________________________________________ N.o
______________ Turma ________________ 10.o
Ano
Ficha de exploração do simulador
Espetro do átomo de hidrogénio
200 Editável e fotocopiável © Texto | Novo 10Q
Com a ajuda do simulador, responda às questões.
1. Considere as riscas do espetro de emissão do átomo de hidrogénio na região do visível:
1.1 Faça as transições necessárias para formar o espetro indicado.
1.2 Grave uma captura de ecrã do diagrama de energia que corresponde à formação da linha vermelha.
Calcule a energia envolvida nesta transição. Confirme o valor com o fornecido pelo simulador.
1.3 Estas riscas são originadas por transições do átomo de hidrogénio para que nível? Pertencem a que
série espetral?
2. Faça transições de todos os níveis superiores que terminem no nível 1.
2.1 Grave uma captura de ecrã com as transições efetuadas.
2.2 Estas transições correspondem a emissões ou absorções de energia bem definida? Justifique.
2.3 Selecione a série espetral a que correspondem estas transições.
I. Série de Balmer
II. Série de Lyman
III. Série de Paschen
2.4 Considere que um átomo de hidrogénio no estado fundamental e que, sobre esse átomo, incide
radiação de energia igual a 1,5 × 10
–19
J.
Indique, justificando, se ocorrerá a transição do eletrão para o nível energético seguinte.
(Confirme os valores utilizando o simulador.)
3. Faça as seguintes transições eletrónicas.
A. Nível 1 para nível 3
B. Nível 3 para nível 2
C. Nível 2 para nível 4
D. Nível 4 para nível 1
3.1 Selecione a opção correta.
I. A transição A corresponde a uma risca, na região do visível, do espetro de absorção do
hidrogénio.
II. A transição B está associada à emissão da radiação menos energética pelo átomo de hidrogénio
das transições consideradas.
III. A transição C está associada à absorção de radiação ultravioleta pelo átomo de hidrogénio.
IV. A transição D corresponde à risca violeta do espetro de emissão do átomo de hidrogénio.
Editável e fotocopiável © Texto | Novo 10Q 201
Animações
Descrição geral
O recurso permite ao professor expor o conteúdo, consolidar e verificar conhecimentos.
Sempre que pertinente, são privilegiados os cenários em 3D que permitem ao aluno visualizar
conceitos complexos e relacioná-los com fenómenos do dia a dia.
Sempre que oportuno, as Animações são interativas, permitindo ao professor uma maior
liberdade de exploração. De um modo geral, apresentam a seguinte estrutura:
Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes
animações, assim como os respetivos guias e fichas de exploração detalhados:
• Elementos químicos e isótopos
• Laboratório 3D
• Espetro eletromagnético
• Tipos de espetros (disponível na versão de demonstração)
• Comparação entre o modelo de Bohr e o modelo quântico (disponível na versão de demons-
tração)
• Tamanho e forma das orbitais
• Evolução histórica da Tabela Periódica
• Tabela Periódica interativa
• Ligações químicas
• Tipos de ligações químicas
• Energia de ligação e comprimento de ligação
• Geometria molecular
• Polaridade de moléculas e polaridade de ligações
• Ligações intermoleculares e miscibilidade
• Poluentes na troposfera
• Soluções, coloides e suspensões
• Formação e decomposição do ozono na estratosfera
Animação
Contextualiza o tema.
Expõe os pontos chave
do conteúdo.
Secção interativa
Permite explorar
algumas grandezas
de modo mais simples
do que os simuladores.
Atividades
Consolidam e testam
os conceitos aprendidos
no recurso.
Todos os exercícios
seguem a tipologia
de Exame Nacional.
202 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Animação – Tipos de espetros» Pág. 42
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de
emissão.
2.9 Comparar espetros de absorção e de emissão de elementos químicos, con-
cluindo que são característicos de cada elemento.
Sugestões
de exploração
por secção
1.
a
secção – Secção interativa
• Analisar diferentes espetros de emissão originados por diferentes fontes.
• Analisar diferentes espetros de absorção originados por diferentes elementos.
• Comparar o espetro de emissão e de absorção do mesmo elemento anali-
sando a posição das riscas nos espetros
• Analisar o espetro de absorção de uma estrela verificando os elementos que a
constituem através da comparação de espetros.
2.
a
secção – Atividades
• Verificar os conhecimentos adquiridos.
Possíveis
modalidades
de aplicação
• Projetar o recurso e explorar os exemplos da secção 1 com os alunos.
• Caso disponha de um computador para cada aluno ou grupo de alunos, aceder
à plataforma para disponibilizar o recurso didático e a respetiva
ficha de exploração.
• Resolver as atividades propostas como modo de consolidar os conteúdos
abordados.
Editável e fotocopiável © Texto | Novo 10Q 203
Informações/Indicações operacionais Print do recurso multimédia
1. Clicar na 1.
a
secção do recurso para aceder
à animação interativa sobre os diferentes tipos
de espetros. É possível escolher entre Espetros
de emissão e Espetros de absorção.
2. Clicar na 2.
a
secção do recurso para aceder
a uma animação interativa sobre a
Comparação de espetros.
3. Na 1.
a
secção, ao selecionar por exemplo Espetros
de emissão surgem diferentes fontes
representadas por ícones do lado esquerdo.
Ao clicar numa determinada fonte é possível
ver a animação da formação do respetivo espetro
e analisá-lo em pormenor clicando em .
4. Na 2.
a
secção é possível comparar os espetros
de emissão e de absorção do mesmo elemento
e comparar o espetro de absorção de uma estrela
com os espetros de alguns elementos.
Para facilitar a identificação das riscas
nos espetros, arrastar a barra inferior.
Nome ________________________________________________ N.o
______________ Turma ________________ 10.o
Ano
Ficha de exploração da animação
Tipos de espetros
204 Editável e fotocopiável © Texto | Novo 10Q
Com a ajuda da animação, responda às questões.
1. Chama-se espetro ao resultado da decomposição da luz. A luz pode ser decomposta, isto é, separada nas
suas componentes, por exemplo com um prisma.
1.1 Nos espetros de emissão clique no ícone da lâmpada de incandescência e analise o espetro obtido.
De que tipo de espetro se trata? Como se caracteriza este espetro?
1.2 Clique no espetro da lâmpada fluorescente e no tubo de Pluecker. Qual a principal semelhança entre
os espetros? Como se designam estes espetros?
1.3 Compare um espetro de emissão com um espetro de absorção. Qual a principal diferença entre os
dois tipos de espetros?
2. Analise os espetros representados abaixo e classifique-os em espetro de emissão contínuo, descontínuo
ou espetro de absorção.
Espetro atómico do cálcio
Espetro de emissão de uma lâmpada de halogéneo
Espetro de uma lâmpada de vapor de sódio
3.No espetro solar existem riscas negras que se devem à absorção de radiação por átomos existentes na
atmosfera do Sol.
3.1Clique no ícone do Sol e analise os espetros. Existe alguma risca dos espetros de emissão do hidrogénio
e do hélio coincidente com o do espetro solar? Arraste a barra e grave uma captura de ecrã que
comprove.
3.2 Por que razão se pode concluir, por comparação do espetro solar com os espetros de emissão do
hidrogénio e do hélio, que estes elementos estão presentes na atmosfera solar?
Editável e fotocopiável © Texto | Novo 10Q 205
Guia de exploração do recurso «Animação – Comparação entre o modelo de Bohr
e o modelo quântico»
Pág. 54
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de
transições de eletrões entre níveis por absorção ou emissão de energias bem
definidas, como as duas ideias fundamentais do modelo atómico de Bohr que
prevalecem no modelo atómico atual.
2.6 Associar a existência de níveis de energia à quantização da energia do eletrão
no átomo de hidrogénio e concluir que esta quantização se verifica para todos
os átomos.
Sugestões
de exploração
por secção
1.
a
secção – Secção interativa
• Comparar o modelo de Bohr e o modelo quântico.
• Realçar as ideias do modelo de Bohr que permanecem no modelo quântico.
• Evidenciar a existência de níveis de orbitais no modelo de Bohr em oposição à
nuvem eletrónica no modelo quântico.
2.
a
secção – Atividades
• Verificar os conhecimentos adquiridos.
Possíveis
modalidades
de aplicação
• Projetar o recurso e explorar os exemplos da secção 1 com os alunos.
• Caso disponha de um computador para cada aluno ou grupo de alunos,
aceder à plataforma para disponibilizar o recurso didático e a
respetiva ficha de exploração.
• Pedir aos alunos que resolvam as atividades propostas como meio de
consolidar os conteúdos abordados.
206 Editável e fotocopiável © Texto | Novo 10Q
Informações/Indicações operacionais Print do recurso multimédia
1. Clicar na 1.
a
secção do recurso para ter acesso
à animação interativa.
2. Arrastar a barra central para analisar
e comparar as características dos modelos.
3. Clicar nas características em baixo para evidenciar
as semelhanças e as diferenças entre os modelos.
Nome ________________________________________________ N.o
______________ Turma ________________ 10.o
Ano
Ficha de exploração da animação
Comparação entre o modelo de Bohr e o modelo quântico
Editável e fotocopiável © Texto | Novo 10Q 207
Com a ajuda da animação, responda às questões.
1. O físico Niels Bohr, em 1913, propôs um modelo para a estrutura do átomo que viria a explicar os
espetros atómicos.
1.1 Compare o aspeto dos dois modelos do átomo. Qual a principal diferença entre os modelos?
1.2 Clique no botão Quantização da energia e refira as características do modelo de Bohr que se mantêm
no modelo quântico.
1.3 Clique no botão Localização do eletrão e indique o nome do local onde se situa o eletrão no modelo
de Bohr.
2. Por volta de 1926, Erwin Schrödinger desenvolveu uma equação que, quando resolvida, permite obter
informação acerca do comportamento dos eletrões nos átomos. As soluções desta equação permitem
calcular a probabilidade de encontrar o eletrão numa dada região do espaço e não a sua localização
precisa em cada instante, como na física clássica.
P. Atkins, O Dedo de Galileu – As dez grandes ideias da Ciência, Gradiva, 1.
a
ed., 2007 (adaptado)
2.1 Clique no botão Localização do eletrão e no modelo quântico indique região do espaço onde, em
torno do núcleo de um átomo, existe uma elevada probabilidade de encontrar um eletrão desse
átomo.
2.2 Selecione a opção que corresponde a uma característica presente nos dois modelos atómicos.
A. A ocorrência de transições de eletrões entre esses níveis por absorção ou emissão de energia,
energia essa também com valores bem definidos.
B. Os eletrões movem-se em torno do núcleo em órbitas circulares com raios bem definidos.
C. São permitidos níveis contínuos de energia para o eletrão no átomo.
D. A descrição do comportamento dos eletrões faz-se através da nuvem eletrónica.
208 Editável e fotocopiável © Texto | Novo 10Q
Animações laboratoriais
Descrição geral
Para as atividades laboratoriais obrigatórias, previstas no programa da disciplina, foram realizadas
animações em cenário 3D em concordância com as imagens apresentadas no manual. Nestas
animações, as diferentes etapas do procedimento são acionadas pelo utilizador, dando maior
liberdade de exploração ao professor.
A estrutura das animações laboratoriais é a seguinte:
Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes
animações laboratoriais, assim como os respetivos guias de exploração dos recursos:
• AL 1.1 Volume e número de moléculas de uma gota de água
• AL 1.2 Teste de chama (disponível na versão de demonstração)
• AL 1.3 Densidade relativa de metais
• AL 2.1 Miscibilidade de líquidos
• AL 2.2 Soluções a partir de solutos sólidos
• AL 2.3 Diluição de soluções
• AL 2.4 Reação fotoquímica
Animação
laboratorial
Material e etapas
do procedimento.
Animação com a
execução das etapas.
Análise de
resultados
Tabela
com os resultados
e gráfico
correspondente.
Atividades
Atividades
de consolidação
/discussão
dos resultados.
Editável e fotocopiável © Texto | Novo 10Q 209
Guia de exploração do recurso «Animação laboratorial – Teste de chama» Pág. 66
Objetivos gerais
e objetivos
específicos
Elementos químicos e sua organização
Energia dos eletrões nos átomos
Identificar elementos químicos em amostras de sais usando testes de chama.
1. Identificar a presença de um dado elemento químico através da coloração de
uma chama quando nela se coloca uma amostra de sal.
2. Indicar limitações do ensaio de chama relacionadas com a temperatura da
chama e com a natureza dos elementos químicos na amostra.
3. Interpretar a informação de segurança presente no rótulo de reagentes e adotar
medidas de proteção com base nessa informação e em instruções recebidas.
4. Interpretar os resultados obtidos em testes de chama.
Sugestões
de exploração
por secção
1.
a
secção – Animação do procedimento experimental
• Visualizar o material necessário para a realização da AL.
• Visualizar o procedimento da experiência.
• Visualizar destaques importantes para a correta realização da experiência e
manuseamento dos equipamentos.
2.
a
secção – Resultados (exemplo)
• Visualizar um exemplo de uma tabela de dados preenchida com a amostra, a
cor da chama observada e o elemento a que corresponde.
• Analisar os espetros de emissão dos elementos em causa.
3.
a
secção – Atividades
• Consolidar os conhecimentos adquiridos.
Possíveis
modalidades
de aplicação
• Projetar o recurso e explorar a simulação da experiência juntamente com os
alunos, antes da realização da mesma. O procedimento animado permitirá
evidenciar alguns aspetos relevantes para a execução da atividade laboratorial.
• Poderá fazer uso dos destaques para evitar possíveis erros durante a realização da
experiência.
• Utilizar a secção 2 da Animação laboratorial para mostrar ao aluno o tratamento
de dados que terá de fazer.
• Utilizar as Atividades finais como discussão dos resultados. Esta análise poderá ser
feita individualmente ou em grupo.
210 Editável e fotocopiável © Texto | Novo 10Q
Animações de resolução de exercícios/problemas
Descrição geral
Para auxiliar os alunos na resolução de exercícios apresentam-se resoluções passo a passo de
exercícios adaptados de exame ou com a tipologia de exame.
Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes
animações de resolução de exercícios, assim como os respetivos guias de exploração dos recursos:
• Cálculo da massa atómica relativa
• Cálculo da quantidade de matéria e da massa molar
• Cálculo da fração molar e da fração mássica
• Cálculo da energia que corresponde a uma transição eletrónica (disponível na versão de
demonstração)
• Análise dos valores de energia de remoção eletrónica (disponível na versão de demonstração)
• Como escrever a configuração eletrónica de um átomo
• Cálculo do volume molar
• Cálculo da massa volúmica
• Cálculo da composição quantitativa de uma solução
• Cálculo do fator de diluição
• Cálculo da variação de entalpia de uma reação química
• Cálculo do erro absoluto e do erro relativo
Enunciado
Apresentação
do enunciado do
exercício.
Preparação da
resolução
Análise do enunciado
e seleção dos dados
úteis para a resolução
do exercício.
Resolução
Animação interativa
com a resolução
do exercício.
Editável e fotocopiável © Texto | Novo 10Q 211
Guia de exploração do recurso «Animação de resolução de exercícios
– Cálculo da energia que corresponde a uma transição eletrónica»
Pág. 50
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição
eletrónica com as energias dos níveis entre os quais essa transição se dá.
Sugestões
de exploração
por secção
1.
a
secção – Enunciado
• Apresentação e análise conjunta do enunciado do problema.
• Análise individual e posterior discussão do enunciado do problema.
2.
a
secção – Preparação da resolução
• Exploração da análise do enunciado.
• Apresentação da sugestão de análise do problema.
3.
a
secção – Resolução
• Resolução passo a passo, com os alunos.
• Apresentação da sugestão de resolução, passo a passo.
• Exploração da sugestão de resolução com os alunos.
Possíveis
modalidades
de aplicação
• Apresentar o Enunciado aos alunos, dando-lhes algum tempo para o analisar,
fomentando posteriormente a discussão conjunta do mesmo.
• Em alternativa, facultar o recurso individualmente aos alunos/grupo de alunos
para que o analisem e sugiram uma metodologia de resolução.
• Na secção de Preparação da resolução os alunos podem discutir o enunciado,
o professor pode intervir intercalando as opiniões dos alunos com o áudio
explicativo e com a correspondente seleção dos dados do enunciado.
• Na secção da Resolução, é possível resolver o problema faseadamente, desta-
cando os passos mais importantes. Para avançar de um passo para o passo
seguinte é necessário clicar nos botões numerados.
• Nesta secção, o aluno pode verificar passo a passo como resolver o problema,
quer seja como verificação da sua resolução ou como sugestão de resolução.
212 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Animação de resolução de exercícios – Análise dos
valores de energia de remoção eletrónica»
Pág. 38
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.13 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por
espetroscopia fotoeletrónica, que átomos de elementos diferentes têm
valores diferentes da energia dos eletrões.
2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia
fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de
energia e subníveis de energia
Sugestões
de exploração
por secção
1.
a
secção – Enunciado
• Apresentação e análise conjunta do enunciado do problema.
• Análise individual e posterior discussão do enunciado.
2.
a
secção – Preparação da resolução
• Exploração da análise do enunciado.
• Apresentação da sugestão de análise do problema.
3.
a
secção – Resolução
• Resolução passo a passo, com os alunos.
• Apresentação da sugestão de resolução, passo a passo.
• Exploração da sugestão de resolução, com os alunos.
Possíveis
modalidades
de aplicação
• Apresentar o Enunciado aos alunos, dando-lhes algum tempo para o analisar,
fomentando posteriormente a discussão conjunta do mesmo.
• Em alternativa, facultar o recurso individualmente aos alunos/grupo de alunos
para que o analisem e sugiram uma metodologia de resolução.
• Na secção de Preparação da resolução os alunos podem discutir o enunciado,
o professor pode intervir intercalando as opiniões dos alunos com o áudio
explicativo e com a correspondente seleção dos dados do enunciado.
• Na secção da Resolução, é possível resolver o problema faseadamente desta-
cando os passos mais importantes. Para avançar de um passo para o passo
seguinte é necessário clicar nos botões numerados.
• Nesta secção o aluno pode verificar passo a passo como resolver o problema,
quer seja como verificação da sua resolução ou como sugestão de resolução.
Editável e fotocopiável © Texto | Novo 10Q 213
Apresentações PowerPoint®
Descrição geral
As apresentações em PowerPoint® contêm a totalidade dos conteúdos abordados em cada tópico.
Constituem um recurso auxiliar do professor na sua abordagem e exploração dos mesmos.
Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes
apresentações em PowerPoint®:
• 1.1.1 Ordens de grandeza e escalas de comprimento
• 1.1.2 Dimensões à escala atómica
• 1.1.3 Massa isotópica e massa atómica relativa média
• 1.1.4 Quantidade de matéria e massa molar
• 1.1.5 Fração molar e fração mássica
• 1.2.1 Espetros contínuos e descontínuos (disponível na versão de demonstração)
• 1.2.2 O modelo atómico de Bohr (disponível na versão de demonstração)
• 1.2.3 Espetro do átomo de hidrogénio (disponível na versão de demonstração)
• 1.2.4 Transições eletrónicas
• 1.2.5 Quantização de energia
• 1.2.6 Energia de remoção eletrónica
• 1.2.7 Modelo quântico do átomo
• 1.2.8 Configuração eletrónica de átomos
• 1.3.1 Evolução histórica da Tabela Periódica
• 1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos
• 1.3.3 Propriedades periódicas dos elementos representativos
• 1.3.4 Propriedades dos elementos e das substâncias elementares
• 2.1.1 Tipos de ligações químicas
• 2.1.2 Ligação covalente
• Estrutura de moléculas orgânicas e biológicas
• 2.1.3 Ligações intermoleculares
• 2.2.1 Lei de Avogadro, volume molar e massa volúmica
• 2.2.2 Soluções, coloides e suspensões
• 2.2.3 Composição quantitativa de soluções
• 2.3.1 Energia de ligação e reações químicas
• 2.3.2 Reações fotoquímicas na atmosfera
• Medições e incertezas associadas
214 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Apresentação PowerPoint® 1.2.1 – Espetros
contínuos e descontínuos»
Pág. 21
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.1 Indicar que a luz (radiação electromagnética ou onda eletromagnética) pode ser
detetada como partículas de energia (fotões), sendo a energia de cada fotão
proporcional à frequência dessa luz.
2.2 Identificar luz visível e não visível de diferentes frequências no espetro
eletromagnético, comparando as energias dos respetivos fotões.
2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão.
Sugestões
de exploração
Pode ser utilizado como:
• auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.1
Espetros contínuos e descontínuos.
• auxiliar de sistematização e resumo de conteúdos dada a organização por
tópicos, com recurso a esquemas e a quadros resumo.
Possíveis
modalidades
de aplicação
• Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos programa-
ticos.
• Fazer uso dos esquemas animados e de animações simples para facilitar a
aprendizagem dos alunos.
Editável e fotocopiável © Texto | Novo 10Q 215
Guia de exploração do recurso «Apresentação PowerPoint® 1.2.2 O modelo atómico
de Bohr»
Pág. 45
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de
transições de eletrões entre níveis por absorção ou emissão de energias bem
definidas, como as duas ideias fundamentais do modelo atómico de Bohr que
prevalecem no modelo atómico atual.
2.6 Associar a existência de níveis de energia à quantização da energia do eletrão
no átomo de hidrogénio e concluir que esta quantização se verifica para todos
os átomos.
Sugestões
de exploração
Pode ser utilizado como:
• auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.2 O
modelo atómico de Bohr.
• auxiliar de sistematização e resumo de conteúdos dada a organização por
tópicos, com recurso a esquemas e quadros resumo.
Possíveis
modalidades
de aplicação
• Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos progra-
máticos.
• Fazer uso dos esquemas animados e de animações simples para facilitar a
aprendizagem dos alunos.
216 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Apresentação PowerPoint® 1.2.3– Espetro do átomo
de hidrogénio»
Pág. 27
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas
com emissão de radiação nas zonas do ultravioleta, visível e infravermelho.
Sugestões
de exploração
Pode ser utilizado como:
• auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.3
Espetro do átomo de hidrogénio.
• auxiliar de sistematização e resumo de conteúdos dada a organização por
tópicos, com recurso a esquemas e quadros resumo.
Possíveis
modalidades
de aplicação
• Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos
programáticos.
• Fazer uso dos esquemas animados e de animações simples, para facilitar a
aprendizagem dos alunos.
Editável e fotocopiável © Texto | Novo 10Q 217
Vídeos temáticos
Descrição geral
Os vídeos temáticos poderão apoiar o professor na exposição de coteúdos de uma forma motivadora para os
alunos, dado que permitem relacionar a ciência com o quotidiano ou apresentar uma perspetiva histórica de um
determinado tema.
Os professores que adotem o Novo 10Q terão ao seu dispor, em , os seguintes vídeos
temáticos, assim como o guia de exploração do recurso:
• Nanomateriais
• Nanomedicina
• A química do fogo de artifício (disponível na versão de demonstração)
• A impressão digital dos astros
• A Tabela (é mesmo) Periódica
• Poluição atmosférica
• Partículas do Ar
• A degradação da camada de ozono
218 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Vídeo temático - A química do fogo de artifício» Pág.43
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.10 Identificar, a partir de informação selecionada, algumas aplicações da
espetroscopia atómica (por exemplo, identificação de elementos químicos
nas estrelas, determinação de quantidades vestigiais em química forense).
Sugestões
de exploração
por secção
• Auxiliar a apresentação e exploração das aplicações da espetroscopia
atómica, neste caso o fogo de artifício.
Questões de exploração:
• Quais os componentes essenciais do fogo de artifício?
• Indique o ingrediente químico, constituinte da “estrela”, responsável pela cor
do fogo de artifício.
• Como se chama o processo pelo qual são obtidas as cores do fogo de
artifício?
• Qual a relação entre as matérias primas utilizadas no fogo de artifício e as
cores observadas durante o espetáculo?
• Descreva resumidamente qual a origem da emissão de energia libertada
durante um espetáculo de fogo de artifício.
Possíveis
modalidades
de aplicação
• Explorar o recurso, projetando-o para a turma.
Após a visualização do vídeo
• Colocar algumas questões de exploração sobre o tema abordado no vídeo.
• Ouvir as respostas dos alunos.
• Usar as respostas dos alunos para gerar um debate na sala de aula.
Editável e fotocopiável © Texto | Novo 10Q 219
Atividades
Descrição geral
As atividades permitem ao professor verificar os conhecimentos adquiridos pelos alunos. Cada atividade
contém um conjunto de exercícios adaptados de exame ou com tipologia de exame.
Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes atividades,
assim como a Guia de exploração do recurso:
• Massa atómica relativa
• Quantidade de matéria e massa molar
• Fração molar e fração mássica
• Transições eletrónicas (disponível na versão de demonstração)
• Energia de remoção eletrónica
• Distribuição eletrónica
• Características da Tabela Periódica
• Estrutura de Lewis
• Estrutura de moléculas orgânicas e biológicas
• Identificação de grupos funcionais
• Volume molar e massa volúmica
• Variação de entalpia
• Medições e incertezas associadas
Atividade
6 exercícios
adaptados
do Exame
Nacional.
220 Editável e fotocopiável © Texto | Novo 10Q
Guia de exploração do recurso «Atividade - Transições eletrónicas» Pág.53
Metas
curriculares
Elementos químicos e sua organização
Energia dos eletrões nos átomos
2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas
com emissão de radiação nas zonas do ultravioleta, visível e infravermelho.
2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa
transição eletrónica com as energias dos níveis entre os quais essa transição
se dá.
Sugestões
de exploração
por secção
• Consolidar os conhecimentos adquiridos.
Possíveis
modalidades
de aplicação
• O recurso pode ser explorado pelo professor, projetando-o para a turma, ou
explorado pelos alunos individualmente ou em grupo.
Editável e fotocopiável © Texto | Novo 10Q 221
Testes interativos
Descrição geral
Os testes interativos contemplam a totalidade dos conteúdos abordados, existindo um teste por
subcapítulo para o aluno e um teste global de subdomínio exclusivo para o professor, perfazendo um total
de 25 testes interativos para o aluno e 6 testes exclusivos para o professor.
O aluno poderá assim validar as suas aprendizagens e diagnosticar as suas dificuldades antes de realizar
o seu teste de avaliação.
Os professores que adotem o Novo 10Q terão ao seu dispor, em , os seguintes testes
interativos:
Ordens de grandeza e escalas de comprimento
• 1.1.1 Ordens de grandeza e escalas de comprimento
• 1.1.2 Dimensões à escala atómica
• 1.1.3 Massa isotópica e massa atómica relativa média
• 1.1.4 Quantidade de matéria e massa molar
• 1.1.5 Fração molar e fração mássica
• 1.1 A massa e tamanho dos átomos
• 1.2.1 Espetros contínuos e descontínuos (disponível na versão de demonstração)
• 1.2.2 O modelo atómico de Bohr (disponível na versão de demonstração)
• 1.2.3 Espetro do átomo de hidrogénio (disponível na versão de demonstração)
• 1.2.4 Transições eletrónicas
• 1.2.5 Quantização de energia
• 1.2.6 Energia de remoção eletrónica
• 1.2.7 Modelo quântico do átomo
• 1.2.8 Configuração eletrónica de átomos
• 1.2 Energia dos eletrões nos átomos (disponível na versão de demonstração)
• 1.3.1 Evolução histórica da Tabela Periódica
• 1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos
• 1.3.3 Propriedades periódicas dos elementos representativos
• 1.3.4 Propriedades dos elementos e das substâncias elementares
• 1.3 Tabela Periódica
• 2.1.1 Tipos de ligações químicas
• 2.1.2 Ligação covalente
• 2.1.3 Ligações intermoleculares
• 2.1 Ligação química
• 2.2.1 Lei de Avogadro, volume molar e massa volúmica
• 2.2.2 Soluções, coloides e suspensões
• 2.2.3 Composição quantitativa de soluções
• 2.2 Gases e dispersões
• 2.3.1 Energia de ligação e reações químicas
• 2.3.2 Reações fotoquímicas na atmosfera
• 2.3 Transformações químicas
222 Editável e fotocopiável © Texto | Novo 10Q
Simulador de testes
Descrição geral
Esta ferramenta permite ao aluno gerar um teste modelo e personalizar o seu estudo, filtrando os
conteúdos que pretende exercitar. Todas as questões apresentam soluções ou sugestões de resposta.
O simulador de testes apresenta questões que saíram em exames nacionais entre 2006 e 2014 e
também questões modelo.
O professor poderá utilizá-lo na sala de aula para consolidar as aprendizagens.
Está disponível em www.10Q.te.pt/simuladortestes.
  Editável e fotocopiável © Texto | Novo 10Q  223 
 
Bibliografia sobre química 
ALMEIDA,  B.  F.  (2004)  Fundamentos  de  Química 
Orgânica e Inorgânica, Lisboa, Edições Sílabo 
ALMEIDA, G. (2002) Sistema Internacional de Unidades 
(SI), Grandezas e Unidades Físicas ‐ terminologia, 
símbolos e recomendações (3.a
 edição), Lisboa, 
Plátano Editora. 
ATKINS, P., PAULA, J. (2012) Físico‐Química (9.a
 edição), Rio 
de Janeiro, LTC Editora 
ATKINS,  P.  (2011)  Físico‐Química  –  Fundamentos  
(5.a
 Edição) Rio de Janeiro, LTC Editora 
ATKINS,  P.  (2001)  O  Reino  dos  Elementos,  Lisboa, 
Temas e Debates. 
BAIRD, C. (2002) Química Ambiental (2.a
 edição), Porto 
Alegre, Bookman. 
BROWN, T. L., LEMAY, H. E., BURSTEN, B. E., BURDGE, 
J.  R.  (2005)  Química  –  a  Ciência  Central,  São 
Paulo, Pearson Prentice Hall. 
BURTON,  G.,  HOLMAN,  J.,  LAZONBY,  J.,  PILLING,  G. 
WADDINGTON,  D.  (2000)  Salters  Advanced 
Chemistry ‐ Chemical Ideas (2.a
 edição), Oxford, 
Heinemann Educational Publishers. 
CALADO, J. (2012) Haja Luz! Uma história da química 
através de tudo, Lisboa, IST ‐ Instituto Superior 
Técnico 
CAMPOS, L., MOURATO, M. (2002) Nomenclatura dos 
Compostos  Orgânicos  (2.a
  edição),  Lisboa, 
Escolar Editora. 
CAVALEIRO, A. M. (2004) Química Inorgânica Básica (3ª 
Edição), Aveiro, Universidade de Aveiro 
COTARDIÈRE, P. (2012) História das Ciências – Volume II: 
Física e Química, Lisboa, Edições Texto & Grafia 
CUNNINGHAM,  W.,  CUNNINGHAM,  M.,  SAIGO,  B. 
(2003)  Environmental  Science  –  A  global 
concern (7th
 edition), Boston, McGrawHill 
Dicionário de Química (2005) Lisboa, Texto Editores. 
ESCOVAL,  M.  T.  (2010)  A  Ação  da  Química  na  Nossa 
Vida, Lisboa, Editorial Presença 
EVANS,  W.,  LEWIS,  R.  (2014)  Química  (4.a
  Edição), 
Lisboa, Nova Guanabara 
FRYHLE, C., SOLOMONS, T. W. (2012) Química Orgânica 
–  Volume  1  (10.a
  Edição),  Rio  de  Janeiro,  LTC 
Editora 
GARRITZ, A., CHAMIZO J. A. (2002) Química, São Paulo, 
Pearson Education do Brasil. 
GIL,  V.  M.  S.(1996)  Orbitais  em  Átomos  e  Moléculas, 
Lisboa, Fundação Calouste Gulbenkian. 
GREENE,  B.  (2000)  O  Universo  Elegante,  Lisboa, 
Gradiva. 
GOLDSBY,  K.,  CHANG,  R.  (2012)  Química  (11.a
  edição), 
Lisboa, McGraw Hill 
IUPAC  (2000)  Guia  IUPAC  para  a  Nomenclatura  de 
Compostos  Orgânicos  –  Tradução  Portuguesa, 
Lisboa, SPQ e Lidel. 
JONES, L., ATKINS, P. W. (2011) Princípios de Química: 
Questionando  a  vida  moderna  e  o  meio 
ambiente (5.a
 Edição), Porto Alegre, Bookman 
LAGO, T. (2006) Descobrir o Universo, Lisboa, Gradiva. 
LASZLO,  P.  (1997)  A  Nova  Química,  Lisboa,  Instituto 
Piaget 
OTILIA,  L.,  LENZI,  E.  (2009)  Introdução  à  Química  da 
Atmosfera: Ciência, vida e sobrevivência, Rio de 
Janeiro, LTC Editora 
PERUZZO,  T.  M.  (2007)  Química  na  Abordagem  do 
Cotidiano  1:  Química  Geral  e  Inorgânica  
(4.a
 Edição), São Paulo, Moderna 
SANTOS,  P.  P.  (2012)  Química  Orgânica  –  Volume  1, 
Lisboa, IST ‐ Instituto Superior Técnico 
SCHORE,  N.  E.,  VOLLHARDT,  P.  (2013)  Química 
Orgânica:  Estrutura  e  Função,  Porto  Alegre, 
Bookman 
SEITA, J. F. (1991) Nomenclatura da Química Orgânica 
– Uma Introdução, Edições Almedina 
SENESE, F., BRADY, J. E. (2009) Química – Volume 1: A 
Matéria e Suas Transformações, Rio de Janeiro, 
LTC  Editora  SILVA,  P.  F.,  SILVA,  J.  L.  (2009)  A 
Importância de Ser Eletrão: O átomo e as suas 
ligações: um olhar sobre a evolução da Química, 
Lisboa, Gradiva 
VAITSMAN,  E.  P.,  VAITSMAN,  D.  S.  (2006)  Química  & 
Meio Ambiente: Ensino Contextualizado, Rio de 
Janeiro, Interciência 
WEDLER, G. (2001) Manual de Química Física (4.a
 Edição), 
Lisboa, Fundação Calouste Gulbenkian 
   
Sugestões de bibliografia e sítios na Internet 
224  Editável e fotocopiável © Texto | Novo 10Q   
Bibliografia sobre trabalho laboratorial 
AFONSO, C. A., SIMÃO, D. P., RAPOSO, M. M., SERRA, 
M. E., FERREIRA, L. P. (2011) 100 Experiências de 
Química Orgânica, Lisboa, IST ‐ Instituto Superior 
Técnico 
HARRIS,  D.  C.  (2012)  Análise  Química  Quantitativa  
(8.a
 Edição), Rio de Janeiro, LTC Editora 
HARRIS,  D.  (2011)  Explorando  a  Química  Analítica  
(4.a
 Edição), Rio de Janeiro, LTC Editora 
HOLLER,  F.  et  al.  (2006)  Fundamentos  de  Química 
Analítica, Rio de Janeiro, Thomson Learning. 
MENDHAN,  J.  et  al.  (2002)  Vogel  ‐  Análise  Química 
Quantitativa  (6.a
  edição),  Rio  de  Janeiro,  LTC 
Editores. 
NEDER, A. V. F., BESSLER, K. E. (2004) Química em Tubos 
de  Ensaios:  Uma  abordagem  para  principiantes, 
São Paulo, Edgard Blucher 
PINTO, M. M. (2011) Manual de Trabalhos Laboratoriais 
de Química Orgânica e Farmacêutica, Lisboa, Lidel 
Bibliografia sobre ensino 
CARVALHO, P. S., FERREIRA, A. J., PAIVA, J., SOUSA, A. S. 
(2012) Ensino Experimental das Ciências: Um guia 
para  professores  do  ensino  secundário.  Física  e 
Química (2.a
 edição), Porto, U.Porto Editorial 
LEITE, L. (2001) Contributos para uma Utilização mais 
Fundamentada  do  Trabalho  Laboratorial  no 
Ensino  das  Ciências.  Cadernos  Didáticos  de 
Ciências, Volume 1, 79‐97. 
MARTINS, I. (2002) Educação e Educação em Ciências, 
Aveiro, Universidade de Aveiro. 
PAIVA,  J.  et  al.  (2004)  E‐learning:  o  Estado  da  Arte, 
Lisboa, Sociedade Portuguesa de Física/SofCiência. 
 
Sítios na Internet 
Em  http://www.texto.pt/pt/menu/?id=7  encontram‐se 
links atualizados para um conjunto de sítios relacionados 
com a componente de Química do Programa de Física e 
Química  A  do  10.o
/11.o
  ano,  muitos  deles  sugeridos  no 
próprio Programa. 
 
 
www.leya.com www.texto.pt
978-111-11-3808-0
9 7 8 1 1 1 1 1 3 8 0 8 0
CADERNO
DE APOIO
AO PROFESSOR
10
NOVO

Novo 10Q -

  • 1.
    Documentos orientadores Fichas Física e QuímicaA • Química 10.º ano Maria Goreti Matos João Paiva António José Ferreira Carlos Fiolhais CADERNODEAPOIO AOPROFESSOR T F Planificações Testes Apoio às atividades laboratoriais 10 NOVO Guiões de recursos multimédia T F T F Fichas Testes
  • 2.
      Editável e fotocopiável © Texto | Novo 10Q  1    Introdução .................................................................. 3  Apresentação do projeto .................................... 3  Cumprimento do programa.............................3  Adequação pedagógica e científica ..................... 3  Multiplicidade de atividades e  questões .............................................................. 4  Diversificação das opções de ensino   e aprendizagem ................................................... 4  Valorização da componente  laboratorial .......................................................... 4  Componente de química   do novo programa de Física   e Química A – 10o  ano ....................................... 5  Introdução ........................................................... 6  Finalidades e objetivos ........................................ 6  Organização dos conteúdos   (química do 10.o  ano)  ......................................... 7  Orientações gerais ............................................... 8  Metas curriculares ............................................... 9  Desenvolvimento do programa ........................... 9  Metas transversais a todas as atividades da  componente prática‐laboratorial ...................... 23  Avaliação ........................................................... 26  Formulário para a componente de química  (10.o  ano)  .......................................................... 27  Bibliografia  ......................................................... 27  Planificações ....................................................... 29  Calendarização anual  ......................................... 29  Planificação a médio prazo  ................................ 31  Planos de aula.................................................... 40  Apoio às atividades laboratoriais ................ 71  Apoio à componente laboratorial   do Novo 10Q ...................................................... 71  Grelhas de registo ............................................. 75  Respostas às questões das Atividades  do Novo 10Q ...................................................... 77    Fichas .................................................................... 79  Fichas de diagnóstico ............................................. 79  Ficha de diagnóstico sobre o domínio 1 ........... 79  Ficha de diagnóstico sobre o domínio 2 ........... 86  Fichas formativas e soluções .................................. 93  Ficha 1 – Massa e tamanho dos átomos  .......... 93  Ficha 2 – Energia dos eletrões nos átomos  ...... 96  Ficha 3 – Tabela Periódica  .............................. 99  Ficha 4 – Ligação química   ............................. 102  Ficha 5 – Gases e dispersões  ........................ 105  Ficha 6 – Transformações químicas  ............... 108  Ficha global  ................................................ 112  Soluções das fichas formativas  ..................... 115  Testes ................................................................. 119  Testes sobre atividades laboratoriais  ................... 119  Teste sobre a AL 1.1  .......................................... 119  Teste sobre a AL 1.2  .......................................... 120  Teste sobre a AL 1.3  .......................................... 122  Teste sobre a AL 2.1  .......................................... 124  Teste sobre a AL 2.2  .......................................... 126  Teste sobre a AL 2.3  .......................................... 127  Teste sobre a AL 2.4  .......................................... 128  Soluções dos testes sobre atividades   laboratoriais ...................................................... 130  Testes globais e soluções ..................................... 133  Teste 1  ............................................................. 133  Critérios específicos de classificação  ................... 137  Teste 2  ............................................................. 139  Critérios específicos de classificação  ................... 144  Teste 3  ............................................................. 146  Critérios específicos de classificação  ................... 150  Questões de exame agrupadas   por domínio ...................................................... 153  Guiões de recursos multimédia ................. 197  Sugestões de bibliografia e sítios  na Internet ........................................................ 223    Índice 
  • 4.
    Editável e fotocopiável© Texto | Novo 10Q 3 Introdução Este Caderno de Apoio ao Professor fornece alguns recursos complementares para ajudar os professores que se encontrem a utilizar o manual escolar Novo 10Q. Aqui se explicam as linhas orientadoras do Novo 10Q e se incluem respostas às questões pré e pós-laboratoriais assim como às Atividades do manual. Apresentam-se ainda duas fichas diagnóstico, seis fichas formativas, uma sobre cada um dos capítulos, e uma ficha formativa global, com as respetivas soluções. Para auxiliar os professores na avaliação dos seus alunos, aqui encontrarão também testes sobre cada uma das atividades laboratoriais e respetivas soluções, assim como três testes para os momentos formais de avaliação sumativa, com os respetivos critérios de classificação. Transcrevem- se ainda as questões de provas nacionais relativas aos conteúdos do 10.o ano, a partir de 2008, organizadas por subdomínio. Finalmente, contém uma bibliografia atualizada sobre química, trabalho laboratorial e o ensino das ciências. Todos os materiais deste Caderno se encontram disponíveis em formato editável em 20 Aula Digital, para que os possa utilizar com base e melhor adequar às suas turmas. Apresentação do projeto O manual Novo 10Q tem necessariamente como matriz o programa da disciplina de Física e Química A e as respetivas metas. Respeitámos plenamente o programa no que respeita à sua estruturação em domínios e subdomínios e aos objetivos gerais enunciados e conteúdos nele descritos. Abordámos os conteúdos de modo de modo a enquadrar todas as metas de ensino definidas para o 10.o ano de química do ensino secundário. Também, seguimos a grande maioria das abordagens preconizadas nas orientações e sugestões do programa. Contudo, há que ter em consideração que qualquer manual representa uma interpretação do programa, entre inúmeras possíveis. Tal interpretação é enriquecida pelas conceções, convicções e experiência que os autores possuem acerca do que é, e do que deve ser, o ensino e a aprendizagem da química no ensino secundário. A interpretação que fizemos no Novo 10Q foi enriquecida pela nossa ampla experiência como docentes, formadores de professores, divulgadores de ciência e também fruto do nosso envolvimento na produção de manuais didáticos, de programas oficiais, de metas e de livros de apoio para o ensino básico e secundário, bem como de livros de divulgação científica. O projeto que propomos assenta em algumas linhas orientadoras que sistematizamos em seguida. Cumprimento do programa O Novo 10Q aborda, de forma sistemática e pormenorizada, todos os objetivos gerais e conteúdos descritos no programa de Física e Química A, componente de química, para o 10.o ano de escolaridade. Adequação pedagógica e científica O manual Novo 10Q está escrito numa linguagem rigorosa mas, ao mesmo tempo, acessível para os jovens que procuram construir significados científicos, organizando conhecimentos que serão certamente relevantes no seu futuro. Evitámos apresentar os assuntos de forma demasiado esquemática, o que apenas ajudaria os alunos que procuram uma memorização superficial. Evitámos também textos demasiado longos e pormenorizados, que seriam desmotivadores. A inclusão de resumos no final de cada subdomínio ajudará os alunos a sistematizar informação.
  • 5.
    4 Editável efotocopiável © Texto | Novo 10Q Multiplicidade de atividades e questões Para aprender química não basta estar concentrado nas aulas ou ler atentamente o manual. Propomos, por isso, a realização de atividades que são comuns no ensino da química, como a resolução de exercícios ou o trabalho laboratorial. Incluímos diversas questões resolvidas, devidamente intercaladas no texto, para que os alunos se familiarizem progressivamente com processos e métodos envolvidos na resolução de questões. No final de cada subdomínio, apresentamos questões complementares, num total de cerca de 300 questões, de várias tipologias e graus de dificuldade. Incluem-se também questões sobre a componente laboratorial e várias questões transversais no final de cada subdomínio. As questões, exercícios e problemas foram construídos com base nas tipologias que são atualmente usadas em provas nacionais. Procurámos acentuar as ligações entre a química e o quotidiano, através da exploração de exemplos concretos ao longo do texto e nas questões. Algumas atividades com textos complementares incluem questões que permitem uma exploração na aula. A maioria das soluções estão disponíveis neste caderno. Preferimos não facultar as suas respostas no manual, para que estas atividades possam ser usadas em sala de aula em atividades que poderiam ficar comprometidas se os alunos pudessem consultar imediatamente as soluções. Diversificação das opções de ensino e aprendizagem A diversidade é uma preocupação permanente do manual Novo 10Q, pois conhecemos bem a diversidade das escolas e também as diferenças, dentro destas, entre turmas e alunos. Por outro lado, achamos que os professores devem dispor de uma grande margem de manobra que lhes permita lidar com essas diferenças do modo que considerarem mais adequado. O número elevado de +Questões em cada capítulo, muitas delas inspiradas em tipologias usadas em provas nacionais, permitem ao professor selecionar as que julgue mais apropriadas à sua perspetiva de ensino e ao nível de aprendizagem dos seus alunos. O Caderno de Exercícios e Problemas permite diversificar os métodos de ensino e aprendizagem e apoiar o trabalho autónomo do aluno. Nele incluímos um vasto conjunto de questões adicionais, com as respetivas soluções (para grande parte das questões apresenta-se, mais do que a solução, a resolução completa). Valorização da componente laboratorial Entendemos o trabalho laboratorial como uma componente privilegiada da educação científica, pelo que lhe atribuímos uma grande importância no nosso projeto. A estrutura das atividades que preconizamos permite, a nosso ver, articular bem as componentes laboratoriais da física e da química, contribuindo para uma melhor compreensão dos processos e métodos inerentes ao trabalho laboratorial. A nossa conceção da componente laboratorial de química considera os seguintes aspetos: • clarificação das principais ideias necessárias para a compreensão da atividade laboratorial; • estruturação das atividades laboratoriais a partir de questões, problemas ou tarefas que despertem o interesse dos alunos e que clarifiquem o objetivo do mesmo; • desenvolvimento da atividade laboratorial tendo em conta a necessidade de explorar aspetos pré e pós-laboratoriais, necessários à compreensão e interpretação do trabalho proposto; • as regras de segurança, medição e descrição das técnicas de manipulação de equipamentos e reagentes são apresentados em anexo no final do manual, para que possam ser consultadas sempre que necessário.
  • 6.
    Editável e fotocopiável© Texto | Novo 10Q 5 Componente de química do programa de Física e Química A – 10.o Ano 10.o Ano - Componente de química do 1 programa de Física e Química A 2 homologado em 20 de janeiro de 2014. Do programa de Física e Química A importa salientar aspetos gerais e destacar a componente de química. O desenvolvimento a seguir apresentado é suportado pelo constante no programa oficial da disciplina e transcrito do mesmo (com referência às páginas onde consta cada um dos campos do mesmo). 1 http://www.dgidc.min-edu.pt/metascurriculares/data/metascurriculares/E_Secundario/programa_fqa_10_11.pdf 2 https://dre.pt/application/dir/pdf2sdip/2014/01/013000002/0000400004.pdf
  • 7.
    6 Editável efotocopiável © Texto | Novo 10Q 1. Introdução (pág. 3) De acordo com a Portaria n.o 243/2012, de 10 de agosto, a disciplina de Física e Química A faz parte da componente específica do Curso científico-humanístico de Ciências e Tecnologias. É uma disciplina bienal (10.o e 11.o ano), dá continuidade à disciplina de Físico-Química (Ciências Físico- -Químicas) do Ensino Básico (7.o , 8.o e 9.o ano) e constitui precedência em relação às disciplinas de Física e de Química do 12.o ano. O programa desta disciplina está elaborado atendendo a uma carga letiva semanal mínima de 315 minutos, sendo a aula de maior duração dedicada a atividades práticas e laboratoriais. Nesta aula, com a duração máxima de 150 minutos, a turma deve funcionar desdobrada. Cada uma das componentes, física e química, é lecionada em metade do ano letivo, alternando-se a ordem de lecionação nos dois anos – o 10.o ano inicia-se com a componente de química e o 11.o ano com a componente de física – de modo a haver uma melhor rendibilização dos recursos, designadamente os referentes à componente laboratorial. 2. Finalidades e objetivos (pág. 3) A disciplina «visa proporcionar formação científica consistente no domínio do respetivo curso» (Portaria n.o 243/2012). Por isso, definem-se como finalidades desta disciplina: − Proporcionar aos alunos uma base sólida de capacidades e de conhecimentos da física e da química, e dos valores da ciência, que lhes permitam distinguir alegações científicas de não científicas, especular e envolver-se em comunicações de e sobre ciência, questionar e investigar, extraindo conclusões e tomando decisões, em bases científicas, procurando sempre um maior bem-estar social. − Promover o reconhecimento da importância da física e da química na compreensão do mundo natural e na descrição, explicação e previsão dos seus múltiplos fenómenos, assim como no desenvolvimento tecnológico e na qualidade de vida dos cidadãos em sociedade. − Contribuir para o aumento do conhecimento científico necessário ao prosseguimento de estudos e para uma escolha fundamentada da área desses estudos. De modo a atingir estas finalidades, definem-se como objetivos gerais da disciplina: − Consolidar, aprofundar e ampliar conhecimentos através da compreensão de conceitos, leis e teorias que descrevem, explicam e preveem fenómenos assim como fundamentam aplicações. − Desenvolver hábitos e capacidades inerentes ao trabalho científico: observação, pesquisa de informação, experimentação, abstração, generalização, previsão, espírito crítico, resolução de problemas e comunicação de ideias e resultados nas formas escrita e oral. − Desenvolver as capacidades de reconhecer, interpretar e produzir representações variadas da informação científica e do resultado das aprendizagens: relatórios, esquemas e diagramas, gráficos, tabelas, equações, modelos e simulações computacionais. − Destacar o modo como o conhecimento científico é construído, validado e transmitido pela comunidade científica.
  • 8.
    Editável e fotocopiável© Texto | Novo 10Q 7 3. Organização dos conteúdos (química do 10.o ano) (pág. 4) Os conteúdos estão organizados por domínios e subdomínios que se referem a temas da química, sendo considerados estruturantes para a formação científica e prosseguimento de estudos, permitindo a consolidação, aprofundamento e extensão dos estudos realizados no 3.o ciclo do ensino básico. O quadro seguinte mostra a organização dos domínios e subdomínios da componente de química do programa para o 10.o ano de escolaridade, da distribuição de Atividades Laboratoriais (AL) e as páginas do programa e das metas curriculares incluindo a identificação das páginas do Novo 10Q onde são desenvolvidos. 10. o ano de química Domínios Subdomínios e AL Páginas Programa Metas Novo 10Q 1. Elementos químicos e sua organização (17 aulas) 1.1 Massa e tamanho dos átomos AL 1.1 (5 aulas) 8 28 43 66 12 a 27 28 a 30 1.2 Energia dos eletrões nos átomos AL 1.2 (8 aulas) 8 28 43 66 40 a 65 66 a 68 1.3 Tabela Periódica AL 1.3 (4 aulas) 9 28 45 66 80 a 93 94 a 97 2. Propriedades e transformações da matéria (23 aulas) 2.1 Ligação química AL 2.1 (10 aulas) 10 29 45 66 108 a 139 140 a 142 2.2 Gases e dispersões AL 2.2 AL 2.3 (8 aulas) 11 29 29 46 67 67 152 a 163 164 e 165 166 e 167 2.3 Transformações químicas AL 2.4 (5 aulas) 11 29 47 67 176 a 191 192 e 193 Os conteúdos foram selecionados procurando manter os aspetos essenciais dos programas anteriores (Fisica e Quimica A do 10.o ano, homologado em 2001, e do 11.o ano, homologado em 2003). Pretendeu-se também valorizar os saberes dos professores a respeito dos processos de ensino e de aprendizagem, resultantes de quase uma década de prática na sua aplicação. A terminologia usada tem por base o Sistema Internacional (SI), cujas condições e normas de utilização em Portugal constam do 3 Decreto-Lei n.o 128/2010, de 3 de dezembro. Outros aspetos de terminologia e definições seguem recomendações de entidades internacionais, como a União Internacional de Química Pura e Aplicada (IUPAC), ou nacionais, como o Instituto Português da Qualidade (IPQ). 3 https://dre.pt/application/dir/pdf1sdip/2010/12/23400/0544405454.pdf
  • 9.
    8 Editável efotocopiável © Texto | Novo 10Q 4. Orientações gerais (pág. 5) Os domínios, bem como os subdomínios, são temas da física ou da química. Mas, dado o impacto que os conhecimentos da física e da química, assim como as das suas aplicações têm na compreensão do mundo natural e na vida dos seres humanos, sugere-se que a abordagem dos conceitos científicos parta, sempre que possível e quando adequado, de situações variadas que sejam motivadoras como, por exemplo, casos da vida quotidiana, avanços recentes da ciência e da tecnologia, contextos culturais onde a ciência se insira, episódios da história da ciência e outras situações socialmente relevantes. A escolha desses contextos por parte do professor deve ter em conta as condições particulares de cada turma e escola. Tal opção não só reforçará a motivação dos alunos pela aprendizagem mas também permitirá uma mais fácil concretização de aspetos formais mais abstratos das ciências em causa. Em particular, a invocação de situações da história da ciência permite compreender o modo como ela foi sendo construída. O desempenho do aluno também deve ser revelado na familiarização com métodos próprios do trabalho científico, incluindo a adoção de atitudes adequadas face às tarefas propostas, devendo a realização de trabalho prático-laboratorial constituir um meio privilegiado para a aquisição desses métodos e desenvolvimento dessas atitudes. O ensino da Física e Química A deve permitir que os alunos se envolvam em diferentes atividades de sala de aula, incluindo a resolução de exercícios e de problemas, de modo a que desenvolvam a compreensão dos conceitos, leis e teorias, interiorizando processos científicos. Na resolução de problemas, os alunos devem também desenvolver as capacidades de interpretação das informações fornecidas, de reflexão sobre estas e de estabelecimento de metodologias adequadas para alcançar boas soluções. As atividades de demonstração, efetuadas pelo professor, recorrendo a materiais de laboratório ou comuns, com ou sem aquisição automática de dados, constituem uma forte motivação para introduzir certos conteúdos científicos ao mesmo tempo que facilitam a respetiva interpretação. Também o recurso a filmes, animações ou simulações computacionais pode ajudar à compreensão de conceitos, leis e teorias mais abstratas. Esta disciplina, pela sua própria natureza, recorre frequentemente a conhecimentos e métodos matemáticos. Alguns alunos poderão ter dificuldades na interpretação de relações quantitativas entre grandezas físico-químicas, incluindo a construção de modelos de base matemática na componente laboratorial, ou na resolução de problemas quantitativos por via analítica, devendo o professor desenvolver estratégias que visem a superação das dificuldades detetadas. O recurso a calculadoras gráficas (ou a tablets, ou a laptops) ajudará a ultrapassar alguns desses constrangimentos, cabendo ao professor, quando necessário, introduzir os procedimentos de boa utilização desses equipamentos. Os alunos devem ser incentivados a trabalhar em grupo, designadamente na realização das atividades laboratoriais. O trabalho em grupo deve permitir uma efetiva colaboração entre os seus membros, mas, ao mesmo tempo, aumentar o espírito de entreajuda, desenvolver também hábitos de trabalho e a autonomia em cada um deles. Os alunos devem igualmente ser incentivados a investigar e a refletir, comunicando as suas aprendizagens oralmente e por escrito. Devem, no seu discurso, usar vocabulário científico próprio da disciplina e evidenciar um modo de pensar científico, ou seja, fundamentado em conceitos, leis e teorias científicas.
  • 10.
    Editável e fotocopiável© Texto | Novo 10Q 9 5. Metas curriculares (pág. 6) Segundo o 4 Despacho n.o 15971/2012, de 14 de dezembro, as metas curriculares «identificam a aprendizagem essencial a realizar pelos alunos … realçando o que dos programas deve ser objeto primordial de ensino». […] As metas curriculares permitem: − identificar os desempenhos que traduzem os conhecimentos a adquirir e as capacidades que se querem ver desenvolvidas no final de um dado módulo de ensino; − fornecer o referencial para a avaliação interna e externa, em particular para as provas dos exames nacionais; − orientar a ação do professor na planificação do seu ensino e na produção de materiais didáticos; − facilitar o processo de autoavaliação pelo aluno. […] 6. Desenvolvimento do programa (pág. 6) Apresenta-se, para a componente de química do 10.o ano, a sequência dos conteúdos e o seu enquadramento, incluindo as atividades prático-laboratoriais, por domínio e subdomínio, os respetivos objetivos gerais, algumas orientações e sugestões, e uma previsão do número de aulas por subdomínio. Consideram-se, para essa previsão, três aulas semanais (de duração total mínima de 315 minutos e sendo a aula de maior duração, 150 minutos, no máximo, dedicada a atividades práticas e laboratoriais). O número de aulas previsto é indicativo e deve ser gerido pelo professor de acordo com as características das suas turmas. 6.1. Componente de química (10.o ano) (pág. 7) A componente de química, no 10.o ano, contempla dois domínios: «Elementos químicos e sua organização» e «Propriedades e transformações da matéria» (10.o ano). O 10.o ano desenvolve-se através de ideias organizadoras que vão das propriedades do átomo à reatividade molecular, passando por aspetos quantitativos das propriedades dos gases e dispersões. […] A seleção dos conteúdos de 10.o ano fundamenta-se em seis ideias organizadoras: (1) a matéria comum é constituída por átomos; (2) as propriedades dos átomos são determinadas pelo modo como se distribuem os eletrões e pelas respetivas energias; (3) os elementos químicos estão organizados na Tabela Periódica, baseada nas propriedades dos átomos; (4) os átomos podem unir-se para formar moléculas e outras estruturas maiores através de ligações químicas, envolvendo essencialmente os eletrões de valência; 4 https://dre.pt/application/dir/pdf2sdip/2012/12/242000000/3985339854.pdf
  • 11.
    10 Editável efotocopiável © Texto | Novo 10Q (5) as propriedades dos materiais são determinadas pelo tipo de átomos, pelas ligações químicas e pela geometria das moléculas; (6) a estabilidade relativa, do ponto de vista energético, dos átomos e moléculas influencia a sua reatividade. […] Como o grau de abstração necessário para compreender conceitos como o de orbital atómica é elevado, reduziu-se esta temática ao mínimo necessário para chegar às configurações eletrónicas dos átomos, em especial das suas camadas de valência. As ligações intermoleculares são introduzidas dada a sua importância para a compreensão das propriedades dos materiais. Relativamente à forma das moléculas (geometria e estrutura tridimensional) os alunos devem começar a interpretar e a distinguir estruturas tridimensionais identificando grupos funcionais. Mais importante do que o domínio da nomenclatura da química orgânica é a capacidade de distinguir estruturas de moléculas e de lhes atribuir um significado químico. A enorme utilidade da química no mundo atual aponta para um futuro sustentável em áreas vitais para a sociedade (energia, recursos naturais, saúde, alimentação, novos materiais, entre outros), através de avanços significativos na síntese química, na química analítica, na química computacional, na química biológica e na tecnologia química. Estes aspetos devem, por isso, ser valorizados, procurando-se que os alunos reconheçam algumas aplicações e outros resultados de investigação que tenham impacto na sociedade e no ambiente. Apresentam-se a sequência de conteúdos do 10.o , os objetivos gerais, as metas curriculares, algumas orientações e sugestões, e uma previsão da distribuição por tempos letivos. As atividades laboratoriais (designadas por AL) aparecem identificadas nos respetivos subdomínios e, também para estas, apresentam-se os respetivos objetivos gerais e algumas sugestões, podendo ser utilizados outros procedimentos desde que se atinjam as metas definidas.
  • 12.
    Editável e fotocopiável© Texto | Novo 10Q 11 Domínio 1: Elementos químicos e sua organização (17 aulas = 14 + 3 AL) Subdomínio 1.1: Massa e tamanho dos átomos (5 aulas = 4 + AL 1.1) 1. Objetivo geral: Consolidar e ampliar conhecimentos sobre elementos químicos e dimensões à escala atómica. Conteúdos, orientações e sugestões (pág. 8) Metas curriculares (pág. 43) Conteúdos • Ordens de grandeza e escalas de comprimento • Dimensões à escala atómica • Massa isotópica e massa atómica relativa média • Quantidade de matéria e massa molar • Fração molar e fração mássica • AL 1.1 Volume e número de moléculas de uma gota de água Orientações e sugestões Como indício experimental da existência de átomos sugere-se a observação de movimentos brownianos. A grande diferença de densidades entre as fases condensadas e gasosa de um material pode também propiciar uma reflexão sobre a existência de átomos e as suas dimensões. Estas abordagens permitem uma contextualização histórica do assunto, que vai de Brown a Einstein, passando por Avogadro e Loschmidt. Para avaliar as dimensões à escala atómica podem analisar-se imagens de microscopia de alta resolução às quais estejam associadas escalas ou fatores de ampliação. Pode-se também recorrer a informação sobre a presença de nanopartículas em situações comuns e sobre aplicações que resultem da manipulação da matéria à escala atómica. A análise das vantagens e riscos da nanotecnologia possibilita a reflexão sobre as relações entre ciência e sociedade. 1.1 Descrever a constituição de átomos com base no número atómico, no número de massa e na definição de isótopos. 1.2 Determinar a ordem de grandeza de um número relacionando tamanhos de diferentes estruturas na natureza (por exemplo, célula, ser humano, Terra e Sol) numa escala de comprimentos. 1.3 Comparar ordens de grandeza de distâncias e tamanhos à escala atómica a partir, por exemplo, de imagens de microscopia de alta resolução, justificando o uso de unidades adequadas. 1.4 Associar a nanotecnologia à manipulação da matéria à escala atómica e molecular e identificar algumas das suas aplicações com base em informação selecionada. 1.5 Indicar que o valor de referência usado como padrão para a massa relativa dos átomos e das moléculas é 1/12 da massa do átomo de carbono-12. 1.6 Interpretar o significado de massa atómica relativa média e calcular o seu valor a partir de massas isotópicas, justificando a proximidade do seu valor com a massa do isótopo mais abundante. 1.7 Identificar a quantidade de matéria como uma das grandezas do Sistema Internacional (SI) de unidades e caracterizar a sua unidade, mole, com referência ao número de Avogadro de entidades. 1.8 Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente, identificando a constante de Avogadro como constante de proporcionalidade. 1.9 Calcular massas molares a partir de tabelas de massas atómicas relativas (médias). 1.10 Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar. 1.11 Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas grandezas. AL 1.1 Volume e número de moléculas de uma gota de água (pág. 28) Objetivo geral: Medir o volume e a massa de uma gota de água e determinar o número de moléculas de água na gota. Sugestões Nesta atividade introduzem-se alguns conceitos sobre medição: algarismos significativos, incerteza experimental associada à leitura no aparelho de medida, erros que afetam as medições e modo de exprimir uma medida a partir de uma única medição direta. A atividade pode começar questionando os alunos sobre um processo de medir a massa e o volume de uma gota de água, orientando a discussão de forma a concluírem que a medição deve fazer-se a partir da massa e do volume de um número elevado de gotas. Sugere-se um número de gotas de água não inferior a 100. Posteriormente, pode questionar-se qual das grandezas medidas (massa ou volume) deve ser usada para determinar o número de moléculas de água numa gota, e ainda que informação adicional é necessária e onde esta pode ser encontrada. Os resultados obtidos podem ser usados para determinar e comparar ordens de grandeza.
  • 13.
    12 Editável efotocopiável © Texto | Novo 10Q Metas específicas e transversais (pág. 66) 1. Medir a massa e o volume de um dado número de gotas de água, selecionando os instrumentos de medição mais adequados. 2. Apresentar os resultados das medições da massa e do volume das gotas de água, atendendo à incerteza de leitura e ao número de algarismos significativos. 3. Determinar a massa e o volume de uma gota de água e indicar a medida com o número adequado de algarismos significativos. 4. Calcular o número de moléculas de água que existem numa gota e indicar o resultado com o número adequado de algarismos significativos.
  • 14.
    Editável e fotocopiável© Texto | Novo 10Q 13 Subdomínio 1.2: Energia dos eletrões nos átomos (8 aulas = 7 + AL 1.2) 2. Objetivo geral: Reconhecer que a energia dos eletrões nos átomos pode ser alterada por absorção ou emissão de energias bem definidas, correspondendo a cada elemento um espetro atómico característico, e que os eletrões nos átomos se podem considerar distribuídos por níveis e subníveis de energia. Conteúdos, orientações e sugestões (pág. 8) Metas curriculares (pág. 43) Conteúdos • Espetros contínuos e descontínuos • O modelo atómico de Bohr • Transições eletrónicas • Quantização de energia • Espetro do átomo de hidrogénio • Energia de remoção eletrónica • Modelo quântico do átomo o níveis e subníveis o orbitais (s, p e d) o spin • Configuração eletrónica de átomos o Princípio da Construção (ou de Aufbau) o Princípio da Exclusão de Pauli • AL 1.2 Teste de chama Orientações e sugestões Recomenda-se a observação de espetros contínuos e descontínuos decompondo a luz com redes de difração ou espetroscópios e a visualização de simulações sobre espetroscopia. Sugere-se ainda o uso de tubos de Pluecker para visualizar espetros descontínuos. Deve recorrer-se a dados da espetroscopia fotoeletrónica (sem exploração nem da técnica nem dos equipamentos) para estabelecer a ordem das energias no estado fundamental de orbitais atómicas até 4s. Este assunto deve ser abordado sem recurso aos números quânticos. O Princípio da Exclusão de Pauli deve ser apresentado de uma forma simplificada, devendo fazer-se a distribuição eletrónica pelas orbitais degeneradas. As energias relativas dos subníveis eletrónicos ocupados, assim como os números relativos de eletrões em cada subnível, podem ser determinados a partir de espetros obtidos por espetroscopia fotoeletrónica de baixa resolução, enquanto o número máximo de eletrões permitido por orbital é dado pelo Princípio da Exclusão de Pauli. A degenerescência das orbitais p e d do mesmo nível pode assim ser confirmada a partir destes resultados. As configurações eletrónicas devem ser estabelecidas com base na regra da construção (conhecida por Princípio de Construção ou de 2.1 Indicar que a luz (radiação eletromagnética ou onda eletromagnética) pode ser detetada como partículas de energia (fotões), sendo a energia de cada fotão proporcional à frequência dessa luz. 2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético, comparando as energias dos respetivos fotões. 2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão. 2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão, concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos. 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. 2.9 Comparar espetros de absorção e de emissão de elementos químicos, concluindo que são característicos de cada elemento. 2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense). 2.11 Indicar que a energia dos eletrões nos átomos inclui o efeito das atrações entre os eletrões e o núcleo, por as suas cargas serem de sinais contrários, e das repulsões entre os eletrões, por as suas cargas serem do mesmo sinal. 2.12 Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões à volta do núcleo atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões. 2.13 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões. 2.14 Interpretar valores de energias de remoção eletrónica,
  • 15.
    14 Editável efotocopiável © Texto | Novo 10Q Aufbau) e atendendo à maximização do número de eletrões desemparelhados (conhecida como regra de Hund). obtidos por espetroscopia fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de energia e subníveis de energia. 2.15 Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que permite dois estados diferentes. 2.16 Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico do átomo. 2.17 Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes está associada e distingui-las quanto ao número e à forma. 2.18 Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando esse resultado com o princípio de Pauli. 2.19 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que orbitais de um mesmo subnível np, ou nd, têm a mesma energia. 2.20 Estabelecer as configurações eletrónicas dos átomos, utilizando a notação spd, para elementos até Z = 23, atendendo ao Princípio da Construção, ao Princípio da Exclusão de Pauli e à maximização do número de eletrões desemparelhados em orbitais degeneradas. AL 1.2 Teste de chama (pág. 28) Objetivo geral: Identificar elementos químicos em amostras de sais usando testes de chama. Sugestões Esta atividade pode adquirir um caráter de pesquisa laboratorial, caso se usem amostras desconhecidas de vários sais. Se forem usadas ansas de Cr/Ni, a atividade deve ser planeada para que a mesma ansa seja utilizada sempre na mesma amostra, o que evita o recurso a ácido clorídrico concentrado para a sua limpeza. Devem ser abordados aspetos de segurança relacionados com a utilização de fontes de aquecimento e manipulação de reagentes. Os resultados do teste de chama podem ser relacionados com os efeitos observados no fogo-de-artifício. Metas específicas e transversais (pág. 66) 1. Identificar a presença de um dado elemento químico através da coloração de uma chama quando nela se coloca uma amostra de sal. 2. Indicar limitações do ensaio de chama relacionadas com a temperatura da chama e com a natureza dos elementos químicos na amostra. 3. Interpretar informação de segurança presente no rótulo de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas. 4. Interpretar os resultados obtidos em testes de chama.
  • 16.
    Editável e fotocopiável© Texto | Novo 10Q 15 Subdomínio 1.3: Tabela Periódica (4 aulas = 3 + AL 1.3) 3. Objetivo geral: Reconhecer na Tabela Periódica um meio organizador de informação sobre os elementos químicos e respetivas substâncias elementares e compreender que a estrutura eletrónica dos átomos determina as propriedades dos elementos. Conteúdos, orientações e sugestões (pág. 9) Metas curriculares (pág. 45) Conteúdos • Evolução histórica da Tabela Periódica • Estrutura da Tabela Periódica: grupos, períodos e blocos • Elementos representativos e de transição • Famílias de metais e de não-metais • Propriedades periódicas dos elementos representativos o raio atómico o energia de ionização • AL 1.3 Densidade relativa de metais Orientações e sugestões Devem relembrar-se os principais contributos para a evolução da Tabela Periódica (de Döbereiner a Moseley, passando por Mendeleev, e avançando até à atualidade), podendo realçar-se a fundamentação e discussão das propostas que foram surgindo e o facto de a Tabela Periódica ser um documento aberto à incorporação de novos elementos químicos e de novos conhecimentos. Essa abordagem permite mostrar o modo como a ciência evolui. A diversidade de materiais existentes na natureza mostra que a maioria dos elementos químicos se encontra na forma combinada (formando substâncias elementares ou compostas) e que um número relativamente pequeno de elementos está na origem de milhões de substâncias naturais e artificiais. 3.1. Identificar marcos históricos relevantes no estabelecimento da Tabela Periódica atual. 3.2 Interpretar a organização da Tabela Periódica com base em períodos, grupos e blocos e relacionar a configuração eletrónica dos átomos dos elementos com a sua posição relativa na Tabela Periódica. 3.3 Identificar a energia de ionização e o raio atómico como propriedades periódicas dos elementos. 3.4 Distinguir entre propriedades de um elemento e propriedades da(s) substância(s) elementar(es) correspondentes. 3.5 Comparar raios atómicos e energias de ionização de diferentes elementos químicos com base nas suas posições relativas na Tabela Periódica. 3.6 Interpretar a tendência geral para o aumento da energia de ionização e para a diminuição do raio atómico observados ao longo de um período da Tabela Periódica. 3.7 Interpretar a tendência geral para a diminuição da energia de ionização e para o aumento do raio atómico observados ao longo de um grupo da Tabela Periódica. 3.8 Explicar a formação dos iões mais estáveis de metais e de não-metais. 3.9 Justificar a baixa reatividade dos gases nobres. AL 1.3 Densidade relativa de metais (pág. 28) Objetivo geral: Determinar a densidade relativa de metais por picnometria. Sugestões Sugere-se a utilização de metais como cobre, alumínio ou chumbo, na forma de grãos, lâminas ou fios de pequena dimensão. Devem discutir-se erros aleatórios e sistemáticos ligados à influência da temperatura, devidos à formação de bolhas de ar no interior do picnómetro, a uma secagem inadequada do picnómetro ou à presença de impurezas no metal em estudo. Nesta atividade deve introduzir-se o erro percentual associado a um resultado experimental, quando há um valor de referência, e a sua relação com a exatidão desse resultado. Metas específicas e transversais (pág. 66) 1. Definir densidade relativa e relacioná-la com a massa volúmica. 2. Identificar a densidade relativa como uma propriedade física de substâncias. 3. Interpretar e utilizar um procedimento que permita determinar a densidade relativa de um metal por picnometria. 4. Determinar a densidade relativa do metal. 5. Indicar o significado do valor obtido para a densidade relativa do metal. 6. Determinar o erro percentual do resultado obtido para a densidade relativa do metal e relacioná-lo com a exatidão desse resultado. 7. Indicar erros que possam ter afetado o resultado obtido.
  • 17.
    16 Editável efotocopiável © Texto | Novo 10Q Domínio 2: Propriedades e transformações da matéria (23 aulas = 19 + 4 AL) Subdomínio 2.1: Ligação química (10 aulas = 9 + AL 2.1) 1. Objetivo geral: Compreender que as propriedades das moléculas e materiais são determinadas pelo tipo de átomos, pela energia das ligações e pela geometria das moléculas. Conteúdos, orientações e sugestões (pág. 10) Metas curriculares (pág. 45) Conteúdos • Tipos de ligações químicas • Ligação covalente o estruturas de Lewis o energia de ligação e comprimento de ligação o polaridade das ligações o geometria molecular o polaridade das moléculas o estruturas de moléculas orgânicas e biológicas • Ligações intermoleculares o ligações de hidrogénio o ligações de van der Waals (de London, entre moléculas polares e entre moléculas polares e apolares) • AL 2.1 Miscibilidade de líquidos Orientações e sugestões A ligação química deve ser considerada um conceito unificador: a energia de um conjunto de átomos ou moléculas ligados é menor do que a energia dos átomos ou moléculas separados, como resultado das atrações e repulsões envolvendo eletrões e núcleos atómicos. Devem ser estudadas duas situações quanto ao tipo de ligação química: (a) partilha significativa de eletrões entre os átomos (ligações iónica, covalente e metálica) e (b) partilha pouco significativa de eletrões entre os átomos ou moléculas (ligações intermoleculares de van der Waals e ligações de hidrogénio). A identificação da partilha de eletrões pode ser relacionada qualitativamente com representações da densidade eletrónica das moléculas. A ligação iónica deve ser apresentada como uma ligação em que a partilha de eletrões dá origem a uma cedência significativa de eletrões entre átomos, podendo realçar--se que essas estruturas com caráter iónico se dissociam em iões em solução ou por mudança de estado físico. A polaridade das moléculas deve ser abordada sem recorrer ao conceito de momento dipolar. Pode destacar-se que a assimetria na distribuição da carga elétrica se traduz na polaridade da molécula, por exemplo, a partir de representações das densidades eletrónicas de moléculas. Mais importante do que a identificação dos vários tipos de forças de van der Waals será a aquisição pelos alunos da noção de que, para qualquer tipo de 1.1 Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de ligações químicas. 1.2 Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de repulsão entre eletrões e forças de repulsão entre núcleos. 1.3 Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longas distâncias, sendo estas distâncias respetivamente menores e maiores do que a distância de equilíbrio. 1.4 Indicar que os átomos podem partilhar eletrões formando ligações covalentes (partilha localizada de eletrões de valência), ligações iónicas (transferência de eletrões entre átomos originando estruturas com caráter iónico) e ligações metálicas (partilha de eletrões de valência deslocalizados por todos os átomos). 1.5 Associar as ligações químicas em que não há partilha significativa de eletrões a ligações intermoleculares. 1.6 Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H2, N2, O2 e F2, segundo o modelo de Lewis. 1.7 Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de moléculas como CH4, NH3, H2O e CO2. 1.8 Relacionar o parâmetro ângulo de ligação nas moléculas CH4, NH3, H2O e CO2 com base no modelo da repulsão dos pares de eletrões de valência. 1.9 Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões de valência, em moléculas como CH4, NH3, H2O e CO2. 1.10 Prever a relação entre as energias de ligação ou os comprimentos de ligação em moléculas semelhantes, com base na variação das propriedades periódicas dos elementos envolvidos nas ligações (por exemplo H2O e H2S ou HCl e HBr). 1.11 Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas diatómicas heteronucleares são polares, interpretando essa polaridade com base na distribuição de carga elétrica entre os átomos. 1.12 Identificar ligações polares e apolares com base no tipo de átomos envolvidos na ligação. 1.13 Indicar alguns exemplos de moléculas polares (H2O, NH3) e apolares (CO2, CH4). 1.14 Identificar hidrocarbonetos saturados, insaturados e haloalcanos e, no caso de hidrocarbonetos saturados de
  • 18.
    Editável e fotocopiável© Texto | Novo 10Q 17 molécula, incluindo as moléculas não polares e os átomos de gases nobres, existe atração entre estas por forças de London e que, em moléculas polares, a estas atrações se somam as atrações entre as distribuições assimétricas de carga. Sugere-se a aplicação dos conhecimentos sobre ligação química e geometria molecular na análise e interpretação de estruturas moleculares de substâncias presentes nos alimentos e em medicamentos, entre outros, sem exploração da nomenclatura correspondente a essas moléculas. A relação entre as miscibilidades e o tipo de ligações intermoleculares deve ser apresentada como uma relação genérica cuja explicação é complexa, por depender de múltiplos fatores, não sendo necessário fornecer essa explicação aos alunos. cadeia aberta até 6 átomos de carbono, representar a fórmula de estrutura a partir do nome ou escrever o nome a partir da fórmula de estrutura. 1.15 Interpretar e relacionar os parâmetros de ligação, energia e comprimento, para a ligação CC nas moléculas etano, eteno e etino. 1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas) em moléculas orgânicas, biomoléculas e fármacos, a partir das suas fórmulas de estrutura. 1.17 Identificar ligações intermoleculares – de hidrogénio e de van der Waals – com base nas características das unidades estruturais. 1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos com as ligações intermoleculares que se estabelecem entre unidades estruturais. AL 2.1 Miscibilidade de líquidos (pág. 29) Objetivo geral: Prever e avaliar a miscibilidade de líquidos. Sugestões A atividade pode ter o formato de uma investigação laboratorial, em que se fornecem vários líquidos e informação sobre as correspondentes fórmulas de estrutura. Os líquidos a utilizar poderão ser: água, etanol, acetona e hexano. A atividade pode começar sugerindo aos alunos que formulem hipóteses sobre a miscibilidade dos líquidos propostos, com base nas respetivas fórmulas de estrutura. Um líquido que também poderá ser utilizado é o éter de petróleo. Neste caso, deve ser dada a informação aos alunos que se trata de uma mistura de hidrocarbonetos, essencialmente pentano e hexano. Deverão ser tomadas medidas para lidar com riscos associados à manipulação de alguns líquidos. Metas específicas e transversais (pág. 66) 1. Prever se dois líquidos são miscíveis ou imiscíveis, tendo como único critério o tipo de ligações intermoleculares predominantes em cada um. 2. Identificar e controlar variáveis que afetam a miscibilidade de líquidos. 3. Interpretar informação de segurança nos rótulos de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas. 4. Descrever e realizar um procedimento que permita avaliar a miscibilidade de líquidos. 5. Relacionar a miscibilidade dos líquidos em estudo com os tipos de interações entre as respetivas unidades estruturais.
  • 19.
    18 Editável efotocopiável © Texto | Novo 10Q Subdomínio 2.2: Gases e dispersões (8 aulas = 6 + AL 2.2 + AL 2.3) 1. Objetivo geral: Reconhecer que muitos materiais se apresentam na forma de dispersões que podem ser caracterizadas quanto à sua composição. Conteúdos, orientações e sugestões (pág. 11) Metas curriculares (pág. 46) Conteúdos • Lei de Avogadro, volume molar e massa volúmica • Soluções, coloides e suspensões • Composição quantitativa de soluções o concentração em massa o concentração o percentagem em volume e percentagem em massa o partes por milhão • Diluição de soluções aquosas o AL 2.2 Soluções a partir de solutos sólidos o AL 2.3 Diluição de soluções Orientações e sugestões A abordagem destes conteúdos pode partir da descrição da atmosfera da Terra, no que respeita à presença de gases, com realce para a composição quantitativa média da troposfera, para análises químicas da qualidade do ar e o aumento do efeito de estufa. Outros contextos igualmente pertinentes, por estarem relacionados com o quotidiano e a sociedade, em particular com a informação e a defesa do consumidor, podem ser encontrados nas indústrias farmacêutica, alimentar e de cosméticos, na saúde e qualidade da água, entre outros. A análise, por exemplo, de bulas de medicamentos, de rótulos e de relatórios de análises pode contribuir para motivar os alunos e sensibilizá-los para a importância da interpretação de informação química necessária ao esclarecimento dos consumidores. 2.1 Definir volume molar e, a partir da Lei de Avogadro, concluir que tem o mesmo valor para todos os gases à mesma pressão e temperatura. 2.2 Relacionar o volume de uma amostra gasosa e a quantidade de matéria com o volume molar, definidas as condições de pressão e temperatura. 2.3 Relacionar a massa volúmica de uma substância gasosa com a sua massa molar e volume molar. 2.4 Descrever a composição da troposfera terrestre, realçando N2 e O2 como os seus componentes mais abundantes. 2.5 Indicar poluentes gasosos na troposfera e identificar as respetivas fontes. 2.6 Distinguir solução, dispersão coloidal e suspensão com base na ordem de grandeza da dimensão das partículas constituintes. 2.7 Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e suspensões de matéria particulada. 2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas. AL 2.2 Soluções a partir de solutos sólidos (pág. 29) Objetivo geral: Preparar uma solução aquosa a partir de um soluto sólido. Sugestões O reagente a utilizar deve estar devidamente rotulado para que se possa fazer a necessária avaliação de riscos. Sugere-se a utilização de compostos corados como sulfato de cobre (II) pentahidratado ou permanganato de potássio. Não devem usar--se sais contendo catiões de metais pesados (Pb, Hg, Cr, Co, Ni). Devem ser referidos aspetos relacionados com armazenamento de soluções; as soluções preparadas podem ser aproveitadas para outros trabalhos. Devem discutir-se erros aleatórios e sistemáticos. Metas específicas e transversais (pág. 67) 1. Efetuar cálculos necessários à preparação de soluções a partir de um soluto sólido. 2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução a partir de um soluto sólido. 3. Medir a massa de sólidos em pó, granulados ou em cristais, usando uma balança digital, e apresentar o resultado da medição atendendo à incerteza de leitura e ao número de algarismos significativos. 4. Aplicar técnicas de transferência de sólidos e líquidos. 5. Preparar uma solução com um dado volume e concentração. 6. Armazenar soluções em recipiente apropriado sem as contaminar ou sem alterar a sua concentração. 7. Indicar erros que possam ter afetado as medições efetuadas.
  • 20.
    Editável e fotocopiável© Texto | Novo 10Q 19 AL 2.3 Diluição de soluções (pág. 29) Objetivo geral: Preparar soluções aquosas por diluição. Sugestões Previamente, usando água, os alunos devem treinar o uso de pipetas na medição de volumes; estas podem ser da mesma classe, para poderem comparar as respetivas incertezas de leitura. Cada grupo de alunos deverá preparar várias soluções com diferentes fatores de diluição, selecionando pipetas e balões volumétricos adequados. As soluções preparadas podem ser aproveitadas para outros trabalhos. Sugere-se que a solução a diluir seja a preparada na atividade anterior. Metas específicas e transversais (pág. 67) 1. Efetuar cálculos necessários à preparação de soluções por diluição, em particular utilizando o fator de diluição. 2. Descrever as principais etapas e procedimentos necessários à preparação de uma solução por diluição. 3. Distinguir pipetas volumétricas de pipetas graduadas comparando, para volumes iguais, a incerteza de leitura de ambas. 4. Interpretar inscrições em instrumentos de medição de volume. 5. Medir volumes de líquidos com pipetas, usando a técnica adequada. 6. Apresentar o resultado da medição do volume de solução com a pipeta atendendo à incerteza de leitura e ao número de algarismos significativos. 7. Preparar uma solução com um dado volume e concentração a partir de uma solução mais concentrada.
  • 21.
    20 Editável efotocopiável © Texto | Novo 10Q Subdomínio 2.3: Transformações químicas (5 aulas = 4 + AL 2.4) 3. Objetivo geral: Compreender os fundamentos das reações químicas, incluindo reações fotoquímicas, do ponto de vista energético e da ligação química. Conteúdos, orientações e sugestões (pág. 11) Metas curriculares (pág. 47) Conteúdos • Energia de ligação e reações químicas o processos endoenergéticos e exoenergéticos o variação de entalpia • Reações fotoquímicas na atmosfera o fotodissociação e fotoionização o radicais livres e estabilidade das espécies químicas o ozono estratosférico • AL 2.4 Reação fotoquímica Orientações e sugestões A escrita de equações químicas usando fórmulas de estrutura pode ajudar a compreender o que se passa na rutura e formação de ligações durante as reações químicas. Os exemplos a considerar devem incluir substâncias estudadas no subdomínio «Ligação Química», podendo ser introduzidas reações como a combustão de alcanos, a síntese do amoníaco e a decomposição da água. O caso particular do ozono, que na troposfera atua como poluente enquanto na estratosfera atua como protetor, pode ser explorado nos aspetos científico, tecnológico, social e ambiental. A formação e destruição do ozono estratosférico podem ser abordadas através da questão da camada de ozono. Podem discutir-se as vantagens e desvantagens proporcionadas pelos clorofluorocarbonetos (CFC), assim como dos seus substitutos, com base em informação selecionada. Também podem ser utilizadas as aplicações da fotoquímica em diferentes áreas como, por exemplo, a medicina, a arte e a produção de energia. 3.1 Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações químicas. 3.2 Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo endoenergético. 3.3 Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado, ocorrem, respetivamente, com aumento ou diminuição de temperatura. 3.4 Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu sinal (positivo ou negativo). 3.5 Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e dos produtos e a variação de entalpia. 3.6 Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação a partir da variação de entalpia e de outras energias de ligação. 3.7 Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas. 3.8 Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos. 3.9 Interpretar fenómenos de fotodissociação e fotoionização na atmosfera terrestre envolvendo O2, O3, e N2 relacionando- os com a energia da radiação envolvida e com a estabilidade destas moléculas. 3.10 Identificar os radicais livres como espécies muito reativas por possuírem eletrões desemparelhados. 3.11 Interpretar a formação e destruição do ozono estratosférico, com base na fotodissociação de O2 e de O3, por envolvimento de radiações ultravioletas UVB e UVC, concluindo que a camada de ozono atua como um filtro dessas radiações. 3.12 Explicar a formação dos radicais livres a partir dos clorofluorocarbonetos (CFC) tirando conclusões sobre a sua estabilidade na troposfera e efeitos sobre o ozono estratosférico. 3.13 Indicar que o ozono na troposfera atua como poluente em contraste com o seu papel protetor na estratosfera. AL 2.4 Reação fotoquímica (pág. 29) Objetivo geral: Investigar o efeito da luz sobre o cloreto de prata. Sugestões A reação fotoquímica em estudo envolve a transformação do ião prata em prata metálica e libertação de cloro, sendo representada por: 2 AgCℓ (s) → 2 Ag (s) + Cℓ2 (g)
  • 22.
    Editável e fotocopiável© Texto | Novo 10Q 21 A atividade deve realizar-se em pequena escala para diminuir custos, evitar os riscos associados à libertação de cloro e reduzir a formação de resíduos. Devem utilizar-se soluções de cloreto de sódio e de nitrato de prata de igual concentração. Para investigar o efeito da luz sobre o cloreto de prata deve usar-se luz branca, luz azul e luz vermelha e usar como termo de comparação uma amostra ao abrigo da luz. Deve discutir-se o controlo de variáveis. Metas específicas e transversais (pág. 67) 1. Interpretar e realizar procedimentos que, em pequena escala e controlando variáveis, permitam estudar o efeito da luz sobre cloreto de prata. 2. Interpretar os resultados obtidos escrevendo equações químicas correspondentes. 3. Descrever e comparar o efeito de diferentes tipos de luz visível sobre o cloreto de prata.
  • 23.
    22 Editável efotocopiável © Texto | Novo 10Q 6.2. Trabalho prático-laboratorial (pág. 26) Dada a natureza experimental da física e da química, as atividades de caráter prático e laboratorial, a desenvolver em tempos de maior duração e com a turma desdobrada, merecem uma referência especial. O trabalho prático-laboratorial, entendido como todo o trabalho realizado pelos alunos, incluindo a resolução de problemas, atividades de pesquisa e de comunicação, atividades com ou sem recurso a material de laboratório (incluindo o controlo de variáveis), é indispensável para o aluno desenvolver atitudes, capacidades e conhecimentos associadas ao trabalho científico. As atividades laboratoriais devem ser enquadradas com os respetivos conteúdos e referenciais teóricos. A sua planificação deve ser realizada com cuidado, procurando clarificar o tema, discutir ideias prévias dos alunos e identificar as grandezas a medir e as condições a respeitar, de modo a que os trabalhos possam decorrer com o ritmo adequado. Os alunos devem identificar, na realização das atividades, possíveis erros aleatórios e sistemáticos. Recomenda-se que tenham em atenção o alcance e a sensibilidade dos instrumentos de medida, que indiquem a incerteza associada à escala utilizada no instrumento e que apresentem as medidas com um número correto de algarismos significativos. Nas medições diretas, conseguidas com uma única medição, o resultado da medida deve vir afetado da incerteza associada à escala do instrumento de medida (incerteza absoluta de leitura). Sempre que possível, uma medição direta deve ser efetuada recorrendo a uma série de medições nas mesmas condições. Neste caso, o aluno deve proceder do seguinte modo: • determinar o valor mais provável da grandeza a medir (média aritmética dos valores das medições); • determinar a incerteza absoluta de leitura; • determinar o desvio de cada medição; • determinar a incerteza absoluta de observação (desvio absoluto máximo); • tomar para incerteza absoluta a maior das incertezas anteriores (de leitura ou de observação); • determinar a incerteza relativa em relação à média, exprimindo-a em percentagem (desvio percentual) e associá-la à precisão das medidas; • exprimir o resultado da medição direta em função do valor mais provável e da incerteza absoluta ou da incerteza relativa. Os alunos devem estar familiarizados com o cálculo da incerteza absoluta de medições diretas e reconhecer que a precisão das medidas é mais intuitiva quando se exprime a incerteza relativa. Devem determinar o erro relativo, em percentagem (erro percentual), de uma medida que possa ser comparada com valores tabelados ou previstos teoricamente e interpretar o seu valor, associando-o à exatidão da medida. Deve-se sensibilizar os alunos para o facto de a incerteza nas medições diretas se transmitir às medições indiretas, mas não se exige o respetivo cálculo. Certas atividades requerem o traçado de gráficos e de retas de ajuste aos dados experimentais, pelo que os alunos devem, nesses casos, recorrer à calculadora gráfica (ou equivalente). Os conceitos relativos ao tratamento de dados devem ser introduzidos de modo faseado, ao longo das atividades laboratoriais, e de acordo com as metas estabelecidas para cada uma delas. As atividades laboratoriais têm de ser feitas, obrigatoriamente, pelos alunos em trabalho de grupo.
  • 24.
    Editável e fotocopiável© Texto | Novo 10Q 23 Alguns aspetos relativos à segurança na realização de atividades laboratoriais fazem parte da formação dos alunos e, por isso, as atividades propostas incluem oportunidades para aprenderem a lidar com riscos associados a técnicas de utilização de equipamentos e reagentes. A segurança deve ser uma preocupação constante, pressupondo-se o cumprimento de regras gerais de conduta no laboratório. Outros aspetos mais específicos devem ser integrados de um modo progressivo, o que se traduz pela definição de metas específicas e transversais relacionadas com a segurança, que são alcançáveis em diferentes trabalhos laboratoriais. […] Podem ser utilizados outros procedimentos desde que se atinjam as metas definidas. 7. Metas transversais a todas as atividades da componente prática-laboratorial (pág. 64) 7.1. Aprendizagem do tipo processual 1. Identificar material e equipamento de laboratório e manuseá-lo corretamente, respeitando regras de segurança e instruções recebidas. 2. Identificar simbologia em laboratórios. 3. Identificar equipamento de proteção individual. 4. Adotar as medidas de proteção adequadas a operações laboratoriais, com base em informação de segurança e instruções recebidas. 5. Atuar corretamente em caso de acidente no laboratório tendo em conta procedimentos de alerta e utilização de equipamento de salvamento. 6. Selecionar material de laboratório adequado a um trabalho laboratorial. 7. Construir uma montagem laboratorial a partir de um esquema ou de uma descrição. 8. Executar corretamente técnicas laboratoriais. 9. Operacionalizar o controlo de uma variável. 10. Identificar aparelhos de medida, analógicos e digitais, o seu intervalo de funcionamento e a respetiva incerteza de leitura. 11. Efetuar medições utilizando material de laboratório analógico, digital ou de aquisição automática de dados. 12. Representar um conjunto de medidas experimentais em tabela, associando-lhes as respetivas incertezas de leitura dos aparelhos de medida utilizados. 7.2. Aprendizagem do tipo conceptual 1. Identificar o objetivo de um trabalho prático. 2. Identificar o referencial teórico no qual se baseia o procedimento utilizado num trabalho prático, incluindo regras de segurança específicas. 3. Interpretar e seguir um protocolo. 4. Descrever o procedimento que permite dar resposta ao objetivo de um trabalho prático. 5. Conceber um procedimento capaz de validar uma dada hipótese, ou estabelecer relações entre variáveis, e decidir sobre as variáveis a controlar. 6. Identificar a influência de uma dada grandeza num fenómeno físico através de controlo de variáveis. 7. Conceber uma tabela de registo de dados adequada ao procedimento.
  • 25.
    24 Editável efotocopiável © Texto | Novo 10Q 8. Representar esquemas de montagens. 9. Utilizar regras de contagem de algarismos significativos. 10. Identificar e comparar ordens de grandeza. 11. Distinguir erros aleatórios de erros sistemáticos. 12. Indicar a medida de uma grandeza numa única medição direta, atendendo à incerteza experimental associada à leitura no aparelho de medida. 13. Indicar a medida de uma grandeza quando há um conjunto de medições diretas, efetuadas nas mesmas condições, tomando como valor mais provável o valor médio. 14. Calcular a incerteza absoluta do valor mais provável de um conjunto de medições diretas (o maior dos desvios absolutos), assim como a incerteza relativa em percentagem (desvio percentual), e indicar a medida da grandeza. 15. Associar a precisão das medidas à sua maior ou menor dispersão, quando há um conjunto de medições diretas, e aos erros aleatórios. 16. Determinar o erro percentual associado a um resultado experimental quando há um valor de referência. 17. Associar a exatidão de um resultado à maior ou menor proximidade a um valor de referência e aos erros sistemáticos, relacionando-a com o erro percentual. 18. Construir gráficos a partir de listas de dados, utilizando papel ou suportes digitais. 19. Interpretar representações gráficas, estabelecendo relações entre as grandezas. 20. Aplicar conhecimentos de estatística no tratamento de dados experimentais em modelos lineares, identificando as grandezas físicas na equação da reta de regressão. 21. Determinar valores de grandezas, não obtidos experimentalmente, a partir da equação de uma reta de regressão. 22. Identificar erros que permitam justificar a baixa precisão das medidas ou a baixa exatidão do resultado. 23. Avaliar a credibilidade de um resultado experimental, confrontando-o com previsões do modelo teórico, e discutir os seus limites de validade. 24. Generalizar interpretações baseadas em resultados experimentais para explicar outros fenómenos que tenham o mesmo fundamento teórico. 25. Elaborar um relatório, ou síntese, sobre uma atividade prática, em formatos diversos.
  • 26.
    Editável e fotocopiável© Texto | Novo 10Q 25 Na tabela seguinte estabelece-se uma associação possível entre metas transversais e atividades laboratoriais que permitem explorações que melhor concorrerão para atingir essas metas. Aprendizagens do tipo: AL 1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4 Processual 1 x x x x x x x 2 x x x x 3 x x x x 4 x x x x 5 x 6 x x x x 7 8 x x 9 x x x 10 x x x x 11 x x x x x 12 x x x x Conceptual 1 x x x x x x x 2 x x x x 3 x x x x x x 4 x x x x x x 5 x x x 6 7 x x x 8 9 x x x x 10 x 11 x x x x 12 x x x x 13 14 15 16 x 17 x 18 19 20 21 22 x 23 x x 24 x x x
  • 27.
    26 Editável efotocopiável © Texto | Novo 10Q 8. Avaliação (pág. 38) O processo de avaliação desta disciplina decorre dos princípios gerais da avaliação: deve ser contínua, apoiada em diversos instrumentos adaptados às aprendizagens em apreciação, ter um carácter formativo – não só para os alunos, para controlo da sua aprendizagem, mas também para o professor, como reguladora das suas opções de ensino – e culminar em situações de avaliação sumativa. O aluno deve ser envolvido na avaliação, desenvolvendo o sentido crítico relativamente ao seu trabalho e à sua aprendizagem, através, por exemplo, da promoção de atitudes reflexivas e do recurso a processos metacognitivos. Os critérios de avaliação definidos em Conselho Pedagógico, sob proposta dos departamentos curriculares, devem contemplar os critérios de avaliação da componente prática-laboratorial, designadamente as atividades laboratoriais de caráter obrigatório. De acordo com o estabelecido no ponto 5 do art.o 7.o da Portaria n.o 243/2012, são obrigatórios momentos formais de avaliação da dimensão prática ou experimentais integrados no processo de ensino. E, de acordo com a alínea c) do mesmo ponto, na disciplina de Física e Química A, a componente prática laboratorial tem um peso mínimo de 30% no cálculo da classificação a atribuir em cada momento formal de avaliação. Dada a centralidade da componente prática-laboratorial na física e na química identificaram-se nas metas curriculares, para cada uma das atividades laboratoriais, descritores específicos e transversais, os quais devem servir como referência para a avaliação do desempenho dos alunos nessas atividades. Para responder aos diversos itens dos testes de avaliação os alunos podem consultar um formulário e, no caso da componente de química, a Tabela Periódica, numa versão que contenha, pelo menos, informação do símbolo químico, do número atómico e da massa atómica relativa.
  • 28.
    Editável e fotocopiável© Texto | Novo 10Q 27 9. Formulário para a componente de química (10.o ano) (pág. 41) Grupos funcionais Quantidades, massas e volumes m = n M N = n NA V = n Vm p = m V Soluções e dispersões c = n V xA = nA ntotal %(m/m) = mA mtotal × 102 %(V/V) = VA Vtotal × 102 ppm = mA mtotal × 106 ppmV = VA Vtotal × 106 Note-se que a parte do formulário não transcrita do programa não é da componente de química do 10.o ano sendo quase essencialmente, da componente de Física 10. Bibliografia (pág. 38) • American Chemical Society, Exploring the Molecular Vision, Conference Report, Society Committee on Education (SOCED), June 27-29, 2003. <http://www.acs.org/content/dam/acsorg/about/governance/committees/education/exploring-the-molecular- vision.pdf> (acedido em 15 de outubro de 2013) • Australian Curriculum, Chemistry, Senior Secondary Curriculum, Assessment and Reporting Authority (ACARA), 2012. <http://www.australiancurriculum.edu.au/Static/docs/senior%20secondary/Senior%20Secondary%20Curriculum%20- %20Chemistry%20November%202012.pdf> (acedido em 15 de outubro de 2013) • Australian Curriculum, Physics, Senior Secondary Curriculum, Assessment and Reporting Authority (ACARA), 2012. <http://www.australiancurriculum.edu.au/Static/docs/senior%20secondary/Senior%20Secondary%20Curriculum%20- %20Physics.pdf> (acedido em 15 de outubro de 2013) • Bureau International des Poids et Mesures, The International System of Units (SI), Organisation Intergouvernementale de la Convention du Mètre, 2006 <http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf> (acedido em 15 de outubro de 2013) • Caldeira, H., Martins, I.P. et al., Programa de Física e Química A, 10. o ou 11. o ano, Curso Científico-Humanístico de Ciências e Tecnologias, Ministério da Educação, Departamento do Ensino Secundário, 2001. • Caldeira, H., Martins, I.P. et al., Programa de Física e Química A, 11. o ou 12. o ano, Curso Científico-Humanístico de Ciências e Tecnologias, Ministério da Educação, Departamento do Ensino Secundário, 2003. • European Union, Using learnings outcomes, European Qualifications Framework Series: Note 4, 2011 <http://ec.europa.eu/education/lifelong-learning-policy/doc/eqf/note4_en.pdf> (acedido em 7 de outubro de 2013).
  • 29.
    28 Editável efotocopiável © Texto | Novo 10Q • European Association for Chemical and Molecular Sciences (EuCheMS), CHEMISTRY: Developing solutions in a changing world, 2011. <www.euchems.eu/fileadmin/user_upload/highlights/Euchems_Roadmap_gesamt_final2.pdf> (acedido em 7 de outubro de 2013) • European Association for Chemical and Molecular Sciences (EuCheMS), CHEMISTRY, Finding solutions in a changing world, 2011. http://ec.europa.eu/research/horizon2020/pdf/contributions/prior/european_association_for_chemical_and_molecular _sciences.pdf> (acedido em 7 de outubro de 2013) • Fiolhais, C. et al., Metas Curriculares do 3. o Ciclo do Ensino Básico – Ciências Físico-Químicas, Ministério da Educação e Ciência: Direção Geral da Educação, 2013. • Gabinete de Avaliação Educacional (GAVE), Ministério da Educação e Ciência, Relatórios dos Exames Nacionais e Testes Intermédios (2008 a 2012) <www.gave.min-edu.pt/np3/24.html> (acedido em 16 de janeiro de 2014) • Government of Ireland, Leaving Certificate Chemistry Syllabus, National Council for Curriculum and Assessment, 1999. <http://www.curriculumonline.ie/getmedia/7bdd3def-f492-432f-886f- 35fc56bd3544/SCSEC09_Chemistry_syllabus_Eng.pdf > (acedido em 4 de janeiro de 2014) • Government of Ireland, Leaving Certificate Physics Syllabus, National Council for Curriculum and Assessment, 1999. <http://www.curriculumonline.ie/getmedia/a789272e-823f-4d40-b095- 4ff8f6f195e4/SCSEC27_Physics_syllabus_eng.pdf> (acedido em 4 de janeiro de 2014) • Instituto Português da Qualidade, Vocabulário Internacional de Metrologia (VIM), Joint Committee for Guides in Metrology, 2012. <http://www1.ipq.pt/PT/Metrologia/Documents/VIM_IPQ_INMETRO_2012.pdf> (acedido em 15 de outubro de 2013) • Ministère de l’Éducation Nationale, de la Jeunesse et de la Vie Associative, République Française, Enseignement spécifique et de spécialité de physique-chimie de la série scientifique - classe terminale, Bulletin officiel spécial n° 8, 13 octobre 2011. <http://cache.media.education.gouv.fr/file/special_8_men/99/0/physique_chimie_S_195990.pdf> (acedido em 15 de outubro de 2013) • Ministry of Education, Province of British Columbia, Canada, 2006, Chemistry 11 and 12: integrated resource package 2006. <http://www.bced.gov.bc.ca/irp/pdfs/sciences/2006chem1112.pdf> (acedido em 7 de outubro de 2013) • Ministry of Education, Province of British Columbia, Physics 11 and 12: integrated resource package 2006. <http://www.bced.gov.bc.ca/irp/pdfs/sciences/2006physics1112.pdf> (acedido em 7 de outubro de 2013) • OECD, PISA 2009 Results: What Students Know and Can Do – Student Performance in Reading, Mathematics and Science (Volume I), 2010. • OECD, PISA 2012 Results: What Students Know and Can Do – Student Performance in Mathematics, Reading and Science (Volume I), 2013. • OCR Recognising Achievement, GCE Chemistry A v4, AS/A Level GCE, United Kingdom, 2013. <http://www.ocr.org.uk/Images/81089-specification.pdf> (acedido em 15 de outubro de 2013) • OCR Recognising Achievement, GCE Physics A v4, AS/A Level GCE, United Kingdom, 2013. <http://www.ocr.org.uk/Images/81024-specification.pdf> (acedido em 15 de outubro de 2013) • Royal Society of Chemistry, Chemistry for Tomorrow's World, Report with potential opportunities for the Chemical Sciences in 41 global challenge areas, 2009. <http://www.rsc.org/images/Roadmapfull_tcm18-221545.pdf> (acedido em 7 de outubro de 2013) • Stanco, G.M., Mullis, I.V.S., Martin, M.O. and Foy, P., A., Trends in International Mathematics and Science Study, TIMMS- 2011 International Results in Science, Chestnut Hill, MA: TIMSS and PIRLS International Study Center, Boston College and International Association for the Evaluation of Educational Achievement: IEA Secretariat, 2012. • The College Board, AP Chemistry: Curriculum Framework 2013–2014, New York, 2011.<media.collegeboard.com/digitalServices/pdf/ap/11_3461_AP_CF_Chemistry_WEB_110930.pdf> (acedido em 3 de Dezembro de 2013) • The College Board, Science: College Board Standards for College Success, New York, 2009. <http://apcentral.collegeboard.com/apc/public/repository/cbscs-science-standards-2009.pdf> (acedido em 17 de outubro de 2013)
  • 30.
    Editável e fotocopiável© Texto | Novo 10Q 29 O programa de Física e Química A enfatiza de várias formas a flexibilidade. A flexibilidade curricular implica um trabalho de planificação e calendarização por parte do professor. Apresentamos, por isso, uma calendarização que pode servir de guia (não rígido) para professores. Por cada subdomínio inclui-se mais uma ou duas aulas para além das sugeridas no programa da disciplina dando assim margem para o professor integrar, quando achar conveniente, por exemplo, momentos de avaliação formativa ou sumativa ou de reforço teórico-prático. Calendarização anual
  • 31.
  • 32.
    Editável e fotocopiável© Texto | Novo 10Q 31 Planificação a médio prazo Apresenta-se uma proposta de planificação a médio prazo dos dois domínios da química do 10.o ano de escolaridade, cujas linhas estruturantes passaram por: • Identificar e ordenar os conteúdos bem como os respetivos descritores das metas curriculares que lhes correspondem. • Identificar os recursos que visam contribuir para a consecução das metas delineadas, bem como a sua localização no manual, Caderno de Exercícios e Problemas, Caderno de Apoio ao Professor e Planificação a médio prazo
  • 33.
    32 Editável e fotocopiável © Texto | Novo 10Q Domínio Elementos químicos e sua organização Subdomínio Massa e tamanho dos átomos Objetivo geral Consolidar e ampliar conhecimentos sobre elementos químicos e dimensões à escala atómica. Conteúdos Metas Curriculares Recursos • Ordens de grandeza e escalas de comprimento • Dimensões à escala atómica • Massa isotópica e massa atómica relativa média • Quantidade de matéria e massa molar • Fração molar e fração mássica • AL 1.1 Volume e número de moléculas de uma gota de água 1.1 Descrever a constituição de átomos com base no número atómico, no número de massa e na definição de isótopos. 1.2 Determinar a ordem de grandeza de um número relacionando tamanhos de diferentes estruturas na natureza (por exemplo, célula, ser humano, Terra e Sol) numa escala de comprimentos. 1.3 Comparar ordens de grandeza de distâncias e tamanhos à escala atómica a partir, por exemplo, de imagens de microscopia de alta resolução, justificando o uso de unidades adequadas. 1.4 Associar a nanotecnologia à manipulação da matéria a escala atómica e molecular e identificar algumas das suas aplicações com base em informação selecionada. 1.5 Indicar que o valor de referência usado como padrão para a massa relativa dos átomos e das moléculas é 1/12 da massa do átomo de carbono-12. 1.6 Interpretar o significado de massa atómica relativa media e calcular o seu valor a partir de massas isotópicas, justificando a proximidade do seu valor com a massa do isótopo mais abundante. 1.7 Identificar a quantidade de matéria como uma das grandezas do Sistema Internacional (SI) de unidades e caracterizar a sua unidade, mole, com referência ao número de Avogadro de entidades. 1.8 Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente, identificando a constante de Avogadro como constante de proporcionalidade. 1.9 Calcular massas molares a partir de tabelas de massas atómicas relativas (médias). 1.10 Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar. 1.11 Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas grandezas. • Manual: Apresentação dos conteúdos, questões resolvidas e atividade: pp. 10 a 26 Resumo: pp. 27 Atividade laboratorial 1.1: pp. 28 – 30 +Questões: pp. 31 – 38 • Caderno de Exercícios: pp. 4 a 16 • Caderno de Apoio ao Professor: pp. 41 a 44 • Recursos
  • 34.
    Editável e fotocopiável © Texto | Novo 10Q 33 Domínio Elementos químicos e sua organização Subdomínio Energia dos eletrões nos átomos Objetivo geral Reconhecer que a energia dos eletrões nos átomos pode ser alterada por absorção ou emissão de energias bem definidas, correspondendo a cada elemento um espetro atómico característico, e que os eletrões nos átomos se podem considerar distribuídos por níveis e subníveis de energia. Conteúdos Metas Curriculares Recursos • Espetros contínuos e descontínuos • O modelo atómico de Bohr • Transições eletrónicas • Quantização de energia • Espetro do átomo de hidrogénio • Energia de remoção eletrónica • Modelo quântico do átomo – Níveis e subníveis – Orbitais (s, p e d) – Spin 2.1 Indicar que a luz (radiação eletromagnética ou onda eletromagnética) pode ser detetada como partículas de energia (fotões), sendo a energia de cada fotão proporcional a frequência dessa luz. 2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético, comparando as energias dos respetivos fotões. 2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão. 2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão, concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos. 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar à existência de níveis de energia a quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. 2.9 Comparar espetros de absorção e de emissão de elementos químicos, concluindo que são característicos de cada elemento. 2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense). 2.11 Indicar que a energia dos eletrões nos átomos inclui o efeito das atrações entre os eletrões e o núcleo, por as suas cargas serem de sinais contrários, e das repulsões entre os eletrões, por as suas cargas serem do mesmo sinal. 2.12 Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões à volta do núcleo atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões. • Manual: Apresentação dos conteúdos, questões resolvidas e atividade: pp. 40 a 64 Resumo: pp. 65 Atividade laboratorial 1.2: pp. 66 a 68 +Questões: pp. 69 a 78 • Caderno de Exercícios: pp. 18 a 28 • Caderno de Apoio ao Professor: pp. 45 a 50 • Recursos
  • 35.
    34 Editável e fotocopiável © Texto | Novo 10Q • Configuração eletrónica de átomos – Princípio da construção (ou de Aufbau) – Princípio da Exclusão de Pauli • AL 1.2 Teste de chama 2.13 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões. 2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia foto- eletrónica, concluindo que os eletrões se podem distribuir por níveis e subníveis de energia. 2.15 Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que permite dois estados diferentes. 2.16 Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico do átomo. 2.17 Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes esta associada e distingui-las quanto ao número e à forma. 2.18 Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando esse resultado com o princípio de Pauli. 2.19 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia foto- eletrónica, que orbitais de um mesmo subnível np, ou nd, têm a mesma energia. 2.20 Estabelecer as configurações eletrónicas dos átomos, utilizando a notação spd, para elementos até Z = 23, atendendo ao Principio da Construção, ao Principio da Exclusão de Pauli e à maximização do número de eletrões desemparelhados em orbitais degeneradas.
  • 36.
    Editável e fotocopiável © Texto | Novo 10Q 35 Domínio Elementos químicos e sua organização Subdomínio Tabela Periódica Objetivo geral Reconhecer na Tabela Periódica um meio organizador de informação sobre os elementos químicos e respetivas substâncias elementares e compreender que a estrutura eletrónica dos átomos determina as propriedades dos elementos. Conteúdos Metas Curriculares Recursos • Evolução histórica da Tabela Periódica • Estrutura da Tabela Periódica: grupos, períodos e blocos • Elementos representativos e de transição • Famílias de metais e de não metais • Propriedades periódicas – Raio atómico – Energia de ionização • Al 1.3 Densidade relativa de metais 3.1 Identificar marcos históricos relevantes no estabelecimento da Tabela Periódica atual. 3.2 Interpretar a organização da Tabela Periódica com base em períodos, grupos e blocos e relacionar a configuração eletrónica dos átomos dos elementos com a sua posição relativa na Tabela Periódica. 3.3 Identificar a energia de ionização e o raio atómico como propriedades periódicas dos elementos. 3.4 Distinguir entre propriedades de um elemento e propriedades da(s) substância(s) elementar(es) correspondentes. 3.5 Comparar raios atómicos e energias de ionização de diferentes elementos químicos com base nas suas posições relativas na Tabela Periódica. 3.6 Interpretar a tendência geral para o aumento da energia de ionização e para a diminuição do raio atómico observados ao longo de um período da Tabela Periódica. 3.7 Interpretar a tendência geral para a diminuição da energia de ionização e para o aumento do raio atómico observados ao longo de um grupo da Tabela Periódica. 3.8 Explicar a formação dos iões mais estáveis de metais e de não-metais. 3.9 Justificar a baixa reatividade dos gases nobres. • Manual: Apresentação dos conteúdos, questões resolvidas e atividade: pp. 80 a 92 Resumo: pp. 93 Atividade laboratorial 1.3: pp. 94 a 97 +Questões: pp. 98 a 103 • Caderno de Exercícios: pp. 30 a 40 • Caderno de Apoio ao Professor: pp.51 a 53 • Recursos
  • 37.
    36 Editável e fotocopiável © Texto | Novo 10Q Domínio Propriedades e transformações da matéria Subdomínio Ligação química Objetivo geral Compreender que as propriedades das moléculas e materiais são determinadas pelo tipo de átomos, pela energia das ligações e pela geometria das moléculas. Conteúdos Metas Curriculares Recursos • Tipos de ligações químicas • Ligação covalente – Estrutura de Lewis – Energia de ligação e comprimento de ligação – Polaridade das ligações – Geometria molecular – Polaridade das moléculas – Estrutura de moléculas orgânicas e biológicas • Ligações intermoleculares – Ligações de hidrogénio – Forças de van der Waals (de London, entre moléculas polares e entre moléculas polares e apolares) • AL 2.1 Miscibilidade de líquidos 1.1 Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de ligações químicas. 1.2 Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de repulsão entre eletrões e forças de repulsão entre núcleos. 1.3 Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longa distância, sendo estas distâncias respetivamente menores e maiores do que a distância de equilíbrio. 1.4 Indicar que os átomos podem partilhar eletrões formando ligações covalentes (partilha localizada de eletrões de valência), ligações iónicas (transferência de eletrões entre átomos originando estruturas com caráter iónico) e ligações metálicas (partilha de eletrões de valência deslocalizados por todos os átomos). 1.5 Associar as ligações químicas em que não há partilha significativa de eletrões a ligações intermoleculares. 1.6 Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H 2 , N 2 , O 2 e F 2 , segundo o modelo de Lewis. 1.7 Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de moléculas como CH 4 , NH 3 , H 2 O e CO 2 . 1.8 Relacionar o parâmetro ângulo de ligação nas moléculas CH 4 , NH 3 , H 2 O e CO 2 com base no modelo da repulsão dos pares de eletrões de valência. 1.9 Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões de valência, em moléculas como CH 4 , NH 3 , H 2 O e CO 2 . 1.10 Prever a relação entre as energias de ligação ou os comprimentos de ligação em moléculas semelhantes, com base na variação das propriedades periódicas dos elementos envolvidos nas ligações (por exemplo H 2 O e H 2 S ou HCℓ e HBr). 1.11 Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas diatómicas heteronucleares são polares, interpretando essa polaridade com base na distribuição de carga elétrica entre os átomos. • Manual: Apresentação dos conteúdos, questões resolvidas e atividade: pp. 108 a 138 Resumo: pp. 139 Atividade laboratorial 2.1: pp. 140 a 142 +Questões: pp. 143 a 150 • Caderno de Exercícios: pp. 42 a 54 • Caderno de Apoio ao Professor: pp. 54 a 61 • Recursos
  • 38.
    Editável e fotocopiável © Texto | Novo 10Q 37 1.12 Identificar ligações polares e apolares com base no tipo de átomos envolvidos na ligação. 1.13 Indicar alguns exemplos de moléculas polares (H 2 O, NH 3 ) e apolares (CO 2 , CH 4 ). 1.14 Identificar hidrocarbonetos saturados, insaturados e haloalcanos e, no caso de hidrocarbonetos saturados de cadeia aberta até 6 átomos de carbono, representar a fórmula de estrutura a partir do nome ou escrever o nome a partir da fórmula de estrutura. 1.15 Interpretar e relacionar os parâmetros de ligação, energia e comprimento, para a ligação CC nas moléculas etano, eteno e etino. 1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas) em moléculas orgânicas, biomoléculas e fármacos, a partir das suas fórmulas de estrutura. 1.17 Identificar ligações intermoleculares – de hidrogénio e de van der Waals – com base nas características das unidades estruturais. 1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos com as ligações intermoleculares que se estabelecem entre unidades estruturais
  • 39.
    38 Editável e fotocopiável © Texto | Novo 10Q Domínio Propriedades e transformações da matéria Subdomínio Gases e dispersões Objetivo geral Reconhecer que muitos materiais se apresentam na forma de dispersões que podem ser caracterizadas quanto à sua composição. Conteúdos Metas Curriculares Recursos • Lei de Avogadro, volume molar e massa volúmica • Soluções, colóides e suspensões • Composição quantitativa de soluções – Concentração em massa – Concentração – Percentagem em volume e percentagem em massa – Partes por milhão • Diluição de soluções aquosas • AL 2.2 Soluções a partir de solutos sólidos • AL 2.3 Diluição de soluções 2.1 Definir volume molar e, a partir da Lei de Avogadro, concluir que tem o mesmo valor para todos os gases à mesma pressão e temperatura. 2.2 Relacionar a massa de uma amostra gasosa e a quantidade de matéria com o volume molar, definidas as condições de pressão e temperatura. 2.3 Relacionar a massa volúmica de uma substância gasosa com a sua massa molar e volume molar. 2.4 Descrever a composição da troposfera terrestre, realçando N 2 e O 2 como os seus componentes mais abundantes. 2.5 Indicar poluentes gasosos na troposfera e identificar as respetivas fontes. 2.6 Distinguir solução, dispersão coloidal e suspensão com base na ordem de grandeza da dimensão das partículas constituintes. 2.7 Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e suspensões de matéria particulada. 2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas. • Manual: Apresentação dos conteúdos e questões resolvidas: pp. 152 a 162 Resumo: pp. 163 Atividades laboratoriais 2.2 e 2.3: pp. 164 a 167 +Questões: pp. 168 a 174 • Caderno de Exercícios: pp. 56 a 70 • Caderno de Apoio ao Professor: pp. 62 a 65 • Recursos
  • 40.
    Editável e fotocopiável © Texto | Novo 10Q 39 Domínio Propriedades e transformações da matéria Subdomínio Transformações químicas Objetivo geral Compreender os fundamentos das reações químicas, incluindo reações fotoquímicas, do ponto de vista energético e da ligação química. Conteúdos Metas Curriculares Recursos • Energia de ligação e reações químicas – Processos endoenergéticos e exoenergéticos – Variação da entalpia • Reações fotoquímicas na atmosfera – Fotodissociação e fotoionização – Radicais livres e estabilidade das espécies químicas – Ozono estratosférico • AL 2.4 Reação fotoquímica 3.1 Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações químicas. 3.2 Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo endoenergético. 3.3 Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado, ocorrem, respetivamente, com aumento ou diminuição de temperatura. 3.4 Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu sinal (positivo ou negativo). 3.5 Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e dos produtos e a variação de entalpia. 3.6 Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação a partir da variação de entalpia e de outras energias de ligação. 3.7 Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas. 3.8 Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos. 3.9 Interpretar fenómenos de fotodissociação e fotoionização na atmosfera terrestre envolvendo O 2 , O 3 , e N 2 relacionando-os com a energia da radiação envolvida e com a estabilidade destas moléculas. 3.10 Identificar os radicais livres como espécies muito reativas por possuírem eletrões desemparelhados. 3.11 Interpretar a formação e destruição do ozono estratosférico, com base na fotodissociação de O 2 e de O 3 , por envolvimento de radiações ultravioletas UVB e UVC, concluindo que a camada de ozono atua como um filtro dessas radiações. 3.12 Explicar a formação dos radicais livres a partir dos clorofluorocarbonetos (CFC) tirando conclusões sobre a sua estabilidade na troposfera e efeitos sobre o ozono estratosférico. 3.13 Indicar que o ozono na troposfera atua como poluente em contraste com o seu papel protetor na estratosfera. • Manual: Apresentação dos conteúdos, questões resolvidas e atividade: pp. 176 a 190 Resumo: pp. 191 Atividade laboratorial 2.4: pp. 192 e 193 +Questões: pp. 194 a 199 • Caderno de Exercícios: pp. 72 a 80 • Caderno de Apoio ao Professor: pp. 66 a 69 • Recursos
  • 41.
    40 Editável efotocopiável © Texto | Novo 10Q Os planos de aula aqui propostos privilegiam, no início da aula e sempre que oportuno, a revisão dos conteúdos relevantes já abordados. Essa atenção aos conhecimentos anteriores dos alunos radica-se no reconhecimento de que a aprendizagem de novos conteúdos é fortemente influenciada pelos conhecimentos prévios que o aluno possui. Sem prejuízo de outros contextos, recorre-se frequentemente a exemplos do quotidiano, por esta ser uma estratégia que aproxima a química à realidade dos alunos. Deste modo, os alunos tenderão a assimilar melhor os conteúdos estudados e a aplicá-los mais e melhor fora da sala de aula. Aposta-se na criação de situações de aprendizagem que contribuam para o desenvolvimento dos alunos, permitindo-lhes observar, experimentar, manipular materiais, relacionar, conjeturar, argumentar, concluir, comunicar e avaliar. Dá-se particular realce à realização das atividades laboratoriais por estas serem centrais na formação científica dos alunos bem como à resolução de exercícios e problemas que contribuem para a consolidação de conhecimentos. Apresentam-se 16 planos de aula que incluem 2 aulas de 90 minutos cada e 1 aula de 135 minutos. Nas aulas de 135 minutos que funcionam preferencialmente com turmas desdobradas, é fortemente recomendado a realização de aulas laboratoriais ou de índole teórico-práticas sendo, no entanto, esta gestão flexível e variável de escola para escola. Nestes planos de aula não se propôs utilizar como recurso o Caderno de Exercícios e Problemas o que deixa um amplo leque de tarefas à disposição do professor para incluir na prática letiva caso ache pertinente ou à disposição do aluno para promover o estudo autónomo. Estes planos encontram-se em formato impresso e em formato editável, para que o professor lhes possa imprimir o seu cunho pessoal e os possa adaptar às necessidades de cada turma. Planos de aula
  • 42.
    Editável e fotocopiável© Texto | Novo 10Q 41 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Massa e tamanho dos átomos CONTEÚDOS: Ordens de grandeza e escalas de comprimento. Dimensões à escala atómica. Massa isotópica e massa atómica relativa média. Metas Curriculares 1.1 Descrever a constituição de átomos com base no número atómico, no número de massa e na definição de isótopos. 1.2 Determinar a ordem de grandeza de um número relacionando tamanhos de diferentes estruturas na natureza (por exemplo, célula, ser humano, Terra e Sol) numa escala de comprimentos. 1.3 Comparar ordens de grandeza de distâncias e tamanhos à escala atómica a partir, por exemplo, de imagens de microscopia de alta resolução, justificando o uso de unidades adequadas. 1.4 Associar a nanotecnologia à manipulação da matéria à escala atómica e molecular e identificar algumas das suas aplicações com base em informação selecionada. Sumário Constituição dos átomos: número atómico e número de massa. Ordens de grandeza e escalas de comprimentos. Escala atómica. Massa atómica relativa média. Atividades •Em diálogo com os alunos começar por recordar que no 9.° ano já aprenderam que a matéria é constituída por átomos e que estes estão na base da constituição das moléculas e dos iões. •De igual forma recordar a impossibilidade de observar os átomos diretamente, por serem muito pequenos, tendo de se recorrer a microscópios especiais para obter imagens à escala atómica. •Avançar para o estudo da constituição do átomo e colocar a questão: «Como são constituídos os átomos?». Incentivar a participação dos alunos e reforçar participações enriquecedoras. •Apresentar a Fig. 1, da página 10 do Novo 10Q, para que os alunos compreendam que os átomos são constituídos pelo núcleo (protões e neutrões) e pela nuvem eletrónica (eletrões). •Recorrendo à interpretação da Tab. 1 da página 10 do Novo 10Q conhecer melhor cada uma das partículas constituintes do átomo, em particular, carga elétrica, massa e localização no átomo. •Sistematizar e sublinhar duas ideia-chaves: os átomos são eletricamente neutros; a massa de um átomo está praticamente concentrada no núcleo. •Referir a formação de iões como consequência do ganho ou da perda de eletrões por um átomo (ou molécula). •Reforçar a ideia que, na formação de iões, não há variações do número de protões ou de neutrões pois estes estão fortemente ligados no núcleo atómico. •Apresentar os catiões como iões que resultam da perda de eletrões pelo átomo (tem mais protões do que eletrões) e os aniões como iões que resultam do ganho de eletrões pelo átomo (tem menos protões do que eletrões). •Ler e interpretar conjuntamente a Questão resolvida 1 da página 11 do Novo 10Q. •A partir da questão resolvida, concluir que os átomos dos diferentes elementos químicos têm diferente número de protões. •Com base nesta ideia avançar para a definição de número atómico (Z) e número de massa (A), recorrendo sempre à apresentação de alguns exemplos concretos. •Explicar que para indicar o número atómico e o número de massa de um átomo se utiliza a representação simbólica: X Z A . •Ler e interpretar conjuntamente a Questão resolvida 2 da página 13 do Novo 10Q. •Associar as escalas de comprimento às respetivas ordens de grandeza e referir exemplos de diferentes escalas de comprimento bem como a sua utilidade para descrever uma dada realidade. •Analisar conjuntamente as Questões resolvidas 3 e 4 das páginas, respetivamente, 15 e 16 do Novo 10Q para sintetizar as conversões de unidades e os fatores de conversão entre as escalas. •Partindo dos exemplos sobre a escala atómica, introduzir o conceito de nanotecnologia a partir da questão «Será possível manipular os átomos?». •Levar os alunos a concluir que a nanotecnologia é uma área emergente que se dedica à construção de estruturas à escala atómica por manipulação de átomos e moléculas. Plano de aula N.o 1 90 + 135 min
  • 43.
    42 Editável efotocopiável © Texto | Novo 10Q •Ler conjuntamente e analisar a Questão resolvida 5 da página 18 do Novo 10Q para compreender a escala de comprimento típica da nanotecnologia. •Analisar a Tab. 5 da página 19 do Novo 10Q para realçar a importância da nanotecnologia para a sociedade. •Realizar a atividade «Desafios da nanotecnologia» para aplicar conhecimentos e interpretar informações sobre a nanotecnologia. •Salientar que, tal como as dimensões de um átomo são muito reduzidas, também a massa dos átomos são extremamente pequenas. •Recordar que, para não se utilizar os valores de massa tão pequenos dos átomos, se estabeleceu um termo de comparação – 1/12 da massa do carbono-12. •Definir o conceito de massa atómica relativa. •Reforçar a ideia que uma grandeza relativa, como é o caso da massa atómica relativa, é uma grandeza adimensional e, portanto, não tem unidades. •Relembrar o conceito de isótopo para introduzir o conceito de massa isotópica relativa. •Avançar para o estudo da massa atómica relativa média, usando como exemplo os isótopos do cloro e as suas respetivas abundâncias na natureza. •Analisar conjuntamente a Questão resolvida 6 da página 22 do Novo 10Q para interpretar o facto do valor da massa atómica relativa média de um elemento ser um valor próximo da massa isotópica do isótopo mais abundante na natureza. •Consolidar o conceito de massa atómica relativa média através da sua determinação em diferentes exemplos. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 24 das «+Questões» das páginas 31 a 34 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos: pp.10 a 22 Resumo: pp. 27 TPC •Caderno de Exercícios e Problemas: pp. 4 a 10 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 44.
    Editável e fotocopiável© Texto | Novo 10Q 43 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Massa e tamanho dos átomos CONTEÚDOS: Quantidade de matéria e massa molar. Fração mássica e fração molar. AL 1.1 Volume e número de moléculas de uma gota de água. Metas Curriculares 1.5 Indicar que o valor de referência usado como padrão para a massa relativa dos átomos e das moléculas é 1/12 da massa do átomo de carbono-12. 1.6 Interpretar o significado de massa atómica relativa média e calcular o seu valor a partir de massas isotópicas, justificando a proximidade do seu valor com a massa do isótopo mais abundante. 1.7 Identificar a quantidade de matéria como uma das grandezas do Sistema Internacional (SI) de unidades e caracterizar a sua unidade, mole, com referência ao número de Avogadro de entidades. 1.8 Relacionar o número de entidades numa dada amostra com a quantidade de matéria nela presente, identificando a constante de Avogadro como constante de proporcionalidade. 1.9 Calcular massas molares a partir de tabelas de massas atómicas relativas (médias). 1.10 Relacionar a massa de uma amostra e a quantidade de matéria com a massa molar. 1.11 Determinar composições quantitativas em fração molar e em fração mássica, e relacionar estas duas grandezas. Sumário Quantidade de matéria e massa molar. Fração mássica e fração molar. Preparação e realização da AL 1.1 Volume e número de moléculas de uma gota. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Introduzir o estudo da quantidade de matéria colocando a seguinte questão «Como se pode quantificar o número de átomos ou moléculas existentes numa amostra?». Incentivar a participação dos alunos e reforçar participações enriquecedoras. •Realçar que a quantidade de matéria é uma das grandezas de base no Sistema Internacional de unidades cuja unidade é a mole. •Definir 1 mol como a quantidade de matéria correspondente ao número de Avogadro de entidades. •Consolidar o conceito de quantidade de matéria com alguns exemplos de determinação do número de átomos, moléculas ou iões em diferentes amostras. •Debater conjuntamente as seguintes questões «Como saber quantas moléculas tem uma amostra de uma substância, por exemplo de água?», «Como medir uma certa quantidade de matéria, isto é, o número de moles de uma amostra?». •Concluir que a uma determinada quantidade de matéria corresponde determinada massa e, portanto, haverá uma relação entre estas duas grandezas. •Neste sentido, definir a massa molar como uma grandeza que relaciona a massa de uma amostra com a quantidade de matéria. •Ler conjuntamente a Questão resolvida 7 da página 24 do Novo 10Q analisando o cálculo das massas molares. •Calcular a massa molar de várias substâncias. •Analisar a Questão resolvida 8 da página 25 do Novo 10Q para abordar a relação entre a massa molar, a massa de uma amostra e a sua quantidade de matéria. •Avançar para o estudo da fração molar e da fração mássica colocando a questão «Como se pode quantificar um componente numa mistura?». Referir que há grandezas que expressam a fração de um componente numa mistura: a fração mássica e a fração molar. •Num paralelismo entre fração mássica e fração molar, recorrer a exemplos como o oxigénio presente na atmosfera, para explorar com os alunos que informação é possível retirar de cada um dos valores apresentados. •Sintetizar e sublinhar, como ideia chave, que a fração molar fornece informação sobre a relação entre o número de átomos ou moléculas presentes numa mistura e a fração mássica dá informa sobre a relação entre a massa de um componente de uma mistura. •Exprimir a relação que permite calcular a fração molar e, de forma análoga, concluir a relação que determina a fração mássica de um componente numa mistura. Plano de aula N.o 2 90 + 135 min
  • 45.
    44 Editável efotocopiável © Texto | Novo 10Q •Colocar a seguinte questão aos alunos «Quais são as unidades corretas para expressar estas grandezas?». Incentivar a participação dos alunos e reforçar as contribuições enriquecedoras. •Levar os alunos a concluir que estas duas grandezas são adimensionais, portanto não têm unidades, pois tratam-se do quociente entre grandezas com as mesmas dimensões. •Ler conjuntamente a Questão resolvida 9 da página 26 do Novo 10Q para analisar exemplos da determinação das duas grandezas referidas. •Consolidar estes conceitos com a determinação da fração mássica e da fração molar de diferentes misturas, como os componentes do ar ou os elementos presentes no Sol. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 25 a 43 das «+Questões» das páginas 34 a 37 do Novo 10Q. •Com base nos conteúdos abordados, colocar a questão «Como se pode determinar o número de moléculas de uma gota de água?». •Com base nas respostas dos alunos, introduzir a «AL 1.1 Volume e número de moléculas de uma gota de água» a preparar. •Na preparação da atividade laboratorial, abordar, com auxílio dos anexos, os conceitos de medição em Química como algarismos significativos, incerteza experimental associada a leitura no aparelho de medida, erros que afetam as medições e modo de exprimir uma medida a partir de uma única medição direta. •Resolver as questões pré-laboratoriais das páginas 28 e 29 do Novo 10Q. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q nas páginas 29 e 30. •Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 30 e as questões 44 a 46 das «+Questões» das páginas 37 e 38 do Novo 10Q para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp.23 a 26 e 28 a 30 Resumo: pp. 27 TPC •Manual: Questões globais pp. 38 •Caderno de Exercícios e Problemas: pp 10 a 14 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 46.
    Editável e fotocopiável© Texto | Novo 10Q 45 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Energia dos eletrões nos átomos CONTEÚDOS: Espetros contínuos e descontínuos. O modelo atómico de Boh. Transições eletrónicas. Espetro do átomo de hidrogénio. Metas Curriculares 2.1 Indicar que a luz (radiação eletromagnética ou onda eletromagnética) pode ser detetada como partículas de energia (fotões), sendo a energia de cada fotão proporcional a frequência dessa luz. 2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético, comparando as energias dos respetivos fotões. 2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão. 2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão, concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos. 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. 2.9 Comparar espetros de absorção e de emissão de elementos químicos, concluindo que são característicos de cada elemento. 2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense). Sumário Espetros contínuos e descontínuos. O modelo atómico de Bohr e o espetro do átomo de hidrogénio. Transições eletrónicas. Atividades •Fazer uma revisão da matéria do subdomínio «1.1 Massa e tamanho dos átomos» recorrendo ao «Resumo» da página 27 do Novo 10Q. •Em diálogo com os alunos começar por recordar que no 8. o ano já aprenderam que a luz é uma radiação eletromagnética que se propaga na Terra e no espaço e que nos fornece informação sobre a fonte emissora e sobre os meios onde se propagou. •Avançar, desde logo, com a ideia de que a construção do conhecimento científico é um processo lento, e que se deve ao trabalho de vários cientistas, como tal, só no século XX é que se descobriu a natureza corpuscular da luz onde os corpúsculos que a constituem são designados por fotões. •Referir que cada fotão transporta uma pequena porção de energia (que é a menor porção de energia que pode ser absorvida ou emitida) sendo, por isso, a energia de um feixe luminoso múltipla da energia de um fotão. •Concluir que a energia de um fotão está associada à frequência da radiação e que estas grandezas são diretamente proporcionais. •Relembrar ainda os conteúdos abordados no 8. o ano questionando os alunos sobre «O que é o espetro eletromagnético?». Incentivar a participação dos alunos e reforçar contribuições enriquecedoras. •Das participações dos alunos, levá-los a concluir que o espetro eletromagnético é o conjunto de todas as radiações eletromagnéticas – umas visíveis e outras invisíveis. •Analisar conjuntamente a Fig. 2 da página 41 do Novo 10Q concluindo quais os diferentes tipos de radiação eletromagnética e debatendo algumas das suas aplicações no dia-a-dia. •Ainda na exploração da mesma figura, comparar a frequência das diferentes radiações para que os alunos compreendam a relação de proporcionalidade direta existente entre a frequência da radiação e a energia dos fotões dessa radiação. •Ler e interpretar conjuntamente a Questão resolvida 1 da página 41 do Novo 10Q. Plano de aula N.o 3 90 + 135 min
  • 47.
    46 Editável efotocopiável © Texto | Novo 10Q Atividades •Demonstrar com um prisma que a luz branca (policromática) pode ser decomposta nas suas radiações constituintes para explorar os conceitos de luz monocromática e luz policromática, •Avançar para a classificação dos espetros colocando a seguinte questão «O espetro do Sol será igual ao espetro de uma lâmpada de néon?». • Debater a questão com os alunos, mostrando que os espetros podem ser diferentes e, como tal, são classificados de acordo com as suas características. •Referir que os espetros podem ser de emissão ou de absorção ou contínuos ou descontínuos (ou de riscas). Definir cada tipo de espetro, dando exemplos conhecidos. •Ler conjuntamente a Questão resolvida 2 da página 44 do Novo 10Q. •Recordar o modelo atómico de Bohr abordado no 9. o ano. •Referir que as riscas do espetro do átomo de hidrogénio observadas podem ser explicadas com base neste modelo pois estão relacionadas com a estrutura atómica do átomo de hidrogénio. •Informar que foi com o surgimento de uma nova área da Física, a Física Quântica, que fenómenos como os espetros dos elementos puderam ser explicados. •Concluir que as ideias de quantização da energia introduzidas por Niels Bohr no seu modelo atómico foram fundamentais para explicar este fenómeno. •Analisar conjuntamente os diagramas das páginas 46 e 47 do Novo 10Q para sistematizar as ideias de emissão e de absorção de energia pelo átomo de hidrogénio. Referir que estas energias possuem valores bem definidos e que correspondem às riscas observadas no seu espetro. •Avançar para as transições eletrónicas no átomo de hidrogénio colocando a questão «A emissão de luz pelo átomo de hidrogénio corresponde a «saltos» do seu eletrão para níveis de maior ou de menor energia?». •Debater a questão com os alunos para que compreendam que, quando o átomo emite radiação, diminui a sua energia e portanto esse «salto» ocorre para níveis de menor energia. •Definir esses «saltos» do eletrão no átomo como transições eletrónicas que ocorrem por absorção ou emissão de energia. •Analisar conjuntamente a Questão resolvida 3 da página 49 do Novo 10Q. •Realizar a Atividade «Observação de espetros com tubos de Pluecker» da página 53 do Novo 10Q. •Concluir que os espetros atómicos são espetros de riscas e que cada espetro é único para cada elemento funcionando como uma «impressão digital». •Sintetizar e sublinhar a ideia que os espetros de emissão e de absorção de um determinado elemento são complementares, isto é, a radiação emitida possui a mesma energia que a radiação absorvida e, por isso, estes espetros quando sobrepostos originam um espetro contínuo. Realçar que as absorções e emissões de energia correspondem às transições eletrónicas. •Introduzir, através da exploração da Fig. 11 da página 48 do Novo 10Q, as séries espetrais do átomo de hidrogénio. •Determinar a energia das radiações envolvidas nas transições eletrónicas no átomo de hidrogénio através do cálculo da diferença de energia entre os níveis. Realçar que o sinal negativo associado à energia da transição significa que o átomo perdeu energia e o sinal positivo significa que o átomo ganhou energia. •Ler conjuntamente a Questão resolvida 4 da página 51 do Novo 10Q e analisá-la para consolidar os conteúdos. •Analisar espetros de diferentes estrelas e, por comparação com os espetros de diferentes elementos químicos, concluir que a espetroscopia é uma técnica que permite identificar os elementos presentes nas estrelas. •Ler conjuntamente a Questão resolvida 5 da página 52 do Novo 10Q. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 24 das «+Questões» das páginas 69 a 73 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos: pp. 40 a 53 Resumo: pp. 65 TPC •Caderno de Exercícios e Problemas: pp. 20 a 23 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 48.
    Editável e fotocopiável© Texto | Novo 10Q 47 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Energia dos eletrões nos átomos CONTEÚDOS: Quantização de energia. Energia de remoção eletrónica. Modelo quântico do átomo: níveis e subníveis. AL 1.2 Teste de chama. Metas Curriculares 2.11 Indicar que a energia dos eletrões nos átomos inclui o efeito das atrações entre os eletrões e o núcleo, por as suas cargas serem de sinais contrários, e das repulsões entre os eletrões, por as suas cargas serem do mesmo sinal. 2.12 Associar a nuvem eletrónica a uma representação da densidade da distribuição de eletrões a volta do núcleo atómico, correspondendo as regiões mais densas a maior probabilidade de aí encontrar eletrões. 2.13 Concluir, a partir de valores de energia de remoção eletrónica obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões. 2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de energia e subníveis de energia. Sumário Quantização da energia: níveis e subníveis de energia. Energia de remoção eletrónica e espetroscopia fotoeletrónica. Preparação e realização da AL 1.2 Teste de chama. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Recordar o modelo quântico do átomo já abordado no 9. o ano, realçando que surgiu como forma de colmatar algumas das falhas teóricas do modelo atómico de Bohr, nomeadamente a questão das órbitas bem definidas. •Referir que, neste modelo, os protões e os neutrões constituem o núcleo atómico mas que os eletrões se movem em orbitais (e não em órbitas) que são representadas por uma nuvem eletrónica que se trata de uma representação da probabilidade de encontrar os eletrões em torno do núcleo. •Analisar a Fig. 22 da página 55 do Novo 10Q, para compreender a representação do átomo segundo o modelo quântico e depois compará-lo com o modelo de Bohr. •Relembrar o caso particular da ionização do átomo de hidrogénio como introdução do conceito de energia de remoção eletrónica. •Colocar a seguinte questão «Em todos os átomos, os eletrões estarão atraídos da mesma forma pelo núcleo?». Incentivar o debate de ideias e reforçar participações enriquecedoras. •Do debate de ideias, levar os alunos a compreender que nos diferentes átomos, os eletrões são atraídos de forma diferente pelo núcleo e que no mesmo átomo, estes são, também, atraídos de forma diferente. •Informar que as diferentes atrações entre os protões e os eletrões correspondem a diferentes valores de energia potencial. •Definir a energia de remoção eletrónica como a energia mínima que é necessário fornecer a um átomo isolado no estado gasoso para lhe remover um eletrão. •A partir da análise da Fig. 26 da página 57 do Novo 10Q, debater o que é a espetroscopia fotoeletrónica e identificar, a partir do espetro fotoeletrónico, a energia de remoção eletrónica dos vários elementos. •Com base em exemplos concretos, justificar se existe remoção eletrónica quando sobre um átomo de um determinado elemento incide uma radiação com uma determinada energia e caso haja, determinar a energia cinética do eletrão removido. •Ainda tendo por base o espetro fotoeletrónico, promover um debate sobre as ordens de grandeza dos vários eletrões removidos levando os alunos a concluir a existência de níveis e subníveis de energia. •Ler conjuntamente as Questões resolvidas 6 e 7 das páginas, respetivamente, 57 e 59 do Novo 10Q e analisá-las para consolidação de conteúdos. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 25 a 36 das «+Questões» das páginas 73 a 75 do Novo 10Q. •Para operacionalizar os conteúdos abordados colocar a seguinte questão «Por que será o fogo de artifício tão colorido?». •Debater a questão com os alunos e introduzir a «AL 1.2 Teste de chama» como forma de responder à questão. •Resolver as questões pré-laboratoriais das páginas 66 e 67. Plano de aula N.o 4 90 + 135 min
  • 49.
    48 Editável efotocopiável © Texto | Novo 10Q •Na preparação da atividade laboratorial, abordar aspetos de segurança em laboratório relacionados com a utilização de fontes de aquecimento e a manipulação de reagentes. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q nas páginas 68. •Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 68 do Novo 10Q como forma de conseguirem obter a resposta à questão inicial. •Resolver as questões 55 a 59 das «+Questões» da página 77 do Novo 10Q para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp. 54 a 59 e 66 a 68 Resumo: pp. 65 TPC •Caderno de Exercícios e Problemas: pp. 24 a 26 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 50.
    Editável e fotocopiável© Texto | Novo 10Q 49 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Energia dos eletrões nos átomos CONTEÚDOS: Modelo quântico do átomo: níveis e subníveis, orbitais (s, p e d) e spin. Configuração eletrónica de átomos: Princípio da Exclusão de Pauli, Princípio da Construção (ou de Aufbau) eRegra de Hund. Metas Curriculares 2.15 Indicar que os eletrões possuem, além de massa e carga, uma propriedade quantizada denominada spin que permite dois estados diferentes. 2.16 Associar orbital atómica à função que representa a distribuição no espaço de um eletrão no modelo quântico do átomo. 2.17 Identificar as orbitais atómicas s, p e d, com base em representações da densidade eletrónica que lhes está associada e distingui-las quanto ao número e à forma. 2.18 Indicar que cada orbital pode estar associada, no máximo, a dois eletrões, com spin diferente, relacionando esse resultado com o princípio de Pauli. 2.19 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que orbitais de um mesmo subnível np, ou nd, têm a mesma energia. 2.20 Estabelecer as configurações eletrónicas dos átomos, utilizando a notação spd, para elementos até Z = 23, atendendo ao Principio da Construção, ao Principio da Exclusão de Pauli e a maximização do número de eletrões desemparelhados em orbitais degeneradas. Sumário O modelo quântico do átomo. Orbitais s, p, e d e spin. Configuração eletrónica dos átomos e regras de construção: Princípio de Exclusão de Pauli, Princípio de Construção e Regra de Hund. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Relembrar o modelo quântico do átomo já abordado, para introduzir o estudo das orbitais atómicas. •Em diálogo com os alunos, identificar uma orbital atómica como uma região do espaço em torno do núcleo na qual há uma probabilidade não nula de encontrar o eletrão. •Analisar a Fig. 30 da página 60 do Novo 10Q e concluir que as orbitais atómicas têm diferentes formas que são definidas por diferentes letras s, p e d. •Ler e analisar conjuntamente a Questão resolvida 8 da página 61 do Novo 10Q. •Comparando ainda com um espetro de espetroscopia fotoeletrónica, referir que a cada nível de energia podem estar associados diferentes subníveis que se caracterizam pela forma das suas orbitais. •Para introduzir o spin dos eletrões colocar a seguinte questão «Terão os eletrões todos as mesmas propriedades?». Incentivar a participação dos alunos e reforçar participações enriquecedoras. •Observar a Fig. 31 da página 61 do Novo 10Q e compará-la com as respostas dos alunos. •Concluir que os eletrões possuem uma propriedade magnética designada spin que pode apresentar dois estados magnéticos opostos: spin α e spin β. •Informar que o spin é uma propriedade intrínseca dos eletrões e que está quantizada (pois só admite 2 valores: spin α e spin β). •Avançar para o estudo da configuração eletrónica de átomos partindo da questão «Como se distribuem os eletrões nos átomos?». Proporcionar um momento de debate e reforçar participações enriquecedoras. •Recordar que as distribuições eletrónicas estudadas no 9. o ano são um tratamento muito superficial deste fenómeno uma vez que só é tido em atenção o número máximo de eletrões existentes em cada nível de energia. •Introduzir o diagrama de caixas como uma ferramenta que permite identificar esquematicamente a distribuição dos eletrões no átomo por cada nível e subnível de energia. •Explorar o Princípio de Exclusão de Pauli que mostra que, numa mesma orbital, só podem existir dois eletrões com spin contrário. •Mais uma vez comparando com os espetros fotoeletrónicos, refletir que no subnível p existem 6 eletrões e, que de acordo com o Princípio de Exclusão de Pauli, existirão 3 orbitais com a mesma energia designando-se, por isso, orbitais degeneradas. •Sistematizar o conceito questionando os alunos «Quantas orbitais existem no subnível d?». Plano de aula N.o 5 90 + 135 min
  • 51.
    50 Editável efotocopiável © Texto | Novo 10Q •Debater as ideias com os alunos concluindo que no subnível d existem 5 orbitais degeneradas. •Referir que a distribuição dos eletrões nas orbitais do átomo e a sua configuração obedece a outras regras para além do Princípio de Exclusão de Pauli: o Princípio de Construção ou princípio de Aufbau e a Regra de Hund. •Definir o Princípio de Construção como a regra que permite prever a distribuição dos eletrões de um átomo no estado fundamental (de menor energia). •Analisar a Fig. 33 da página 63 do Novo 10Q para relacionar cada orbital com a sua energia dando realce às orbitais do tipo d pois estas orbitais são mais energéticas que as orbitais do tipo s do nível de energia que as sucede. •Utilizar como exemplo o escândio para demonstrar a sua configuração eletrónica de acordo com o Princípio da Construção. •Apresentar a Regra de Hund através de, por exemplo, a configuração eletrónica do nitrogénio num diagrama de caixas. •Comparar uma configuração que obedeça à Regra de Hund com uma que não obedeça para concluir que, nas orbitais degeneradas, a configuração eletrónica tende a maximizar o número de eletrões desemparelhados com o mesmo spin. •Ler e analisar conjuntamente a Questão resolvida 9 apresentada na página 64 do Novo 10Q. •Dados alguns exemplos de elementos representativos, pedir aos alunos que façam a sua configuração eletrónica de acordo com as regras estabelecidas para consolidação dos conhecimentos, tal como apresentado na questão resolvida anterior. •Comparar as configurações eletrónicas representadas e identificar os eletrões de valência como sendo os eletrões de todas as orbitais do último nível de energia e o cerne do átomo com o conjunto do núcleo e dos eletrões interiores (excluindo os de valência). •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 37 a 54 das «+Questões» das páginas 75 a 77 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos pp. 60 a 64 Resumo: pp. 65 TPC •Manual: Questões globais pp. 77 •Caderno de Exercícios e Problemas: pp. 25 e 26 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 52.
    Editável e fotocopiável© Texto | Novo 10Q 51 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Tabela Periódica CONTEÚDOS: Evolução histórica da Tabela Periódica. Estrutura da Tabela Periódica: grupos, períodos e blocos. Elementos representativos e de transição. Propriedades periódicas: raio atómico e energia de ionização. Metas Curriculares 3.1 Identificar marcos históricos relevantes no estabelecimento da Tabela Periódica atual. 3.2 Interpretar a organização da Tabela Periódica com base em períodos, grupos e blocos e relacionar a configuração eletrónica dos átomos dos elementos com a sua posição relativa na Tabela Periódica. 3.3 Identificar a energia de ionização e o raio atómico como propriedades periódicas dos elementos. 3.5 Comparar raios atómicos e energias de ionização de diferentes elementos químicos com base nas suas posições relativas na Tabela Periódica. 3.6 Interpretar a tendência geral para o aumento da energia de ionização e para a diminuição do raio atómico observados ao longo de um período da Tabela Periódica. 3.7 Interpretar a tendência geral para a diminuição da energia de ionização e para o aumento do raio atómico observados ao longo de um grupo da Tabela Periódica. Sumário Evolução histórica da Tabela Periódica. Organização da Tabela Periódica: grupos, períodos e blocos. Propriedades periódicas: raio atómico e energia de ionização. Atividades •Fazer uma revisão da matéria do subdomínio «1.2 Energia dos eletrões nos átomos» recorrendo ao «Resumo» da página 65 do Novo 10Q. •Em diálogo com os alunos referir que a enorme diversidade de materiais da natureza é resultado das variadas associações de alguns milhões de substâncias conhecidas. Contudo, é muito reduzido o número de elementos químicos que as constituem, que se encontram organizados na Tabela Periódica dos elementos. •Iniciar o estudo da Tabela Periódica questionando os alunos: «Quem teve a ideia de ordenar os elementos químicos numa tabela tão genial?». Debater as diferentes ideias reforçando as participações enriquecedoras. •A partir das ideias dos alunos, referir que a evolução da estrutura da Tabela Periódica e da organização dos elementos foi um processo lento que resultou da contribuição de vários cientistas. •Destacar as contribuições de Döbereiner, Newlands, Mendeleev e Moseley para a organização dos elementos e para a construção da Tabela Periódica atual. •Avançar para a interpretação da Tabela Periódica observando-a e analisando a sua organização. •Enfatizar que os elementos químicos estão dispostos em 18 colunas verticais, a que chamamos grupos e em 7 linhas horizontais, os períodos. Na parte inferior da Tabela Periódica encontram-se a série dos lantanídeos e dos actinídeos. •Referir que até à data, a IUPAC – entidade que regulamenta toda a nomenclatura em química – reconhece a existência de 114 elementos químicos. •Dar a conhecer aos alunos o site da IUPAC e a sua Tabela Periódica. •Interrogar os alunos «Como foi feita a organização dos elementos?». •Debater as ideias com os alunos relembrando o estudo da Tabela Periódica no 9. o ano. •Concluir que os elementos estão organizados por ordem crescente do seu número atómico e que os elementos do mesmo grupo têm algumas propriedades comuns entre si. •Identificar que há conjuntos de elementos metálicos, não metálicos e os gases nobres. •Indicar que, como existem propriedades semelhantes entre vários elementos, estes formam famílias, como as famílias dos metais alcalinos, dos metais alcalino-terrosos, dos halogénios ou dos gases nobres. •Apresentar a configuração eletrónica de diferentes elementos, por exemplo o sódio, o vanádio e o cloro, para identificar a existência de blocos na Tabela Periódica (blocos s, p, d e f) que estão relacionados com as orbitais de maior energia ocupadas pelos átomos de cada elemento. •Interpretar as Fig. 3 e 4 da página 82 do Novo 10Q e Fig. 5 da página 83 para identificar os elementos representativos e de transição e os blocos da Tabela Periódica para sistematizar os conteúdos abordados. •Relacionar o grupo dos elementos representativos na Tabela Periódica com o número dos seus eletrões de valência. •De forma semelhante, relacionar o período dos elementos representativos na Tabela Periódica com o número de níveis de energia ocupados pelos eletrões no átomo. Plano de aula N.o 6 90 + 135 min
  • 53.
    52 Editável efotocopiável © Texto | Novo 10Q Atividades •Ler conjuntamente as Questões resolvidas 1 e 2 das páginas, respetivamente, 83 e 84 do Novo 10Q para sintetizar a relação entre as configurações eletrónicas dos elementos e a respetiva posição na Tabela Periódica. •Realçar e sublinhar a ideia chave que apenas se pode relacionar a configuração eletrónica dos elementos com a sua posição na Tabela Periódica quando estes se encontram no estado fundamental. •Avançar para o estudo das propriedades periódicas dos elementos colocando a questão «Por que é que esta Tabela é Periódica?». Proporcionar um momento de debate e reforçar participações enriquecedoras. •Partir das ideias dos alunos, para que compreendam que a Tabela é periódica porque certas propriedades dos elementos variam com regularidade. •Questionar os alunos «Como varia o tamanho dos átomos dos elementos da Tabela Periódica?» para introduzir a variação do raio atómico. Debater as respostas dos alunos para que compreendam que os átomos terão diferentes raios atómicos e que terão uma determinada organização. Pedir aos alunos para fazerem a distribuição eletrónica de elementos como o flúor, o oxigénio, o lítio, o sódio e o potássio, debatendo depois a variação do raio atómico ao longo de cada grupo e de cada período da Tabela Periódica. •Da análise das distribuições eletrónicas dos elementos, sintetizar que quanto maior for o seu número quântico principal, maior será o tamanho da sua nuvem eletrónica, ou seja, maior será o seu raio atómico e que para elementos com o mesmo número quântico, quanto maior for a carga nuclear do átomo, mais este atrairá os seus eletrões, logo o seu raio atómico será menor. •Ler e analisar conjuntamente a Questão resolvida 3 da página 86 do Novo 10Q para consolidar conhecimentos. •Relembrar os conteúdos sobre a energia de remoção eletrónica abordados anteriormente para introduzir, por analogia, o conceito de energia de ionização, questionando os alunos «Como é possível remover um eletrão de um átomo?». •Debater as suas respostas e concluir que a energia de ionização é uma medida da maior ou menor facilidade com que o eletrão pode ser removido do átomo. •Definir a energia de ionização como a energia mínima necessária para remover um eletrão de um átomo no estado gasoso e no seu estado fundamental, e explicar aos alunos que quanto maior for a energia de ionização mais difícil é a remoção de um eletrão ao átomo. •Explicar que cada átomo tem tantas energias de ionização quantos eletrões possui, designando-se a energia necessária para remover o eletrão mais afastado do núcleo atómico (o eletrão mais energético) de 1. a energia de ionização, para remover o 2. o eletrão mais energético do átomo agora ionizado de 2. a energia de ionização e assim sucessivamente. •Mostrar que o eletrão de valência é o eletrão mais fácil de remover porque tem uma energia maior, ou seja, sente uma menor atração elétrica do núcleo atómico, por isso, a 1. a energia de ionização é menor que a 2. a energia de ionização, e esta é menor que a 3. a … •Questionar os alunos «Se a energia de ionização depende da atração que o núcleo atómico exerce sobre os eletrões de valência do átomo, como variará esta propriedade ao longo dos elementos da Tabela Periódica?» para introduzir um pequeno debate, para compreender a variação da energia de ionização ao longo dos grupos e dos períodos da Tabela Periódica. •A partir da configurações eletrónicas feitas anteriormente, analisá-las conjuntamente de forma a explorar como a energia de ionização variará ao longo de cada período e de cada grupo da Tabela Periódica, concluindo que varia de forma inversa do raio atómico. •Concluir assim que quanto maior o número quântico principal, menor é sua 1. a energia de ionização (se o eletrão se encontra mais afastado do núcleo atómico, sente uma menor atração por parte deste, logo é mais fácil removê-lo) e, para átomos com o mesmo número quântico principal, quanto maior a carga nuclear, maior a energia de ionização (se o eletrão está eletricamente mais atraído pelo núcleo atómico mais difícil é removê-lo do átomo) •Ler conjuntamente a Questão resolvida 4 da página 88 do Novo 10Q. •Construir um quadro síntese semelhante à Tab. 2 da página 88 do Novo 10Q para evidenciar os fatores que influenciam o raio atómico e a energia de ionização. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 23 das «+Questões» das páginas 98 a 101 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos: pp. 80 a 88 Resumo: pp. 93 TPC •Caderno de Exercícios e Problemas: pp. 32 a 35 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 54.
    Editável e fotocopiável© Texto | Novo 10Q 53 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Elementos químicos e sua organização SUBDOMÍNIO: Tabela Periódica CONTEÚDOS: Famílias de metais e de não metais. Al 1.3 Densidade relativa de metais Metas Curriculares 3.4 Distinguir entre propriedades de um elemento e propriedades da(s) substância(s) elementar(es) correspondentes. 3.8 Explicar a formação dos iões mais estáveis de metais e de não-metais. 3.9 Justificar a baixa reatividade dos gases nobres. Sumário Propriedades dos elementos e das substâncias elementares. Preparação e realização da AL 1.3 Densidade relativa de metais. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Avançar para o estudo das propriedades dos elementos e das substâncias elementares relembrando a classificação das substâncias de Lavoisier para distinguir propriedades das substâncias elementares como o caráter metálico e as propriedades dos elementos como o raio atómico ou a energia de ionização já estudadas. •Pedir aos alunos outros exemplos de propriedades das substâncias elementares e de propriedades dos elementos. •Completar os exemplos dos alunos com propriedades que possam não ter sido referidas. Registar esses exemplos numa tabela distinguindo as propriedades dos elementos e as propriedades das substâncias elementares. •Apresentar configurações eletrónicas de elementos de algumas famílias como por exemplo os metais alcalinos, os metais alcalino-terrosos, os halogénios e os gases nobres. •Relacionar a sua configuração eletrónica com os iões mais prováveis desses elementos concluindo que os átomos da mesma família têm tendência para formar iões semelhantes (por terem uma configuração eletrónica semelhante) e, portanto, têm também propriedades químicas semelhantes. •Evidenciar algumas propriedades físico-químicas comuns aos elementos de cada família e fazer a comparação entre as propriedades dos metais e dos não metais. Ler conjuntamente a Questão resolvida 5 da página 89 do Novo 10Q. •Construir conjuntamente uma tabela semelhante à Tab. 3 da página 90 para sistematizar os conteúdos. •Reforçar a ideia chave que os gases nobres são substâncias muito estáveis e, portanto, pouco reativas, porque os seus átomos possuem as orbitais totalmente preenchidas. Ler conjuntamente a Questão resolvida 6 da página 91. •Realizar a Atividade «Propriedades dos elementos e das substâncias elementares» da página 92 para consolidar e aplicar os conhecimentos adquiridos. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 24 a 31 das «+Questões» das páginas 101 e 102 do Novo 10Q. •Introduzir a «AL 1.3 Densidade relativa de metais» questionando «Como será possível identificar uma amostra desconhecida?». Incentivar a participação e realçar as participações enriquecedoras. •Partir das respostas dos alunos para evidenciar que há propriedades que são características das substâncias como por exemplo a massa volúmica ou a densidade relativa. •Na preparação da atividade laboratorial, abordar os conceitos de massa volúmica e de densidade relativa tal como a determinação da densidade relativa de um sólido por picnometria. •Introduzir, com auxílio dos anexos, os erros de medição (aleatórios e sistemáticos), a determinação do erro percentual e a escrita dos resultados experimentais com o número correto de algarismos significativos. •Resolver as questões pré-laboratoriais das páginas 95 e 96 do Novo 10Q. Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q nas páginas 96 e 97. •Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 97 do Novo 10Q. •Resolver a questão 32 das «+Questões» da página 102 para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp. 89 a 92 e 94 a 97 Resumo: pp. 93 TPC •Manual: Questões globais pp. 103 •Caderno de Exercícios e Problemas: pp. 36 a 38 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas. Plano de aula N.o 7 90 + 135 min
  • 55.
    54 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Ligação química CONTEÚDOS: Tipos de ligação química. Ligação covalente: estrutura de Lewis. Metas Curriculares 1.1 Indicar que um sistema de dois ou mais átomos pode adquirir maior estabilidade através da formação de ligações químicas. 1.2 Interpretar as interações entre átomos através das forças de atração entre núcleos e eletrões, forças de repulsão entre eletrões e forças de repulsão entre núcleos. 1.3 Interpretar gráficos da energia em função da distância internuclear durante a formação de uma molécula diatómica identificando o predomínio das repulsões a curta distância e o predomínio das atrações a longas distâncias, sendo estas distâncias respetivamente menores e maiores do que a distância de equilíbrio. 1.4 Indicar que os átomos podem partilhar eletrões formando ligações covalentes (partilha localizada de eletrões de valência), ligações iónicas (transferência de eletrões entre átomos originando estruturas com caráter iónico) e ligações metálicas (partilha de eletrões de valência deslocalizados por todos os átomos). 1.5 Associar as ligações químicas em que não há partilha significativa de eletrões a ligações intermoleculares. 1.6 Interpretar a ocorrência de ligações covalentes simples, duplas ou triplas em H2, N2, O2 e F2, segundo o modelo de Lewis. 1.7 Representar, com base na regra do octeto, as fórmulas de estrutura de Lewis de moléculas como CH4, NH3, H2O e CO2. Sumário Ligação química: ligação covalente, ligação iónica, ligação metálica e ligações intermoleculares. Notação de Lewis e regra do octeto. Atividades •Fazer uma revisão da matéria do subdomínio «1.3 Tabela Periódica» recorrendo ao «Resumo» da página 93 do Novo 10Q. •Em diálogo com os alunos introduzir o conceito de ligação química já abordado no 9. o ano, recordando que as ligações químicas se formam devido a forças atrativas de natureza eletrostática que resultam de um equilíbrio das repulsões entre os núcleos, das repulsões entre os eletrões e das atrações entre os núcleos e os eletrões. •Analisar a Fig. 2 da página 108 para compreender que a ligação química se forma quando os átomos estão num estado de equilíbrio onde há maior estabilidade e menor energia no sistema. •Concluir que quando os átomos estão completamente afastados a energia do sistema é zero e à medida que se aproximam, a energia vai diminuindo (atinge valores cada vez mais negativos) até atingir um valor mínimo – a energia de ligação. •Realçar que, quando se forma a ligação química, a distância internuclear designa-se por comprimento de ligação e que este comprimento é um valor médio devido à constante agitação dos átomos. •Relembrar que eletrões de valência contribuem significativamente para a formação da ligação química. Estes podem ser partilhados pelos átomos ou transferidos de um átomo para outro. Existindo, por isso, três tipos de ligações: ligação covalente, ligação iónica e ligação metálica. •Apresentar a ligação covalente como uma ligação que se estabelece entre átomos de não-metais e na qual há partilha localizada de eletrões de valência entre os átomos. •Recorrendo à Fig. 4, da página 110 do Novo 10Q, apresentar o cloreto de sódio como um exemplo de uma substância iónica e com base nela introduzir a ligação iónica como uma ligação química que se estabelece, geralmente, por transferência de eletrões entre átomos de metais e alguns não-metais, na qual se formam iões positivos e negativos (unidades estruturais), originando substâncias iónicas. •Para conhecer melhor as propriedades das suas substâncias iónicas colocar aos alunos a seguinte questão: «Em que circunstâncias ocorre a condução elétrica em sais?». Promover a participação dos alunos e reforçar as ideias enriquecedoras. •Com base nas participações dos alunos, apresentar algumas das propriedades das substâncias iónicas. • Definir a ligação metálica e apresentar algumas propriedades dos metais. •Avançar para o estudo das forças intermoleculares colocando a questão «Se os átomos se atraem para formar Plano de aula N.o 8 90 + 135 min
  • 56.
    Editável e fotocopiável© Texto | Novo 10Q 55 Atividades moléculas, será que há alguma interação também entre as próprias moléculas?». Criar um pequeno momento de debate ordenado realçando as participações mais enriquecedoras. •Do debate realçar que também há forças de natureza eletrostática entre moléculas vizinhas que se designam por ligações intermoleculares. •Informar que nestas ligações a partilha de eletrões entre as moléculas é muito menos acentuada do que aquela que ocorre entre os átomos sendo estas, portanto, ligações muito mais fracas do que as que existem entre átomos ou iões. •Referir que na ligação covalente os átomos nem sempre partilham o mesmo número de eletrões. •Seguidamente abordar a notação de Lewis para representar os eletrões de valência dos átomos e salientar quais estão envolvidos diretamente na ligação covalente. •Sublinhar a ideia chave que apenas os eletrões de valência estão envolvidos na formação das ligações covalentes. •Apresentar como exemplos as moléculas de H2, N2, O2 e F2 e determinar o número de eletrões de valência de cada elemento envolvido na ligação. •Introduzir a regra do octeto como critério (com algumas exceções como o hidrogénio) para determinar o número de eletrões ligantes (e o tipo de ligação química) que confere maior estabilidade à molécula. •Com base na notação de Lewis para estas moléculas, identificar o número de pares de eletrões de valência ligantes e, com base nisso, classificar a ligação como covalente simples, dupla ou tripla. Identificar também os eletrões não ligantes. •Para consolidar conhecimentos, realizar uma tarefa análoga para moléculas mais complexas como, por exemplo, as moléculas de CH4, NH3, H2O e CO2. Classificar cada uma das ligações covalentes envolvidas e indicar os eletrões ligantes e não ligantes. •Ler conjuntamente a Questão resolvida 1 da página 116 do Novo 10Q. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 13 das «+Questões» das páginas 143 e 144 Recursos •Manual Apresentação dos conteúdos: pp. 108 a 118 Resumo: pp. 139 TPC •Caderno de Exercícios e Problemas: pp.44 a 46 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 57.
    56 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Ligação química CONTEÚDOS: Ligação covalente: energia de ligação e comprimento de ligação, polaridade das ligações, geometria molecular, polaridade das moléculas. Metas Curriculares 1.8 Relacionar o parâmetro ângulo de ligação nas moléculas CH4, NH3, H2O e CO2 com base no modelo da repulsão dos pares de eletrões de valência. 1.9 Prever a geometria molecular, com base no modelo da repulsão dos pares de eletrões de valência, em moléculas como CH4, NH3, H2O e CO2. 1.10 Prever a relação entre as energias de ligação ou os comprimentos de ligação em moléculas semelhantes, com base na variação das propriedades periódicas dos elementos envolvidos nas ligações (por exemplo H2O e H2S ou HCℓ e HBr). 1.11 Indicar que as moléculas diatómicas homonucleares são apolares e que as moléculas diatómicas heteronucleares são polares, interpretando essa polaridade com base na distribuição de carga elétrica entre os átomos. 1.12 Identificar ligações polares e apolares com base no tipo de átomos envolvidos na ligação. 1.13 Indicar alguns exemplos de moléculas polares (H2O, NH3) e apolares (CO2, CH4). Sumário Ligação química: energia de ligação comprimento de ligação e polaridade das ligações. Polaridade e geometria das moléculas. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Ainda com base na Fig. 2 da página 108 do Novo 10Q, definir a energia de ligação como a energia que é necessário fornecer à molécula para quebrar uma determinada ligação, ou seja, é a energia que se deve fornecer a dois átomos ligados, isolados de quaisquer outros, para os afastar a uma distância infinita. •Realçar que a energia de ligação é um parâmetro da ligação química que informa sobre a estabilidade das moléculas. Assim, quanto maior a energia de ligação, mais forte é a ligação química e mais estável é a molécula. •Avançar para o estudo do comprimento de ligação (já definido anteriormente) questionando «Como estará o comprimento da ligação química relacionado com a estabilidade da molécula?». Incentivar a participação e reforçar as ideias positivas. •Das participações dos alunos, realçar que quanto maior for a energia de ligação, mais próximos se encontram os núcleos atómicos e menor é o comprimento da ligação. •Concluir que quanto menor o comprimento de ligação maior a estabilidade da molécula, ou seja, o comprimento de ligação é inversamente proporcional à energia de ligação. •Referir também que é possível prever a variação do comprimento de ligação com base no raio atómico dos átomos envolvidos. •Apresentar como exemplo o dióxido de enxofre e a água. •Analisar os raios atómicos dos elementos envolvidos e concluir que o raio atómico do enxofre é superior ao do oxigénio e, como nestas moléculas o oxigénio e o enxofre estão ligados ao mesmo elemento, é de prever que o comprimento da ligação H–S seja superior ao comprimento da ligação H–O. •Ler conjuntamente a Questão resolvida 2 da página 118 do Novo 10Q e analisá-la, realçando as unidades em que se exprime usualmente o comprimento e a energia de ligação. •Em diálogo com os alunos, referir que as repulsões entre os pares de eletrões de valência condicionam a geometria espacial da molécula. •Realçar que a Teoria de Repulsão de Pares Eletrónicos de Valência (TRPEV) permite prever qual a geometria molecular adquirida bem como os ângulos entre as ligações na molécula. •Da abordagem à TRPEV, concluir que há repulsões entre todos os pares de eletrões de valência e, portanto, a disposição dos átomos na molécula corresponde a repulsões mínimas entre os pares de eletrões de valência (ligantes e não ligantes) que confere à molécula uma geometria que lhe dá maior estabilidade. •A partir da Tab. 3 da página 119 do Novo 10Q, debater as diferentes geometrias apresentadas. Plano de aula N.o 9 90 + 135 min
  • 58.
    Editável e fotocopiável© Texto | Novo 10Q 57 Atividades •Realçar que as geometrias angular e piramidal trigonal ocorrem devido às repulsões de pares de eletrões de valência não ligantes no átomo central. •Ler conjuntamente e analisar a Questão resolvida 3 da página 120. •Realizar a Atividade «Modelos moleculares e simulações computacionais» da página 121 do Novo 10Q, realçando o potencial da modelação para a compreensão da geometria molecular pela sua visualização a 3 dimensões. •Avançar para o estudo da polaridade das moléculas definindo o que é a distribuição de carga elétrica nas moléculas. •Analisar as Fig. 10 e 11 da página 122 para evidenciar simetrias e assimetrias na distribuição da carga elétrica em torno dos átomos. •Definir mapa de potencial eletrostático e mostrar a sua importância para a determinação da distribuição de carga elétrica numa molécula. •Definir moléculas polares como sendo moléculas com distribuição assimétrica de carga elétrica e moléculas apolares como sendo moléculas com distribuição simétrica de carga elétrica. •Para introduzir a polaridade das ligações covalentes apresentar um conjunto de moléculas como por exemplo, HBr, HF, CH4, H2O, N2, O2, C2H6 e NH3. Questionar os alunos sobre qual a polaridade das ligações químicas existentes nas moléculas apresentadas. •Das participações dos alunos, levá-los a concluir que apenas em N2, O2 e na ligação C–C em C2H5OH existem ligações covalentes apolares, porque os átomos envolvidos são do mesmo elemento. •Sublinhar o facto de, mesmo existindo ligações covalentes polares, as moléculas poderem ser apolares como é o caso de CH4 pois a molécula possui distribuição simétrica de carga elétrica. Pelo contrário, em C2H5OH existem ligações covalentes apolares e a molécula é polar. •Ler a Questão resolvida 4 da página 123 do Novo 10Q para analisar mapas de potencial eletrostático para moléculas mais complexas. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 14 a 27 das «+Questões» das páginas 144 a 147. Recursos •Manual Apresentação dos conteúdos: pp. 119 a 125 Resumo: pp. 139 TPC •Caderno de Exercícios e Problemas: pp. 46 a 49 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 59.
    58 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Ligação química CONTEÚDOS: Ligação covalente: estruturas de moléculas orgânicas e biológicas. Metas Curriculares 1.14 Identificar hidrocarbonetos saturados, insaturados e haloalcanos e, no caso de hidrocarbonetos saturados de cadeia aberta até 6 átomos de carbono, representar a fórmula de estrutura a partir do nome ou escrever o nome a partir da fórmula de estrutura. 1.15 Interpretar e relacionar os parâmetros de ligação, energia e comprimento, para a ligação CC nas moléculas etano, eteno e etino. 1.16 Identificar grupos funcionais (álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas) em moléculas orgânicas, biomoléculas e fármacos, a partir das suas fórmulas de estrutura. Sumário Hidrocarbonetos. Representação de fórmulas de estrutura e nomenclatura de alcanos. Grupos funcionais e classes de compostos orgânicos. Atividades •Em diálogo com os alunos perguntar: «Como se justifica a grande importância do elemento carbono?» Incentivar a sua participação e levá-los a associar a importância do carbono ao facto de ser o único elemento que pode ligar-se a si próprio, formando moléculas de cadeias longas ou em anel, através de ligações covalentes, e ao se ligar frequentemente ao hidrogénio (H), oxigénio (O) e nitrogénio (N) através de ligações covalentes (e menos frequentemente a outros elementos) que são abundantes nos seres vivos. •Concluir, portanto, que pela sua importância, o carbono é o elemento central do estudo de uma área da química: a química orgânica. •Introduzir o estudo dos hidrocarbonetos relembrando que as suas principais fontes são os combustíveis fósseis e que hoje em dia existem milhares de compostos orgânicos que nem sequer existem na Natureza. •Apresentar alguns exemplos de formas de representar os compostos orgânicos, como é o caso da fórmula de estrutura, de estrutura condensada ou a fórmula de ligação em linha. •Referir que os compostos orgânicos mais simples são os hidrocarbonetos (que são constituídos unicamente por átomos de carbono e de hidrogénio) e que os hidrocarbonetos de cadeia aberta que apenas possuem ligações simples pertencem à família dos alcanos. •Analisar a Tab. 7 da página 127 do Novo 10Q para compreender que as mesmas fórmulas moleculares podem corresponder a hidrocarbonetos com diferentes estruturas e, portanto, com diferentes propriedades. •Referir que os alcanos são designados por hidrocarbonetos saturados por terem apenas ligações covalentes simples entre os átomos de carbono. •Por outro lado, referir que os hidrocarbonetos insaturados são os compostos que possuem ligações covalentes duplas ou triplas entre os seus átomos de carbono. •Recordar o comprimento de ligação e a energia de ligação já abordados para comparar os valores apresentados para as diferentes ligações covalentes entre átomos de carbono nos hidrocarbonetos. •Concluir que a maiores valores de energia de ligação correspondem menores valores de comprimento de ligação e, portanto, a ligação covalente tripla é mais forte do que a ligação covalente simples. •Colocar a questão «Será que apenas existem hidrocarbonetos de cadeia aberta?». Incentivar a participação dos alunos e realçar as participações enriquecedoras. •Concluir que existem hidrocarbonetos de cadeia fechada também chamados hidrocarboneto cíclicos. •Apresentar o benzeno como um composto importante que pelas suas propriedades únicas (a partilha deslocalizada dos eletrões das ligações duplas por todos os átomos de carbono do anel), é a base estrutural dos compostos aromáticos (uma classe de compostos orgânicos). •Recordando de novo o que já foi abordado no 9. o ano, apresentar a nomenclatura dos hidrocarbonetos saturados com cadeias lineares ou ramificadas até 6 átomos de carbono, de acordo com as regras IUPAC. •Analisar a tabela da página 134 do Novo 10Q para sintetizar as regras de nomenclatura destes compostos. •A partir de alguns exemplos de fórmulas de estrutura pedir aos alunos que apresentem o nome respetivo, segundo as regras da IUPAC. Plano de aula N.o 10 90 + 135 min
  • 60.
    Editável e fotocopiável© Texto | Novo 10Q 59 Atividades •De igual forma, apresentar os nomes de alguns compostos para os alunos representarem as suas fórmulas de estrutura. •Introduzir os grupos funcionais colocando a seguinte questão aos alunos «Será que os compostos orgânicos que constituem os seres vivos são apenas constituídos por átomos de carbono e de hidrogénio?». Promover um pequeno debate, realçando as ideias enriquecedoras. •Concluir que os átomos de carbono também se podem ligar a outros elementos como o oxigénio, o nitrogénio e também os halogéneos que dependendo da sua estrutura possuem propriedades particulares. •Introduzir assim os grupos funcionais que são característicos de certas classes de compostos orgânicos. •Apresentar as várias classes de compostos orgânicos – haloalcanos, álcoois, aldeídos, cetonas, ácidos carboxílicos e aminas – e os respetivos grupos funcionais. •Sublinhar a importância dos aminoácidos para os seres vivos indicando que estes são compostos orgânicos formados por um grupo carboxilo (característico dos ácidos carboxílicos) e um grupo amina (característico das aminas). •Ler e analisar conjuntamente a Questão resolvida 5 da página 134 do Novo 10Q para consolidar a identificação das classes de compostos orgânicos. •Analisar as páginas 132 e 133 para dar a conhecer compostos orgânicos de estruturas mais complexas e realçar a grande importância destes compostos para o conforto e qualidade de vida do ser humano. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 28 a 36 das «+Questões» das páginas 147 e 148 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos: pp. 126 a 134 Resumo: pp. 139 TPC •Caderno de Exercícios e Problemas: pp. 49 a 51 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 61.
    60 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Ligação química CONTEÚDOS: Ligações intermoleculares: Ligações de hidrogénio, forças de van der Waals (de London, entre moléculas polares e entre moléculas polares e apolares). AL 2.1 Miscibilidade de líquidos Metas Curriculares 1.17 Identificar ligações intermoleculares – de hidrogénio e de van der Waals – com base nas características das unidades estruturais. 1.18 Relacionar a miscibilidade ou imiscibilidade de líquidos com as ligações intermoleculares que se estabelecem entre unidades estruturais. Sumário Ligações intermoleculares: ligações de hidrogénio e forças de van der Waals: forças de London, ligações entre moléculas polares e entre moléculas polares e apolares. Preparação e realização da AL 2.1 Miscibilidade de líquidos. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Em diálogo com os alunos, abordar as ligações intermoleculares já antes referidas colocando a questão «Por que é que o cloreto de sódio se dissolve em água?». Incentivar a participação e realçar as participações enriquecedoras. •Concluir que entre os iões do cloreto de sódio e as moléculas de água existem interações intermoleculares de natureza eletrostática que permitem a dissolução do sólido em água. •Referir que as ligações intermoleculares existem entre todas as moléculas mas numas são mais intensas que nas outras. •Sublinhar a ideia chave que as ligações intermoleculares têm sempre intensidade muito inferior às ligações intramoleculares. •Relembrar a polaridade das moléculas e definir as forças de van der Waals. •Explicar que as forças de van der Waals ocorrem entre moléculas polares, entre moléculas polares e apolares e entre moléculas apolares (também designadas por forças de London). •Através da Fig. 20 da página 135 do Novo 10Q, analisar a forma como as moléculas polares interagem entre si: pela distribuição assimétrica de carga elétrica. •De forma semelhante, abordar as ligações de London a partir da Fig. 21 da página 136, concluindo que as assimetrias momentâneas da distribuição da carga elétrica nas moléculas apolares podem induzir assimetrias de carga nas moléculas vizinhas, interagindo assim umas com as outras. •Introduzir as ligações entre as moléculas polares e apolares questionando «Como interagem as moléculas polares com as apolares?». Promover um pequeno debate ordenado e, com base nos exemplos anteriores, concluir que as ligações entre moléculas polares e as moléculas apolares surgem porque as moléculas polares induzem distribuições assimétricas de carga nas moléculas apolares. •Apresentar as ligações de hidrogénio como um caso particular de ligações intermoleculares entre moléculas polares. •Justificar esta particularização devido às ligações H–O existentes na molécula de água que possuem uma grande assimetria de carga (que se verifica também nas ligações H–F e H–N) que tornam estas interações mais acentuadas. •Realçar que quando existem ligações de hidrogénio entre moléculas, existem, ao mesmo tempo, todos os tipos de ligações de van der Waals. •Explicar que a miscibilidade dos líquidos depende, entre muitos fatores, das ligações intermoleculares que se estabelecem entre eles. •Concluir a tendência geral para a solubilidade dos líquidos. Realçar que, se se excluir a água, a generalidade das substâncias líquidas são miscíveis entre si (pela existência de forças de London ou interações induzidas entre as diferentes moléculas) e que a água é miscível apenas com líquidos que tenham moléculas polares (pela existência de forças de hidrogénio ou ligações entre moléculas polares). •Ler conjuntamente a Questão resolvida 6 da página 138 do Novo 10Q para interpretar a solubilidade de diferentes líquidos com base na polaridade das suas moléculas. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 37 a 41 das «+Questões» da página 148. Plano de aula N.o 11 90 + 135 min
  • 62.
    Editável e fotocopiável© Texto | Novo 10Q 61 •Introduzir a «AL 2.1 Miscibilidade de líquidos» colocando a seguinte questão «Como prever a miscibilidade de líquidos com base na sua fórmula química?». Incentivar a participação e realçar as contribuições enriquecedoras. •Partir das respostas dos alunos para compreender que as ligações intermoleculares existentes entre os líquidos da mistura definem a sua miscibilidade. •Na preparação da atividade laboratorial, abordar as questões de segurança no manuseio de alguns reagentes líquidos. •Analisar a Tab. 11 da página 137 como auxílio à previsão da miscibilidade das substâncias. •Resolver as questões pré-laboratoriais da página 141 do Novo 10Q. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido na página 142. •Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 142. •Resolver as questões 42 a 44 das «+Questões» das páginas 148 e 149 do Novo 10Q para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp. 135 a 138 e 140 a 142 Resumo: pp. 139 TPC •Manual: Questões globais: pp. 149 •Caderno de Exercícios : pp. 51 e 52 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 63.
    62 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Gases e dispersões CONTEÚDOS: Lei de Avogadro. Volume molar e massa volúmica. Soluções, coloides e suspensões. Metas Curriculares 2.1 Definir volume molar e, a partir da Lei de Avogadro, concluir que tem o mesmo valor para todos os gases à mesma pressão e temperatura. 2.2 Relacionar a massa de uma amostra gasosa e a quantidade de matéria com o volume molar, definidas as condições de pressão e temperatura. 2.3 Relacionar a massa volúmica de uma substância gasosa com a sua massa molar e volume molar. 2.4 Descrever a composição da troposfera terrestre, realçando N2 e O2 como os seus componentes mais abundantes. 2.5 Indicar poluentes gasosos na troposfera e identificar as respetivas fontes. 2.6 Distinguir solução, dispersão coloidal e suspensão com base na ordem de grandeza da dimensão das partículas constituintes. 2.7 Descrever a atmosfera terrestre como uma solução gasosa, na qual também se encontram coloides e suspensões de matéria particulada. Sumário Lei de Avogadro. Volume molar. Massa volúmica. Soluções e dispersões: coloides e suspensões. Atividades •Fazer uma revisão da matéria do subdomínio «2.1 Ligação química» recorrendo ao «Resumo» da página 139 do Novo 10Q. •Em diálogo com os alunos referir que o estudo da matéria no estado gasoso é particularmente interessante para os químicos porque nele as moléculas tendem a comportar-se como entidades isoladas, o que facilita a compreensão de muitos fenómenos. •Introduzir assim o volume molar como uma grandeza utilizada no estudo de gases e que é definido como o volume ocupado por uma mole de gás em determinadas condições de pressão e de temperatura. •Avançar para o estudo da Lei de Avogadro colocando a seguinte questão «Será o volume de uma mole de dióxido de carbono igual ao volume de uma mole de hidrogénio?». Incentivar a participação e enfatizar as contribuições enriquecedoras. •Com base nas participações dos alunos, levá-los a compreender a Lei de Avogadro: volumes iguais de gases diferentes contêm o mesmo número de moléculas, quando medidos nas mesmas condições de pressão e de temperatura. •Explicar que para valores próximos da pressão atmosférica e da temperatura ambiente, as moléculas de um gás ocupam um espaço ínfimo quando comparado com o volume ocupado pela amostra e, por isso, o volume ocupado por um gás não depende do tipo de moléculas que o constituem. •Apresentar que, como o número de moléculas de gás numa amostra é diretamente proporcional à quantidade de matéria, então volumes iguais de gases (nas mesmas condições de pressão e de temperatura) contêm a mesma quantidade de matéria. Concluir assim a relação entre o volume molar, o volume ocupado por uma amostra de gás e a quantidade de matéria dessa amostra. •Informar que, nas condições normais de pressão e temperatura, o volume molar de qualquer gás é 22,4 dm 3 /mol. •Ler conjuntamente a Questão resolvida 1 da página 152 do Novo 10Q para sistematizar. •Demonstrar a relação existente entre a massa volúmica de um gás, a sua massa molar e o seu volume molar. •Ler conjuntamente a Questão resolvida 2 da página 154 do Novo 10Q. •Em diálogo com os alunos questionar «Quais são os componentes maioritários da nossa atmosfera?». Promover um pequeno debate e realçar as participações mais enriquecedoras. •Complementar o debate com a análise da Fig. 3 da página 155 e concluir que o nitrogénio é o gás mais abundante na atmosfera, seguido do oxigénio, do árgon e do dióxido de carbono. •Com base na Tab. 1 da página 155 do Novo 10Q, analisar conjuntamente os principais poluentes na atmosfera e quais as suas origem. Plano de aula N.o 12 90 + 135 min
  • 64.
    Editável e fotocopiável© Texto | Novo 10Q 63 •Avançar para o estudo das soluções, coloides e suspensões, recordando as misturas de substâncias abordadas no 7. o ano. •Questionar os alunos sobre «O que é uma suspensão, um coloide e uma suspensão?». Incentivar a participação e enfatizar as contribuições enriquecedoras. •Das participações dos alunos, definir solução como uma mistura homogénea onde não é possível distinguir os seus componentes pois as suas partículas apresentam, tipicamente, diâmetro inferior a 1 nm. •Por analogia, definir as outras misturas (ou dispersões) em coloides se as suas partículas tiverem diâmetro entre 1 nm e 1 μm ou em suspensões se as suas partículas tiverem diâmetro superior a 1 μm. •Referir que, tal como nas soluções há o soluto e o solvente, nas dispersões há o meio disperso e o meio dispersante. •Demonstrar o efeito de Tyndall utilizando um apontador laser e uma dispersão de água com farinha e caracterizar este efeito como uma propriedade dos coloides. •Construir conjuntamente um quadro semelhante à Tab. 2 da página 156 do Novo 10Q para sintetizar o conteúdo. •Realçar que a presença de material particulado (suspensões e coloides) na atmosfera constitui um dos mais graves fatores de poluição atmosférica na atualidade. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 22 das «+Questões» das páginas 168 e 169 do Novo 10Q. Recursos •Manual Apresentação dos conteúdos: pp. 152 a 156 Resumo: pp. 163 TPC •Caderno de Exercícios : pp. 58 a 60 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 65.
    64 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Gases e dispersões CONTEÚDOS: Composição quantitativa de soluções: concentração em massa, concentração. AL 2.2 Soluções a partir de solutos sólidos. Metas Curriculares 2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas. Sumário Composição quantitativa de soluções: concentração em massa, concentração. Preparação e realização da AL 2.2 Soluções a partir de solutos sólidos. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Introduzir o estudo da composição quantitativa de soluções perguntando «Como se pode expressar quantitativamente o soluto existente numa solução?». Incentivar a participação e realçar as participações enriquecedoras. Relembrar que no 7. o ano já foi estudada a concentração mássica que é uma medida da massa de soluto existente numa determinada solução mas que esta não é a única forma de quantificar o soluto numa solução. •Analisar a Tab. 3 da página 157 do Novo 10Q para interpretar a concentração mássica de diversos poluentes na atmosfera. •Recolher diferentes embalagens de água e comparar a concentração mássica dos iões presentes. •A partir dos exemplos das concentrações mássicas dos iões em água, resolver conjuntamente problemas, por exemplo, com vista à determinação da massa total de iões na garrafa ou à determinação do volume de água necessário ingerir para satisfazer as necessidades diárias de um determinado ião. •Retomar o conceito de fração molar já abordado anteriormente. •A partir de um exemplo de uma mistura gasosa de dois ou três componentes, e conhecidas as suas massas, determinar a fração molar de cada um desses componentes para sistematizar o conteúdo. •Questionar os alunos sobre «O que é a concentração?». Promover um pequeno debate e realçar as contribuições enriquecedoras. Das participações dos alunos, informar que o termo «concentração» é usado, em linguagem comum, para refletir a quantidade de um componente numa mistura. No entanto, sublinhar que este termo tem um significado científico mais rigoroso. •Definir concentração como uma medida da quantidade de matéria de soluto existente em cada unidade de volume da solução. Salientar que a concentração é uma medida da composição quantitativa de soluções particularmente útil em química. •Partir do exemplo da concentração mássica dos iões na água engarrafada para determinar a sua concentração como forma de sistematizar a relação entre as várias formas de identificar a composição qualitativa de soluções. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 22 a 28 das «+Questões» da página 170 do Novo 10Q. •Introduzir a «AL 2.2 Soluções a partir de solutos sólidos» colocando a seguinte questão «Como preparar uma solução de sulfato de cobre (II) penta-hidratado de concentração 0,050 mol/dm 3 ?». Incentivar a participação e realçar as participações enriquecedoras. Partir das respostas dos alunos para preparar a atividade laboratorial. •Abordar os erros sistemáticos e aleatórios associados às medições a efetuar. Resolver as questões pré-laboratoriais da página 164. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q na página 165. Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 165. •Resolver as questões 40 a 43 das «+Questões» da página 172 para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp. 157 a 158 e 164 a 168 Resumo: pp. 139 TPC •Caderno de Exercícios : pp. 61 a 67 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas. Plano de aula N.o 13 90 + 135 min
  • 66.
    Editável e fotocopiável© Texto | Novo 10Q 65 Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Gases e dispersões CONTEÚDOS: Composição quantitativa de soluções: percentagem em volume e percentagem em massa, fração molar, partes por milhão. Diluição de soluções aquosas. AL 2.3 Diluição de soluções. Metas Curriculares 2.8 Determinar a composição quantitativa de soluções aquosas e gasosas (como, por exemplo, a atmosfera terrestre), em concentração, concentração em massa, fração molar, percentagem em massa e em volume e partes por milhão, e estabelecer correspondências adequadas. Sumário Composição quantitativa de soluções: percentagem em volume e percentagem em massa, fração molar, partes por milhão. Diluição de soluções aquosas. Preparação e realização da AL 2.3 Diluição de soluções. Atividades •Fazer uma revisão da matéria dada na aula anterior. •Relembrar o estudo da composição quantitativa de soluções analisando um rótulo de álcool etílico comercial. Promover um pequeno debate e realçar as participações enriquecedoras. Concluir que existem outras formas de quantificar o soluto presente nas soluções para além das estudadas na aula anterior. •Partir do exemplo anterior para introduzir a percentagem em volume e identificar o soluto e o solvente da solução. Determinar conjuntamente o volume de soluto presente na embalagem em questão. •Recolher diferentes embalagens de água e comparar a concentração mássica dos iões presentes. •Por analogia, introduzir o conceito de percentagem em massa. Determinar a massa de água de uma das embalagens e calcular a massa de alguns dos seus iões para determinar as suas percentagens em massa. •Ler e analisar a Questão resolvida 3 da página 159 do Novo 10Q. •Comparar, respetivamente, a percentagem em massa e em volume com as partes por milhão e as partes por milhão em volume, e mostrar que as percentagens em massa e em volume representam as partes de soluto existentes por cada 100 partes de solução existente, enquanto que as partes por milhão e as partes por milhão em volume representam as partes de soluto existentes em cada milhão de partes de solução. •Partir do exemplo do dióxido de carbono na atmosfera para demonstrar a relação existente, respetivamente, entre percentagem em massa ou em volume e as partes por milhão ou as partes por milhão em volume. •Através da exploração de exemplos de soluções, construir conjuntamente uma síntese semelhante à Tab. 4 da página 162 para sistematizar as relações existentes estre as diferentes expressões da composição quantitativa das soluções. Ler conjuntamente a Questão resolvida 5 da página 162 para consolidação de conhecimentos. •Partir do exemplo da concentração mássica dos iões na água engarrafada para determinar a sua concentração como forma de sistematizar a relação entre as várias formas de identificar a composição qualitativa de soluções. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 29 a 37 das «+Questões» das páginas 170 a 171 do Novo 10Q. •Introduzir a «AL 2.3 Diluição de soluções» colocando a seguinte questão «Como preparar uma solução diluída de permanganato de potássio a partir de uma solução inicial mais concentrada?». Incentivar a participação e realçar as participações enriquecedoras. Partir das respostas dos alunos para preparar a atividade laboratorial. •Abordar o fator de diluição e explorar alguns exemplos para consolidação. •Resolver as questões pré-laboratoriais da página 166 do Novo 10Q. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q na página 167. Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 167. •Resolver as questões 38 a 40 e 44 a 45 das «+Questões» da página 172 do Novo 10Q para consolidação dos conhecimentos adquiridos. Recursos •Manual Apresentação dos conteúdos: pp. 158 a 162 e 166 a 167 Resumo: pp. 139 TPC •Manual: Questões globais pp. 173 •Caderno de Exercícios e Problemas: pp. 61 a 65 e 67 a 68 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas. Plano de aula N.o 14 90 + 135 min
  • 67.
    66 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Transformações químicas CONTEÚDOS: Energia de ligação e reações químicas: processos endoenergéticos e exoenergéticos. Reações fotoquímicas na atmosfera: fotodissociação e fotoionização. Metas Curriculares 3.1 Interpretar uma reação química como resultado de um processo em que ocorre rutura e formação de ligações químicas. 3.2 Interpretar a formação de ligações químicas como um processo exoenergético e a rutura como um processo endoenergético. 3.3 Classificar reações químicas em exotérmicas ou em endotérmicas como aquelas que, num sistema isolado, ocorrem, respetivamente, com aumento ou diminuição de temperatura. 3.4 Interpretar a energia da reação como o balanço energético entre a energia envolvida na rutura e na formação de ligações químicas, designá-la por variação de entalpia para transformações a pressão constante, e interpretar o seu sinal (positivo ou negativo). 3.5 Interpretar representações da energia envolvida numa reação química relacionando a energia dos reagentes e dos produtos e a variação de entalpia. 3.6 Determinar a variação de entalpia de uma reação química a partir das energias de ligação e a energia de ligação a partir da variação de entalpia e de outras energias de ligação. 3.7 Identificar transformações químicas desencadeadas pela luz, designando-as por reações fotoquímicas. 3.8 Distinguir fotodissociação de fotoionização e representar simbolicamente estes fenómenos. 3.9 Interpretar fenómenos de fotodissociação e fotoionização na atmosfera terrestre envolvendo O2, O3, e N2 relacionando-os com a energia da radiação envolvida e com a estabilidade destas moléculas. Sumário Energia de ionização. Processos endoenergéticos e exoenergéticos. Reações fotoquímicas: fotoionização e fotodissociação. Atividades •Fazer uma revisão da matéria do subdomínio «2.2 Gases e dispersões» recorrendo ao «Resumo» da página 163 do Novo 10Q. •Em diálogo com os alunos, explicar que reações químicas são transformações em que determinadas substâncias originam outras relembrando a matéria já estudada no 3. o ciclo. Referir também que as reações químicas obedecem à Lei de Lavoisier (ou Lei da Conservação da Massa). •Explicar que para haver transformação de umas substâncias noutras tem de haver ruturas de ligações químicas nos reagentes e formações de ligações nos produtos da reação. •Introduzir os processos endoenergéticos como processos onde há absorção de energia, tal como na rutura das ligações químicas. •Por comparação, abordar os processos exoenergéticos como processos onde há libertação de energia, como na formação de ligações químicas. •Por analogia, questionar sobre «O que são reações endotérmicas e exotérmicas?». Promover a participação e realçar as ideias enriquecedoras. •Das participações, concluir que nas reações endotérmicas há absorção de energia o que se traduz, num sistema fechado, pela diminuição da energia do sistema. Já nas reações exotérmicas há libertação de energia que se traduz, num sistema fechado, pelo aumento da temperatura do sistema. •Ler conjuntamente a Questão resolvida 1 da página 177 do Novo 10Q. •Avançar para o estudo da variação da entalpia sublinhando que, em geral, os sistemas químicos não são isolados e, portanto, há trocas de energia entre o sistema e a vizinhança. •Questionar «Como se pode prever se uma reação é endotérmica ou exotérmica?». Promover um pequeno debate e realçar as participações positivas. •Partir do debate para compreender que a energia libertada ou absorvida pelo sistema resulta de um balanço entre a energia absorvida na rutura das ligações químicas e a energia libertada na sua formação. •Informar que este balanço permite prever se a reação é endotérmica ou exotérmica. Plano de aula N.o 15 90 + 135 min
  • 68.
    Editável e fotocopiável© Texto | Novo 10Q 67 Atividades •Analisar a Fig. 6 da página 178 do Novo 10Q para interpretar a variação da entalpia numa reação endotérmica e numa reação exotérmica. •Concluir que na reação exotérmica a energia libertada pela formação das ligações químicas é superior à energia absorvida pelo que há transferência de energia do sistema para a vizinhança, aumentando a temperatura da vizinhança. •De igual forma, concluir que na reação endotérmica a energia libertada pela formação das ligações químicas é inferior à energia absorvida pelo que há transferência de energia da vizinhança para o sistema, diminuindo a temperatura da vizinhança. •Definir a variação da entalpia como uma grandeza que meda a energia transferida entre o sistema e a vizinhança quando a reação química ocorre a pressão constante. •Indicar que se a variação da entalpia for negativa a reação é exotérmica pois o sistema cedeu energia à vizinhança e se a variação da entalpia for positiva a reação é endotérmica pois o sistema recebeu energia da vizinhança. • Para consolidação, analisar a variação da entalpia da reação, por exemplo, de formação da água e a variação da entalpia da reação da sua decomposição. •Sublinhar a ideia chave que se uma reação for exotérmica, a sua reação inversa será endotérmica e as respetivas variações de entalpia serão simétricas (e vice-versa). •Referir a energia de ligação como a energia mínima necessária para quebrar uma mole de ligações em moléculas. •A partir de um exemplo, calcular a sua variação da entalpia como a diferença entre a soma das energias de ligação dos reagentes e a soma das energias de ligação dos produtos. •Ler e analisar conjuntamente as Questões resolvidas 2 e 3 das páginas, respetivamente, 179 e 182 do Novo 10Q para sintetizar. •Avançar para o estudo das reações fotoquímicas questionando «Que exemplos conhecem de reações químicas desencadeadas pela luz?». Incentivar a participação ordenada e realçar as ideias enriquecedoras. •Das participações dos alunos, realçar exemplos como o bronzeamento, a fotodegradação dos materiais, o processo de revelação fotográfica, entre outros. •Definir que as reações que são desencadeadas pela luz são reações fotoquímicas. •Apresentar a fotodissociação como uma transformação onde há quebra de ligações químicas (sendo portanto um processo endotérmico) por ação da radiação. •Contextualizar as reações de fotodissociação explicando que a atmosfera terrestre atua como um filtro de radiação que absorve as radiações ultravioleta provocando a fotodissociação das moléculas de nitrogénio, de oxigénio e de ozono, por exemplo. •Relembrar exemplos sobre a energia de remoção eletrónica onde a remoção dos eletrões poderia ser feita através da incidência de radiação nos átomos para introduzir a fotoionização como o processo de remoção de eletrões de um átomo por ação da radiação. •Referir que, tal como a fotodissociação, a fotoionização é um processo energético, mas que necessita de absorver mais energia para ocorrer. •Contextualizar, por exemplo, com os fenómenos da ionosfera como as auroras boreais. •Ler conjuntamente a Questão resolvida 4 da página 184 do Novo 10Q. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 1 a 17 das «+Questões» das páginas 194 a 196. Recursos •Manual Apresentação dos conteúdos: pp. 176 a 184 Resumo: pp. 191 TPC •Caderno de Exercícios e Problemas: pp.74 a 77 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 69.
    68 Editável efotocopiável © Texto | Novo 10Q Escola__________________________________________________________________________________________________________ Ano _______________________________ Turma _______________Aula N.o ________Data________/________/ ________ DOMÍNIO: Propriedades e transformações da matéria SUBDOMÍNIO: Transformações químicas CONTEÚDOS: Reações fotoquímicas na atmosfera: radicais livres e estabilidade das espécies químicas. Ozono estratosférico. AL 2.4 Reação fotoquímica. Metas Curriculares 3.10 Identificar os radicais livres como espécies muito reativas por possuírem eletrões desemparelhados. 3.11 Interpretar a formação e destruição do ozono estratosférico, com base na fotodissociação de O2 e de O3, por envolvimento de radiações ultravioletas UV-B e UV-C, concluindo que a camada de ozono atua como um filtro dessas radiações. 3.12 Explicar a formação dos radicais livres a partir dos clorofluorocarbonetos (CFC) tirando conclusões sobre a sua estabilidade na troposfera e efeitos sobre o ozono estratosférico. 3.13 Indicar que o ozono na troposfera atua como poluente em contraste com o seu papel protetor na estratosfera. Sumário Formação de radicais livres. Formação e decomposição do ozono estratosférico. Clorofluorocarbonetos e destruição da camada do ozono. Preparação e realização da AL 2.4 Reação fotoquímica. Atividades •Fazer uma revisão da matéria da aula anterior. •Em diálogo com os alunos, relembrar que, pelo Princípio de Exclusão de Pauli, uma orbital pode ser ocupada por 2 eletrões com spins opostos e por isso se diz que estão emparelhados. •Introduzir o conceito de radical livre, referindo que, quando esse emparelhamento não se verifica, ou seja, se uma orbital tiver apenas um eletrão desemparelhado, diz-se que a espécie química (átomo, molécula ou ião) é um radical livre, ou simplesmente radical. •Determinar conjuntamente, a partir de exemplos, quais as espécies químicas que são radicais livres a partir da sua configuração eletrónica. •Explicar que estas espécies químicas são muito reativas contextualizando com os antioxidantes nos alimentos. •Avançar para o estudo do ozono estratosférico, perguntando «Porque será o ozono uma substância tão importante para a vida na Terra?». Promover um pequeno debate e realçar as ideias enriquecedoras. •Relembrando que o ozono sofre reações de fotodissociação na atmosfera, compreender, a partir do debate, que o ozono atua como um filtro solar pois absorve a radiação muito energética (UV-A e UV-B) que é prejudicial para os seres vivos. •De seguida, abordar as reações fotoquímicas que estão na base da formação e da decomposição do ozono estratosférico. •Sublinhar a ideia chave que as energias de ligação nas moléculas ozono são da ordem da energia das radiações UV-A e UV-B e que a energia de ligação nas moléculas de oxigénio é da ordem da energia da radiação UV-C que chega à estratosfera. •Contextualizar a formação e a decomposição do ozono com a problemática global do «buraco da camada do ozono». •Promover um breve debate sobre esta problemática para compreender que a atividade humana foi responsável pela diminuição da camada do ozono por libertar para a atmosfera compostos capazes de produzir radicais livres na estratosfera, nomeadamente os clorofluorocarbonetos. •Realçar a influência do radical cloro na destruição da camada de ozono analisando as reações químicas que ocorrem em cadeia entre o radical cloro e o ozono. •Sublinhar que nestas reações o radical cloro é regenerado e, portanto, os efeitos da emissão dos clorofluorocarbonetos prolongar-se-ão para o futuro. •Ler e analisar a Questão resolvida 5 da página 188 do Novo 10Q para sistematizar. •Realizar a atividade a Atividade da página 189 «O Buraco do Ozono» para consolidação. •Sublinhar também que, apesar da importância do ozono na estratosfera, quando este se encontra na troposfera (resultado de um conjunto complexo de reações químicas) atua como poluente causando irritações de olhos e pele e provocando problemas respiratórios. •Sistematizar as conclusões globais da aula e consolidar os conteúdos abordados com a resolução dos exercícios 18 a 27 das «+Questões» das páginas 196 e 197 do Novo 10Q. Plano de aula N.o 16 90 + 135 min
  • 70.
    Editável e fotocopiável© Texto | Novo 10Q 69 •Introduzir a «AL 2.4 Reação fotoquímica» questionando «Como se pode verificar a existência de uma reação fotoquímica?». Incentivar a participação e realçar as contribuições enriquecedoras. •Partir das respostas dos alunos para preparar a atividade laboratorial. •Abordar as variáveis que afetam a reação fotoquímica e o controlo de variáveis a efetuar. •Resolver as questões pré-laboratoriais da página 192 do Novo 10Q. •Organizar os alunos em grupos para realizar a atividade laboratorial de acordo com o procedimento fornecido no Novo 10Q na página 193. •Sugerir aos alunos que resolvam as questões pós-laboratoriais da página 193. •Resolver as questões 28 e 29 das «+Questões» da página 198 do Novo 10Q para consolidação dos conhecimentos adquiridos Recursos •Manual Apresentação dos conteúdos: pp. 185 a 190 e 192 a 193 Resumo: pp. 191 TPC •Manual: Questões globais pp. 198 •Caderno de Exercícios e Problemas: pp. 77 e 78 • Avaliação •Observação direta dos alunos na aula. •Observação da participação e empenho nas tarefas propostas.
  • 71.
    70 Editável efotocopiável © Texto | Novo 10Q Notas
  • 72.
    Editável e fotocopiável© Texto | Novo 10Q 71 Apoio à componente laboratorial do Novo 10Q De acordo com o programa de Física e Química A do 10.o /11.o ano, o trabalho laboratorial é parte fundamental da formação do aluno em química. Mas as planificações, as técnicas e as metodologias associadas ao trabalho de laboratório têm especificidades próprias. Esta parte do guião pretende ser uma ajuda para o professor nesta vertente. Apresentamos algumas orientações e materiais de apoio que poderão ser úteis para desenvolver o trabalho de laboratório. Respostas às questões das atividades laboratoriais do Novo 10Q No decurso das atividades laboratoriais exploradas no Novo 10Q são colocadas algumas questões pré e pós-laboratoriais, às quais procuramos aqui dar algumas respostas, ressalvando que há questões cuja resposta apenas pode ser obtida após a realização da atividade proposta e que, por isso, não se encontra aqui resolvida. Preferimos não facultar as respostas no manual, pois essas questões promovem um esforço de reflexão que poderia ficar comprometido se os alunos pudessem consultar imediatamente as soluções. AL 1.1. Volume e número de moléculas de uma gota de água (pág. 28 a 30) Questões pré-laboratoriais 1. a) 0,60 mL; b) 0,04 mL; c) 0,60 mL ± 0,04 mL; d) [0,56; 0,64] mL. 2. a) V2 – V1 = 0,65 – 0,60 = 0,05 mL; b) 1 algarismo significativo. 3. a) (V3 – V2)/100 = (6,85 – 0,65)/100 = 0,0620 mL; b) 3 algarismos significativos. 4. A incerteza do valor obtido em 3. é menor do que a incerteza do valor obtido em 2., o que se pode verificar pelo facto de o valor obtido em 3. ter mais algarismos significativos. Não é razoável medir o volume de uma só gota com uma pipeta graduada, pois o volume obtido é muito pequeno, sendo elevada a incerteza correspondente. 5. A massa de 100 gotas tem 3 algarismos significativos enquanto a massa de 1 gota apenas tem 1 algarismo significativo. Assim, a incerteza na determinação indireta da massa de 1 gota usando 3,14/100= 0,0314 g é menor do que na determinação direta da massa de 1 gota. Questões pós-laboratoriais 4. a) O valor da massa. A informação adicional necessária é a massa molar da água e a constante de Avogadro. AL 1.2. Teste de chama (pág. 66 a 68) Questões pré-laboratoriais 1. Para garantir que a cor da chama resulta apenas do catião em estudo, isto é, que não existe sobreposição da cor conferida à chama pelo catião com cores que resultem de impurezas presentes na amostra.
  • 73.
    72 Editável efotocopiável © Texto | Novo 10Q 2. O bico de Bunsen atinge temperaturas mais altas, o que permite excitar os átomos de modo a que os seus eletrões fiquem em níveis energéticos superiores. Por outro lado, temperaturas mais altas permitem aumentar a fração de átomos excitados. 3. a) C. b) A, C, D. Questões pós-laboratoriais 1. a) Deve-se à luz emitida quando ocorrem desexcitações nos átomos presentes na amostra em estudo. b) Porque são diferentes os níveis de energia em átomos de diferentes elementos, sendo também diferentes as transições eletrónicas entre esses níveis. c) Para proceder à excitação dos átomos e porque as temperaturas mais altas permitem aumentar a fração de átomos excitados e, assim, obter emissões mais intensas (cores mais nítidas e mais estáveis). 2. Não. A cor do sal não está relacionada com a cor da chama. 3. C. 4. A cor do fogo de artifício deve-se à emissão de luz como resultado da excitação e desexcitação de átomos de diversos elementos químicos, tal como sucede nos ensaios de chama. AL 1.3 Densidade relativa de metais (pág. 94 a 97) Questões pré-laboratoriais 1. Como ρ = m V vem d = 𝑚metal 𝑉metal 𝑚água 𝑉água e como Vmetal= Vágua conclui-se que d = mmetal mágua 2. a) Corresponde à massa de água com volume igual ao volume das esferas. b) d = mA mB − mC = 13,44 75,85 − 74,64 = 11,1; c) erro de medição = | valor medido-valor verdadeiro | valor verdadeiro × 100 = | 11,1 − 11,35| 11,35 × 100 = 2,2% d) 𝑚𝐴 𝑚𝐵 𝑚𝐶 𝑚𝐵 − 𝑚𝐶 𝑚𝐴 𝑚𝐵 − 𝑚𝐶 Valor 13,44 75,85 74,64 1,21 11,1 N. o de algarismos significativos 4 4 4 3 3 3. a. Erro sistemático. b. Erro sistemático. c. Erro aleatório. d. Erro aleatório. e. Erro sistemático. AL 2.1. Miscibilidade de líquidos (pág. 140 a 142) Questões pré-laboratoriais 1. A, B, C e E.
  • 74.
      Editável e fotocopiável © Texto | Novo 10Q  73  2. A‐IV‐a‐3; B‐I‐a‐2; C‐II‐a‐3; D‐V‐b‐1; E‐III‐b‐1.  3.    Previsões    Água  Etanol  Acetona  Hexano  Xileno  Água    m  m  i  i  Etanol      m  m  m  Acetona        m  m  Hexano          m  Xileno            Trabalho laboratorial  1. A, C, D, E, F.  2. Deve usar‐se um só conta‐gotas para cada um dos líquidos, mas todos os conta‐gotas devem ser  de igual modelo para que, contando igual número de gotas de líquidos diferentes, o volume seja  sempre igual.  Questões pós‐laboratoriais  2.     Previsões    Água  Etanol  Acetona  Hexano  Xileno  Água    H‐H; p‐p; L‐L  p‐p; L‐L  L‐L; p‐a  L‐L; p‐a  Etanol      p‐p; L‐L  L‐L; p‐a  L‐L; p‐a  Acetona        L‐L; p‐a  L‐L; p‐a  Hexano          L‐L; p‐a  Xileno            AL 2.2 Soluções a partir de solutos sólidos (pág. 164 a 165)  Questões pré‐laboratoriais  1.  Sulfato  de  cobre  (II)  penta‐hidratado:  nocivo  por  ingestão,  pode  provocar  irritação  cutânea  e  irritação  ocular  grave,  muito  tóxico  para  os  organismos  aquáticos  com  efeitos  duradouros.   Esta informação pode ser encontrada no rótulo da embalagem.  2. O volume adequado deverá ser 50 ou 100 mL.  3. Considerando o volume de 50,00 mL:  n = c × V  ⇔ n 0,050 × 0,05000 = 0,0025 mol   m = n × M ⇔ m 0,0025 × 249,72 = 0,62 g    
  • 75.
    74 Editável efotocopiável © Texto | Novo 10Q Questões pós-laboratoriais 4. A concentração da solução preparada pode ser afetada pela perda de massa de soluto entre a pesagem e a sua dissolução; pela perda de volume de solução na transferência para o balão, devido a um mau acerto pelo menisco do balão. Não enxaguar convenientemente o recipiente de armazenamento pode resultar em contaminações da solução ou na alteração da sua composição. 5. É necessário para eliminar do frasco qualquer resto de água que possa alterar a concentração da solução. AL 2.3. Diluição de soluções (pág. 166 a 167) Questões pré-laboratoriais 1. 20,00 mL ± 0,03 mL 2. I = 20; II = 25 mL; III = 20 mL. 3. Caso se opte por usar a solução preparada na AL 2.2: Sulfato de cobre (II) penta-hidratado: nocivo por ingestão, pode provocar irritação cutânea e irritação ocular grave, muito tóxico para os organismos aquáticos com efeitos duradouros. Trabalho laboratorial I = 20 mL; II = 50 mL; III = 25. Questões pós-laboratoriais 2. As pipetas volumétricas são instrumentos de medição de volumes mais rigorosos (têm menor incerteza), no entanto as pipetas graduadas permitem a medição de uma gama maior de volumes. AL 2.4. Reação fotoquímica (pág. 192 a 193) Questões pré-laboratoriais 1. A – cloreto de sódio; B – cloreto de prata. 2. C. Questões pós-laboratoriais 1. E; B; D; C; A. 2. Verde. 3. Haveria escurecimento do cloreto de prata porque a luz violeta é a mais energética do espetro visível. 4. A folha de alumínio protege o cloreto de prata da luz. Ao retirar a folha de alumínio de todos os tubos ao mesmo tempo garante-se que o tempo de exposição é o mesmo para todos.
  • 76.
    Editável e fotocopiável© Texto | Novo 10Q 75 Grelhas de registo Grelha de observação das aulas laboratoriais de química PARÂMETROS A AVALIAR NA AULA AL1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4 Cumprimento das regras de segurança no laboratório Preparação do trabalho antes da aula Organização do trabalho Manuseamento correto de material e reagentes Autonomia na execução Espírito de observação Aplicação de conhecimentos Cooperação com os colegas do grupo CLASSIFICAÇÃO
  • 77.
    76 Editável efotocopiável © Texto | Novo 10Q Grelha de avaliação de relatórios PARÂMETROS A AVALIAR NO RELATÓRIO AL1.1 AL 1.2 AL 1.3 AL 2.1 AL 2.2 AL 2.3 AL 2.4 Cumprimento dos prazos de entrega Apresentação do relatório Apresentação dos objetivos do trabalho Registo dos cuidados a ter durante o trabalho Registo do material e reagentes utilizados Descrição correta do procedimento efetuado Apresentação de rigor científico/técnico Apresentação correta dos devidos algarismos significativos Apresentação correta dos cálculos Análise dos resultados Conclusões adequadas e corretas Apresentação de bibliografia CLASSIFICAÇÃO
  • 78.
    Editável e fotocopiável© Texto | Novo 10Q 77 Atividade: Desafios da nanotecnologia (pág. 20) 1. «A redução das dimensões dos materiais incorporados nos têxteis possibilita a obtenção de propriedades especiais sem comprometer a sua leveza, flexibilidade e conforto.» 2. D. 3. a) A espessura dos fios de tecido é aproximadamente 200 nm. b) O diâmetro das nanopartículas de silício é aproximadamente 27 nm. c) A razão entre a ordem de grandeza da espessura dos fios e a ordem de grandeza do diâmetro das nanopartículas de silício é: 102 101 =10. Atividade: Observação de espetros de tubos de Pluecker (pág. 53) 1. Os espetros obtidos são espetros descontínuos de emissão. 2. a) As riscas observadas correspondem a transições dos eletrões de níveis de maior energia para níveis de menor energia. b) Cada elemento tem um espetro que lhe é característico porque os valores de energia de cada nível eletrónico são diferentes de átomo para átomo. Assim, também são diferentes as energias de cada transição e a luz que lhes está associada. 3. A. 4. Atividade de pesquisa sobre o aspeto da emissão de um elemento químico à escolha do aluno. Atividade: Propriedades dos elementos e das substâncias elementares (pág. 92) 1. São substâncias constituídas por um único elemento. Podem chamar-se também substâncias simples. 2. Informações sobre o elemento: número atómico, massa atómica relativa, raio atómico, energia de ionização, símbolo químico, nome. Informações sobre a substância elementar: ponto de fusão, ponto de ebulição, massa volúmica. 3. a) A parte da Tabela Periódica representa o fósforo branco pois a densidade relativa (numericamente igual à massa volúmica) e o ponto de fusão correspondem aos valores indicados na Tabela Periódica. b) O carbono e o oxigénio (entre outros) apresentam alótropos. O carbono pode surgir na forma de grafite, grafeno ou diamante. Já o oxigénio surge na forma de oxigénio, O2, ou ozono, O3. 4. Atividade de pesquisa sobre Tabelas Periódicas. Respostas às questões das Atividades do Novo 10Q
  • 79.
    78 Editável efotocopiável © Texto | Novo 10Q Atividade: Modelos moleculares e simulações computacionais (pág. 121) 1. Geometria linear. 2. Geometria angular. 3. A geometria da molécula mantém-se mas o ângulo de ligação diminui. 4. A molécula adquire uma geometria triangular plana. Os ângulos de ligação são todos iguais. 5. A molécula adquire uma geometria piramidal trigonal. Os ângulos de ligação são todos iguais mas inferiores aos ângulos da situação anterior. 6. A molécula adquire uma geometria tetraédrica. Atividade: O buraco do ozono (pág. 189) 1. «O chefe da expedição, Joe Farman, ao olhar para os valores muito mais baixos do que era comum, ficou de tal modo surpreendido que esperou pela chegada de um novo instrumento de Inglaterra, antes de publicar os resultados.» ou «as medições efetuadas pelo satélite eram processadas automaticamente e que o computador tinha sido programado para rejeitar valores de concentração de ozono abaixo de determinado limite, tal era a confiança na pequena variabilidade da concentração do ozono.» 2. Dimensão tecnológica: Uso de equipamentos de medição e registo «As medições... foram realizadas com um aparelho que já estava em uso há bastantes anos. (...) medições efetuadas com o novo equipamento (...). Felizmente os dados rejeitados pelo computador puderam ser recuperados». Dimensão ambiental: «Naquela zona da Antártica, o ozono estratosférico tinha diminuído cerca de 30%.»; Dimensão social: «Estes resultados foram publicados e, a partir daí, desenvolveram-se grandes esforços para conhecer a causa de tal diminuição.» 3. 1987.
  • 80.
    Editável e fotocopiável© Texto | Novo 10Q 79 Grupo I Subdomínio 1.1: Massa e tamanho dos átomos. 1. A tabela contém informações sobre cinco espécies químicas diferentes. Número de Espécie eletrões protões neutrões H 1 1 H 1 2 H 1 3 H+ 1 1 H− 1 1 a) Complete a tabela com o número de eletrões, protões e neutrões. b) Elabore um texto no qual justifique os valores que escreveu na tabela para a espécie H 1 3 . c) Que nome dá ao conjunto das duas espécies representadas por H 1 2 e H 1 3 ? d) Faça uma ilustração legendada da espécie representada por H 1 3 , que esclareça sobre a localização relativa de cada uma das partículas que a constituem. e) Sabendo que a carga elétrica do protão é 1,6 x 10-19 C diga qual é a carga elétrica do eletrão. f) Das espécies representadas, indique qual representa um anião. 2. Na figura pode ver-se uma amostra de arroz e uma ampliação de um dos grãos de arroz dessa amostra. Num quilograma dessa amostra contaram-se 57 600 grãos de arroz. a) A potência de base 10 mais próxima de 57 600 é: (A) 102 . (B) 103 . (C) 104 . (D) 105 . 0,50 cm NOME ___________________________________________________ Turma______ Número______ Subdomínio 1.1: Massa e tamanho dos átomos. Subdomínio 1.2: Energia dos eletrões nos átomos. Subdomínio 1.3: Tabela Periódica. . Ficha de diagnóstico Domínio 1: Elementos químicos e sua organização
  • 81.
    80 Editável efotocopiável © Texto | Novo 10Q b) Escreva uma expressão matemática que permita determinar quantas dúzias de grãos de arroz existem num quilograma de arroz. c) O valor médio da massa de cada grão de arroz é: (A) 17,4 g. (B) 17,4 mg. (C) 1,74 g. (D) 1,74 mg. d) De acordo com a sua resposta na alínea c), escreva o valor médio da massa de um grão de arroz expresso em quilogramas. e)Qual é o comprimento do grão de arroz? Apresente a sua resposta em duas unidades diferentes. f) Escreva o resultado obtido na alínea e) na unidade do Sistema Internacional de unidades (SI), usando potências de base 10. g) Qual foi o fator de ampliação usado na imagem do grão de arroz? 3. A tabela contém informações sobre partículas constituintes dos átomos. Partícula Eletrão Protão Neutrão Massa / kg 9,1094 × 10 –31 1,6726 × 10 –27 1,6749 × 10 –27 a) Escreva o nome da partícula subatómica de maior massa. b) Apresente o valor da massa do protão expressa em gramas. c) Escreva o nome e o símbolo da unidade de massa no SI. d) Diga em que parte do átomo é que se concentra a quase totalidade da sua massa. 4. O raio atómico do lítio é 167 pm e no gráfico abaixo encontram-se informações sobre os seus dois isótopos. a) O raio atómico do lítio é 167 pm, ou seja: (A) 0,0167 m. B) 0,00167 m. (C) 0,000167 m. (D) 0,000000000167 m. b) A massa atómica relativa do lítio é: (A) 6,516. (B) 6,516 g. (C) 6,940. (D) 6,940 g. c) Justifique, sem recorrer a cálculos numéricos, a sua resposta a b). d) Escreva o símbolo químico do lítio.
  • 82.
    Editável e fotocopiável© Texto | Novo 10Q 81 5. Numa amostra de água, H2O, de massa 36 g, a contribuição dos átomos de hidrogénio é 4 g. a) Qual é o valor da massa que corresponde à contribuição dos átomos de oxigénio? b) A fração que corresponde ao contributo dos átomos de hidrogénio para a massa de água é: (A) 1 2 (B) 1 3 (C) 1 8 (D) 1 9 c) A água é uma substância: (A) composta e as suas moléculas são diatómicas. (B) simples e as suas moléculas são diatómicas. (C) composta e as suas moléculas são triatómicas. (D) simples e as suas moléculas são triatómicas. d) Descreva a composição qualitativa e quantitativa de uma molécula de água. e) Dos átomos que entram na composição de uma molécula de água: (A) metade são de hidrogénio. (B) dois terços são de hidrogénio. (C) metade são de oxigénio. (D) dois terços são de oxigénio. Grupo II Subdomínio 1.2: Energia dos eletrões nos átomos. 1. A figura abaixo contém informações sobre o espetro eletromagnético assim como a relação entre a energia e a frequência da radiação. a) Identifique, através do nome da cor, a radiação visível de maior frequência. b) Indique uma informação médica que pode ser obtida através de raios X. c) A relação entre a energia e a frequência da radiação é de proporcionalidade: (A) direta, e o produto da energia pela frequência é constante. (B) direta, e a divisão da energia pela frequência é constante. (C) inversa, e o produto da energia pela frequência é constante. (D) inversa, e a divisão da energia pela frequência é constante.
  • 83.
    82 Editável efotocopiável © Texto | Novo 10Q 2. Considere as ilustrações de três modelos atómicos A, B e C apresentados abaixo. a) Ordene os modelos atómicos do mais antigo para o mais atual. b) Diga qual das ilustrações corresponde ao modelo atómico de Bohr. c) No modelo atómico representado pela letra A, a uma maior concentração de pontos correspondem zonas onde: (A) há maior número de eletrões. (B) há menor número de eletrões. (C) é maior a probabilidade de encontrar eletrões. (D) é menor a probabilidade de encontrar eletrões. 3. Abaixo pode ver-se uma ilustração do átomo de nitrogénio, N. a) Os eletrões no átomo de nitrogénio: (A) distribuem-se por dois níveis de energia. (B) têm todos a mesma energia. (C) distribuem-se por sete níveis de energia. (D) têm todos energia diferente. b) Diga quantos eletrões existem em cada nível de energia no átomo de nitrogénio. c) Escreva a distribuição eletrónica dos átomos de nitrogénio. d) Que nome dá aos eletrões do último nível? 4. Quatro valores de energia para os eletrões do átomo de sódio são –5,118 eV, –31,08 eV, –63,66 eV e –1074 eV, sendo o valor mais elevado para eletrões mais afastados do núcleo (eV é a simbologia usada para eletrão-volt e 1 eV = 1,6 × 10–19 J). A B C
  • 84.
    Editável e fotocopiável© Texto | Novo 10Q 83 a) A energia dos eletrões é: (A) negativa e aumenta com o aumento da distância ao núcleo. (B) negativa e diminui com o aumento da distância ao núcleo. (C) positiva e aumenta com o aumento da distância ao núcleo. (D) positiva e diminui com o aumento da distância ao núcleo. b) Qual é a energia, expressa em joule, de um dos eletrões mais interiores do átomo de sódio? c) Escreva o nome e o símbolo da unidade de energia no SI. Grupo III Subdomínio 1.3: Tabela Periódica. 1. Observe o extrato da Tabela Periódica do qual constam os primeiros vinte elementos químicos. a) Dos cientistas, Albert Einstein, Dimitri Mendeleev, Isaac Newton e Louis Pasteur, identifique qual deles é uma referência histórica relacionada com a Tabela Periódica. b) Na Tabela Periódica os elementos químicos estão ordenados: (A) por ordem alfabética. (B) por ordem crescente de tamanho dos átomos. (C) por ordem crescente de número atómico. (D) por ordem crescente de massa atómica relativa. c) O símbolo químico de um elemento com carácter metálico é: (A) C (B) Na (C) Ne D) O d) O número de eletrões do átomo do elemento flúor (F), é: (A) 2. (B) 9. (C) 13. (D) 17. e) Dois elementos que originam substâncias elementares com propriedades químicas semelhantes são: (A) o oxigénio (O) e o flúor (F). (B) o azoto (N) e o enxofre (S). (C) o berílio (Be) e o magnésio (Mg). (D) o néon (Ne) e o cloro (Cℓ).
  • 85.
    84 Editável efotocopiável © Texto | Novo 10Q f) Justifique a sua resposta à alínea anterior com base na análise da distribuição eletrónica. g) Diga qual é a posição (grupo e período) do fósforo, P, na Tabela Periódica e relacione-a com a distribuição eletrónica do átomo. 2. Um tipo de átomos do elemento potássio pode ser representado simbolicamente por K 19 39 . a) O núcleo deste tipo de átomos é constituído por: (A) 20 protões e 19 neutrões. (B) 19 protões e 20 neutrões. (B) 39 protões e 19 neutrões. (D) 19 protões e 39 neutrões. b) Diga o nome da família correspondente ao grupo da Tabela Periódica a que pertence o potássio. 3. O magnésio, Mg, e o enxofre, S8, apresentam propriedades bem distintas e são sólidos à temperatura de 25 o C. a) A esta temperatura, o enxofre apresenta: (A) caráter metálico igual ao do magnésio. (B) condutividade elétrica igual à do magnésio. (C) caráter metálico maior do que o magnésio. (D) condutividade térmica menor do que o magnésio. b) Represente simbolicamente o ião mais estável que os átomos de magnésio tendem a formar. 4. Cada molécula de água é constituída por dois átomos de hidrogénio e um de oxigénio. a) O hidrogénio (H) e o oxigénio (O) figuram na Tabela Periódica porque: (A) os seus átomos são constituintes das moléculas de água. (B) os seus átomos são constituintes de um grande número de moléculas. (C) são elementos químicos. (D) são substâncias elementares. b) O oxigénio pertence ao grupo 16 da Tabela Periódica, o que permite concluir que um átomo de oxigénio tem: (A) seis protões no núcleo. (B) seis eletrões de valência. (C) dezasseis eletrões. (D) seis neutrões no núcleo. c) Justifique, com base na Tabela Periódica, a formação do ião mais estável do elemento oxigénio. 5. Na Tabela Periódica podem encontrar-se algumas informações sobre o bromo como, por exemplo, ponto de fusão, massa volúmica, condutividade térmica, número atómico, massa atómica relativa, distribuição eletrónica e também que, à pressão de uma atmosfera, entra em ebulição à temperatura de 59 o C. a) Das informações que se encontram sublinhadas indique duas que dizem respeito ao elemento químico e duas que digam respeito à substância elementar.
  • 86.
    Editável e fotocopiável© Texto | Novo 10Q 85 b) Quando o bromo passa do estado líquido ao estado gasoso: (A) a massa de cada uma das suas moléculas diminui. (B) o volume de cada uma das suas moléculas aumenta. (C) as suas moléculas são destruídas. (D) as ligações entre as suas moléculas são destruídas. a) Durante a ebulição, à pressão de uma atmosfera, a temperatura do bromo: (A) aumenta a partir de 59 o C. (C) mantém-se a 59 o C. (B) aumenta até atingir 59 o C. (D) mantém-se abaixo de 59 o C. b) Durante a ebulição, à pressão de uma atmosfera, o bromo encontra-se: (A) no estado gasoso. (C) no estado líquido. (B) nos estados gasoso e líquido. (D) nos estados líquido e sólido. 6. As expressões de 1. a 4. dizem respeito a alguns elementos químicos identificados de a. a f.. 1. Três eletrões de valência. a. Alumínio e silício. 2. Três níveis de energia. b. Berílio. 3. 2. o período e grupo 14. c. Boro e alumínio. 4. Halogéneo do 2. o período. d. Carbono. e. Flúor. f. Néon. a) Estabeleça correspondências corretas associando a cada número de 1. a 4. uma letra de a. a f.. b) Justifique uma das correspondências estabelecidas na alínea anterior. 7. A massa volúmica do alumínio é 2,70 g/mL. a) Diga o significado físico do valor da massa volúmica do alumínio. b) Determine massa de um cubo de alumínio com 2,0 cm de aresta. 8. Quando se adiciona azeite e água verifica-se que o azeite fica à superfície da água. Explique este facto aplicando os conceitos de miscibilidade e de densidade.
  • 87.
    86 Editável efotocopiável © Texto | Novo 10Q Grupo I Subdomínio 2.1: Ligação química. 1. Considere a seguinte simbologia: H2, 2H, CO, O2 2+ , Cℓ2, NH4 + , O2– , C2H2, Aℓ3+ , 4Fe 1.2 Identifique a simbologia que corresponde a: a) átomos; b) moléculas; c) iões. 1.3 Elabore um texto, ilustrado, no qual esclareça o significado e a diferença das representações simbólicas H2 e 2 H. 1.4 Determine o número de eletrões na unidade estrutural representada por NH4 + . 1.5 Escreva a fórmula química da substância formada por O2– e Aℓ3+ . 2. Classifique como ligação covalente, iónica ou metálica a que existe entre: a) átomos de carbono, C, no diamante. b) átomos de prata, Ag, num anel de prata. c) o cloro, Cℓ, e sódio, Na, no cloreto de sódio. d) o oxigénio, O, e o hidrogénio, H, na molécula de água. 3. Qualquer ligação química envolve os eletrões dos átomos que estabelecem ligação entre si. a) Ao estabelecer ligações químicas entre si, os átomos podem formar: (A) apenas moléculas. (B) apenas redes de átomos. (C) moléculas, com dois ou mais átomos, ou redes de átomos. (D) moléculas, com um máximo de três átomos, ou redes de átomos. b) A ligação química entre átomos de não-metais chama-se: (A) covalente e envolve transferência de eletrões entre os átomos. (B) covalente e envolve partilha de eletrões entre os átomos. (C) iónica e envolve transferência de eletrões entre os átomos. (D) iónica e envolve partilha de eletrões entre os átomos. NOME ___________________________________________________ Turma______ Número______ Subdomínio 2.1: Ligação química. Subdomínio 2.2: Gases e dispersões. Subdomínio 2.3: Transformações químicas. . Ficha de diagnóstico Domínio 2: Propriedades e transformações da matéria
  • 88.
    Editável e fotocopiável© Texto | Novo 10Q 87 c) A ligação iónica está associada à ligação entre: (A) aniões e catiões e dá origem a moléculas. (B) aniões e catiões e dá origem a redes iónicas. (C) aniões e dá origem a redes iónicas. (D) catiões e dá origem a moléculas. d) Os eletrões dos átomos que estão diretamente envolvidos nas ligações químicas são os do nível: (A) de valência, ou seja, os mais energéticos. (B) de valência, ou seja, os menos energéticos. (C) mais interior, ou seja os mais energéticos. (D) mais interior, ou seja, os menos energéticos. e) Justifique, partindo da análise da distribuição eletrónica, a não formação de moléculas diatómicas de néon, Ne2. 4. Represente, usando notação de Lewis, os átomos de sódio, alumínio, oxigénio, fósforo e cloro. 5. A fórmula de estrutura de Lewis para o cianeto de hidrogénio é a) Diga o que representa cada ponto e cada traço. b) Classifique cada uma das ligações como simples, dupla ou tripla. c) Quantos eletrões de valência existem na molécula de cianeto de hidrogénio? 6. A água é uma substância molecular, líquida à temperatura ambiente e à pressão de uma atmosfera. a) Diga qual é a temperatura de ebulição e a temperatura de fusão da água. b) Usando a notação de Lewis a fórmula de estrutura da água é: (A) (B) (C) (D) c) Durante a evaporação da água: (A) rompem-se ligações H-O em algumas moléculas. (B) não se rompem ligações H-O em nenhuma molécula. (C) rompe-se uma ligação H-O em cada molécula. (D) rompem-se duas ligações H-O em cada molécula. 7. O eteno, C2H4, é uma substância da família dos hidrocarbonetos e a sua fórmula de estrutura é: a) Diga o que é um hidrocarboneto.
  • 89.
    88 Editável efotocopiável © Texto | Novo 10Q b) Classifique o eteno como hidrocarboneto saturado ou insaturado, justificando com base na análise da fórmula de estrutura. c) O número de pares de eletrões partilhados por cada átomo de carbono no eteno é: (A) 2. (B) 4. (C) 6. (D) 8. Grupo II Subdomínio 2.2: Gases e dispersões. 1. A maior parte dos materiais que nos rodeiam são misturas (soluções, coloides e suspensões). Nas figuras abaixo encontram-se informações sobre quatro misturas diferentes. a) O ar seco da atmosfera terrestre é uma mistura homogénea ou heterogénea? b) Indique qual dos seguintes gráficos diz respeito ao ar seco da atmosfera terrestre. c) De acordo com a resposta à alínea anterior: (A) cerca de 21% do volume de ar é nitrogénio. (B) 25% do volume de ar é nitrogénio. (C) cerca de 21% do volume de ar é oxigénio. (D) 25% do volume de ar é oxigénio. d) Selecione um dos componentes da água mineral e escreva a informação quantitativa correspondente. Diga o nome da grandeza a que esse valor se refere. e) Calcule o volume de água que teria de beber para ingerir 0,10 g do componente que selecionou na alínea anterior. Apresente todas as etapas de resolução. f) Interprete a informação 14% Vol no rótulo da bebida alcoólica. g) Escreva uma expressão que permita determinar a percentagem de ouro numa aliança. h) As soluções são misturas: (A) homogéneas, mostrando-se heterogéneas se observadas ao microscópio. (B) homogéneas, não sendo possível distinguir os seus componentes. (C) heterogéneas, mostrando-se homogéneas se observadas ao microscópio. (D) heterogéneas, sendo possível distinguir os seus componentes. Ar seco da atmosfera Água mineral Bebida alcoólica Alianças de ouro Par de alianças com 10 gramas das quais 7,5 g são de ouro
  • 90.
    Editável e fotocopiável© Texto | Novo 10Q 89 i) As soluções podem ser misturas: (A) líquidas ou gasosas e, por isso, a aliança de não pode ser classificada como solução. (B) líquidas ou sólidas e, por isso, o ar seco não pode ser classificado como solução. (C) sólidas, líquidas ou gasosas e todas as misturas ilustradas são soluções. (D) sólidas ou gasosas e, por isso, a bebida alcoólica não pode ser classificada como solução. 2. Prepararam-se 200 mL de uma solução aquosa de sulfato de cobre (II), de concentração em massa 15,0 g/dm3 , a partir do soluto sólido. Abaixo tem imagens de quatro etapas do procedimento, que se iniciou com a pesagem do sulfato de cobre (etapa A) seguindo-se a sua dissolução em água destilada (etapa B). a) Determine a massa de sulfato de cobre (II) utilizada. Apresente todas as etapas de resolução. b) Indique o nome e a capacidade do material de vidro utilizado na etapa D. c) Descreva o procedimento seguido nas etapas C e D, e identifique o material utilizado. d) A relação entre a massa do soluto, m, e o volume de solução, V, é de proporcionalidade: (A) direta, sendo m/V uma constante. (B) direta, sendo m/V variável. (C) inversa, sendo m/V uma constante. (D) inversa, sendo m/V variável. e) Elabore uma tabela da qual constem, pelo menos, quatro pares de valores (massa de soluto e volume de solução). f) Metade da solução foi guardada num frasco. Elabore a etiqueta para colar no frasco. g) Para determinar experimentalmente a massa volúmica da solução aquosa de sulfato de cobre (II) que grandezas deveriam ser medidas? 3. Colocou-se água numa proveta, como indicado em A, e mediu-se a massa de um objeto maciço tendo-se obtido 11,85 g. Seguidamente, colocou-se este objeto dentro da proveta com água e o resultado pode ver-se em B. A B A B C D
  • 91.
    90 Editável efotocopiável © Texto | Novo 10Q a) Diga qual é o valor de metade da menor divisão da escala da proveta. b) Determine a massa por unidade de volume do objeto. Apresente todas as etapas de resolução. c) Considere um cubo maciço, de aresta 1 cm, feito do mesmo material do objeto. Indique o valor da massa do cubo. 4. Numa seringa de vidro encontra-se uma amostra de ar com a qual foi realizada a experiência ilustrada em A e a experiência ilustrada em B. a) Descreva a experiência ilustrada em A. b) Durante a experiência em A, relativamente à amostra de ar, a: (A) massa aumentou e o volume diminuiu. (B) massa diminuiu e o volume também. (C) pressão aumentou e a densidade também. (D) pressão diminuiu e a densidade aumentou. c) Diga, justificando, o que prevê que aconteça ao êmbolo da seringa durante a experiência ilustrada em B. A B
  • 92.
    Editável e fotocopiável© Texto | Novo 10Q 91 Grupo III Subdomínio 2.3: Transformações químicas. 1. Considere as equações 1. a 5., representadas na coluna I, e as transformações a. a f. identificadas na coluna II. Coluna I Coluna II 1. N2 (g) → N2 + (g) + e− a. Decomposição 2. N2 (g) + 3 H2 (g) → 2 NH3 (g) b. Síntese 3. 2 H2O (l) → 2 H2 (g) + O2 (g) c. Combustão 4. CH4 (g) + 2 O2 (g) → CO2 (g) + 2H2O (g) d. Atomização 5. H2O (l) → H2O (g) e. Ionização 6. O2 (g) → 2 O (g) f. Evaporação a) Associe a cada número da coluna I uma letra diferente da coluna II de forma a estabelecer correspondências corretas. b) Faça a leitura da equação representada pelo número 3.. c) Escreva a equação representada pelo número 3. usando estruturas de Lewis para cada uma das substâncias. c) Conclua, justificando com base na ligação química que se estabelece entre os átomos, qual das moléculas N2 ou O2 é mais estável. 2. As transformações dos materiais envolvem ligações químicas e podem ser desencadeadas por vários fatores. a) Durante uma reação química há rutura de ligações químicas nos reagentes e: (A) é alterado o número de átomos. (B) formam-se novos elementos químicos. (C) há conservação de volume. (D) há novos rearranjos dos átomos. b) A água ao congelar: (A) absorve energia e um fósforo a arder também. (B) absorve energia e um fósforo a arder liberta energia. (C) liberta energia e um fósforo a arder também. (D) liberta energia e um fósforo a arder absorve energia. c) Nas folhas das árvores, durante a realização da fotossíntese, ocorrem transformações: (A) físicas por ação da luz. (B) físicas por ação do calor. (A) químicas por ação da luz. (D) químicas por ação do calor.
  • 93.
    92 Editável efotocopiável © Texto | Novo 10Q 3. Numa fatura relativa ao consumo doméstico de gás natural, constituído essencialmente por metano, pode ler-se a seguinte informação: Consumo: 9 m3 Consumo: 105 kW h O consumo provocou a emissão de 19,32 kg de CO2 a) Indique, em litros, o volume de gás natural consumido. b) O consumo energético, expresso em joule, é dado pela expressão: (A) 105×3600 (B) 105 3600 (C) 105 × 3600 × 103 (D) 105 × 103 3600 c) Cada metro cúbico de gás natural é responsável pela emissão de, aproximadamente: (A) 1,15 kg de CO2 (B) 2,15 kg de CO2 (C) 3,15 kg de CO2 (D) 4,15 kg de CO2 d) A molécula de metano é representada por: (A) CH4, formada por quatro ligações simples CH. (B) C2H2, formada por uma ligação tripla CC e duas ligações simples CH. (C) C2H4, formada por uma ligação dupla CC e quatro ligações simples CH. (D) C3H8, formada por duas ligações simples CC e oito ligações simples CH. 4. Considere a informação do rótulo de um produto alimentar, correspondente a 100 g desse produto: a) A caloria é uma: (A) grandeza e a energia é uma unidade. (B) grandeza e a energia também. (C) unidade e a energia é uma grandeza. (D) unidade e a energia também. b) O valor energético de 100 g de produto é: (A) 349 1483 kcal. (B) 1483 349 kJ. (C) 349 kcal, ou seja, 1483 kJ. (D) 349 kJ, ou seja, 1483 kcal. c) O gráfico que traduz a relação entre a energia expressa em joules e em calorias é: 349 kcal/1483 kJ (A) (B) (C) (D)
  • 94.
    Editável e fotocopiável© Texto | Novo 10Q 93 Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário. 1. Observe as representações de várias estruturas, nas quais estão indicadas as respetivas dimensões. a) Indique o nome da estrutura de menor tamanho. b) A altura de uma criança de 40 cm pode representar-se por: (A) 4000 m. (B) 400 m. (C) 4,0 m. (D) 0,40 m. c) Um micrómetro (1 μm) é a milésima parte do milímetro o que significa que o tamanho de um glóbulo vermelho é: (A) 0,7 mm. (B) 0,07 mm. (C) 0,007 mm. (D) 0,0007 mm. d) Sobre o Sol e a Terra podemos afirmar que um diâmetro: (A) solar, 1 400 000 km, está mais próximo de dez milhões de quilómetros do que de um milhão de quilómetros. (B) solar, 1 400 000 km, está mais próximo de um milhão de quilómetros do que de dez milhões de quilómetros. (C) terrestre, 12 700 km, está mais próximo de dez mil quilómetros do que de doze mil quilómetros. (D) terrestre, 12 700 km, está mais próximo de doze mil quilómetros do que de treze mil quilómetros. e) O tamanho do óvulo humano está mais próximo de qual dos seguintes valores? (A) 100 μm. (B) 101 μm. (C) 102 μm. (D) 103 μm. f) Indique a ordem de grandeza expressa em metros, do diâmetro da Terra, da célula da pele e do átomo de berílio. NOME ___________________________________________________ Turma______ Número______ Ficha 1 – Massa e tamanho dos átomos Domínio 1: Elementos químicos e sua organização 1400000 km Sol 12700 km Terra 40 a 170 cm Ser humano 120 μm Óvulo 35 μm Célula da pele 7 μm Glóbulo vermelho 224 pm Átomo de berílio
  • 95.
    94 Editável efotocopiável © Texto | Novo 10Q 2. Indique o número de protões, neutrões e eletrões: a) em Ne 10 22 , S2− 16 34 e A 13 27 l 3+ . b) em 63 Cu e na prata-107. c) no isótopo mais abundante do titânio, da figura. d) indique a posição relativa dos protões, neutrões e eletrões num átomo ou num ião. 3. Observe a imagem obtida por STM (Scanning Tunneling Microscope), uma técnica de micros- copia aplicada à escala atómica, para um cristal do cloreto de sódio. a) Determine, em unidade SI, o valor aproximado do raio iónico do ião cloreto. b) O raio iónico do ião cloreto, obtido através de mapas de densidade eletrónica de elevada resolução, é 1,64 Å. Compare com o resultado obtido em a) com referência às respetivas ordens de grandeza. 4. A figura permite fazer uma ideia da pequenez das unidades estruturais, átomos e moléculas. Em 18 g de água existem 602 200 000 000 000 000 000 000 moléculas de água e, como se compreende, não é prático escrever o número de moléculas desta forma. a) Indique qual é o número de moléculas de água que existe em 36 g de água. b) A massa de uma molécula de estearina é: (A) 6,022 890 × 1023 g (B) 6,022 × 1023 890 g (C) 890 × 10−23 6,022 g (D) 890 6,022 × 10– 23 g c) Um átomo de mercúrio é mais: (A) leve que uma molécula de água e mais pesado que uma molécula de sacarose. (B) leve que uma molécula de água e que uma molécula de sacarose. (C) pesado que uma molécula de água e mais leve que uma molécula de sacarose. (D) pesado que uma molécula de água e que uma molécula de sacarose. Isótopos e abundância relativa
  • 96.
    Editável e fotocopiável© Texto | Novo 10Q 95 d) Determine o número de átomos que existe em 36 g de água. e) Indique a massa atómica relativa do mercúrio e relacione-a com a duodécima parte da massa do átomo de carbono-12. 5. Na tabela encontram-se informações sobre o silício. Isótopo Massa isotópica Abundância relativa/Fração 30 Si 29,973770 0,03092 29 Si 28,976495 0,04685 28 Si 27,976927 0,92223 a) Determine a massa atómica relativa média do silício. Apresente o resultado com cinco algarismos significativos. b) O valor da massa atómica relativa média para o silício é apresentado na Tabela Periódica no formato [28,084; 28,086]. Tal significa que é válida a expressão: (A) Ar(Si) ≥ 28,084. (B) Ar(Si) ≤ 28,086. (C) 28,084 ≤ Ar(Si) ≥ 28,086. (D) 28,084 ≤ Ar(Si) ≤ 28,086. c) Relacione o resultado obtido em a) com a informação dada em b). d) Interprete a proximidade do valor da massa atómica relativa do silício com o valor da massa isotópica do Si-28. 6. Determine a quantidade (número de moles) de átomos que existem em 23,04 g etanol, C2H6O. 7. Identifique, pelo nome, a substância de fórmula química (Uu)2SO4 sabendo que a massa molar é 142,01 g/mol, e que Uu não representa o verdadeiro símbolo químico do elemento. 8. De 28,87 g de uma amostra de ar, 6,72 g são de oxigénio, O2. Considere que o ar da amostra é constituído apenas por oxigénio e nitrogénio, N2. a) Determine a fração molar de cada componente na amostra de ar. b) Determine a fração mássica de cada componente na amostra de ar.
  • 97.
    96 Editável efotocopiável © Texto | Novo 10Q Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário. 1. Observe o diagrama de energias para o átomo de hidrogénio. a) Incidiram fotões de energia 3,4 eV, 10,2 eV e 13,0 eV sobre átomos de hidrogénio no estado fundamental. O átomo pode absorver os fotões de energia: (A) 3,4 eV (B) 3,4 eV e 10,2 eV (C) 3,4 eV e 13,0 eV (D) 10,2 eV e 13,0 eV b) Justifique a resposta à alínea anterior, com base em duas ideias fundamentais do modelo atómico de Bohr que ainda prevalecem no modelo atual. c) Determine a energia da radiação envolvida na transição representada por Pα, em joule, e localize essa radiação no espetro eletromagnético. (1 eV = 1,6 x 10–19 J) d) Selecione o espetro atómico do átomo de hidrogénio correspondente às transições representadas por Hα, Hβ e Hγ. 2. A energia dos eletrões nos átomos inclui: (A) apenas o efeito das atrações entre os eletrões e o núcleo. (B) apenas o efeito das repulsões entre os eletrões. (C) o efeito das atrações entre os eletrões e o núcleo e o das repulsões entre os eletrões. (D) o efeito das repulsões entre os eletrões e o núcleo e o das atrações entre os eletrões. 3. A espetroscopia fotoeletrónica é uma das técnicas através da qual se podem obter as energias dos eletrões nos átomos e moléculas. Ao lado encontra-se o espetro fotoeletrónico de um elemento químico. Violeta Vermelho Vermelho Vermelho Vermelho Violeta Violeta NOME ___________________________________________________ Turma______ Número______ Ficha 2 – Energia dos eletrões nos átomos Domínio 1: Elementos químicos e sua organização Violeta
  • 98.
    Editável e fotocopiável© Texto | Novo 10Q 97 a) A altura do pico C é tripla da altura do pico B porque: (A) a energia de remoção dos eletrões responsáveis pelo pico B é aproximadamente o triplo da energia de remoção dos eletrões responsáveis pelo pico C. (B) a energia de remoção dos eletrões responsáveis pelo pico B é aproximadamente um terço da energia de remoção dos eletrões responsáveis pelo pico C. (C) o número de eletrões responsáveis pelo pico B é o triplo do número de eletrões responsáveis pelo pico C. (D) o número de eletrões responsáveis pelo pico B é um terço do número de eletrões responsáveis pelo pico C. b) Os picos A, B e C têm, respetivamente, correspondência com os subníveis de energia: (A) 2p, 2s e 1s. (B) 1s, 2s e 2p. (C) 2s, 1s e 2p. (D) 1s, 2p e 2s. c) Qual é a energia de remoção dos eletrões de valência mais energéticos? d) Escreva o nome e o símbolo químico do elemento. e) Verifica-se que aos seis eletrões responsáveis pelo pico C corresponde um único valor de energia. Relacione este resultado com a relação entre as energias das orbitais px, py e pz. 4. Considere o elemento químico de número atómico 8. a) Escreva a sua configuração eletrónica de forma a evidenciar a aplicação da regra de Hund (maximização do número de eletrões desemparelhados em orbitais degeneradas) e estabeleça relações de ordem entre as energias das orbitais ocupadas. b) O diagrama de distribuição eletrónica permitido pelo Princípio de Exclusão de Pauli é: c) Escolha uma das opções que não selecionou na alínea anterior e justifique a sua incorreção. d) Os valores de energias de remoção obtidos para o átomo deste elemento químico são: 16 eV, 42 eV e 543 eV. Associe a cada subnível, 1s, 2s e 2p, um valor de energia de remoção. e) Escreva uma configuração eletrónica que não respeite o Princípio da Construção. 5. Observe o diagrama de energias para o átomo de sódio. a) A energia de cada eletrão que ocupa o subnível 2p é: (A) –0,83 J. (B) –0,83 × 10–18 J. (C) –4,98 J. (D) –4,98 × 10–18 J. b) Indique qual é o valor da energia de remoção de um dos eletrões mais interiores. c) Escreva a configuração eletrónica deste átomo num estado excitado. d) Por espetroscopia fotoeletrónica, quantos valores de energias de remoção se obtêm para o átomo de sódio? (A) 11. (B) 6. (C) 4. (D) 3. (A) (B) (C) (D)
  • 99.
    98 Editável efotocopiável © Texto | Novo 10Q 6. Átomos de diferentes elementos têm entre si valores: (A) diferentes para as energias dos eletrões e espetros atómicos diferentes. (B) diferentes para as energias dos eletrões e espetros atómicos iguais. (C) iguais para as energias dos eletrões e espetros atómicos diferentes. (D) iguais para as energias dos eletrões e espetros atómicos iguais. 7. Associe a cada uma das seguintes representações, A, B e C, as orbitais s, p e d, indicando quantas orbitais existem, de cada tipo e em cada nível. 8. Escreva a configuração eletrónica dos elementos químicos com os valores de número atómico 3, 6, 9, 13, 20, 21 e 23, indicando, para cada, quantos valores diferentes de energias de remoção se espera que sejam obtidos por espetroscopia fotoeletrónica. 9. Identifique o número de orbitais pelas quais se distribuem os eletrões e o número de eletrões desemparelhados para os elementos com número atómico 3, 6, 9 e 13. 10. Identifique a configuração eletrónica que não respeita o Princípio da Construção. (A) 1s 2 2s2 2px 1 2py 1 2pz 2 (B) 1s 2 2s3 2p3 (C) 1s 2 2s2 (D) 1s2 2s1 2p1
  • 100.
    Editável e fotocopiável© Texto | Novo 10Q 99 Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário. 1. Mendeleev usou o prefixo eka- para nomear provisoriamente elementos desconhecidos que viriam a ocupar, na Tabela Periódica, o lugar abaixo de elementos já conhecidos na época. Dois desses elementos foram o eka-alumínio e do eka-silício. a) As propostas de Mendeleev para a organização dos elementos químicos numa tabela: (A) eram fechadas à incorporação de novos elementos. (B) incluíam todos os elementos conhecidos atualmente. (C) não incluíam a existência de lugares vazios. (D) previam a existência de novos elementos. b) Identifique, pelo nome e pelo símbolo químico, os elementos químicos que atualmente correspondem ao eka-alumínio e ao eka-silício. 2. Abaixo pode ver um excerto da Tabela Periódica dos elementos químicos. 21 Sc 44,96 22 Ti 47,87 23 V 50,94 24 Cr 52,00 25 Mn 54,85 26 Fe 55,85 27 Co 58,93 28 Ni 58,69 29 Cu 63,55 30 Zn 65,41 a) Na Tabela Periódica os elementos químicos estão ordenados por ordem crescente de: (A) massa atómica relativa, uma consequência dos trabalhos de Mendeleev. (B) massa atómica relativa, uma consequência dos trabalhos de Moseley. (C) número atómico, uma consequência dos trabalhos de Mendeleev. (D) número atómico, uma consequência dos trabalhos de Moseley. b) Os elementos químicos representados no excerto da Tabela Periódica pertencem ao bloco: (A) d e são elementos representativos. (B) s e são elementos representativos. (C) d e não são elementos representativos. (D) s e não são elementos representativos. c) Justificando com base na configuração eletrónica, localize na Tabela Periódica o elemento químico que antecede o escândio. NOME ___________________________________________________ Turma______ Número______ Ficha 3 – Tabela Periódica Domínio 1: Elementos químicos e sua organização
  • 101.
    100 Editável efotocopiável © Texto | Novo 10Q 3. Associe a cada número da coluna I uma ou mais letras da coluna II de modo a estabelecer correspondências corretas. Coluna I Coluna II 1. 4. o período e grupo 4 a. Forma iões tripositivos estáveis 2. 1s 2 2s 2 2p 6 3s 2 3p 3 b. Ião óxido 3. 1s 2 2s 2 2p 6 3s 2 3p 1 c. Metal de transição 4. 1s 2 2s 2 2p 6 d. 3. o período e grupo 15 e. Fósforo f. 3. o período e grupo 13 4. Qual das seguintes correspondências entre um elemento e a configuração eletrónica do respetivo ião mais estável, está correta? (A) Enxofre - 1s2 2s2 2p6 3s2 3p4 (B) Lítio - 1s2 2s2 (C) Magnésio - 1s2 2s2 2p6 (D) Cloro - 1s2 2s2 2p6 5. O sódio, que pertence à família dos metais alcalinos, tem ponto de fusão 371 K e energia de ionização 496 kJ/mol. a) Explique a formação do ião sódio mais estável. b) Represente a formação do ião sódio mais estável usando o modelo seguinte: F ([He]2s2 2p5 ) + e– → F– ([He]2s2 2p6 ) c) A ionização do sódio corresponde à transformação representada por: (A) Na (g) → Na+ (g) + e– com absorção de 496 kJ/mol. (B) Na (g) → Na+ (g) + e– com libretação de 496 kJ/mol. (C) Na (s) → Na+ (s) + e– com absorção de 496 kJ/mol. (D) Na (s) → Na+ (s) + e– com libertação de 496 kJ/mol. d) A energia de ionização é uma propriedade: (A) das substâncias elementares e o ponto de fusão é uma propriedade dos elementos. (B) das substâncias elementares e o ponto de fusão também. (C) dos elementos e o ponto de fusão é uma propriedade das substâncias elementares. (D) dos elementos e o ponto de fusão também. 6. Justificando com base na posição relativa dos elementos na Tabela Periódica, preveja a relação que existe entre os raios atómicos do carbono e do silício.
  • 102.
    Editável e fotocopiável© Texto | Novo 10Q 101 7. Associe a cada um dos valores de raios atómicos, 48 pm, 79 pm e 88 pm, um dos átomos de oxigénio, enxofre e cloro. 8. Os valores de energias de ionização, 1251, 1681 e 2081, em kJ/mol correspondem respetivamente aos seguintes elementos: (A) cloro, flúor e néon. (B) cloro, néon e flúor. (C) néon, flúor e cloro. (D) néon, cloro e flúor. 9. Usando como exemplo os elementos sódio e magnésio, interprete a tendência geral para o aumento da energia de ionização ao longo de um período da Tabela Periódica. 10. Analisando o espetro fotoeletrónico de um elemento químico, os picos correspondentes aos três valores de energias de remoção permitiram concluir ser este um elemento com um eletrão no subnível p. Trata-se do elemento da Tabela Periódica de número atómico: (A) 3, do 2.o período. (B) 5, do 2.o período. (C) 11, do 3.o período. (D) 13, do 3.o período. 11. Observe o espetro fotoeletrónico de um elemento químico do segundo período da Tabela Periódica. a) A altura relativa dos picos A, B e C é: (A) 1,1,1. (B) 1,1,2. (C) 2,2,3. (D) 2,2,5. b) Indique o bloco a que pertence, e o número de níveis e de subníveis pelos quais se distribuem os eletrões no átomo. c) Partindo da configuração eletrónica, identifique o elemento e o grupo da Tabela Periódica a que pertence. d) O elemento químico de configuração eletrónica [He] 2s2 2p2 tem energia de ionização: (A) igual a 2,1 × 10–18 J. (B) igual a 66 ×10–18 J (C) inferior a 2,1 ×10–18 J. (D) superior a 66 ×10–18 J
  • 103.
    10   02  Consulte  1. É a p molé difere a) A e (A) (B) (C) (D b) A l (A (B) (C) (D) 2.  Na  fi intern NOME ____ Ficha 4 Domínio  a Tabela Periód possibilidade  culas, que  p entes.   energia de um )  maior  do  de atrações )  maior  do  q e repulsões )  menor  do  de atrações ) menor do q e repulsões igação quími ) covalente qu ) intermolecu valência.  ) iónica quand ) metálica qu de metais.   igura  abaixo  nuclear, r, en ___________ 4 – Liga 2: Propriedad ica, tabelas de c de estabelec permite  a  d m conjunto de que  a  do  m s envolvendo  ue  a  do  mes s envolvendo  que  a  do  m s envolvendo  que a do me s envolvendo  ca pode ser c uando envolve ular de van de do envolve tr ando envolve pode  observ tre dois átom   __________ ção quí des e transfo Editável e fotoco constantes e for cimento de li iversidade  d e átomos ou m mesmo  conju eletrões e nú smo  conjunto eletrões e nú mesmo  conju eletrões e nú esmo conjunt eletrões e nú classificada co e partilha sign er Waals qua ansferência d e partilha sign var‐se  o  gráf mos de hidrog ___________ mica  rmações da m opiável © Texto |  rmulários sempr gações quím e  substância moléculas liga nto  dessas  e úcleos atómic o  dessas  enti úcleos atómic unto  dessas  e úcleos atómic to dessas ent úcleos atómic omo:  nificativa e loc ndo envolve  de eletrões de nificativa e loc fico  da  energ génio.  __________ matéria  Novo 10Q re que necessár micas de natu as  com  prop ados é:   entidades  nã cos.  idades  não  li cos.  entidades  nã cos.  tidades não l cos.   alizada de ele partilha pouc e valência ent calizada de e gia  potencial, __________  rio e salvo indica reza diversa, priedades  fís ão  ligadas,  e igadas,  e  res ão  ligadas,  e ligadas, e res etrões dos cern co significativ tre átomos d letrões de va ,  Ep,  em  fun    Turma_____ ação em contrár , entre átomo sicas  e  quím e  resulta  ape sulta  de  atraç e  resulta  ape sulta de atraç nes atómicos. va de eletrõe e não metais lência de áto ção  da  distâ __ Número_   rio.  os e  micas  enas   ções   enas   ções   .  s de  .  mos  ncia  ______ 
  • 104.
    Editável e fotocopiável© Texto | Novo 10Q 103 a) O comprimento de ligação na molécula de hidrogénio é: (A) 45 pm e a energia de ligação é aproximadamente 144 kJ/mol. (B) 74 pm e a energia de ligação é 432 kJ/mol. (C) 150 pm e a energia de ligação é aproximadamente –278 kJ/mol. (D) 350 pm e a energia de ligação é 0 kJ/mol. b) Indique o tipo de interações, de repulsão ou de atração, que predominam quando os átomos se encontram à distância de 45 pm. c) Também as moléculas HX, e X2, em que X é um elemento químico da família dos halogéneos, são diatómicas como a de hidrogénio, H2. Associe cada um dos mapas de potencial eletrostático, A, B, C e D, a uma das moléculas, F2, H2, HF e HCℓ. A B C D d) Compare, justificando com base na posição relativa dos elementos na Tabela Periódica, as energias da ligação H-X nas moléculas HCℓ e HBr. 3. Considere as moléculas de hidrogénio, H2, nitrogénio, N2, e oxigénio, O2. a) Escreva, por ordem crescente das energias de ligação, as fórmulas de estrutura de Lewis das moléculas. b) A energia de ionização das moléculas de nitrogénio é 1503 kJ/mol, e dos átomos de nitrogénio, N, é 1402 kJ/mol. A energia dos eletrões mais energéticos na molécula de nitrogénio é: (A) maior do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é mais estável que os dois átomos separados. (B) maior do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é menos estável que os dois átomos separados. (C) menor do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é mais estável que os dois átomos separados. (D) menor do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é menos estável que os dois átomos separados. 4. Considere as moléculas CH4, CO2, H2O e NH3. a) Indique, sequencialmente, o nome da substância que corresponde a cada uma das simbologias. b) Descreva a geometria molecular de CH4, identificando a localização relativa dos átomos na molécula e indicando o valor dos ângulos de ligação. c) Partindo das fórmulas de estrutura de Lewis das moléculas CO2 e H2O, relacione os ângulos de ligação nestas moléculas com base no modelo de repulsão dos pares eletrónicos de valência. d) Indique quais das seguintes moléculas são polares: (A) CH4 e CO2. (B) CO2 e H2O. (C) H2O e NH3. (D) NH3 e CH4. e) Indique o nome da geometria molecular de NH3 e classifique a distribuição de carga na molécula como simétrica ou assimétrica.
  • 105.
    104 Editável efotocopiável © Texto | Novo 10Q 5. Considere as substâncias, identificadas simbolicamente ou pelo nome, C2H2, C(CH3)4, CHCℓ3, cloreto de sódio, eteno, hélio e 2-metilpentano. a) Escreva o nome e a fórmula química de uma substância que seja iónica. b) Escreva o nome das substâncias identificadas simbolicamente, e a respetiva fórmula de estrutura com base na regra do octeto. c) Uma amostra de hélio é formada por: (A) átomos, He, entre os quais não se estabelecem quaisquer ligações. (B) átomos, He, entre os quais se estabelecem forças de van der Waals. (C) moléculas, He2, entre as quais não se estabelecem quaisquer ligações. (D) moléculas, He2, entre as quais se estabelecem forças de van der Waals. d) Das substâncias identificadas: (A) C(CH3)4 e CHCℓ3 são haloalcanos. (B) CHCℓ3 e o cloreto de sódio são haloalcanos. (C) C2H2 e C(CH3)4 são hidrocarbonetos saturados. (D) C2H2 e o eteno são hidrocarbonetos saturados. e) Faça corresponder a cada uma das moléculas, de eteno e C2H2, um dos valores de comprimento da ligação CC: 1,20 Å e 1,33 Å. f) Represente a fórmula de estrutura de Lewis para 2-metilpentano. 6. Observe as fórmulas de estrutura de Lewis de cinco substâncias: A, B, C, D e E. a) Associe a cada uma das estruturas os grupos funcionais ácido carboxílico, aldeído, álcool, amina e cetona. b) Classifique cada uma das ligações interatómicas na substância representada por B. c) Indique as substâncias nas quais se estabelecem ligações intermoleculares de hidrogénio. (A) A e B. (B) A e C. (C) B e C. (D) B e D. d) De acordo com a estrutura de Lewis, relativamente ao efeito dos eletrões de valência na formação da molécula da substância D, há: (A) 7 eletrões ligantes e 4 eletrões não ligantes. (B) 8 eletrões ligantes e 4 eletrões não ligantes. (C) 14 eletrões ligantes e 8 eletrões não ligantes. (D) 16 eletrões ligantes e 8 eletrões não ligantes.
  • 106.
        Consulte  1. Amed em  1 condi Avoga No Si átomo com  corres a) De  (A) (B) (C)  (D) b) Ind c) Sej da  um nAV 2. Na fig de qu norm (PTN) a)  In te b) O or c) As  (A) (B) (C) (D) d) De e) Co    NOME ____ Ficha  Domínio  a Tabela Periód deo Avogadro 1811,  incluia  ições  de  pre adro, NA, foi a stema Intern os de carbono uma  incertez spondem à in acordo com  ) [6,022 140 8  [6,022 140 8 [6,022 140 8 ) [6,022 140 8 dique o núme am dois gase definição de  m  dos  gases,  VB = nBVA.   gura ao lado  uatro gases d mais  de  pres ).  dique  os  va mperatura co Ordene  as  a dem crescent amostras têm ) massa de gá ) massa de gá ) número de á ) quantidade  etermine a qu nsidere a mist ___________ 5 – Gase 2: Propriedad ica, tabelas de c o (1776‐1856 a  sua  famos ssão  e  de  te assim nomea acional de un o‐12 em 12 g d za  relativa  de certeza absolu  (in h a informação 82(18) ± 0,000 82(18) ± 0,000 82 ± 0,000000 82 ± 0,000000 ero de átomos es, A e B, nas  volume mola nA  e  nB,  e  os podem ver‐s diferentes na ssão  e  de  t alores  da  pre onsiderados n mostras  de  te de densida m igual:  ás.      s por unidade átomos.  de gás por un antidade de  tura das quatr __________ es e disp des e transfo Editável e fotoco constantes e for 6), cientista it sa  hipótese:  emperatura,  da em sua ho nidades (SI) a de carbono‐12 e  30  partes  uta lendo‐se « ttp://www.nist. o do texto, o m 000018]  102 000018]  102 018]  1023  mo 018]  1023  m s de carbono‐ mesmas con ar e da Lei de s  respetivos  se amostras  s condições  emperatura  essão  e  da  normais.   gases  por  ade.   e de volume. nidade de vol matéria que e ro amostras d   ___________ persões rmações da m opiável © Texto |  rmulários sempr taliano, num  iguais  volum contêm  igua omenagem.   constante d 2. O melhor va por  mil  milh «mais ou men .gov/pml/si‐rede melhor valor  23  mol–1  , com 23  mol–1  , com ol–1  , com um mol–1  , com um ‐12 que existe ndições de pre  Avogadro, q volumes,  VA ume.  existe em 5,6 e gases. Indiq __________ s  matéria  Novo 10Q re que necessár  paper public mes  de  gases al  número  de e Avogadro é alor medido é hões.  Os  dois nos 0,0000001 ef/kg_new_silico de NA medido m uma incerte m uma incerte ma incerteza re ma incerteza r em em 12 g d essão e de te ue a relação  e  VB,  pode  6 dm3  de O2 (g que a fração m __________  rio e salvo indica cado no Jour s  diferentes,  e  moléculas.  é definida com é 6,022 140 82 s  algarismos  18 mol–1 ».  on.cfm, acedido o é:  eza relativa de eza relativa de elativa de 3,0 relativa de 3,0 de carbono‐1 emperatura.  entre as qua ser  traduzida g) nas condiçõ molar de cada   Turma_____ ação em contrár rnal de Physiq sob  as  mes A  constante mo o número 2(18)   1023  m entre  parent  em janeiro de 2 e 3,0  10–9 . e 3,0  10–8 . 0  10–9 .  0  10–8 .  2.   Mostre, parti ntidades de c a  pela  expres ões PTN.   gás na mistur __ Número_ 105  rio.  que,  smas  e  de  o de  mol‐1 ,  eses  2015)  indo  cada  ssão  ra.  ______ 
  • 107.
    106 Editável efotocopiável © Texto | Novo 10Q 3. A troposfera é uma mistura de gases formada por cerca de 78%, em volume, de nitrogénio, e 21%, em volume, de oxigénio. Outros gases, como vapor de água, dióxido de carbono (CO2), árgon, etc., existem em percentagens muito baixas, sendo a do CO2 de cerca de 3,9 x 10–2 % em volume na atmosfera atual. a) O teor de CO2 na troposfera, expresso em partes por milhão em volume (ppmV), pode ser determinado pela expressão: b) b) Determine a percentagem, em massa, de carbono numa amostra de dióxido de carbono. c) Indique o valor da fração molar do nitrogénio e do oxigénio na troposfera. d) Determine a concentração em massa de nitrogénio na troposfera, a 20 °C. (Vmolar, 20 °C = 24,2 dm3 /mol) 4. A atmosfera terrestre é uma solução gasosa na qual se pode encontrar matéria particulada dispersa, líquida ou sólida, constituída por partículas de diâmetro inferior a 2,5 µm, PM2,5, e inferior a 10 µm, PM10, como, por exemplo, nevoeiro e pó de cimento respetivamente. a) Ordene por ordem decrescente de dimensão das partículas, o nevoeiro, o oxigénio, e o pó de cimento. b) Classifique o nevoeiro como coloide ou suspensão, justificando com base na dimensão relativa das partículas constituintes destas dispersões. 5. O Decreto-Lei n.o 102/2010, de 23 de setembro estabelece o regime de avaliação e gestão da qualidade do ar ambiente. Para efeitos de proteção da saúde humana, nesse diploma são definidos os valores dos limiares de alerta à população para alguns poluentes atmosféricos. Ao lado podem ler-se informações retiradas desse diploma. a) Disponha os poluentes referidos no Decreto-Lei por ordem crescente de riscos para a saúde. b) O limiar de alerta para o dióxido de nitrogénio, NO2, expresso em μmol/m3 , é: (A) 4,00 (B) 5,00 (C) 7,80 (D) 8,69 c) A expressão que representa o limiar de alerta, registado na figura, para qualquer um dos poluentes gasosos é: d) Indique fontes antropogénicas e naturais de dióxido de enxofre. 6. A densidade do vapor de água, à temperatura de 100 °C e à pressão de 1 atm, é 0,590 g dm–3 . Determine o volume ocupado por 3,01 × 1023 moléculas de H2O, contidas numa amostra pura de vapor de água, nas condições de pressão e de temperatura referidas. (A) 102 × 106 3,9 × 10−2 (B) 3,9 × 10−2 × 106 102 (C) 3,9 × 10−2 102 × 106 (D) 102 3,9 × 10−2 × 106 (A) npoluente Var (B) mpoluente Var (C) mpoluente Vpoluente (D) npoluente Vpoluente
  • 108.
    Editável e fotocopiável© Texto | Novo 10Q 107 7. O amoníaco é um gás à pressão e à temperatura ambientes. Considere que a densidade do NH3 (g) nas condições normais de pressão e de temperatura é 1,08 vezes maior do que a densidade desse gás à pressão e à temperatura ambientes. Determine o número de moles de amoníaco que existem numa amostra pura de 200 cm3 de NH3 (g), à pressão e à temperatura ambientes. 8. Consulte, no rótulo apresentado ao lado, informações sobre uma solução aquosa. a) Identifique o soluto e o solvente. b) Qual das seguintes expressões permite determinar a concentração da solução em mol/dm3 ? 9. Leia as informações sobre a solução designada como Dextrose em Soro Fisiológico usada no tratamento da desidratação: a) Indique a concentração, em mol/L, de cloreto de sódio na solução. b) A um adulto de 60 kg, pode ser administrado diariamente, no máximo: (A) 1,5 L de solução, correspondente a 0,223 g de sódio. (B) 1,5 L de solução, correspondente a cerca de 13,5 g de sódio. (C) 2,4 L de solução, correspondente a cerca de 8,28 g de sódio. (D) 2,4 L de solução, correspondente a cerca de 21,6 g de sódio. 10. Na figura ao lado pode ver-se a montagem experimental usada para determinar o teor de álcool, C2H6O, num vinho. Na tabela abaixo pode ver-se a correspondência entre o teor de álcool e a densidade, ρ, de vinhos, a 20 °C. A partir de 120 mL de um vinho, à temperatura de 20 °C, o volume de álcool obtido foi 12,84 mL. a) Escreva a expressão matemática do volume de álcool em função do volume de vinho na forma Válcool = f(Vvinho). b) Determine a densidade do vinho, a 20 °C. c) Determine a percentagem em massa, %(m/m), de álcool no vinho sabendo que a a densidade do álcool, a 20 °C, é 0,79 g/cm3 . d) Determine a concentração em massa de álcool no vinho. (A) 0,95 × 98,08 1840 (B) 0,95 × 1840 98,08 (C) 1840 0,95 × 98,08 (D) 98,08 98,08 × 1840 ρ, 20 °C,vinho (g mL -1 ) Teor de álcool (%V/V) 0,9859 10,52 0,9858 10,61 0,9857 10,70 0,9856 10,78 APROVADO EM 24-04-2013 INFARMED 50 mg de glicose/mL + 9 mg de cloreto de sódio/mL (ou seja, 154 mmol de Na + /L e 154 mmol de Cℓ - /L) . Dose máxima diária: 40 mL por kg de massa corporal, correspondente a 6 mmol de sódio por kg de massa corporal. Ácido sulfúrico, H2SO4(aq) 95%(m/m) 1 L = 1,84 g/mol M = 98,08 g/mol
  • 109.
    10 08  Consulte  e salvo in As figura 1. No di a)  Int pr b) Co en 2. Uma  do sis (A) e pa (B) e pa (C) ex pa (D) e p NOME ____ Ficha  Domínio  os dados da tab ndicação em con as dos exercíc agrama de ní terprete  a co ocesso que e ompare a ent ntalpia é posit reação quími stema. Tal sig ndotérmica,  ara o sistema ndotérmica,  ara o exterior xotérmica, e  ara o sistema exotérmica, e ara o exterio ___________ 6 – Tran 2: Propriedad bela seguinte, a ntrário.   cios 1, 9 e 8 c Ligaç O – H – O – O N ≡ íveis de ental ombustão  do nvolve ligaçõ alpia dos pro tiva ou negati ica, que ocorr gnifica que a r e se o sistem a.  e se o sistem r.  se o sistema .  e se o sistem r.  __________ nsforma des e transfo Editável e fotoco a Tabela Periódi contêm hiperl ção  O   H   H   O  ≡ N   pia da figura  o  metano,  do ões químicas.  odutos da rea iva.   reu num siste reação é:   ma não fosse  ma não fosse  a não fosse i a não fosse  ___________ ações qu rmações da m opiável © Texto |  ica, tabelas de c ligação à font Energia méd está represen o  ponto  de    ação com a d ema isolado,  isolado ocor isolado ocor isolado ocorr isolado ocorr   __________ uímicas matéria  Novo 10Q constantes e fo te.  dia da ligação / 142  436  463  496  941  ntada a comb vista  energé dos reagente provocou um rreria transfe rreria transfe reria transfer reria transfer __________  ormulários semp / kJ mol‐1   bustão do me   ético,  como  r es e conclua  ma diminuição rência de en erência de en rência de ene rência de en  Turma_____ pre que necessá etano.   resultado  de  se a variação o de tempera ergia do exte ergia do siste ergia do exte ergia do siste __ Número_   ário  um  o de  tura  erior  ema  erior  ema  ______ 
  • 110.
    Editável e fotocopiável© Texto | Novo 10Q 109 3. O gráfico da figura traduz a evolução da energia de um sistema reacional, em que os reagentes A e B, (estado inicial), originam o produto da reação C, (estado final), segundo A + B → C, durante 20 s. a) Conclua, justificando com base na comparação das energias dos reagentes e do produto da reação, se esta reação é endoenergética ou exoenergética. b) Determine a taxa média de variação temporal da energia do sistema reacional até aos 20 segundos. c) Indique o sinal da variação de temperatura do sistema reacional caso a reação tivesse ocorrido num sistema isolado. d) Compare a soma das energias de ligação nos reagentes A e B com a soma das energias de ligação no produto C. 4. Na síntese do amoníaco, traduzida pela equação N2 (g) + 3 H2 (g) + 3 H2 (g) → 2 NH3 (g), é envolvida uma energia X que resulta das energias das ligações NN, HH e NH, respetivamente ENN, EHH e ENH. a) A formação da ligação NH é um processo (A) endoenergético e a rutura da ligação HH também. (B) endoenergético e a rutura da ligação NN é um processo exoenergético. (C) exoenergético e a rutura da ligação HH também. (D) exoenergético e a rutura da ligação NN é um processo endoenergético. b) Pode saber-se o valor da energia X recorrendo à expressão: (A) ENN + 3EHH – 2EHN (B) ENN + 3EHH – 6EHN (C) 2ENN + 6EHH – 2ENH (D) 2ENN + 6EHH – 6ENH c) Sabendo que o resultado obtido pela expressão identificada em b) é negativo pode concluir-se que a síntese do amoníaco é um processo: (A) endotérmico, ocorrendo com absorção de energia. (B) endotérmico, ocorrendo com libertação de energia. (C) exotérmico, ocorrendo com absorção de energia. (D) exotérmico, ocorrendo com libertação de energia. d) Considerando que a síntese do amoníaco ocorre a pressão constante, como designa o valor obtido pela expressão identificada em b)? 5. As equações (1) e (2) representam a formação de água a partir das substâncias elementares, H2 e O2, a 25 o C. (1) H2 (g) + ½ O2 (g) → H2O (l) ΔH = –286 kJ mol–1 (2) H2 (g) + ½ O2 (g) → H2O (g) ΔH = –242 kJ mol–1
  • 111.
    110 Editável efotocopiável © Texto | Novo 10Q a) A formação de uma mole de água líquida dá-se com: (A) absorção de 44 kJ de energia a mais relativamente à formação da mesma quantidade de água gasosa. (B) absorção de 44 kJ de energia a menos relativamente à formação da mesma quantidade de água gasosa. (C) libertação de 44 kJ de energia a mais relativamente à formação da mesma quantidade de água gasosa. (D) libertação de 44 kJ de energia a menos relativamente à formação da mesma quantidade de água gasosa. b) Conclua, justificando a partir da determinação da variação de entalpia (usando os valores médios das energias de ligação), sobre o caráter energético da transformação inversa da representada por (2). 6. A síntese do óxido nítrico é traduzida pela seguinte equação: N2 (g) + O2 (g) → 2 NO (g) ΔH = +181 kJ mol–1 a) Desenhe um diagrama de níveis de entalpia para a síntese do NO. b) Determine o valor médio da energia da ligação NO. c) Indique o valor da variação de entalpia da reação de decomposição do óxido nítrico, correspondente à transformação inversa da representada pela equação. 7. A tabela abaixo contém informações sobre ionização e dissociação dos dois gases mais abundantes na atmosfera terrestre, e sobre o ozono que é o gás mais importante na estratosfera. Substância Energia de 1. a ionização / J Energia de dissociação (atomização) / J N2 2,5 × 10 –18 1,6 × 10 –18 O2 1,9 × 10 –18 8,2 × 10 –19 O3 – 6,0 × 10 –19 a) Represente, através de uma equação, a dissociação do oxigénio, O2. b) O valor da energia envolvida na transformação representada por N2 (g)→ N2 + (g) + e– é: (A) 1,6 × 10–18 J (B) 3,2 × 10–18 J (C) 2,5 × 10–18 J (D) 5,0 × 10–18 J c) Como se designa a transformação representada em b) pelo facto de ocorrer por ação da luz (na atmosfera terrestre)? d) Interprete as reações fotoquímicas que envolvem as moléculas N2, O2 ou O3 na atmosfera terrestre, relacionando-as com a energia da radiação e com a estabilidade dessas moléculas.
  • 112.
    Editável e fotocopiável© Texto | Novo 10Q 111 8. Na figura ao lado pode ver-se uma represen- tação do processo de produção do ozono estratosférico. a) A equação que pode traduzir globalmente o processo de formação do ozono estratosférico representado é: (A) O2 → 2 O (B) O + O2 → O3 (C) O + 2 O2 → 2 O3 (D) 3 O2 → 2 O3 b) Interprete, com base nas fotodissociações do oxigénio e do ozono estratosféricos, que a estratosfera atue como um filtro de radiações ultravioletas UV–B e UV–C. Comece por escrever as equações correspondentes. c) Discuta a validade da seguinte afirmação: Os átomos de oxigénio são radicais livres. 9. Em zonas de grande tráfego rodoviário, óxidos de carbono e de nitrogénio, em determinadas condições de temperatura e na presença da luz, podem reagir com oxigénio e conduzir à formação de ozono o qual provoca ou agrava problemas respiratórios das populações. Na atmosfera terrestre pode encontrar-se ozono na: (A) estratosfera, onde atua como poluente. (B) estratosfera, onde atua como poluente e como protetor de radiação ultravioleta. (C) troposfera, onde atua como poluente. (D) troposfera, onde atua como poluente e como protetor de radiação ultravioleta. 10. Medições da concentração de CFC, como CFCℓ3 e CF2Cℓ2, e de CH3CCℓ3 na troposfera, revelaram que a taxa de diminuição temporal da concentração dos CFC era inferior à taxa de diminuição temporal da concentração do CH3CCℓ3. a) De acordo com o texto, CFC são substâncias formadas por cloro, flúor, (A) carbono e hidrogénio, mais estáveis na troposfera que CH3CCℓ3. (B) carbono e hidrogénio, mais reativas na troposfera que CH3CCℓ3. (C) e carbono, mais estáveis na troposfera que CH3CCℓ3. (D) e carbono, mais reativas na troposfera que CH3CCℓ3. b) Explique a formação de radicais livres traduzida pela equação seguinte, identificando a camada da atmosfera onde tem maior probabilidade de ocorrer. c) Com base nas equações (1) e (2) explique o efeito do uso de CFCℓ3 na concentração de ozono estratosférico. (1) Cℓ + O3 → O2 + CℓO (2) CℓO + O3 → 2 O2 + Cℓ
  • 113.
    112 Editável efotocopiável © Texto | Novo 10Q Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário, salvo indicação em contrário. 1. Considere o gráfico do número de átomos em função da quantidade de matéria (de átomos). a) Como classifica a relação matemática que existe entre as duas variáveis em estudo? b) Determine o número de átomos por unidade de quantidade de matéria (de átomos). Apresente o resultado arredondado às décimas e em notação científica. 2. Um recipiente contém uma mistura gasosa, nas condições PTN, constituída por 5,5 g de dióxido de carbono, CO2, e 7,5 x 1022 moléculas de oxigénio, O2. Determine a: a) fração molar do oxigénio. Apresente o resultado na forma de fração. b) capacidade do recipiente na unidade do SI. c) percentagem, em volume, de dióxido de carbono. d) densidade da mistura. 3. Na primeira figura pode observar-se a realização de um teste de chama a uma amostra de sal e na segunda figura, o espetro de emissão do átomo de hidrogénio obtido por espetroscopia atómica. Ambas as técnicas são usadas na identificação de elementos químicos. a) Indique sumariamente em que é que se fundamenta qualquer uma das técnicas, e o que é que se pode concluir do facto do espetro de emissão do átomo de hidrogénio ser descontínuo. b) Descreva sucintamente o espetro atómico de emissão do átomo de hidrogénio. c) Indique o valor lógico da seguinte afirmação «Elementos do mesmo grupo da Tabela Periódica originam espetros atómicos de absorção iguais». 4. O átomo de um elemento representativo, no estado fundamental, tem um eletrão de valência desemparelhado no terceiro nível de energia. a) O elemento pode ser: (A) lítio, sódio ou potássio. (B) sódio, alumínio ou cloro. (C) sódio, alumínio ou silício. (D) sódio, silício ou fósforo. NOME ___________________________________________________ Turma______ Número______ Ficha global
  • 114.
    Editável e fotocopiável© Texto | Novo 10Q 113 b) Para um dos elementos selecionados em a) escreva uma configuração eletrónica num estado excitado. c) Indique o que significa átomo no estado fundamental (do ponto de vista energético). 5. Os iões mais estáveis de um elemento químico têm a seguinte configuração eletrónica. [Ne]3s2 2p6 a) O número atómico do elemento é: (A) 8 e os iões são dinegativos. (B) 9 e os iões são monopositivos. (C) 19 e os iões são mononegativos. (D) 20 e os iões são dipositivos. b) Conclua sobre o número de orbitais p que foram ocupadas, partindo da indicação do número de eletrões de valência nestas orbitais, e justificando com base no Princípio de Exclusão de Pauli. 6. A energia de ionização ao longo do grupo da Tabela Periódica não evolui da mesma forma do que ao longo do período. Os fatores que determinam essa evolução ao longo do grupo e do período são diferentes. De um modo geral a energia de ionização aumenta ao longo do: (A) grupo devido ao efeito predominante do aumento da carga nuclear. (B) grupo devido ao efeito predominante do aumento do número de eletrões. (C) período devido ao efeito predominante do aumento da carga nuclear. (D) período devido ao efeito predominante do aumento do número de eletrões. 7. Os átomos estabelecem ligações entre si, formando moléculas, e as posições relativas dos átomos na molécula definem a sua geometria molecular. a) Estabeleça correspondências corretas entre as informações das colunas I, II e III. Coluna I – molécula Coluna II – geometria Coluna III – ligação covalente 1. Nitrogénio, N2 a. Angular A. Simples 2. Fosfina, PH3 b. Linear B. Dupla 3. Sulfureto de carbono, CS2 c. Piramidal C. Tripla 3. Sulfureto de hidrogénio, H2S b) Em qual das seguintes opções é que as moléculas se encontram dispostas por ordem crescente da energia da ligação interatómica? (A) HBr, HCℓ, HI. (B) HCℓ, HBr, HI (C) HI, HBr, HCℓ. (D) HI, HCℓ, HBr. c) Classifique o sulfureto de carbono como uma substância polar ou apolar. d) Determine a energia da ligação H–F a partir das informações abaixo. H2 + F2 → 2HF ∆H = –530 kJ H2 → H + H ∆H = 436 kJ F + F → F2 ∆H = –158 kJ
  • 115.
    114 Editável efotocopiável © Texto | Novo 10Q 8. As moléculas também estabelecem ligações entre si, como se ilustra na primeira figura para a molécula de fluoreto de hidrogénio, com o seu mapa de potencial eletrostático ao lado. As ligações intermoleculares podem ser relacionadas com a miscibilidade de substâncias. a) A molécula HF é: (A) apolar, de geometria angular, e a ligação intermolecular é mais fraca que a ligação interatómica. (B) apolar, de geometria linear, e a ligação intermolecular é mais forte que a ligação interatómica. (C) polar, de geometria angular, e a ligação intermolecular é mais forte que a ligação interatómica. (D) polar, de geometria linear, e a ligação intermolecular é mais fraca que a ligação interatómica. b) Entre moléculas de fluoreto de hidrogénio estabelecem-se: (A) apenas ligações de hidrogénio. (B) apenas forças de van der Waals entre moléculas polares. (C) apenas ligações de hidrogénio e forças de van der Waals entre moléculas polares. (D) ligações de hidrogénio e forças de van der Waals entre moléculas polares e forças de London. c) Preveja se o fluoreto de hidrogénio e o sulfureto de carbono são substâncias miscíveis. 9. Observe as estruturas de Lewis de quatro moléculas diferentes. a) Identifique sequencialmente a família de compostos orgânicos correspondente a cada substância. b) Indique o número de eletrões de valência da molécula representada em último lugar. c) Indique o número e a localização dos eletrões de valência com caráter não ligante na molécula representada em primeiro lugar. 10. Pretende-se preparar 50 mL de uma solução aquosa de sacarose de concentração 0,050 g cm–3 , a partir de uma solução aquosa do mesmo soluto de concentração 0,40 g cm–3 . a) Determine o volume necessário de solução concentrada. b) Dos materiais seguintes identifique o que deve ser utilizado na medição do volume necessário de solução concentrada e indique qual deve ser a sua capacidade. (A) Balão volumétrico. (B) Pipeta graduada. (C) Pipeta volumétrica. (D) Proveta graduada.
  • 116.
    Editável e fotocopiável© Texto | Novo 10Q 115 Soluções das fichas formativas Ficha 1 – Massa e tamanho dos átomos Domínio 1: Elementos químicos e sua organização 1. a) Átomo de berílio. b) (D) 0,40 m. c) (C) 0,007 mm. d) (B) solar, 1 400 000 km, está mais próximo de um milhão de quilómetros que de dez milhões de quilómetros. e) (C) 10 2 μm. f) Diâmetro da Terra 10 7 m, célula da pele 10 –5 m, átomo de Be 10 –10 m. 2. a) Ne 10 22 (10,12,10), − 2 34 16 S (16, 18, 18) e + 3 27 13 Al (13,14,10). b) 29, 34 e 29 em 63 Cu e 47, 60 e 47 na prata-107. c) 22, 26 e 22 no Ti-48. d) Os protões e os neutrões no núcleo e os eletrões à volta deste. 3. a) Aproximadamente 2,0 × 10 –10 m. b) O valor obtido em a) é 1,21 vezes superior sendo da mesma ordem de grandeza que é 10 –10 m. 4. a) 12,044 × 10 23 moléculas. b) (C) 890 × 10–23 6,022 g c) (C) pesado que uma molécula de água e mais leve que uma molécula de sacarose. d) 3,613 × 10 24 átomos. e) 200,59. A massa dos átomos de mercúrio é, em média, 200,59 vezes superior à massa de 1/12 do átomo de carbono- 12. 5. a) 28,085. b) (D) 28,084 ≤ Ar(Si) ≤ 28,086. c) O resultado obtido em a), 28,085, encontra-se no intervalo de valores possíveis para a massa atómica relativa do Si, [28,084; 28,086]. d) A massa atómica relativa é mais próxima da massa do isótopo mais abundante, neste caso Si-28, pois o seu valor resulta da média ponderada das massas isotópicas tendo maior contributo a massa do isótopo mais abundante. 6. 4,5 mol. 7. Sulfato de sódio. 8. a) 0,21 e 0,79. b) 0,23 e 0,77. Ficha 2 – Energia dos eletrões nos átomos Domínio 1: Elementos químicos e sua organização 1. a) (D) 10,2 eV e 13,0 eV. b) A existência de níveis atómicos de energias bem definidas e a possibilidade de ocorrerem transições eletrónicas por absorção ou emissão de energias são as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atual (modelo quântico do átomo). Temos, então, que a energia dos eletrões nos átomos está quantizada (níveis de energia bem definidos) e, por isso, o átomo de hidrogénio no estado fundamental (n = 1) pode absorver fotões de energia que permitam transições eletrónicas para níveis permitidos (n = 2,3,4...), o que só acontece para os fotões de energia 10,2 eV (–13,6 eV + 10,2 eV = –3,4 eV, energia do nível 2) e 13,0 eV (–13,6 eV + 13,0 eV = –0,6 eV, energia do nível 5). c) 9,6 × 10 –20 J , IV. d) (C) 2. (C) o efeito das atrações entre os eletrões e o núcleo e o das repulsões entre os eletrões. 3. a) (D) o número de eletrões responsáveis pelo pico B é um terço do número de eletrões responsáveis pelo pico C. b) (B) 1s, 2s e 2p. c) 22 eV (pico C). d) Néon, Ne. e) Os seis eletrões têm todos a mesma energia e, de acordo com o Princípio de Exclusão de Pauli (dois eletrões por orbital, no máximo), terão então de existir três orbitais do mesmo tipo (tipo p, subnível 2p), px, py e pz. Havendo um único valor de energia tal significa que estas três orbitais têm todas a mesma energia designando-se, por essa razão, por orbitais degeneradas. 4. a) 1s2 2s2 2p x 22p y 12p z 1 ; E1s < E2s < E2px = E2py = E2pz b) (B) c) (A) - No diagrama, a utilização de setas ( → ) ilustra o spin dos eletrões em cada orbital. De acordo com o Princípio de Exclusão de Pauli, cada orbital pode ter no máximo, 2 eletrões com spins opostos o que não acontece na 3. a orbital onde se verifica que os 2 eletrões têm o mesmo spin. d) 1s-543 eV, 2s-42 eV, 2p-16 eV. e) 1s2 2s2 2p3 3p1 5. a) (D) – 4,98 × 10 -18 J. b) 172 × 10 –18 J. c) 1s 2 2s 2 2p 6 3p 1 d) (C) 4. 6. (A) diferentes para as energias dos eletrões e espetros atómicos diferentes. 7. A – d, cinco orbitais em cada nível para n ≥ 3; B – p, três orbitais em cada nível para n ≥ 2; C – s, uma orbital em cada nível. 8. 1s 2 2s 1 , dois; 1s 2 2s 2 2p 2 , três; 1s 2 2s 2 2p 5 , três; 1s 2 2s 2 2p 6 3s 2 3p 1 , cinco; 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 , seis; 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 , sete; 1s 2 2s 2 2p 6 3s 2 3p 6 3s 2 3p 6 4s 2 3d 3 , sete 9. 2 e 1; 4 e 2; 5 e 1; 7 e 1. 10. (D) 1s 2 2s 1 2p 1 Ficha 3 – Tabela Periódica Domínio 1: Elementos químicos e sua organização 1. a) (D) previam a existência de novos elementos. b) gálio, Ga e germânio, Ge. 2. a) (D) número atómico, uma consequência dos trabalhos de Moseley. b) (C) d e não são elementos representativos. c) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ; 4. o período, porque os eletrões se distribuem por 4 níveis de energia, e grupo 2 por ter 2 eletrões de valência. 3. 1-c, 2-d-e, 3-a-f, 4-b. 4. (C) magnésio - 1s 2 2s 2 2p 6 . 5. a) Os átomos de sódio apresentam um eletrão de valência e baixo valor de energia de ionização tendo, por isso, elevada tendência para perder esse eletrão transformando-se num ião monopositivo ao qual corresponde uma configuração eletrónica de gás nobre (Ne, oito eletrões de valência), ou seja, transformando-se, dessa forma, numa partícula mais estável. b) ([Ne]3s1) → Na+ ([Ne])+e– c) (A), Na (g) → Na+ (g) + e– com absorção de 496 kJ/mol. d) (C) dos elementos e o ponto de fusão é uma propriedade das substâncias elementares. 6. rSi > rC porque o carbono antecede o silício no mesmo grupo da Tabela Periódica e o raio atómico aumenta ao longo do grupo. 7. 48 pm-O, 79 pm-Cℓ, 88 pm-S 8. (A) cloro, flúor e néon. 9. Na – 1s 2 2s 2 2p 6 3s 1 e Mg – 1s 2 2s 2 2p 6 3s 2 Os eletrões distribuem-se pelo mesmo número de níveis pelo que predomina o efeito do aumento da carga nuclear. A carga
  • 117.
    116 Editável efotocopiável © Texto | Novo 10Q nuclear é superior no magnésio (+12) sendo, por isso, a atração nuclear sobre os eletrões maior para este átomo; consequen- temente será necessário maior energia (energia de ionização) para remover qualquer um dos eletrões de valência no átomo de magnésio que no de sódio. 10. (B) 5, do 2. o período. 11. a) (C) 2,2,3. b) bloco p, 2 níveis (n = 1 e n = 2), 3 subníveis (1s, 2s, e 2p) c) 1s 2 2s 2 2p 3 , nitrogénio, grupo 15. d) (C) inferior a 2,1 × 10 –18 J. Ficha 4 – Ligação química Domínio 2: Propriedades e transformações da matéria 1. a) (D) menor do que a do mesmo conjunto dessas entidades não ligadas, e resulta de atrações e repulsões envolvendo eletrões e núcleos atómicos. b) (B) intermolecular de van der Waals quando envolve partilha pouco significativa de eletrões de valência. 2. a) (B) 74 pm e a energia de ligação é 432 kJ/mol. b) Repulsão. c) A)F2, B)H2, C)HF, D)HCℓ d) Os elementos químicos cloro e bromo pertencem ao mesmo grupo da Tabela Periódica encontrando-se o bromo abaixo do cloro. Como o raio atómico aumenta ao longo do grupo, o raio atómico do bromo é superior ao do cloro. Sendo o hidrogénio um elemento comum às duas moléculas, e o elemento diferenciador o halogéneo, o comprimento de ligação (valor médio da distância internuclear de equilíbrio) é superior para a molécula com o átomo de halogéneo de maior raio, ou seja, HBr. Sendo maior o comprimento de ligação, a ligação H–Br é mais frágil e, por isso, de menor energia de ligação que a ligação H-Cℓ. 3. a) H –H b) (C) menor do que a energia dos eletrões mais energéticos no átomo isolado, e a molécula é mais estável que os dois átomos separados. 4. a) Metano, dióxido de carbono, água e amoníaco. b) Cada um dos quatro átomos de hidrogénio ocupa um dos vértices de um tetraedro, situando-se o átomo de carbono no centro do tetraedro, sendo cada um dos ângulos de ligação igual a 109,5 o . c) A disposição espacial dos átomos numa molécula define a geometria que corresponde à minimização da repulsão entre todos os pares eletrónicos de valência na molécula. Na molécula CO2 não existem pares eletrónicos não ligantes no átomo central (C), dispondo-se os três átomos na molécula em posições correspondentes à maximização da distância entre os pares eletrónicos ligantes e não ligantes correspondente a uma geometria linear, ou seja, um ângulo de ligação 180 o . Na molécula de água existem dois pares eletrónicos não ligantes no átomo central (O), e as repulsões mútuas entre pares eletrónicos não ligantes, ligantes, não ligantes e ligantes são minimizadas para uma disposição espacial dos três átomos correspondente a uma geometria angular para um ângulo de 104,5 o (inferior ao da molécula CO2). d) (C) H2O e NH3. e) Geometria piramidal; distribuição assimétrica de carga. 5. a) Cloreto de sódio, NaCℓ. b) C2H2, etino, ; H – C≡C – H , dimetilpropano, ; CHCℓ3, triclorometano, c) (B) átomos, He, entre os quais se estabelecem forças de van der Waals. d) (D) C2H2 e o eteno são hidrocarbonetos saturados. e) Eteno-1,33 Å; C2H2-1,20 Å. f) 6. a) A-amina, B-aldeído, C-álcool, D-ácido carboxílico, E-cetona. b) CH-ligação covalente simples polar, CC-ligação covalente simples apolar, CO-ligação covalente dupla polar. c) (B) A e C. d) (D) 16 eletrões ligantes e 8 eletrões não ligantes. Ficha 5 – Gases e dispersões Domínio 2: Propriedades e transformações da matéria 1. a) (D) [6,022 140 82 ± 0,00000018] × 10 23 mol –1 com uma incerteza relativa de 3,0 × 10 -8 . b) 6,022 140 82(18) × 10 23 átomos c) Volume molar, Vm, é o volume ocupado por uma mole de qualquer gás e, de acordo com a Lei de Avogadro, é igual para para todos os gases que se encontrem nas mesmas condições de pressão e de temperatura. Vm = V n ; gás A, Vm = VA nA ; gás B, VB nB como o volume molar é igual para os dois gases VB nB = VA nA ⇔ nA × VB = nB × VA 2. a) p = 1 atm e T = 0 °C. b) He, O2, F2, Ar. c) (D) quantidade de gás por unidade de volume. d) 0,25 mol. e) 1/4. 3. a) (B) 3,9 × 10–2 × 106 102 b) 27,29%. c) N2 - 0,78; O2 - 0,21. d) 0,90 g/dm 3 . 4. a) Pó de cimento, nevoeiro e oxigénio. b) As suspensões são constituídas por partículas de maiores dimensões que os coloides e, por isso, o nevoeiro é um coloide pois é constituído por partículas de diâmetro inferior a 2,5 µm, menor que o diâmetro das partículas de pó de cimento (<10 µm). 5. a) SO2, NO2, O3. b) (D) 8,69. c) (B) mpoluente Var d) Uso de combustíveis fósseis nos transportes e em indústrias; naturais – atividade vulcânica. 6. 153 dm 3 . 7. 8,27 x 10 -3 mol. 8. a) Soluto, H2SO4; solvente, água. b) (B) 0,95 × 1840 98,08 9. a) 0,154 mol/L. b) (C) 2,4 L de solução, correspondente a cerca de 8,28 g de sódio. 10. a) Válcool = 0,107 × Vvinho. b) 0,9857 g/mL. c) 8,6%. d) 0,085 g/mL.
  • 118.
    Editável e fotocopiável© Texto | Novo 10Q 117 Ficha 6 – Transformações químicas Domínio 2: Propriedades e transformações da matéria 1. a) A combustão do metano inicia-se com a rutura das ligações químicas nos reagentes, CH4 e O2, num processo endoener- gético que corresponde à atomização dos reagentes. Segue-se a formação de novas substâncias, os produtos da reação, CO2 e H2O, que decorre do rearranjo dos átomos de C, O e H. Como são o resultado da formação de novas ligações, este é um processo exoenergético. Como a energia libertada na formação de novas ligações é superior à energia absorvida na rutura de ligações, a combustão do metano ocorre com libertação de energia. b) A entalpia dos produtos é inferior à entalpia dos reagentes e, por isso, a variação de entalpia é negativa. 2. (A) endotérmica, e se o sistema não fosse isolado ocorreria transferência de energia do exterior para o sistema. 3. a) A energia do produto (aproximadamente 280 kcal) é inferior à energia dos reagentes (aproximadamente 340 kcal) o que significa que houve libertação de energia pelo sistema reacional concluindo-se, por isso, que a reação que ocorreu é exoenergética. b) –3 kcal/s. c) Positivo. d) A soma das energias de ligação no produto C é superior à soma das energias de ligação nos reagentes A e B. 4. a) (D) exoenergético e a rutura da ligação N-N é um processo endoenergético. b) (B) ENN + 3EHH – 6ENH. c) (D) exotérmico, ocorrendo com libertação de energia. d) Variação de entalpia. 5. a) (C) libertação de 44 kJ de energia a mais relativamente à formação da mesma quantidade de água gasosa. b) ΔH = 242 kJ/mol, um valor positivo e, por isso, trata-se de uma transformação endotérmica. 6. a) b) 628 kJ/mol. c) –181 kJ/mol. 7. a) O2 (g) → O (g) + O (g) b) (C) 2,5 x 10 –18 J. c) Fotoionização. d) As reações fotoquímicas podem ser de dissociação: N2 → 2 N, O2 → 2 O e O3 → O2 + O ou de ionização: N2 → N2 + + e- ; O2 → O2 + + e- . As moléculas de N2 podem sofrer fotodissociação, atomização por ação da luz, necessitando, para o efeito, de absorver radiação mais energética que as de O2 e de O3 sendo, por isso, mais estáveis do que estas. Esta estabilidade resulta diretamente da força da ligação entre os respetivos átomos: a ligação em N2 é mais forte que em O2 e em O3 (tripla em N2 - 6 pares de eletrões ligantes, dupla em O2 - 2 pares de eletrões ligantes e, 1,5 pares de eletrões ligantes, em média, por cada ligação OO em O3), sendo a energia de ligação superior para N2. N2 também pode sofrer fotoionização, ionização por ação da luz (N2 → N2 + + e- ), necessitando para o efeito de absorver radiação mais energética que O2 o que também significa que N2 são moléculas mais estáveis que as de O2 (o que se relaciona com os eletrões de valência na molécula: os eletrões mais energéticos em N2 ocuparão níveis de menor energia que os de O2). 8. a) (D) 3 O2 → 2 O3 b) Na estratosfera ocorrem simultaneamente as dissociações de O2 e de O3, respetivamente, O2 → 2 O e O3 → O + O2. A dissociação de O2 ocorre com absorção de radiação mais energética, UV–C, e a de O3 envolve radiação de menor energia, UV–B. Sendo estas radiações absorvidas na estratosfera tal significa que esta camada é opaca a estas radiações sendo, por isso, considerada um filtro dessas mesmas radiações. c) Radical livre é a designação de espécies químicas que, por possuírem eletrões desemparelhados, são muito reativas. A distribuição eletrónica dos átomos de oxigénio revela a existência de (dois) eletrões desemparelhados (em orbitais p), 1s2 2s22p x 2 2p y 1 2p z 1 e, por isso, prevê-se que os átomos de oxigénio sejam muito reativos. Conclui-se, então, que a afirmação é verdadeira. 9. (C) troposfera, onde atua como poluente. 10. a) (C) e carbono, mais estáveis na troposfera que CH3CCℓ3. b) Por serem muito estáveis na troposfera, moléculas da CFCℓ3 atingem a estratosfera onde, por ação da radiação ultravioleta, têm grande probabilidade de originar dois radicais livres, CFCℓ2 e Cℓ, devido à rotura de ligações CCℓ. A formação destes radicais livres resulta, assim, de uma reação fotoquímica. c) O CFCℓ3 origina radicais livres Cℓ· os quais, por serem muito reativos, reagem com ozono, O3, de acordo com a equação (1) dando origem a outro radical livre CℓO·. Este radical, por sua vez, reage também com outra molécula de ozono originando outro Cℓ·, equação (2). Como se verifica, ambos os processos representados, (1) e (2), correspondem ao consumo de ozono o que significa que o CFCℓ3 (um CFC) conduz à diminuição do ozono estratosférico (diminuição de duas moléculas de ozono por cada radical livre Cℓ· formado a partir de CFCℓ3. Ficha global Domínio 1: Elementos químicos e sua organização. Domínio 2: Propriedades e transformações da matéria 1. a) Relação de proporcionalidade direta. b) 6,0 × 10 23 átomos mol –1 2. a) 1/2. b) 5,6 × 10 –3 m 3 . c) 50%. d) 1,7 g dm –3 . 3. a) Nos átomos podem ocorrer transições eletrónicas por absorção de energia (excitação) e por libertação de energia (desexcitação). O espetro revela que a energia do eletrão no átomo está quantizada (admite valores de energia bem definidos). b) Três conjuntos diferenciados de riscas bem definidas (sobre um fundo preto) em três zonas do espetro eletromagnético na seguinte sequência: infravermelho, visivel e ultravioleta. Em cada conjunto, as riscas vão ficando cada vez menos espaçadas, à medida que se aproxima a transição para o conjunto seguinte. c) Falsa. 4. a) (B) sódio, alumínio ou cloro. b) Na, 1s 2 2s 2 2p 6 3p 1 . c) Átomo no estado de menor energia. 5. a) (D) 20 e os iões são dipositivos. b) Podem haver até 6 eletrões no subnível p. De acordo com o Principío de Exclusão de Pauli, cada orbital só pode ser ocupada, no máximo, por dois eletrões o que significa que existem 6 ÷ 2 (ou seja, 3) orbitais tipo p.
  • 119.
    118 Editável efotocopiável © Texto | Novo 10Q 6. (C) período devido ao efeito predominante do aumento da carga nuclear. 7. a) 1-b-C; 2-c-A; 3-b-B; 4-a-A b) (C) HI, HBr, HCℓ. c) Apolar. d) 562 kJ. 8. a) (D) polar, de geometria linear, e a ligação intermolecular é mais fraca que a ligação interatómica. b) (D) ligações de hidrogénio e forças de van der Waals entre moléculas polares e forças de London. c) Não são miscíveis. 9. a) Amina, aldeído, álcool, ácido carboxílico. b) 24. c) 2 eletrões localizados no átomo de nitrogénio. 10. a) 6,3 mL. b) (B) Pipeta graduada. Deverá ter uma capacidade de 10 mL
  • 120.
    Editável e fotocopiável© Texto | Novo 10Q 119 Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário. Para medir a massa e o volume de uma gota de água utilizou-se uma balança digital, obtendo-se 9,527 g para 220 gotas de água. A montagem usada para a realização da atividade e ampliações de partes da escala do aparelho utilizado na medição do volume estão ilustradas na figura. 1. Conforme a informação disponível, indique o nome e as características dos aparelhos de medida utilizados como, por exemplo, o menor valor que pode ser medido, a menor divisão da escala, a incerteza de leitura e a capacidade. 2. Descreva o procedimento experimental realizado, de forma a incluir, também, a identificação do material ilustrado na figura. 3. Registe os valores da massa, do volume inicial e do volume final atendendo às incertezas de leitura. 4. Determine o volume de 220 gotas de água. 5. Determine a massa e o volume de uma gota de água, indicando a medida com um número adequado de algarismos significativos. 6. Determine o número, N, de moléculas de água que existem numa gota, indicando o resultado com um número adequado de algarismos significativos. 7. O valor da massa de 220 gotas de água foi obtido por: (A) medição direta e a medição do volume por medição indireta. (B) medição direta e a medição do volume também. (C) medição indireta e a medição do volume também. (D) medição indireta e a medição do volume por medição direta. NOME ___________________________________________________ Turma______ Número______ AL 1.1 – Volume e número de moléculas de uma gota de água Teste sobre a AL 1.1 Domínio 1: Elementos químicos e sua organização
  • 121.
    120 Editável efotocopiável © Texto | Novo 10Q Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário. Numa aula experimental, usou-se um fio de platina com o qual se retirou uma pequena amostra de sal de um frasco que foi submetida ao calor de uma chama de metanol num cadinho de porcelana. Foi também realizado um novo ensaio com outro sal. Os resultados obtidos estão ilustrados na figura. 1. Escreva uma frase que traduza o objetivo da atividade. 2. Com base na tabela de cores, sabendo que em A foi testado o sal BaCℓ2 e em B o sal SrCℓ2, indique o nome dos sais e que cores esperaria observar em cada cadinho. 3. Classifique o teste realizado como um teste de análise qualitativa ou quantitativa. Elemento químico Cor da chama bário verde cálcio vermelha alaranjada cobre verde azulada estrôncio vermelha sangue lítio vermelha potássio violeta sódio amarela intensa A B NOME ___________________________________________________ Turma______ Número______ AL 1.2 – Teste de chama Teste sobre a AL 1.2 Domínio 1: Elementos químicos e sua organização B A
  • 122.
    Editável e fotocopiável© Texto | Novo 10Q 121 4. Antes de realizar o teste de chama com cada um dos sais os alunos realizaram o procedimento ilustrado abaixo. Justifique este procedimento, relacionando-o com limitações deste tipo de análise. 5. No rótulo do frasco de metanol constavam os seguintes pictogramas de perigo: Identifique algumas informações de perigo associadas, assim como algumas medidas de segurança e proteção a tomar. ___________________________________________________________________________________________ _________________________________________________________________________________________ 6. Interprete os resultados obtidos nos testes de chama e indique uma aplicação prática relacionada com a coloração das chamas. 7. Analisando as chamas coloridas com um espetroscópio deveria observar-se um espetro: (A) contínuo de absorção. (B) contínuo de emissão. (C) descontínuo de absorção. (D) descontínuo de emissão. 8. Identifique duas características do espetro que indicou em 7. e ilustre-o.
  • 123.
    122 Editável efotocopiável © Texto | Novo 10Q Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário. Os resultados de medições obtidos por um grupo de alunos, necessários à determinação da densidade relativa do cobre por picnometria, estão registados na seguinte tabela: Massa de cobre 6,31 g Massa de cobre e do picnómetro com água 84,30 g Massa do picnómetro com água e o cobre no seu interior 83,60 g Na figura seguinte podem ver-se alguns dos materiais que se encontravam sobre a mesa de trabalho quando se preparavam para iniciar a atividade. 1. Selecione o material de vidro B, C, D ou E, imprescindível para a realização desta atividade e diga o seu nome. 2. Determine a massa de água que ocupa o mesmo volume que a amostra de cobre utilizada. 3. Compare, justificando com base no resultado anterior e na equação de definição de densidade (massa volúmica), a densidade do cobre com a densidade da água. 4. Determine a densidade relativa do cobre. 5. Indique, no contexto da atividade, a importância da utilização do termómetro. 6. Indique o significado do valor obtido para a densidade relativa do cobre. 7. Consulte uma tabela de densidades e determine o erro percentual do resultado obtido em 4. NOME ___________________________________________________ Turma______ Número______ AL 1.3 – Densidade relativa de metais Teste sobre a AL 1.3 Domínio 1: Elementos químicos e sua organização A B C D E F
  • 124.
    Editável e fotocopiável© Texto | Novo 10Q 123 8. Discuta a exatidão do resultado obtido para a densidade relativa do cobre. 9. Indique fatores (de erro) que poderiam afetar a exatidão do resultado obtido. 10. De acordo com os resultados obtidos indique o valor da massa volúmica do cobre, em unidades do SI. 11. Se a massa da amostra de cobre fosse 12,62 g seria de esperar que o valor obtido para a densidade relativa (em relação ao resultado obtido em 4.) fosse: (A) metade. (B) o dobro. (C) igual.
  • 125.
    124 Editável efotocopiável © Texto | Novo 10Q Consulte a Tabela Periódica, tabelas de constantes e formulários sempre que necessário. Grupo I As misturas de substâncias líquidas podem ser homogéneas ou heterogéneas, como se pode observar ao lado. Os tubos de ensaio, que contêm as misturas, estão sobre um fundo. 1. Classifique macroscopicamente cada uma das misturas. 2. Quando da mistura de dois líquidos resulta uma solução diz-se que os dois líquidos são: (A) imiscíveis. (B) insolúveis. (C) miscíveis. (D) solúveis. 3. Identifique, justificando, qual das misturas pode ser classificada como solução. 4. A expressão «igual dissolve igual», no contexto da miscibilidade de líquidos, significa que: (A) dois líquidos são miscíveis se tiverem igual massa molar. (B) dois líquidos são miscíveis se forem constituídos pelos mesmos elementos químicos. (C) líquidos polares são miscíveis em líquidos polares e líquidos apolares em líquidos apolares. (D) líquidos polares são miscíveis em líquidos apolares e líquidos apolares em líquidos polares. Grupo II Considere os pares de líquidos (A) a (G). (A) CCℓ4 e H2O. (B) H2O e NH3. (C) NH3 e HF. (D) H2O e Br2. (E) CCℓ4 e C6H6. (F) C6H6 e C6H12. (G) CS2 e CCℓ4. 1. Tendo como único critério o tipo de ligações intermoleculares predominantes em cada líquido, preveja os pares de líquidos que formarão uma mistura heterogénea. 2. Indique, justificando, as interações predominantes entre as substâncias do par (C) e as do par (G). 3. Antes de responder a este grupo, um aluno efetuou uma pesquisa e, entre outras, registou a seguinte informação: CCℓ4, 1,58 g/mL e C6H6, 0,878 g/mL. Um dos pares selecionados pelo aluno, no item 1, foi o par (E). Discuta a validade da escolha do par (E) por este aluno. NOME ___________________________________________________ Turma______ Número______ AL 2.1 – Miscibilidade de líquidos Teste sobre a AL 2.1 Domínio 2: Propriedades e transformações da matéria
  • 126.
    Editável e fotocopiável© Texto | Novo 10Q 125 Grupo III A figura e a tabela abaixo foram retiradas do relatório elaborado por um aluno sobre uma atividade laboratorial realizada numa aula de química no âmbito do estudo da miscibilidade de líquidos. A atividade foi realizada na hotte, com o exaustor ligado, e foi registada a temperatura nesse local. Proveta com 2 mL de: Adição de 3 mL de tetraclorometano, CCℓ4, incolor Resultados obtidos: Sulfureto de carbono, CS2 uma fase líquida incolor Bromo, Br2 uma fase líquida vermelha Água, H2O duas fases líquidas incolores Etilenoglicol, C2H6O2 duas fases líquidas incolores 1. Indique o estado físico dos reagentes utilizados. 2. Identifique o objetivo da atividade. 3. Identifique três variáveis que foram controladas. 4. Identifique a variável da qual se esperava depender o resultado da atividade, e como se manifestaria esse resultado. 5. Indique as cores do sulfureto de carbono e do bromo. 6. Identifique as misturas que não podem ser consideradas soluções. 7. Conclua, face aos resultados obtidos, sobre a miscibilidade do CCℓ4 nas substâncias utilizadas. 8. Relacione, com base nas interações intermoleculares predominantes em cada um dos líquidos, o resultado obtido com a água. 9. Na tabela abaixo encontra-se informação retirada do rótulo do frasco contendo CCℓ4. a) NFPA 70 3 - azul; 0 - vermelho; 0 - amarelo b) Frases R R23/24/25, R40, R48/23, R59,R52/53 c) Frases S S1/2, S23, S36/37, S45, S59, S61 d) Pictogramas de perigo Pesquise sobre a informação apresentada e, para cada uma das linhas da tabela, a), b), c) e d), escreva uma frase que traduza uma dessas informações.
  • 127.
    126 Editável efotocopiável © Texto | Novo 10Q Numa aula de laboratório pretende-se preparar, com rigor, 50,0 mL de uma solução aquosa de sulfato de cobre (II) pentahidratado, CuSO4.5H2O, de concentração 0,200 mol/dm3 . O sulfato de cobre (II) pentahidratado é o sólido apresentado ao lado e foi pesado dentro de um gobelé, na balança da figura. 1. Identifique o soluto e o solvente na solução a preparar. 2. Indique o significado físico da informação 0,200 mol/dm3 . 3. Calcule a massa de soluto necessário para preparar a solução. 4. A balança usada na medição da massa do soluto é (A) analógica e a incerteza de leitura é 0,00 g. (C) digital e a incerteza de leitura é 0,00 g. (B) analógica e a incerteza de leitura é 0,01 g. (D) digital e a incerteza de leitura é 0,01 g. 5. Registe o valor da massa de soluto a medir, tendo em atenção as regras de registo de resultados de medições diretas. 6. Indique três etapas principais de procedimento que se devem realizar, após a pesagem do soluto, para dar cumprimento ao objetivo da atividade, identificando material a utilizar. 7. Desenhe o aparelho que deve ter sido usado na preparação de 50,0 mL de solução. 8. Caracterize macroscopicamente a solução preparada. 9. Indique como deve proceder para armazenar a solução. 10. Desenhe um rótulo com informações sobre a solução preparada. 11. No final da atividade o professor disse a um dos grupos de trabalho que a solução por ele preparada tinha uma concentração inferior a 0,200 mol/dm3 . Identifique três possíveis observações, relacionadas com incorreções procedimentais, que o professor terá registado durante a aula, e que possam justificar a apreciação feita. 12. Classifique, como aleatório ou sistemático, o erro experimental associado ao facto de, num dos grupos, a balança não se encontrar nivelada. NOME ___________________________________________________ Turma______ Número______ AL 2.2 – Soluções a partir de solutos sólidos Teste sobre a AL 2.2 Domínio 2: Propriedades e transformações da matéria
  • 128.
    Editável e fotocopiável© Texto | Novo 10Q 127 Nesta atividade pretende-se preparar, com rigor, 100,0 mL de uma solução aquosa aquosa de sulfato de cobre (II) pentahidratado, CuSO4.5H2O, de concentração 0,050 mol/L, a partir da solução azul preparada na atividade AL 2.2 da qual se conhecem as informações presentes no respetivo rótulo. Ao lado podem ver-se partes de dois aparelhos diferentes, A e B, que se encontravam disponíveis no laboratório, entre outros, onde decorreu a atividade, e que poderão ser usados na medição de volumes de líquidos com o auxílio de uma pompete. 1. Indique o volume máximo de líquido que pode ser medido com cada um dos aparelhos e a incerteza de leitura associada. 2. Selecione o aparelho que deveria utilizar na medição do volume de líquido que indicou em 1. e diga o seu nome. 3. Calcule o fator de diluição usado na preparação da solução diluída. 4. Um grupo de alunos usou os dois instrumentos de vidro, A e B, para medir o volume de solução concentrada necessário à preparação da solução diluída. Comente este procedimento no contexto da atividade em causa. 5. Registe o volume de solução concentrada medido pelo grupo de alunos referido em 4., assumindo como incerteza de leitura a do instrumento de vidro A ou B, de medição menos menos rigorosa. 6. Dos recipientes de vidro A, B, C e D, selecione o que deve ser utilizado para preparar a solução diluída. Indique o seu nome e a sua capacidade. 7. Descreva o procedimento experimental que deveria ser seguido na preparação da solução diluída de CuSO4.5H2O, com rigor, referindo, sequencialmente, as três principais etapas envolvidas nesse procedimento. 8. Conclua, com base no conceito de concentração de uma solução, sobre as diferenças ao nível da cor das duas soluções: a inicial e a diluída. NOME ___________________________________________________ Turma______ Número______ AL 2.3 – Diluição de soluções Teste sobre a AL 2.3 Domínio 2: Propriedades e transformações da matéria A B CuSO4.5H2O (aq) 0,200 mol/dm 3 Laboratório escolar, jan 2016 A B C D Figura 3
  • 129.
    128 Editável efotocopiável © Texto | Novo 10Q (Em alternativa à realização deste teste podem explorar-se recursos didáticos online como, por exemplo, Cool Science: Silver Chloride Photochemistry ou Photochemical decomposition of silver chloride e elaborar o respetivo relatório.) Durante a atividade utilizaram-se soluções aquosas previamente preparadas, de acordo com a tabela abaixo. Frasco de reagente Amostra de reagente Solução aquosa Informações adicionais Cloreto de sódio, NaCℓ ---------------------- Nitrato de prata, AgNO3 (guardar ao abrigo da luz) No diagrama abaixo apresentam-se etapas de procedimento e os resultados obtidos, durante uma atividade realizada em ambiente escurecido, retirados de uma experiência documentada no vídeo Photosensitivity of silver chloride. NOME ___________________________________________________ Turma______ Número______ AL 2.4 – Reação fotoquímica Teste sobre a AL 2.4 Domínio 2: Propriedades e transformações da matéria NaCℓ (aq) AgNO3 (aq) filtração mistura NaCℓ AgNO3
  • 130.
    Editável e fotocopiável© Texto | Novo 10Q 129 1. Identifique características comuns aos dois reagentes. 2. Com base nas informações adicionais, identifique um dos efeitos de um dos reagentes sobre a pele, e indique uma medida de proteção adequada. 3. Descreva, em quatro etapas, a sequência de procedimentos realizados. 4. Identifique o sólido constituinte da mistura e escreva a equação química que traduz a reação que teve lugar. 5. Classifique a mistura como solução, coloide ou suspensão. 6. Identifique o principal resultado obtido e interprete-o escrevendo a equação química correspondente. 7. Estabeleça conclusões. 8. Diga que alterações deveria introduzir na atividade para verificar o efeito de diferentes radiações vísiveis sobre a amostra, com referência a variáveis a controlar. 9. A caixa de Petri foi tapada, em determinado momento da atividade, com papel de alumínio. Justifique este procedimento. 10. Indique o objetivo da atividade. 11. Preveja, justificando, se a luz tem algum efeito sobre o nitrato de prata.
  • 131.
    130 Editável efotocopiável © Texto | Novo 10Q Soluções dos testes sobre atividades laboratoriais Teste sobre a AL 1.1 – Volume e número de moléculas de uma gota de água Domínio 1: Elementos químicos e sua organização Subdomínio 1.1: Massa e tamanho dos átomos 1. A - Bureta graduada: menor divisão da escala e menor valor que pode ser medido 0,10 mL, incerteza de leitura 0,05 mL, e capacidade 20 mL. C - Balança digital: incerteza de leitura e menor valor que pode ser medido 0,001 g. 2. Segurar a bureta (A) num suporte; colocar água na bureta com o auxílio de um funil. Ligar a balança digital (C), colocar um erlenmeyer (B) sobre o prato e tarar. Colocar a bureta alinhada verticalmente com a entrada do erlenmeyer e proceder ao escoamento da água, gota a gota, num total de 220 gotas. 3. m = (9,527 ± 0,001) g; Vi = (0,25 ± 0,05) mL ; Vf = (9,45 ± 0,05) mL 4. V = 9,20 mL 5. m = 0,04330 g; V = 0,0425 mL 6. N = 1,447 x 10 21 moléculas. 7. (A) medição direta e a medição do volume por medição indireta. Teste sobre a AL 1.2 – Teste de chama Domínio 1: Elementos químicos e sua organização Subdomínio 1.2: Energia dos eletrões nos átomos 1. Identificar elementos químicos em amostras de sais através da cor que conferem a uma chama. 2. Resultado A: BaCℓ2, cloreto de bário, verde Resultado B: SrCℓ2, cloreto de estrôncio, vermelha sangue. 3. Qualitativa. 4. Limpeza do fio para que não ocorra contaminação das amostras. Caso o fio estivesse sujo, contaminado com outros elementos químicos (metálicos), poderia mascarar a cor da chama e tornar mais difícil a identificação do elemento químico presente. O uso de uma chama do bico de Bunsen garante uma melhor limpeza do fio uma vez que esta chama atinge temperaturas mais elevadas que a chama de metanol. Após a descontaminação pela chama, molhar o fio em HCℓ facilita a aderência do sal ao fio. A subjetividade na visão das cores é outra limitação deste teste. 5. Reagente inflamável, tóxico e muito perigoso para a saúde. Manter afastado de fontes de ignição e evitar qualquer forma de contacto corporal. Manusear na hote e usar bata, luvas, máscara e óculos de proteção. 6. Devido ao calor da chama, os catiões (metálicos) presentes nos sais sofrem excitação eletrónica (transitam para níveis de maior energia) por aumento de temperatura. Uma vez excitados, segue-se a emissão de radiação (transições eletrónicas para níveis de menor energia) que, sendo da zona visível do espetro eletromagnético, é responsável pela coloração da chama. A existência de diferentes colorações, de elemento para elemento, é uma evidência experimental da existência de transições que envolvem valores diferentes e bem definidos de energias para cada elemento, o que significa que as energias dos eletrões nos átomos são diferentes de elemento para elemento e também bem definidas, ou seja, a energia dos eletrões nos átomos está quantizada. Aplicação prática: fogo de artifício. 7. (D) descontínuo de emissão. 8. É um espetro que apresenta riscas coloridas sobre um fundo preto (por exemplo, espetro de emissão para o lítio). Teste sobre a AL 1.3 – Densidade relativa de metais Domínio 1: Elementos químicos e sua organização Subdomínio 1.3: Tabela Periódica 1. D, picnómetro (de sólidos). 2. 0,70 g. 3. 𝜌 = 𝑚 𝑉 ; para o mesmo volume, a densidade é tanto maior quanto maior for a massa. A massa de água que ocupa o mesmo volume da amostra de cobre é 0,70 g, menor que a massa de cobre (6,31 g), então a densidade do cobre é superior à da água. 4. 9,01. 5. O padrão de referência para a determinação da densidade relativa de sólidos é a água líquida a 4 o C pelo facto de, a essa temperatura, a massa volúmica da água ser 1,00 g/mL. Por esta razão a densidade relativa de um material sólido (em estudo nesta atividade) é numericamente igual à sua massa volúmica. 6. O cobre é 9,01 vezes mais denso que a água líquida a 4 o C. 7. 1%; (valor tabelado, 8,92 g/mL). 8. A exatidão considera-se elevada, pois o erro percentual é (muito) pequeno. 9. A temperatura da água, a existência de bolhas de ar dentro de água, impurezas na amostra de cobre, erros de paralaxe… 10. 9,01 x 10 3 kg m –3 . 11. (C) igual. Teste sobre a AL 2.1 – Miscibilidade de líquidos Domínio 2: Propriedades e transformações da matéria Subdomínio 2.1: Ligação química Grupo I 1. Água e diclorometano: mistura heterogénea formada por duas fases líquidas incolores e transparentes. Água e acetona: mistura homogénea, formada por uma fase líquida, incolor e transparente. 2. (C) miscíveis. 3. Água e acetona porque é uma mistura homogénea. 4. (C) líquidos polares são miscíveis em líquidos polares e líquidos apolares em líquidos apolares. Grupo II 1. (A) CCℓ4 e H2O. (D) H2O e Br2. 2. (C) –Ligações de hidrogénio por haver átomos de hidrogénio ligados a nitrogénio, N, e a flúor, F; (G)–Forças de van der Waals (forças de London) porque ambas as moléculas são apolares. 3. A informação registada corresponde à densidade do CCℓ4 e do C6H6. Sendo substâncias de diferentes densidades será de prever que a mistura resultante seja heterogénea, com a fase mais densa (CCℓ4) sob a fase menos densa (C6H6). A resposta do aluno seria válida se o critério a usar na previsão do resultado fosse a densidade dos dois líquidos, não sendo esse o critério a escolha do aluno não é válida, pois os dois líquidos são apolares e, por isso, são miscíveis formando uma mistura homogénea. Grupo III 1. Líquido. 2. Classificar pares de líquidos quanto à miscibilidade.
  • 132.
    Editável e fotocopiável© Texto | Novo 10Q 131 3. O líquido adicionado, CCℓ4, foi sempre o mesmo e sempre com o mesmo volume, 3 mL (ou o volume de líquido na proveta, que foi sempre 2 mL, ou a temperatura foi sempre a mesma). 4. Variável: cada um dos líquidos contidos na proveta; aspeto macroscópico da mistura (formação de uma ou mais fases). 5. CS2 – incolor; Br2 – vermelho. 6. CCℓ4 com água e CCℓ4 com etilenoglicol. 7. O CCℓ4 é miscível em Br2 e em CS2 mas imiscível em água e em etilenoglicol. 8. A molécula de água é polar e possui átomos de hidrogénio ligados a átomos de oxigénio. Assim, na água predominam ligações intermoleculares de hidrogénio e de van der Waals entre moléculas polares. A molécula de tetracloreto de carbono é apolar. Assim, no tetracloreto de carbono predominam forças de van der Waals (forças de London) entre moléculas apolares. Os dois líquidos são imiscíveis devido a não possuírem semelhanças entre as respetivas forças intermoleculares. 9. a) 3, no campo azul: Exposição curta pode causar sérios danos residuais temporários ou permanentes. b) R40: Possibilidade de efeitos cancerígenos. c) S36/37: Usar luvas e vestuário de proteção adequados. d) Danos para o ambiente (e meio aquático). Teste sobre a AL 2.2 – Soluções a partir de solutos sólidos Domínio 2: Propriedades e transformações da matéria Subdomínio 2.2: Gases e dispersões 1. Soluto: CuSO4.5H2O; solvente: água. 2. Se o volume de solução for 1 L (1 dm 3 ), contém 0,200 mol de soluto dissolvido. 3. 2,50 g. 4. (D) digital e a incerteza de leitura é 0,01 g. 5. m = (2,50 ± 0,01) g. 6. 1) Dissolver o soluto numa parte do solvente (água destilada), num gobelé. 2) Transferir a solução para um balão volumétrico de 50 mL. 3) Perfazer o volume de solução acrescentando água destilada até ao traço de referência do balão volumétrico. 7. Desenho de um balão volumétrico de 50 mL. 8. Líquido, azul e transparente com aspeto homogéneo. 9. 1) Lavar o frasco de armazenamento com um pouco da solução preparada. 2) Transferir a solução restante para o frasco, fechar e rotular. 10. 11. 1) O volume de solução ultrapassava o traço de referência no balão volumétrico. 2) O gobelé estava molhado com solução azul. 3) Os alunos ultrapassaram o traço de referência no balão volumétrico e retiraram, a seguir, o excesso de solução com um conta gotas. 12. Sistemático. Teste sobre a AL 2.3 – Diluição de soluções Domínio 2: Propriedades e transformações da matéria Subdomínio 2.2: Gases e dispersões 1. A – 10,00 mL, incerteza de 0,05 mL; B – 10,00 mL, incerteza de 0,02 mL. 2. B – pipeta volumétrica de 10 mL. 3. 4. 4. Tópicos de resposta: o volume a medir da solução mais concentrada (inicial) é 25 mL; a solução diluída deve ser preparada com rigor; possibilidade de mais erros associados; o procedimento poderia ser considerado adequado caso não houvesse, no laboratório, uma pipeta volumétrica de 25 mL. 5. V = (25,00 ± 0,05) mL. 6. C, balão volumétrico de 100 mL. 7. 1) Pipetar 25 mL de solução concentrada com uma pipeta volumétrica. 2) Transferir os 25 mL de solução concentrada para um balão volumétrico de 100,0 mL. 3) Adicionar água destilada até ao traço de referência do balão volumétrico, perfazendo o volume de 100,0 mL. 8. Ambas as soluções são azuis, pois são do mesmo soluto (azul). Na solução mais concentrada, a inicial, há mais quantidade de soluto (azul) por unidade de volume de solução e, por isso, a sua cor é mais intensa que a da solução final que, sendo diluída (menos concentrada), apresenta menor quantidade de soluto (azul) por unidade de volume de solução. Teste sobre a AL 2.4 – Reação fotoquímica Domínio 2: Propriedades e transformações da matéria Subdomínio 2.3: Transformações químicas 1. Sólidos brancos, e soluções aquosas incolores. 2. AgNO3 provoca manchas escuras na pele; usar luvas. 3. 1) Misturar as soluções aquosas de NaCℓ e AgNO3. 2) Filtrar o precipitado formado, transferi-lo para uma caixa de Petri e tapar com papel de alumínio. 3) Destapar o precipitado e colocar sobre ele uma chave. 4) Expor a amostra a uma fonte de radiação e, seguidamente, retirar a chave. 4. Cloreto de prata, AgCℓ: NaCℓ (aq) + AgNO3 (aq) → AgCℓ (s) + NaNO3 (aq) 5. Suspensão. 6. Ao ser iluminada, a amostra escureceu (alteração de cor de branco para acinzentado) na área não protegida pela chave. A mudança de cor revela a ocorrência de transformações químicas, desencadeadas pela luz. O AgCℓ transformou-se em prata metálica com libertação de cloro gasoso: 2 AgCℓ (s) → 2 Ag (s) + Cℓ2 (g). 7. A luz provoca alterações químicas do cloreto de prata, ou seja, o AgCℓ sofreu uma reação fotoquímica. 8. Iluminar cada uma de três amostras com fontes de radiação diferentes, por exemplo, vermelha, verde e azul. Variáveis a controlar: as potências das fontes de radiação e as distâncias de cada amostra à respetiva fonte devem ser iguais. 9. Uso de uma amostra de referência, evitando alterações da mesma por incidência de luz antes da realização do teste com a chave. 10. Investigar o efeito da luz sobre cloreto de prata. 11. O nitrato de prata sofre transformações químicas se exposto à luz, o que se infere da informação adicional «guardar ao abrigo da luz». CuSO4.5H2O (aq) 0,200 mol/dm 3 Laboratório escolar, jan 2016
  • 133.
    132 Editável efotocopiável © Texto | Novo 10Q Notas
  • 134.
        Consulte  Nos itens corretame Nos itens  Junto de c Outubro domínio (pratica entidade correram o que u é longa, e tão ve Na  Físic natureza anos‐luz element Na  Quím inventou homem, acompa 1. (8p) Po (A (B (C (D NOME ____ Teste  Duração: a Tabela Periód s de escolha mú ente à questão  de construção q cada item apres o de 2014 aco o da luz! O p mente) à velo e à qual seria m mundo con m aluno do s  no espaço e  elha quanto a  ca, o  prémio  a também cr z da Terra. É  tos químicos  mica,  o  prém u o nanomun ,  de  1,7  m  nhando os ca ode afirmar‐se A) distância d B) distância d C) idade de um D) observação turma.   __________ 1  : 90 a 100 m ica, tabelas de c últipla escreva a colocada.  que envolvam c senta‐se a respe ordou‐nos co prémio Nobel ocidade da lu a dedicado o ntrastou com  ecundário de no tempo! D idade do me reconheceu  iou corpos az no centro d existentes no mio  reconhece ndo, o homem de  altura,  p aminhos e a v e que a  a Bellatrix à T a Bellatrix à T m aluno do se o da Belatrix d   ___________ in  Editável e fotoco constantes e for a letra da única cálculos numéric etiva pontuação G m a luminosi l da Física e  uz, como que  ano de 2015 a lentidão do emorou nas v Digamos que é smo, 109  ano a  importânc zuis como, po e estrelas co o universo, at eu  a  importâ m a nanotec pode  entrar  vida de moléc Terra é inferio Terra é superi ecundário é da deve‐se à luz ___________ opiável © Texto |  rmulários sempr a opção que per cos é obrigatório entre parêntes Grupo I  dade própria o da Químic  antecipando 5, Internation o  processo d voltas que já d é tão comprid os. Tudo tem o cia  da  invenç or exemplo, a omo a Bellatr té Z = 26 (de r ância  do  dese nologia! Ago e  desvenda culas individu Figura 1  or a 1025  m.  ior a 1025  m. a mesma orde por ela emit __________  Novo 10Q re que necessár rmite obter um o apresentar to es.  a de (mais) du ca. Uma e ou o o reconheci nal Year of Li de investigaçã deu ao Sol, 1 da quanto o t o seu ritmo! ção  de  diodo a estrela Bell rix que ocorr raio atómico  envolvimento ra, é nesse (n r,  através  d ais no interio em de grande ida depois do __________  rio.  ma afirmação co das as etapas d uas conquista utra notícia c imento da im ight (IYL). A r ão (muito ma 09  s !). A traje tamanho do u os  azuis  emis latrix, que se re a formaçã 156 pm).   o  da  nanosco nano)mundo a  luz  visível or de células v eza que a idad o nascimento  Turma____ orreta ou respon e resolução.  as do homem orreram mun mportância de rapidez com q is tempo do q etória da ciên universo, 1025 ssores  de  luz e encontra a 2 o de alguns  opia.  A  natur  que o (gigan ,  observando vivas, Figura 1 de do Univers o de um aluno ___ Número_ 133  nder  m no  ndo  essa  que  que  ncia  5  m,  z.  A  250  dos  reza  nte)  o  e  1.    o.  o da  ______ 
  • 135.
    134 Editável efotocopiável © Texto | Novo 10Q 2. (8p) Indique o valor do diâmetro do átomo com Z = 26, expresso em unidade SI e em notação científica. 3. (8p) Localize, na escala da Figura 1, o átomo com Z = 26. 4. (8p) A ordem de grandeza da altura do (gigante) homem é quantas vezes superior à ordem de grandeza da dimensão de uma proteína? 5. (8p) Indique uma área de aplicação da nanotecnologia. Grupo II Os excertos retirados Tabela Periódica, da Figura 2, reúnem informações diversas sobre o hidrogénio e o bromo. Figura 2 1. (8p) Legende as informações numéricas sobre o bromo. 2. (8p) Em relação a um átomo de hidrogénio, o átomo de bromo é (A) 35 vezes mais pesado. (B) 44,904 vezes mais pesado. (C) 79,270 vezes mais pesado. (D) 79,904 vezes mais pesado. 3. (12p) Indique o tipo de orbitais ocupadas por eletrões que se encontrem no nível n = 3 dos átomos de bromo assim como o número de eletrões em cada tipo de orbital. 4. (8p) Indique o número de massa do isótopo mais abundante do bromo. 5. (8p) Represente simbolicamente o ião bromo mais estável. 6. (8p) Em que modelo está ilustrada a espécie química representada por − H 2 1 ? A B C D
  • 136.
    Editável e fotocopiável© Texto | Novo 10Q 135 Grupo III A massa da amostra de uma substância, contida no frasco da Figura 3, é 6,9 g. 1. (12p) Determine o número de moléculas contidas em 5,0 g de substância. 2. (8p) Na amostra da substância contida no frasco há (A) 0,15 mol de átomos de carbono e 0,15 mol de átomos de oxigénio. (B) 0,15 x 6,02 x 1023 átomos de carbono e 0,30 mol de átomos de oxigénio. (C) 0,30 x 6,02 x 1023 átomos de carbono e 0,15 mol de átomos de oxigénio. (D) 0,30 mol de átomos de carbono e 0,30 mol de átomos de oxigénio. 3. (12p) Escreva, justificando, a fórmula molecular da substância concretizando o valor de y. Grupo IV Considere que os componentes do ar são apenas árgon, Ar, oxigénio, O2, e nitrogénio, N2. As frações molares do árgon e do oxigénio são respetivamente 0,01 e 0,21, e numa amostra de de 28,98 g de ar, 6,67 g são de oxigénio. 1. (8p) A fração molar do nitrogénio pode ser determinada pela expressão (A) 1 + 0,21 + 0,01 (B) 1 – 0,21 – 0,01 (C) 0,21 + 0,01 (D) 0,21 – 0,01 2. (8p) Escreva a equação que traduz a relação entre a quantidade de matéria de árgon e a quantidade de matéria total de gases numa amostra de ar na forma nAr = f(ntotal). 3. (8p) A fração mássica de oxigénio no ar é (A) 0,21 (B) 0,78 (C) 6,67 ÷ 28,98 (D) 28,98 ÷ 6,67 4. (8p) Identifique a representação gráfica A ou B, que mais se aproxima da representação da massa de oxigénio em função da massa de ar. Figura 3
  • 137.
    136 Editável efotocopiável © Texto | Novo 10Q Grupo V Na tabela abaixo podem consultar-se valores de energias de remoção eletrónica, Er, obtidos por espetroscopia fotoeletrónica, para o sódio e o magnésio. Na Figura 4 está um diagrama de energias para o átomo de hidrogénio. Energia de remoção / x 10 –18 J Sódio, Na Magnésio, Mg 0,82 1,23 4,98 8,24 10,72 14,3 172 209 Figura 4 1. (16p) Indique quantos níveis e subníveis de energia existem no magnésio. Justifique com base na estrutura atómica e na energia dos eletrões no átomo. Comece por comparar as respetivas ordens de grandeza. 2. (12p) Conclua, justificando a partir dos valores de energias de remoção, qual apresentará nas mesmas condições maior reatividade química, Na ou Mg. 3. (16p) Sobre um átomo de hidrogénio no estado fundamental incidiu uma radiação correspondente a uma energia Einc = 11,3 eV. (1 eV = 1,6 × 10-19 J) Apresente todos os cálculos necessários que permitam verificar se ocorreu, ou não, transição eletrónica, e explicite a sua conclusão, justificando com referência a uma das ideias fundamentais do modelo quântico do átomo.
  • 138.
    Editável e fotocopiável© Texto | Novo 10Q 137 Critérios específicos de classificação Grupo I 1. (A) distância da Bellatrix à Terra é inferior a 1025 m. ............................................................. 8 pontos 2. 3,12 × 10 –10 m. ....................................................................................................................... 8 pontos 3. À direita da pequena molécula. ............................................................................................. 8 pontos 4. 108 . .......................................................................................................................................... 8 pontos 5. ................................................................................................................................................. 8 pontos Área da saúde, por exemplo, com o uso de nanosensores no mapeamento de tecidos biológicos e com técnicas de diagnóstico. Grupo II 1. Elementos de resposta. ......................................................................................... (2 + 2 + 2) 8 pontos 35: número atómico; 79,904: massa atómica relativa; 2-8-18-7: distribuição eletrónica por níveis de energia. 2. (C) 79,270 vezes mais pesado. ............................................................................................... 8 pontos 3. Elementos de resposta: A) s com 2 eletrões; B) p com 6 eletrões;................................................................... C) d com 18 eletrões. ....................................................................................................... (4 + 4 + 4) 12 pontos 4. 80 ............................................................................................................................................ 8 pontos 5. Br– ........................................................................................................................................... 8 pontos 6. D ............................................................................................................................................. 8 pontos Grupo III 1. Duas etapas de resolução de cálculo. ...................................................................... (6 + 6) 12 pontos A) Quantidade de matéria em 5,0 g (0,1087 mol) B) Número de moléculas (6,5 × 1022 ) 2. (C) ........................................................................................................................................... 8 pontos 3. Três etapas de resolução de cálculo ...................................................................... (4 + 6 + 2) 12 pontos A) Massa molar (46 g/mol) B) Valor de y (5,9) C) C2H6O Grupo IV 1. (B) 1 – 0,21 – 0,01. .................................................................................................................. 8 pontos 2. nAr = 0,01 × ntotal. ...................................................................................................................... 8 pontos 3. (C) 6,67 ÷ 28,98. ...................................................................................................................... 8 pontos 4. A............................................................................................................................................... 8 pontos
  • 139.
    138 Editável efotocopiável © Texto | Novo 10Q Grupo V 1. Elementos de resposta ........................................................................................................ 16 pontos A) Quatro valores diferenciados de Er, com três ordens de grandeza diferentes e crescentes, 1,23 (100 ), 8,24 e 14,4 (101 ) e 209 (102 ) – distribuição dos 12 eletrões por 3 níveis, n = 3, n = 2 e n = 1, havendo dois subníveis em n = 2, 2s e 2p (dois valores de energia da mesma ordem de grandeza). B) Er coincide com o simétrico da energia dos eletrões no átomo: maior Er corresponde a eletrões mais interiores (menos energéticos). C) Energia dos eletrões/ × 10–18 J: n = 1 (eletrões s, energia= –209), n = 2 (eletrões s, energia = –14,3 e eletrões p, energia = –8,24) e n = 3 (eletrões s, energia = –1,23). 2. Elementos de resposta ......................................................................................................... 12 pontos A) A reatividade química envolve os eletrões de valência. B) Quanto menor for a energia mínima de remoção maior a reatividade. C) Menor energia mínima de remoção para Na. D) Conclusão: Na é mais reativo. 3. Quatro elementos de referência ........................................................................................... 16 pontos A) Einc numa unidade diferente, e coerente com o raciocínio exposto (1088 kJ/mol). B) Soma da Einc com a energia do eletrão em n = 1 (–224 kJ/mol). C) Modelo quântico: energia dos eletrões nos átomos está quantizada (bem definida); só ocorre transição se a soma da Ei com a energia do eletrão em n = 1 for igual à energia de qualquer um dos níveis n ≥ 2. D) Conclusão: não ocorreu transição uma vez que –244 kJ/mol não coincide com a energia de nenhum nível.
  • 140.
      Consulte  Nos itens corretame Nos itens  Junto de c   A quí os quím complex atribuiçã Um e líquido  frutos, v maior, c (em que 1. (16p)  2. (8p) A (A (B (C (D 3. (8p) N (A NOME ____ Teste  Duração: a Tabela Periód s de escolha mú ente à questão  de construção q cada item apres ímica dos com micos que con xas  a  partir  ão do prémio exemplo de s incolor usado vegetais, noze com a formaç e nos anéis he Localize o ca com  base  na eletrónica ide ligação carbo A) dupla e o b B) dupla e o e C) tripla e o b D) tripla e o e os anéis hexa A) 2.        (B) 5 __________ 2  : 90 a 100 m ica, tabelas de c últipla escreva a colocada.  que envolvam c senta‐se a respe mpostos de c nseguem, em de  outras  m o Nobel da Qu íntese de mo o  no  fabrico  es, bebidas e ção de uma n exagonais não rbono na Tab a  análise  da  entificando o ono‐carbono  bromobenzen estireno é um romobenzeno stireno é um  agonais, o nú 5.        (C) 10.   ___________ min  Editável e fotoco constantes e for a letra da única cálculos numéric etiva pontuação G arbono é a ba m laboratório, mais  simples.  uímica em 20 oléculas comp da  esferovit e carnes. Nest nova ligação  o estão repre bela Periódica sua  configur o elemento co na olefina é c no é um hidro  hidrocarbon o é um hidroc hidrocabone mero de ligaç       (D) 11. ___________ opiável © Texto |  rmulários sempr a opção que per cos é obrigatório entre parêntes Grupo I  ase de toda a  imitar a nat Trabalhos  n 010.   plexas relacio e,  que  tamb ta síntese, du carbono‐carb sentadas as l a, indicando  ração  eletrón omo represen covalente  ocarboneto.  eto.   carboneto.  eto.  ções a átomo Figura 1 __________  Novo 10Q re que necessár rmite obter um o apresentar to es.  a vida na Terr tureza sinteti neste  domínio ona‐se com a  bém  se  encon uas moléculas bono, como s igações com  o bloco, o gr nica.  Comece ntativo ou não os de hidrogén __________  rio.  ma afirmação co das as etapas d ra e, por isso,  izando moléc o  de  investig síntese do es ntra  na  natur s dão origem se pode obse átomos de h rupo e o perí e  por  escreve o.   nio em falta é    Turma____ orreta ou respon e resolução.  um fascínio p culas de carb gação  levara stireno, C8H8, reza  em  plan m a uma molé ervar na Figu idrogénio).    íodo, justifica er  a  distribu é  ___ Número_ 139  nder  para  bono  m  à  , um  ntas,  écula  ra 1  ando  ição  ______ 
  • 141.
    140 Editável efotocopiável © Texto | Novo 10Q 4. (8p) A rutura da ligação do átomo de bromo ao anel hexagonal, no bromobenzeno, é um processo (A) endoenergético e a formação da ligação HBr é exoenergética. (B) endoenergético e a formação da ligação HBr também. (C) exoenergético e a formação da ligação HBr é endoenergética. (D) exoenergético e a formação da ligação HBr também. Grupo II Numa transformação química as substâncias reagem entre si e originam novas substâncias. Neste processo rompem-se e formam-se ligações. É o caso da combustão do metano: CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l) Numa transformação física, não há formação de novas substâncias, é o caso da fusão da água, por exemplo. H2O (s) → H2O (l) 1. (8p) Escreva a equação de combustão do metano usando fórmulas de estrutura de Lewis. 2. (8p) Indique o número e o tipo de ligações que foram rompidas durante a reação. 3. (8p) A geometria da molécula CO2 é (A) angular e o ângulo de ligação é 0°. (B) angular e o ângulo de ligação é 180°. (C) linear e o ângulo de ligação é 0°. (D) linear e o ângulo de ligação é 180°. 4. (8p) Tendo como referência a ilustração da estrutura do gelo da Figura 2, identifique o tipo de ligações que são envolvidas na sua fusão. 5. (8p) Classifique, do ponto de vista energético, a fusão do gelo. 6. (12p) Descreva a localização relativa dos átomos na molécula CH4. Figura 2
  • 142.
      O  á compon da  artr plasma  especial monitor Resu o uso  reumató se  apres sanguín função d fármaco   1.  (12p)  concent 2. (8p) A  (A (B (C (D 3. (12p) D Hein remoção está mo uma int fotões.     Expe remove ácido  aceti nente da aspi ite  reumató sanguíneo do l  e,  freque rização.  ltados obtido de  AAS,  e óide, podem  senta  a  conc eo  (em  dua do tempo dec o.  Descreva  ge tração de AAS relação que e A) direta e a c B) direta e a c C) inversa e a  D) inversa e a Determine o v rich  Hertz  (1 o de eletrões ostrado na Fig terpretação c eriências vária r eletrões de  lsalisílico  (A rina, é usado ide.  Os  níve os pacientes  ntemente,  é os durante u em  paciente ver‐se no Gr centração  de  as  unidades  corrido após  enericamente S no plasma s existe entre a c constante de  constante de  constante de  constante de valor da mass 1857–1894),   de superfície gura 3. Outros correta do fe as permitiram uma superfíc Editável e fotoco G AAS),  princi o no tratame eis  de  AAS  merece aten é  feita  a  m estudo so es  com  art ráfico 1 em q AAS  no  plas diferentes)  a ingestão de e  como  evolu sanguíneo.  concentração  proporcional proporcional e proporciona e proporciona sa molar do A G físico  alemã es metálicas,  s se lhe segui nómeno, ao  m concluir que cie metálica d opiável © Texto |  Grupo III ipal  nto  no  ção  sua  bre  rite  que  sma  em  este  uiu  a  de AAS em m idade é a ma idade é o inv alidade é a m alidade é o in AAS a partir d rupo IV ão,  foi  quem por incidênci iram mas foi  admitir que                  e o valor de e depende do m Figura 3   Novo 10Q mg/L e em mm ssa molar.  erso da mass assa molar. nverso da mas de dados do g m  primeiro  o ia ultravioleta Albert Einste a luz é form energia mínim metal utilizado mol/L é de prop sa molar.  ssa molar.  gráfico.  bservou  e  p a ou de radia ein, em 1905, mada por part ma a partir d o.  Gráfico 1  porcionalidad publicou  sobr ção visível, co  quem viria a tículas chama o qual é poss 141  e   re  a  omo  a dar  adas  sível 
  • 143.
    142 Editável efotocopiável © Texto | Novo 10Q 1. (8p) A energia mínima de remoção eletrónica para o potássio é (A) 1,77 eV e superior à do sódio. (B) igual a 2,25 eV e superior à do sódio. (C) superior a 1,77 eV e inferior à do sódio. (D) inferior a 1,77 eV e superior à do sódio. 2. (12p) Fundamente a sua resposta ao item anterior. 3. (8p) A energia dos eletrões nos átomos é (A) positiva e pode assumir qualquer valor. (B) negativa e tem valores bem definidos. (C) positiva e tem valores bem definidos. (D) negativa e pode assumir qualquer valor. Grupo V A Figura 4 informa sobre abundâncias relativas de alguns elementos químicos no Universo e no corpo humano. Do corpo humano também é conhecido o teor de água, presente na Figura 5. 1. (8p) De acordo com a Figura 4, (A) a percentagem de carbono no corpo humano é dupla da percentagem de hélio no Universo. (B) o oxigénio é o elemento mais abundante no Universo. (C) a percentagem de hidrogénio no corpo humano é um sexto da percentagem de hidrogénio no Universo. (D) o oxigénio é o elemento menos abundante no corpo humano. 2. (16p) Determine o número de moléculas de água que existem no seu corpo. Comece por escrever o valor da sua massa corporal. Figura 4 Figura 5
  • 144.
    Editável e fotocopiável© Texto | Novo 10Q 143 Grupo VI As três amostras de gases, da Figura 6, estão associadas a valores numéricos de várias grandezas físicas. Volume / L 1 L 1 L 1 L Pressão / atm 1 atm 1 atm 1 atm Temperatura / o C 0 0 0 Massa de gás / g 1,783 1,250 0,0899 Número de partículas 2,66 x 10 22 2,66 x 10 22 2,66 x 10 22 1. (8p) Indique o valor lógico da afirmação «As três amostras encontram-se em condições diferentes de pressão e de temperatura». 2. (8p) Escreva o nome dos gases por ordem crescente de massa volúmica. 3. (8p) A constante de Avogadro pode ser determinada pela expressão (A) 28,02 × 2,66 × 1022 1,250 e o volume molar pela expressão 39,95 1,783 (B) 1,250 × 2,66 × 1022 28,02 e o volume molar pela expressão 39,95 1,783 (C) 1,250 × 2,66 × 1022 28,02 e o volume molar pela expressão 1,783 39,95 (D) 28,02 × 2,66 × 1022 1,250 e o volume molar pela expressão 1,250 28,02 Figura 6
  • 145.
    144 Editável efotocopiável © Texto | Novo 10Q Critérios específicos de classificação Grupo I 1. Elementos de resposta.......................................................................................................... 16 pontos A) 1s2 2s2 2p2 ; elemento representativo. B) bloco p: orbital de valência mais energética. C) 2.o período; nível onde se localizam os eletrões de valência. D) grupo 14 por ser um elemento representativo com 4 eletrões de valência. 2. (B) dupla e o estireno é um hidrocarboneto. ......................................................................... 8 pontos 3. (B) 5. ....................................................................................................................................... 8 pontos 4. (A) endoenergético e a formação da ligação HBr é exoenergética. ....................................... 8 pontos Grupo II 1. ................................................................................................................................................. 8 pontos 2. ................................................................................................................................................. 8 pontos Ligações interatómicas: 4 ligações simples C-H e 2 ligações duplas O-O, todas covalentes. 3. (D) linear e o ângulo de ligação é 180°.................................................................................... 8 pontos 4. Ligações intermoleculares por pontes de hidrogénio............................................................. 8 pontos 5. Processo endotérmico............................................................................................................. 8 pontos 6. Cada átomo de H ocupa um vértice de um tetraedro e o átomo C o centro do tetraedro................................................................................................................................................. 12 pontos Grupo III 1. Elementos resposta ............................................................................................................. 12 pontos A) A concentração atingiu um valor máximo de 14 mg/L (0,075 mmol/L), cerca de 30 min após a ingestão. B) diminuindo de seguida até 1 mg/L aproximadamente em 60 min.
  • 146.
    Editável e fotocopiável© Texto | Novo 10Q 145 2. (A) direta e a constante de proporcionalidade é a massa molar............................................ 8 pontos 3. Duas etapas de resolução de cálculo ......................................................................... (6+6) 12 pontos A) Seleção correta de um par de valores de concentrações (leitura correta das duas escalas) B) Cálculo (187,5 g/mol) Grupo IV 1. (C) superior a 1,77 eV e inferior à do sódio............................................................................. 8 pontos 2. Elementos de resposta ........................................................................................................ 12 pontos A ) O sódio e o potássio são elementos do mesmo grupo e o potássio sucede o sódio no grupo. B) Eletrão de valência de potássio ocupa um nível de energia superior (n = 4) estando, por isso, mais afastado (e menos atraído) ao núcleo. 3. (B) negativa e tem valores bem definidos. ............................................................................. 8 pontos Grupo V 1. (C) a percentagem de hidrogénio no corpo humano é um sexto da percentagem de hidrogénio no Universo. ................................................................................................................................. 8 pontos 2. Três etapas de resolução de cálculo .................................................................... (6 + 5 + 5) 16 pontos A) massa de água (para aluno com m = 50 kg): 37 kg B) quantidade (n.o de moles) de água, n = m/M: 2053 mol C) número de moléculas N = n x NA (1,24 x 1027 moléculas) Grupo VI 1. Falsa ........................................................................................................................................ 8 pontos 2. Hidrogénio, nitrogénio, árgon ................................................................................................ 8 pontos 3. (A) 28,02 × 2,66 × 1022 1,250 e o volume molar pela expressão 39,95 1,783 .................................................. 8 pontos
  • 147.
    14   46  Consulte  Nos itens corretame Nos itens  Junto de c A luz, ou fotões, e Na  Figu radiaçõe 1. (8p) A r (A 2. (8p) Um (A (B (C (D 3. (8p) Qu (A 4. (8p) Do (A (B (C (D NOME ____ Teste  Duração: a Tabela Periód s de escolha mú ente à questão  de construção q cada item apres u seja, a radia e a energia E  ura  1 encont es visíveis e n relação entre A) E + f = cons m fotão de lu A) invisível e d B) invisível e d C) visível e de D) visível e de uando compa A) 1,7 vezes s o vermelho ao A) contínuo, c B) contínuo, o C) descontínu D) descontínu __________ 3  : 90 a 100 m ica, tabelas de c últipla escreva a colocada.  que envolvam c senta‐se a respe ação eletrom de cada fotão ram‐se  infor não visíveis).   e a energia e a stante  (B) E  z infravermel de maior ene de menor ene  maior energ e menor energ arado com um uperior.   (B)  o violeta o es como os espe ou seja, difere o, como os e uo, ou seja, di   ___________ in  Editável e fotoco constantes e for a letra da única cálculos numéric etiva pontuação G magnética, pod o é diretamen mações  sobr a frequência d – f = constan lha é   rgia que um f ergia que um  ia que a um f gia que um fo m fotão de luz 3,2 vezes sup petro aprese etros atómico ente dos espe spetros atóm iferente dos e ___________ opiável © Texto |  rmulários sempr a opção que per cos é obrigatório entre parêntes Grupo I  de ser deteta nte proporcio re  o  espetro  Figura 1  de uma radia nte  (C) E fotão de luz v fotão de luz v fotão de luz v otão de luz ve z vermelha, u perior.  (C) 1, ntado é  s de absorção etros atómico micos de abso espetros atóm __________  Novo 10Q re que necessár rmite obter um o apresentar to es.  ada como par onal à frequê eletromagné ação pode rep × f = constan vermelha.  vermelha.  vermelha.  ermelha.  m fotão de lu ,7 x 1014  veze o.  os de absorçã rção.  micos de abso __________  rio.   ma afirmação co das as etapas d rtículas de en ncia f da radi ético  (conjun   presentar‐se p te   (D) uz violeta tem s superior.   ( o.  orção.   Turma____ orreta ou respon e resolução.  nergia chama ação.   nto  de  todas por    constan f E  m uma energi (D) 3,2 x 1014 ___ Número_   nder  das  s  as  te  a  vezes superio ______  or. 
  • 148.
      A  inform informa element 칼칼, 전 1. (8p) Es 2. (16p) C 35 17 3. (8p) O칼 (A (B (C (D 4. (12p) Es 5. (8p) Pr gr A 6. (12p)  C A conce O  recip solução  1. (8p) O  (A 2. (8p) So (A (B (C (D 3.  (12p)D A mação  seguin ções  sobre  tar.  전자 배열 [Ar]4 screva a confi Conclua, justi  C 5 7 , pertence 칼칼pertence A) metais e a  B) metais e a  C) não metais D) não metais screva o valo roponha um  rupo, o eleme presente o re Classifique,  q formar, expli ntração de so iente  represe diluída de ác fator de dilui A) 0,1.  obre o volume A) 24,85 cm3   a 63,0 g/L.  B)  24,85  cm3 superior a 6 C) 249,85 cm3 a 63,0 g/L.  D) 249,85  cm superior a 6 Determine  a  c presente o re nte,  retirada  propriedades 4s2 , 180 pm, 밀 guração eletr ificando com  em ao mesmo e à família dos substância el substância el s e a substânc s e a substânc r da densidad valor para o ento칼칼sabe esultado em u uanto  à  carg cando a sua f oluções come entado  na  F cido nítrico, a  M(H ção usado fo (B) 0,25.  e V da solução ≤ V ≤ 25,15 c 3   ≤  V  ≤  25,15 63,0 g/L.  3  ≤ V ≤ 250,15 3   ≤  V  ≤  250, 63,0 g/L.  concentração  esultado em g Editável e fotoco G de  um  trab s  físicas  do  밀도는 에서 1,5 rónica do칼칼 base na aná o período, gr s  lementar fund ementar fund cia elementar cia elementar de relativa da raio atómico endo que é d unidade SI e e ga,  os  iões  m formação. Inc Grupo III erciais de ácid igura  2  foi  u partir de 25, HNO3) = 63,0 i  ( o diluída pod m3 , e que a c 5  cm3 ,  e  que 5 cm3 , e que a 15  cm3 ,  e  qu em  massa  d g/cm3 . opiável © Texto |  Grupo II  balho  de  pes elemento  qu 550 g/cm3 , 끓는 칼usando a no álise das con upo e bloco d de a 842 ºC. de a 1484 ºC. r funde a 842  r funde a 148  substância e o do element da mesma ord em notação c mais  estáveis  clua na sua re   do nítrico, HN utilizado  para 0 mL da soluç g mol–1   (C) 2,5 e dizer‐se qu oncentração  e  a  concentr a concentraçã ue  a  concent da  solução  d  Novo 10Q quisa  de  um uímico 칼칼 는점은 1484°C otação spd.  figurações el da Tabela Per   ºC.  4 ºC.  elementar e in to da Tabela dem de grand científica. que  os  átom esposta referê NO3 (aq), é 15 a  preparar  c ção comercia (D) 10 e é  em massa da ração  em  ma ão em massa d tração  em  m iluída,  sem  r m  aluno  estra 칼 e  da  respe C, 이며, 녹는 letrónicas, se riódica.  ndique o seu   Periódica qu deza do raio a mos  de칼칼t ência a um gá ,3 mol dm–3 .  om  rigor  um al.   0.  a solução com assa  da  soluç da solução co assa  da  solu recorrer  ao  fa angeiro,  cont etiva  substân 점은 842°C, 이 e o칼칼 e clo significado.  ue antecede, atómico do칼 têm  tendênci ás nobre.     ma  mercial é infe ção  comercia mercial é infe ção  comercia ator  de  diluiç Figura 2 147  tém  ncia  이고 oro,   no  칼칼.  ia  a  rior  al  é  erior  al  é  ção.   
  • 149.
    148 Editável efotocopiável © Texto | Novo 10Q 4. (8p) Para medir o volume de 25,0 mL de solução comercial deve utilizar-se (A) uma pipeta graduada. (B) uma pipeta volumétrica. (C) um balão Erlenmeyer. (D) um balão volumétrico. 5. (8p) Ao diluir a solução um aluno ultrapassou ligeiramente o traço de referência do recipiente da Figura 2 e procedeu ao acerto do volume, pelo traço de referência, retirando um pouco de solução com uma pipeta de Pasteur. O aluno realizou um procedimento (A) correto e a solução ficou com uma concentração inferior à que se pretendia. (B) correto e a solução ficou com uma concentração superior à que se pretendia. (C) incorreto e a solução ficou com uma concentração inferior à que se pretendia. (D) incorreto e a solução ficou com uma concentração superior à que se pretendia. Grupo IV A água é uma substância molecular e a sua densidade depende das condições de pressão e de temperatura a que se encontra. A densidade do vapor de água, à temperatura de 100 o C e à pressão de 1 atm, é 0,590 kg m–3 . 1. (12p) Determine o volume ocupado por uma amostra de vapor de água que, nas condições referidas, contém 3,03 × 1024 moléculas de água. 2. (8p) A molécula de água tem geometria (A) angular e é apolar. (B) angular e é polar. (C) triangular e é apolar. (D) triangular e é polar. 3. (8p) O número de eletrões de valência numa molécula de água é (A) dez, dos quais cinco são não ligantes. (B) dez, dos quais quatro são não ligantes. (C) oito, dos quais cinco são não ligantes. (D) oito, dos quais quatro são não ligantes. 4. (8p) Tendo como único critério a possibilidade de estabelecimento de ligações por pontes de hidrogénio, selecione o conjunto de substâncias miscíveis na água. (A) HF, CH3OH, NH3. (B) HF, CH3OCH3, NH3. (C) H2S, CH3OH, CH4. (D) H2S, CH3OCH3, CH4.
  • 150.
    Editável e fotocopiável© Texto | Novo 10Q 149 Grupo V A energia necessária para dissociar uma molécula de oxigénio, O2, é 8,27 x 10–19 J e as energias de ligação H-H e H-O são, respetivamente, 436 kJ/mol e 463 kJ/mol. 1. (16p) Classifique a reação de síntese da água como endotérmica ou exotérmica, justificando com base no resultado obtido para a variação de entalpia da reação traduzida pela equação 2 H2 (g) + O2 (g) → 2 H2O (g). 2. (8p) A dissociação do oxigénio pode ocorrer por ação de radiação ultravioleta. Escreva a equação que traduz a dissociação da molécula de oxigénio e diga como se designa pelo facto de ocorrer por ação da luz.
  • 151.
    150 Editável efotocopiável © Texto | Novo 10Q Critérios específicos de classificação Grupo I 1. (D) constante f E = . ................................................................................................................. 8 pontos 2. (B) invisível e de menor energia que um fotão de luz vermelha. . ......................................... 8 pontos 3. (A) 1,7 vezes superior. ............................................................................................................ 8 pontos 4. (B) contínuo, ou seja, diferente dos espetros atómicos de absorção. ................................... 8 pontos Grupo II 1. 1s2 2s2 2p6 3s2 3p6 4s2 ................................................................................................................... 8 pontos 2. Elementos de resposta ........................................................................................................ 16 pontos A) Explicitação da correspondência entre o grupo, o período e o bloco, assim como a configuração eletrónica (de valência). B) Escrita e análise comparativa das duas configurações eletrónicas com caráter justificativo. C) Conclusão: não pertencem ao mesmo período, grupo e bloco. 3. (A) metais e a substância elementar funde a 842 ºC. ............................................................. 8 pontos 4. Elementos de resposta ............................................................................................. (5 + 7) 12 pontos A) 1,550 (sem unidade). B) Significado: a substância elementar é 1,550 vezes mais densa que a água líquida a 4 °C. 5. 1,50 x 10-10 m. ......................................................................................................................... 8 pontos 6. Elementos de resposta ........................................................................................................ 12 pontos A) Iões dipositivos, que se formam por perda de dois eletrões de valência do átomo. B) Uma distribuição eletrónica igual à de um gás nobre corresponde a maior estabilidade das espécies químicas. C) Ao perder dois eletrões os iões que se formam têm configuração eletrónica igual à do árgon (Ar), 1s2 2s2 2p6 3s2 3p6 . Grupo III 1. (D) 10....................................................................................................................................... 8 pontos 2. (D)249,85 cm3 ≤ V ≤ 250,15 cm3 , e que a concentração em massa da solução comercial é superior a 63,0 g/L.............................................................................................. 8 pontos 3. Etapas de resolução de cálculo ................................................................................. (6 + 6) 12 pontos A) n(HNO3) na solução diluída. B) [HNO3] em massa na solução diluída=0,0964 g cm–3 . 4. (B) uma pipeta volumétrica. ................................................................................................... 8 pontos
  • 152.
    Editável e fotocopiável© Texto | Novo 10Q 151 5. (C) incorreto e a solução ficou com uma concentração inferior à que se pretendia.............. 8 pontos Grupo IV 1. Etapas de resolução de cálculo: ................................................................................ (6 + 6) 12 pontos A) Massa da amostra (90,10 g). B) Volume (0,153 m3 ). 2. (B) angular e é polar................................................................................................................ 8 pontos 3. (D) oito, dos quais quatro são não ligantes. ........................................................................... 8 pontos 4. (A) HF, CH3OH, NH3. ................................................................................................................ 8 pontos Grupo V 1. Etapas de resolução de cálculo ............................................................................ (5 + 6 + 5) 16 pontos A) Energia de dissociação do O2 em kJ/mol (498). B) ΔH em kJ/mol (–482) C) ΔH < 0 – reação exotérmica. 2.O2 → O + O, dissociação fotoquímica........................................................................... (4 + 4) 8 pontos
  • 153.
    152 Editável efotocopiável © Texto | Novo 10Q Notas
  • 154.
      Editável e fotocopiável © Texto | Novo 10Q  153    Questões de  provas  nacionais  realizadas  entre  2008  e  2014  organizados  por  subdomínio  e  por  secção, por ordem cronológica.  Os itens estão identificados por data e de acordo com o tipo de prova:  I – teste intermédio  1F – exame nacional ‐ primeira fase  2F – exame nacional ‐ segunda fase  E – exame nacional ‐ época especial  Algumas  questões  foram  adaptadas  para  melhor  se  enquadrarem  no  programa  atual.  Algumas  secções não apresentam qualquer item nas provas nacionais realizadas ente 2008 e 2014.  Domínio 1 ‐ Elementos químicos e sua organização  1.1 Massa e tamanho dos átomos  1.1.1 Ordens de grandeza e escalas de comprimento  2008 I. No Universo atual, as distâncias entre os corpos celestes são de tal maneira grandes  que  houve  necessidade  de  utilizar  unidades  de  medida  especiais.  A  luz  que,  num  dado  instante, é emitida pela estrela Alfa de Centauro só é detetada na Terra 4,24 anos depois.  Calcule a distância entre a Terra e a estrela Alfa de Centauro, em unidades SI.  Apresente todas as etapas de resolução.  2011 E. O ano‐luz é uma unidade de  (A) distância.  (B) tempo.  (C) velocidade.  (D) luminosidade.  2012 1F. Os átomos dos isótopos 12 e 13 do carbono têm  (A) números atómicos diferentes.  (B) números de massa iguais.  (C) igual número de eletrões.  (D) igual número de neutrões.  1.1.2 Dimensões a escala atómica  (secção sem itens nas provas nacionais realizadas entre 2008 e 2014)  1.1.3 Massa isotópica e massa atómica relativa  (secção sem itens nas provas nacionais realizadas entre 2008 e 2014)    Questões de exame 
  • 155.
    154 Editável efotocopiável © Texto | Novo 10Q 1.1.4 Quantidade de matéria e massa molar 2012 E. A elevada acidez da água da chuva, registada em diversos locais da Terra, é atribuída à emissão para a atmosfera de dióxido de enxofre, SO2 (g), e de óxidos de nitrogénio. Existem várias fontes de SO2 atmosférico, entre as quais as erupções vulcânicas e a queima de combustíveis fósseis em diversas atividades humanas. Também a extração de alguns metais, a partir dos respetivos minérios, é uma importante fonte, de natureza antropogénica, de emissão daquele gás para a atmosfera. Por exemplo, a obtenção de zinco, a partir do sulfureto de zinco, ZnS (s), envolve, numa primeira fase, a reação deste composto com o oxigénio atmosférico. Nesta reação, forma-se óxido de zinco, ZnO (s), e dióxido de enxofre, SO2 (g). Estima-se que sejam libertados para a atmosfera cerca de 6 x 1010 kg de SO2 (g) em cada ano. Chang, R., Química, McGrawHill, 8. a ed., 2005 (adaptado) a) O número aproximado de moléculas de SO2 (g) libertadas para a atmosfera, por ano, pode ser calculado pela expressão (A) 6 × 1010 × 103 × 64,07 6,02 × 1023 (B) 6 × 1010 × 64,07 6,02 × 1023 × 103 (C) 6 × 1010 × 103 × 6,02 × 1023 64,07 (D) 6 × 1010 × 6,02 × 1023 103 × 64,07 b) Considere uma amostra de SO2 (g) com metade do volume de uma amostra de SO3 (g), nas mesmas condições de pressão e de temperatura. Comparando com a amostra de SO3 (g), a amostra de SO2 (g) contém (A) o dobro do número total de átomos. (B) metade do número total de átomos. (C) o dobro do número de átomos de enxofre. (D) um terço do número de átomos de oxigénio. 2008 I. Selecione a alternativa que corresponde ao número de átomos existente em 22,0 g de dióxido de carbono, CO2. (A) 3,01 × 1023 (B) 6,02 × 1023 (C) 9,03 × 1023 (D) 1,20 × 1024 2009 I. Selecione a única alternativa que corresponde ao número aproximado de átomos que existem em 48,0 g de oxigénio, O2 (g). (A) 6,02 × 1023 (B) 9,03 × 1023 (C) 1,20 × 1024 (D) 1,81 × 1024 2010 I. Calcule o número de átomos que existe numa amostra de 48 g de oxigénio, O2 (g). Apresente todas as etapas de resolução. 2012 I. Determine a quantidade total, em mol, de átomos existente numa amostra de 20,0 g de metano, CH4 (g). Apresente todas as etapas de resolução.
  • 156.
    Editável e fotocopiável© Texto | Novo 10Q 155 2014 2F. Quantos átomos de hidrogénio existem em 5,0 moles de moléculas de ácido acético, CH3COOH? (A) 2,4 × 1025 (B) 3,0 × 1024 (C) 2,4 × 1024 (D) 1,2 × 1025 1.1.5 Fração molar e fração mássica 2011 2F. A tabela seguinte apresenta a composição de uma amostra de ar. Gás Quantidade / mol N2 0,174 O2 0,047 Outros gases 0,002 Qual das expressões seguintes permite calcular a fração molar de O2 (g), 𝑥O2 nessa amostra? (A) 𝑥O2 = 0,047 0,174 × 0,047 × 0,002 (B) 𝑥O2 = 0,047 0,174 × 0,047+0,002 (C) 𝑥O2 = 0,174 × 0,047 × 0,002 0,047 (D) 𝑥O2 = 0,174 + 0,047 × 0,002 0,047 Atividade laboratorial 2010 1F. Na figura está representado o nível de titulante na bureta num determinado ponto da titulação. Selecione a única opção que apresenta o resultado da medição do volume de titulante gasto até àquele ponto da titulação. (A) (18,60 ± 0,05) cm3 (B) (17,40 ± 0,05) cm3 (C) (17,4 ± 0,1) cm3 (D) (18,6 ± 0,1) cm3 2009 I. Selecione a alternativa que corresponde ao material de vidro que deve ser utilizado na medição do volume de NaOH (aq). (A) Pipeta graduada. (B) Proveta graduada. (C) Copo de precipitação. (D) Pipeta de Pasteur.
  • 157.
    156 Editável efotocopiável © Texto | Novo 10Q 1.2 Energia dos eletrões nos átomos 1.2.1 Espetros contínuos e descontínuos 2008 2F A figura representa o espetro de emissão do átomo de hidrogénio. Escreva um texto no qual analise o espetro de emissão do átomo de hidrogénio, abordando os seguintes tópicos: – descrição sucinta do espetro; – relação entre o aparecimento de uma qualquer risca do espetro e o fenómeno ocorrido no átomo de hidrogénio; – razão pela qual esse espetro é descontínuo. 2013 2F. Na figura, está representado, a preto e branco, o espetro de emissão atómico do lítio, na região do visível. Represente, utilizando a mesma escala, o espetro de absorção atómico do lítio, na região do visível. 1.2.2 O modelo atómico de Bohr (secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 1.2.3 Espetro do átomo de hidrogénio 2008 I. As transições eletrónicas que ocorrem entre níveis de energia, n, no átomo de hidrogénio, estão associadas às riscas que se observam nos espetros de emissão e de absorção desse átomo. Relativamente a essas transições classifique como verdadeira (V) ou falsa (F), cada uma das afirmações seguintes. (A) A transição eletrónica de n = 3 para n = 1 ocorre com emissão de radiação ultravioleta. (B) A transição eletrónica de n = 3 para n = 4 está associada a uma risca vermelha no espetro de absorção do átomo. (C) A transição eletrónica de n = 5 para n = 3 ocorre com emissão de radiação infravermelha. (D) A transição eletrónica de n = 4 para n = 2 está associada a uma risca colorida no espetro de emissão do átomo. (E) Qualquer transição eletrónica para n = 2 está associada a uma risca da série de Balmer. (F) Os valores absolutos das energias envolvidas nas transições eletrónicas de n = 4 para n = 1, e de n = 1 para n = 4, são iguais. (G) A série de Lyman corresponde às transições eletrónicas de qualquer nível para n = 1. (H) A uma risca colorida no espetro de absorção do átomo corresponde uma risca negra no respetivo espetro de emissão.
  • 158.
    Editável e fotocopiável© Texto | Novo 10Q 157 2008 I. Relativamente ao átomo de hidrogénio, selecione a alternativa correta. (A) O átomo encontra-se no estado de energia máxima quando o eletrão está no nível de energia n = 1. (B) Quando o átomo passa de um estado excitado para o estado fundamental, emite radiação ultravioleta. (C) O espetro de emissão do átomo é descontínuo, mas o seu espetro de absorção é contínuo. (D) Quando o eletrão transita entre quaisquer dois níveis, o valor da energia emitida pelo átomo é sempre o mesmo. 2009 I. No Sol, o hidrogénio também é o elemento predominante, sendo o combustível que permite a sua (e nossa) existência. Selecione a alternativa correta, relativamente ao átomo de hidrogénio. (A) Nas transições eletrónicas entre estados excitados, não há emissão de radiações na zona do ultravioleta. (B) Nas transições eletrónicas entre estados excitados, ocorre sempre emissão de radiação. (C) O conjunto de todas as radiações emitidas na desexcitação do átomo de hidrogénio constitui um espetro contínuo. (D) O átomo de hidrogénio, no estado de menor energia, pode ser excitado por radiações na zona do visível. 2009 I. Os espetros de emissão e de absorção atómica são espetros de riscas, estando estas riscas relacionadas com as transições eletrónicas que ocorrem nos átomos. Na figura estão esquematizados alguns níveis de energia do átomo de hidrogénio (sendo n o número quântico principal correspondente a cada um desses níveis de energia), bem como algumas transições eletrónicas, T1 a T4. Tendo em consideração o esquema da figura podemos afirmar que: (A) A transição eletrónica T1 pode ocorrer por absorção de energia sob a forma de uma radiação eletromagnética na zona do visível. (B) A transição eletrónica T2 corresponde a uma risca, na zona do infravermelho, do espetro de emissão do átomo de hidrogénio. (C) A transição eletrónica T3 pode ocorrer por emissão de energia sob a forma de uma radiação eletromagnética na zona do infravermelho. (D) A transição eletrónica T4 corresponde a uma risca negra, na zona do ultravioleta, do espetro de absorção do átomo de hidrogénio.
  • 159.
    158 Editável efotocopiável © Texto | Novo 10Q 1.2.4 Transições eletrónicas 2009 E. Indique o valor da energia da radiação emitida na transição eletrónica entre os níveis n = 3 e n = 2 do átomo de hidrogénio, com base nos valores de energia desses níveis, respetivamente –0,24 × 10–18 J e 0,54 × 10–18 J. 2009 1F. As potencialidades da espetroscopia, como método de análise utilizado para detetar e identificar diferentes elementos químicos, foram descobertas no século XIX, e desenvolvidas depois por vários investigadores, nomeadamente por Gustav Kirchoff que, a partir de estudos iniciados em 1859, provou a existência do sódio na atmosfera solar. Nas lâmpadas de vapor de sódio, muito usadas nos candeeiros de iluminação pública, ocorre emissão de luz de cor amarela. A corrente elétrica, que passa através do vapor de sódio, faz deslocar os eletrões dos átomos de sódio para níveis energéticos mais elevados. Quando aqueles eletrões descem pela escada energética, ocorre a emissão de radiação de frequências bem definidas, originando, entre outras riscas em zonas diferenciadas do espetro eletromagnético, duas riscas brilhantes na zona do amarelo, que são características do sódio, permitindo identificá-lo. Cada elemento químico possui, de facto, o seu próprio padrão de riscas espetrais, que funciona como uma impressão digital. Não há dois elementos com o mesmo espetro, tal como não há duas pessoas com as mesmas impressões digitais. Fazendo a análise espectral da luz que nos chega das estrelas, captada pelos telescópios, é possível determinar as suas composições químicas. Descobriu-se, assim, que os elementos constituintes das estrelas são os mesmos que existem na Terra. John Gribbin, Um Guia de Ciência para quase toda a gente, Edições Século XXI, 2002 (adaptado) Máximo Ferreira e Guilherme de Almeida, Introdução à Astronomia e às Observações Astronómicas, Plátano Edições Técnicas, 6. a edição, 2001 (adaptado) a) Selecione a única alternativa que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação equivalente à expressão «(...) aqueles eletrões descem pela escada energética (...)». Aqueles eletrões transitam de níveis energéticos _____ para níveis energéticos _____, assumindo valores _____de energia. (A) inferiores ... superiores ... contínuos (B) superiores ... inferiores ... contínuos (C) inferiores ... superiores ... discretos (D) superiores ... inferiores ... discretos b) Indique, com base no texto, o que se deverá observar no espetro de absorção do sódio, na região do visível. c) Descreva como é possível tirar conclusões sobre a composição química das estrelas, a partir dos seus espetros, tendo em conta a informação dada no texto.
  • 160.
    Editável e fotocopiável© Texto | Novo 10Q 159 2009 2F. Na figura está representado um diagrama de níveis de energia, no qual estão assinaladas algumas transições eletrónicas que podem ocorrer no átomo de hidrogénio. a) Selecione a única alternativa que apresenta o valor da energia de ionização do hidrogénio, expresso em J mol–1 . (A) 2,18 × 105 J mol–1 (B) 7,86 × 106 J mol–1 (C) 1,09 × 105 J mol–1 (D) 1,31 × 106 J mol–1 b) Considere que um átomo de hidrogénio se encontra no primeiro estado excitado (n = 2) e que, sobre esse átomo, incide radiação de energia igual a 3,6 × 10–19 J. Indique, justificando, se ocorrerá a transição do eletrão para o nível energético seguinte. 2010 I Os hidrocarbonetos são compostos químicos constituídos por átomos de carbono (um dos elementos mais abundantes no espaço interestelar) e de hidrogénio (o elemento mais abundante no Universo). A figura representa um diagrama de níveis de energia do átomo de hidrogénio. Selecione a única opção que apresenta o valor da energia da radiação envolvida na transição do eletrão, do nível energético correspondente ao primeiro estado excitado do átomo de hidrogénio, para o nível energético correspondente ao estado fundamental do mesmo átomo. (A) 0,30 × 10–18 J (B) 2,18 × 10–18 J (C) 0,14 × 10–18 J (D) 1,64 × 10–18 J
  • 161.
    160 Editável efotocopiável © Texto | Novo 10Q 2010 I. Apesar das enormes distâncias que nos separam das estrelas, os astrónomos conseguem obter uma grande quantidade de informação a partir da luz que nos chega desses astros. A composição química da atmosfera das estrelas pode ser determinada por comparação dos espetros da radiação por elas emitida com os espetros dos elementos químicos conhecidos. A figura representa, à mesma escala, parte de um espetro atómico de emissão e parte de um espetro atómico de absorção. Por que motivo se pode concluir que os dois espetros apresentados se referem a um mesmo elemento químico? 2011 2F. Na figura está representado o espetro da estrela Rigel na região do visível. a) Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços seguintes. O espetro representado na figura resulta da sobreposição de um espetro de _______ contínuo e de um conjunto de riscas negras resultantes da _______ de radiação pelas espécies presentes na atmosfera da estrela. (A) absorção ... absorção (B) emissão ... emissão (C) absorção ... emissão (D) emissão ... absorção b) O espetro de emissão do hélio atómico na região do visível apresenta, entre outras, uma risca a 587 nm e uma risca a 667 nm. Conclua, justificando a partir da informação fornecida, se é provável que o hélio esteja presente na atmosfera da estrela Rigel. 2011 2F. O espetro de emissão do átomo de hidrogénio apresenta uma risca vermelha originada por uma transição eletrónica que envolve a emissão de radiação de energia igual a 3,03 × 10–19 J. O nível energético, n, para o qual o eletrão transita e a variação de energia, ΔE, associada a essa transição eletrónica são, respetivamente, (A) n = 3 e ΔE = +3,03 × 10–19 J (B) n = 2 e ΔE = +3,03 × 10–19 J (C) n = 2 e ΔE = –3,03 × 10–19 J (D) n = 3 e ΔE = –3,03 × 10–19 J
  • 162.
    Editável e fotocopiável© Texto | Novo 10Q 161 2011 E. O hidrogénio é o elemento mais abundante no Universo. A figura representa o diagrama de níveis de energia do átomo de hidrogénio, no qual está assinalada uma transição eletrónica. a) A variação de energia associada à transição eletrónica assinalada é (A) –2,4 × 10–19 J (B) –1,4 × 10–19 J (C) –1,0 × 10–19 J (D) –3,8 × 10–19 J b) Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços seguintes. A transição eletrónica assinalada no diagrama representado na figura origina uma risca na região do ______ no espetro de ______ do átomo de hidrogénio. (A) infravermelho ... absorção (B) ultravioleta ... emissão (C) infravermelho ... emissão (D) ultravioleta ... absorção 2012 I. Na figura está representado um diagrama de níveis de energia do átomo de hidrogénio. A figura seguinte representa parte do espetro de emissão do átomo de hidrogénio, na região do visível.
  • 163.
    162 Editável efotocopiável © Texto | Novo 10Q Calcule, para a transição eletrónica que origina a risca assinalada pela letra R na última figura, a energia do nível em que o eletrão se encontrava inicialmente. Apresente todas as etapas de resolução. 2014 1F. A tabela seguinte apresenta os valores de energia dos níveis n = 1, n = 2, n = 3 e n = 4 do átomo de hidrogénio. n En / J 1 –2,18 × 10 –18 2 –5,45 × 10 –19 3 –2,42 × 10 –19 4 –1,40 × 10 –19 a) Qual é a energia mínima necessária para remover o eletrão de um átomo de hidrogénio no estado fundamental? b) Considere um átomo de hidrogénio no estado fundamental, no qual incide radiação de energia 1,80 × 10–18 J. Conclua, justificando, se ocorre ou não, transição do eletrão. c) As transições eletrónicas no átomo de hidrogénio originam riscas diferenciadas nos espetros atómicos deste elemento. O espetro de emissão do átomo de hidrogénio na região do visível apresenta, entre outras riscas, uma risca a uma energia de 4,84 × 10–19 J. Considerando a transição que origina essa risca, a energia do nível em que o eletrão se encontrava inicialmente pode ser calculada pela expressão (A) (–5,45 × 10-19 + 4,84 ×10–19 ) J (B) (–5,45 × 10-19 – 4,84 × 10–19 ) J (C) (–2,18 × 10-19 + 4,84 × 10–19 ) J (D) (–2,18 × 10-19 – 4,84 × 10–19 ) J 1.2.5 Quantização da energia (secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 1.2.6 Energia de remoção eletrónica 2009 I. A espetroscopia fotoeletrónica é um processo que pode ser usado para determinar a energia de cada eletrão de um átomo. A energia mínima para remover um eletrão do átomo de sódio, Na, é 8,24 × 10–19 J. Determine o módulo da velocidade do eletrão ejetado de um átomo de sódio, quando nele incide uma radiação de energia 2,00 × 10–18 J / fotão. Apresente todas as etapas de resolução. m(eletrão) = 9,11 × 10–31 kg
  • 164.
    Editável e fotocopiável© Texto | Novo 10Q 163 2010 I. O césio é um metal alcalino bastante utilizado em células fotoelétricas. Fazendo incidir, sobre uma placa de césio, quer radiação verde, quer radiação violeta, ocorre remoção de eletrões. Justifique a afirmação seguinte: «Considerando eletrões com a mesma energia de remoção, a radiação violeta provoca ejeção de eletrões com maior energia cinética do que a radiação verde.» 2013 1F O carbono é um elemento químico que entra na constituição de um grande número de compostos. Quantos valores diferenciados de energia apresentam os eletrões de um átomo de carbono no estado fundamental? (A) Seis. (B) Quatro. (C) Três. (D) Dois. 1.2.7 Modelo quântico do átomo 2011 1F. O átomo de hidrogénio no estado fundamental apresenta um eletrão na orbital 1s . Nesta notação o número 1 indica: (A) a energia da orbital. (B) a orientação espacial da orbital. (C) a simetria da orbital. (D) o número de eletrões na orbital. 2012 1F. Como se designa uma região do espaço onde, em torno do núcleo de um átomo, existe uma elevada probabilidade de encontrar um eletrão desse átomo? 1.2.8 Configuração eletrónica de átomos 2008 2F. Um composto derivado do metano, mas com características bem diferentes, é o diclorometano, CH2Cℓ2, que é um solvente orgânico volátil, não inflamável e de cheiro agradável. O diclorometano é um composto cuja unidade estrutural é constituída por átomos de carbono, de cloro e de hidrogénio. Selecione a afirmação CORRETA. (A) A configuração eletrónica do átomo de carbono, no estado de energia mínima, é 1s2 2s2 3s2 . (B) Os eletrões do átomo de cloro, no estado de energia mínima, estão distribuídos por três orbitais. (C) A configuração eletrónica 1s2 2s2 2p1 3s1 pode corresponder ao átomo de carbono. (D) A notação 3s1 pode corresponder a um dos eletrões mais energéticos do átomo de cloro, no estado de energia mínima. 2008 I. A configuração eletrónica de um átomo de nitrogénio no estado fundamental é 1s2 2s2 2px 1 2py 1 2pz 1 . Embora em qualquer orbital possam existir dois eletrões, cada orbital p encontra-se semipreenchida. Indique o nome da regra aplicada no preenchimento das orbitais 2p.
  • 165.
    164 Editável efotocopiável © Texto | Novo 10Q 2008 1F. O dióxido de enxofre é um composto cujas unidades estruturais são constituídas por átomos de enxofre, S, e de oxigénio, O. Relativamente a estes átomos e tendo em conta a posição relativa dos respetivos elementos na Tabela Periódica, selecione a afirmação correta. (A) A notação 2px 1 pode corresponder a um dos eletrões de valência de qualquer dos átomos, no estado de energia mínima. (B) Os eletrões de valência de ambos os átomos, no estado de energia mínima, distribuem-se pelo mesmo número de orbitais. (C) Os eletrões de valência de qualquer dos átomos, no estado de energia mínima, distribuem-se por orbitais p e d. (D) As configurações eletrónicas de ambos os átomos, no estado de energia mínima, diferem no número de eletrões de valência. 2009 I. Selecione a única alternativa que corresponde a uma afirmação correta, relativamente ao átomo de hélio, He. (A) No estado de menor energia, a configuração eletrónica do átomo de hélio é 1s1 2s1 . (B) No estado de menor energia, os eletrões do átomo de hélio têm spins diferentes. (C) Num estado excitado, um dos eletrões do átomo de hélio pode estar numa orbital 3py. (D) No átomo de hélio, um eletrão na orbital 2s tem a mesma energia que um eletrão numa das orbitais 2p. 2009 I. O oxigénio é o terceiro elemento mais abundante no Universo. Selecione a única alternativa que apresenta a configuração eletrónica correta de um possível estado excitado do átomo de oxigénio. (A) 1s2 2s2 2px 2 2py 1 2pz 1 (B) 1s2 2s3 2px 1 2py 1 2pz 1 (C) 1s2 2s1 2px 2 2py 2 2pz 1 (D) 1s2 2s2 2px 1 2py 1 2pz 2 2009 E. No estado de energia mínima, os átomos dos elementos carbono, nitrogénio e oxigénio apresentam o mesmo número de... (A) orbitais s e p totalmente preenchidas. (B) orbitais p semipreenchidas. (C) orbitais s totalmente preenchidas. (D) orbitais p totalmente preenchidas. 2010 I Os hidrocarbonetos são compostos químicos constituídos por átomos de carbono (um dos elementos mais abundantes no espaço interestelar) e de hidrogénio (o elemento mais abundante no Universo). Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta.
  • 166.
    Editável e fotocopiável© Texto | Novo 10Q 165 Os átomos de carbono (C), no estado fundamental, apresentam eletrões de ______ valência, distribuídos por______. (A) dois ... uma orbital (B) dois ... duas orbitais (C) quatro ... duas orbitais (D) quatro ... três orbitais 2010 I. Selecione a única opção que corresponde a uma configuração eletrónica possível de um átomo de enxofre num estado excitado. (A) 1s2 2s2 2p7 3s2 3p3 (B) 1s2 2s2 2p5 3s2 3p5 (C) 1s2 2s1 2p6 3s3 3p4 (D) 1s2 2s2 2p6 3s2 3p4 2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra na constituição de muitas moléculas biologicamente importantes. O nitrogénio molecular (N2) é um gás à temperatura e pressão ambientes, sendo o componente largamente maioritário da atmosfera terrestre. Selecione a única opção que permite obter uma afirmação correta. No átomo de nitrogénio no estado fundamental, existem... (A) cinco eletrões de valência, distribuídos por duas orbitais. (B) três eletrões de valência, distribuídos por quatro orbitais. (C) cinco eletrões de valência, distribuídos por quatro orbitais. (D) três eletrões de valência, distribuídos por uma orbital. 2010 2F. Escreva a configuração eletrónica do átomo de cálcio no estado fundamental. 2011 I. Considere a configuração eletrónica do átomo de nitrogénio, no estado fundamental. Quantos eletrões se encontram em orbitais p? (A) 2 (B) 3 (C) 4 (D) 5 2011 E. Num átomo de oxigénio, no estado fundamental, existem diversas orbitais preenchidas. Dessas orbitais, apenas (A) duas se encontram completamente preenchidas. (B) duas de valência se encontram semipreenchidas. (C) uma de valência se encontra completamente preenchida. (D) uma se encontra semipreenchida. 2012 I. No átomo de carbono no estado fundamental, os eletrões de valência encontram- -se distribuídos por (A) uma orbital. (B) duas orbitais. (C) três orbitais. (D) quatro orbitais.
  • 167.
    166 Editável efotocopiável © Texto | Novo 10Q 2012 1F. Qual das configurações eletrónicas seguintes pode corresponder a um átomo de carbono no estado fundamental? (A) 1s2 2s1 2px 1 2py 1 2pz 1 (B) 1s2 2s2 2px 1 2py 0 2pz 1 (C) 1s2 2s2 2px 2 (D) 1s2 2s1 2px 2 2py 1 2012 2F. Considere átomos de cloro no estado fundamental. Num átomo de cloro, no estado fundamental, existem, no total, (A) cinco eletrões de valência distribuídos por três orbitais. (B) cinco eletrões de valência distribuídos por duas orbitais. (C) sete eletrões de valência distribuídos por duas orbitais. (D) sete eletrões de valência distribuídos por quatro orbitais. 2013 1F O carbono é um elemento químico que entra na constituição de um grande número de compostos. Qual das configurações eletrónicas seguintes pode corresponder a um átomo de carbono num estado excitado? (A) 1s2 2s2 2px 1 2py 1 2pz 𝑜 (B) 1s2 2s1 2px 1 2py 1 2pz 1 (C) 1s2 2s2 2px 1 2py 0 2pz 1 (D) 1s2 2s1 2px 0 2py 0 2pz 3 2013 E. A molécula de Cℓ2 é constituída por átomos de cloro. Num átomo de cloro, no estado fundamental, o número de orbitais ocupadas é (A) 3 (B) 5 (C) 8 (D) 9 2014 1F. Considere a configuração eletrónica do átomo de nitrogénio no estado fundamental. a) Quantos valores diferenciados de energia apresentam os eletrões desse átomo? (A) Sete. (B) Cinco. (C) Três. (D) Dois. b) Quantos eletrões se encontram em orbitais s, nesse átomo? (A) Dois. (B) Três. (C) Quatro. (D) Cinco.
  • 168.
    Editável e fotocopiável© Texto | Novo 10Q 167 Atividade laboratorial 2011 I. Verifica-se que os sais de potássio conferem uma cor violeta à chama de um bico de Bunsen, pelo que o teste de chama pode ser utilizado para averiguar a presença desse elemento, em amostras sólidas. Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta. A cor observada deve-se à _____ de radiação, quando eletrões do ião potássio transitam de níveis energéticos _____para níveis energéticos _____ (A) emissão ... inferiores ... superiores (B) emissão ... superiores ... inferiores (C) absorção ... inferiores ... superiores (D) absorção ... superiores ... inferiores 2011 1F. O ião Cu2+ confere à chama uma cor verde azulada, que resulta da sobreposição das radiações (A) emitidas pelos iões Cu2+ em processos de excitação. (B) emitidas pelos iões Cu2+ em processos de desexcitação. (C) absorvidas pelos iões Cu2+ em processos de excitação. (D) absorvidas pelos iões Cu2+ em processos de desexcitação. 1.3 Tabela Periódica 1.3.1 Evolução histórica da Tabela Periódica (secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos 2009 1F. O sódio (Na) e o magnésio (Mg) são elementos consecutivos do 3.o período da Tabela Periódica. Átomos representados por Na 11 23 e Mg 12 24 , no estado de energia mínima, têm o mesmo número de: (A) orbitais completamente preenchidas. (B) protões nos respetivos núcleos. (C) neutrões nos respetivos núcleos. (D) eletrões em orbitais s. 1.3.3 Propriedades periódicas dos elementos representativos 2008 1F. As moléculas de água e de dióxido de carbono são constituídas, no seu conjunto, por átomos de hidrogénio, carbono e oxigénio. Selecione a afirmação correta. (A) A configuração eletrónica do átomo de oxigénio no estado de energia mínima é 1s2 2s2 2p6 . (B) O raio do átomo de oxigénio é superior ao raio do átomo de carbono. (C) A primeira energia de ionização do oxigénio é superior à do carbono. (D) O raio do átomo de oxigénio é superior ao raio do anião O2– .
  • 169.
    16   68  2008  2 2009 1F 2012  2 2008 E. 2012 1F 2009  F. A  tabela  elementos Interprete diferentes  F. O sódio (Na Periódica.  i) Selecione os espaço A energia vez que,  tendênci (A) super (C) super F.  Como  se  átomo  de no estado . O gráfico da a  energia  d dos  elemen Tabela Perió Justifique  o  apresentar  aumentar  ao Periódica.  F. Como se de E.  Selecione sequenc O  carbo mesmo_ carbono (A) perío (C) grupo seguinte  ap s flúor, cloro,  Eleme Flúor  Cloro ( Bromo Iodo   a variação e halogéneos c a) e o magnés e a única altern os seguintes, d a de ionizaçã dado o _____ a a _____ .  rior … aumen rior … decrésc designa  a  en e  cloro,  isolad  fundamenta a figura repre e  ionização  tos,  ao  long ódica.    facto  de  a  uma  tend o  longo  do  2 esignam os el e  a  única  cialmente, os  no  e  o  nitrog _____ da Tabe  seja_____ à e odo ... superio o ... inferior      Editável e fotoco presenta  os  v bromo e iodo ento  (F)  (Cℓ)  o (Br)  (I)  encontrada n considerados sio (Mg) são e nativa que con de modo a obt o do magnés _ da carga nu nto … diminui cimo   aume nergia  mínim do  e  em  fase l?  esenta a relaç e  o  número  go  do  2.o   pe energia  de  i dência  ger 2.o   período  d letrões que p alternativa  espaços segu génio  são  ele ela Periódica,  nergia de ion or  opiável © Texto |  valores  da  p o.  Energia de os valores da s, atendendo  elementos co ntém os term ter uma afirm sio é _____ à e uclear ao lon r    (B entar  (D ma  necessária e  gasosa,  ção entre  atómico  eríodo  da  ionização  al  para  da  Tabela  articipam nas que  conté uintes, de mo ementos  que sendo de pr nização do nit (B) grupo  (D) períod  Novo 10Q primeira  ene e ionização / k 1680  1260  1140  1010  a primeira en aos valores d onsecutivos d os que preen mação correta. energia de io ngo do períod B) inferior … d D) inferior … a a  para  remov s reações quí ém  os  term odo a obter um e  ocupam  po rever que a e trogénio.  ... superior  do ... inferior ergia  de  ioni kJ mol–1   nergia de ion da tabela.  o 3.o  período chem, sequen .  onização do s do, o raio ató decréscimo … aumento … di ver  um  eletr ímicas?  mos  que  p ma afirmação osições conse energia de ion zação  dos  ização dos  o da Tabela  ncialmente,  sódio, uma  ómico tem   aumentar  iminuir  rão  de  um  reenchem,  o correta.  ecutivas  no  nização do   
  • 170.
    Editável e fotocopiável© Texto | Novo 10Q 169 2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra na constituição de muitas moléculas biologicamente importantes. O nitrogénio molecular (N2) é um gás à temperatura e pressão ambientes, sendo o componente largamente maioritário da atmosfera terrestre. Justifique a afirmação seguinte, com base nas posições relativas dos elementos nitrogénio (N) e fósforo (P), na Tabela Periódica. «A energia de ionização do nitrogénio é superior à energia de ionização do fósforo.» 2010 2F. Justifique a afirmação seguinte, com base nas posições relativas dos elementos cálcio (Ca) e manganês (Mn), na Tabela Periódica. «O raio atómico do cálcio é superior ao raio atómico do manganês.» 2010 E. O nitrogénio (N) é um dos elementos químicos presentes na molécula de ácido nítrico. Relacione a posição do elemento representativo nitrogénio na Tabela Periódica com a configuração eletrónica de valência dos seus átomos no estado fundamental. 2010 I. Justifique a afirmação seguinte, com base na configuração eletrónica de valência dos átomos dos elementos considerados, no estado fundamental. «A energia de ionização do césio (Cs) é inferior à energia de ionização do potássio (K).» 2011 1F. Preveja, justificando com base nas configurações eletrónicas de valência dos átomos de flúor (F) e de cloro (Cℓ) no estado fundamental, em qual desses átomos a remoção de um dos eletrões de valência mais energéticos deverá requerer menor energia. 2011 2F. Considere o período da Tabela Periódica onde se encontra o elemento oxigénio. Qual é o elemento desse período cujos átomos, no estado fundamental, apresentam menor raio atómico? 2013 2F. A energia de ionização do átomo de oxigénio, isolado e em fase gasosa, é a energia mínima necessária para que, a partir do átomo no estado fundamental, se forme o ião. (A) O– (g) (B) O2– (g) (C) O+ (g) (D) O2+ (g) 2008 I. No estado fundamental, a configuração eletrónica do átomo de carbono, C, é 1s2 2s2 2p2 , enquanto a do átomo de silício, Si, é [Ne] 3s2 3p2 . Relativamente a estes dois elementos, selecione a alternativa que contém os termos que devem substituir as letras (a) e (b), respetivamente, de modo a tornar verdadeira a afirmação seguinte. O átomo de carbono tem __(a)__ energia de ionização e __(b)__raio atómico do que o átomo de silício. (A) ... maior ... menor ... (B) ... maior ... maior ... (C) ... menor ... menor ... (D) ... menor ... maior ...
  • 171.
    170 Editável efotocopiável © Texto | Novo 10Q 2008 I. Relativamente aos elementos dos grupos 1 e 17 da Tabela Periódica, nos quais se incluem, respetivamente, o lítio e o flúor, selecione a afirmação correta. (A) O raio atómico do lítio é superior ao raio atómico do flúor. (B) A energia de ionização do flúor é inferior à energia de ionização do lítio. (C) O elemento metálico do grupo 1 que tem maior raio atómico é o lítio. (D) O elemento do grupo 17 que tem menor energia de ionização é o flúor. 2009 I. As configurações eletrónicas dos átomos dos metais alcalinos, no estado de menor energia, apresentam uma característica comum. a) Indique essa característica. b) Selecione a única alternativa que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta. A energia de ionização do átomo de sódio, Na, é ______ do que a do átomo de magnésio, Mg, enquanto o raio do átomo de sódio é ______ do que o do átomo de magnésio. (A) maior ... maior (B) maior ... menor (C) menor ... menor (D) menor ... maior 2009 I. A Tabela Periódica dos Elementos é um instrumento organizador de conhecimentos sobre os elementos químicos. Após várias tentativas de organização desses conhecimentos, é com Dmitri Mendeleev (1834-1898) que surge, embora com imprecisões, uma tabela muito semelhante à atual. Escreva um texto sobre a localização dos elementos representativos na Tabela Periódica e o modo como variam algumas das suas propriedades, abordando os seguintes tópicos: • Relação entre a configuração eletrónica dos átomos dos elementos e o período e o grupo aos quais esses elementos pertencem; • O raio atómico, em função do aumento do número atómico, para elementos de um mesmo período, assim como para elementos de um mesmo grupo; • A energia de ionização, em função do aumento do número atómico, para elementos de um mesmo período, assim como para elementos de um mesmo grupo. 2009 I. O enxofre e o oxigénio situam-se no mesmo grupo da Tabela Periódica. Selecione a única alternativa que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta. O átomo de enxofre tem ____ raio atómico e ____ energia de ionização do que o átomo de oxigénio. (A) maior ... maior (B) menor ... maior (C) menor ... menor (D) maior ... menor 2010 I. Justifique a afirmação seguinte, com base nas posições relativas dos elementos sódio e enxofre na Tabela Periódica. «O raio atómico do sódio é superior ao raio atómico do enxofre.»
  • 172.
    Editável e fotocopiável© Texto | Novo 10Q 171 2011 I. O ião fluoreto, F– , e o ião sódio, Na+ , são partículas que, no estado fundamental, apresentam a mesma configuração eletrónica. Preveja, justificando, qual dessas partículas deverá apresentar maior raio. 2012 I. Considere o período da Tabela Periódica onde se encontra o elemento enxofre. Qual é o elemento desse período cujos átomos, no estado fundamental, apresentam maior energia de ionização? 1.3.4 Propriedades dos elementos e das substâncias elementares 2012 E. Os átomos de enxofre formam facilmente iões sulfureto. Conclua, justificando com base na posição do elemento enxofre (S) na Tabela Periódica, qual será a carga desses iões. 2008 I. Considere as configurações eletrónicas dos átomos dos elementos P, Q, R, e S (as letras não correspondem aos símbolos químicos reais desses elementos), no estado fundamental. P – [Ne] 3s1 Q – 1s2 2s2 2p5 R – 1s2 2s2 2p6 3s2 S – [Ar] 4s1 a) Tendo em conta as configurações eletrónicas dos átomos dos elementos P, R e S, selecione a alternativa que corresponde à ordenação correta dos valores das respetivas energias de ionização, Ei. (A) Ei (P) < Ei (R) < Ei (S) (B) Ei (S) < Ei (P) < Ei (R) (C) Ei (S) < Ei (R) < Ei (P) (D) Ei (P) < Ei (S) < Ei (R) b) Selecione a alternativa que contém, respetivamente, as configurações eletrónicas dos iões Q– e R2+ , no estado fundamental. (A) 1s2 2s2 2p6 e 1s2 2s2 2p6 (B) 1s2 2s2 2p4 e 1s2 2s2 2p6 3s2 3p2 (C) 1s2 2s2 2p4 e 1s2 2s2 2p6 (D) 1s2 2s2 2p6 e 1s2 2s2 2p6 3s2 3p2 c) Selecione a alternativa que corresponde à fórmula química do composto constituído pelos iões Q– e R2+ . (A) R2Q (B) RQ2 (C) R2Q3 (D) R3Q2 2008 2F. Tendo em conta a posição dos elementos iodo e flúor na Tabela Periódica, selecione a alternativa que completa corretamente a frase seguinte. O iodo e o flúor apresentam comportamento químico semelhante, porque... (A) ... pertencem ao mesmo período da Tabela Periódica. (B) ... apresentam valores muito baixos de energia de ionização. (C) ... apresentam o mesmo número de eletrões de valência. (D) ... apresentam valores muito semelhantes de raio atómico.
  • 173.
    172 Editável efotocopiável © Texto | Novo 10Q 2008 E. A Tabela Periódica corresponde a uma forma de organização dos elementos químicos de acordo com a periodicidade das suas propriedades físico-químicas, que reflete a periodicidade das suas configurações eletrónicas. Considerando os elementos que constituem os três primeiros períodos da Tabela Periódica e tendo em conta as suas posições relativas nessa Tabela, classifique como verdadeira (V) ou falsa (F) cada uma das afirmações seguintes. (A) O átomo de alumínio origina um ião tripositivo, Aℓ3+ , cuja configuração eletrónica é idêntica à do átomo de néon. (B) O sódio é o elemento que apresenta o valor mais baixo de raio atómico. (C) O sódio forma com o cloro um composto cujas ligações são covalentes. (D) O flúor é, dos elementos do seu grupo, aquele que apresenta maior energia de ionização. (E) O átomo de oxigénio origina um ião dinegativo, O2– , cuja configuração eletrónica é idêntica à do átomo de néon. (F) O átomo de alumínio tem, no estado fundamental, a configuração eletrónica 1s2 2s2 2p6 3s2 3p3 . Domínio 2 - Propriedades e transformações da matéria 2.1 Ligação química 2.1.1 Tipos de ligações químicas (secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 2.1.2 Ligação covalente 2008 I. Atualmente, a troposfera é constituída por espécies maioritárias, como o nitrogénio, N2, o oxigénio, O2, a água, H2O, e o dióxido de carbono, CO2, além de diversas espécies vestigiais, como o hidrogénio, H2, o metano, CH4, e o amoníaco, NH3. Considerando as moléculas de N2 e de O2, selecione a alternativa que corresponde à representação correta de uma dessas moléculas. 2009 E. Muitos dos refrigerantes que contêm cafeína são gaseificados por adição de CO2 (g), sob pressão. Selecione a única alternativa que permite obter uma afirmação correta. Na molécula de CO2, existem... (A) duas ligações covalentes duplas. (B) apenas dois pares de eletrões não ligantes. (C) apenas dois pares de eletrões ligantes. (D) duas ligações covalentes simples.
  • 174.
    Editável e fotocopiável© Texto | Novo 10Q 173 2010 I. O etino, C2H2, é um hidrocarboneto, de fórmula de estrutura H–C≡C–H. Classifique, justificando, a ligação que se estabelece entre os átomos de carbono, na molécula considerada. 2010 2F. Selecione a única opção que contém os termos que preenchem, sequencialmente, os espaços seguintes, de modo a obter uma afirmação correta. Na molécula de NH3, existem, no total, ___ eletrões de valência não ligantes e ___ eletrões de valência ligantes. (A) três ... dois (B) dois ... seis (C) dois ... três (D) três ... seis 2011 I. Na molécula N2, os átomos de nitrogénio partilham entre si (A) dois eletrões. (B) três eletrões. (C) quatro eletrões. (D) seis eletrões. 2011 2F. Represente a molécula O2, utilizando a notação de Lewis. 2011 E. Identifique o tipo de ligação que se estabelece entre os átomos de cloro na molécula Cℓ2 e refira o número de pares de eletrões de valência não ligantes que existem nesta molécula. 2012 1F. As moléculas de H2S e de H2O têm ambas geometria angular, apresentando o mesmo número de eletrões de valência. Na molécula de H2S existem, no total, ___ eletrões de valência, sendo ____ deles não ligantes. (A) oito ... dois (B) seis ... quatro (C) seis ... dois (D) oito ... quatro 2012 1F. Como se designam os eletrões que participam nas reações químicas? 2012 E. Qual é a representação da molécula de oxigénio utilizando a notação de Lewis? 2013 1F. O ião cianeto, CN– , constituído pelos elementos químicos carbono e nitrogénio, é muito tóxico. O ião cianeto apresenta, no total, o mesmo número de eletrões que a molécula N2. O ião CN– apresenta, assim, no total, (A) catorze eletrões, seis dos quais são de valência. (B) dez eletrões, sete dos quais são de valência. (C) dez eletrões, seis dos quais são de valência. (D) catorze eletrões, dez dos quais são de valência.
  • 175.
    174 Editável efotocopiável © Texto | Novo 10Q 2013 2F. Considere que se representa a molécula de O2 utilizando a notação de Lewis. Quantos pares de eletrões de valência não ligantes devem ser representados em cada um dos átomos de oxigénio? (A) Um par. (B) Dois pares. (C) Três pares. (D) Quatro pares. 2013 E. Represente a molécula de metano, utilizando a notação de Lewis. Refira o número total de eletrões de valência ligantes dessa molécula. 2014 I. Numa molécula de água, (A) não existem eletrões de valência não ligantes, e existem, no total, quatro eletrões ligantes. (B) existem eletrões de valência não ligantes, e existem, no total, quatro eletrões ligantes. (C) não existem eletrões de valência não ligantes, e existem, no total, dois eletrões ligantes. (D) existem eletrões de valência não ligantes, e existem, no total, dois eletrões ligantes. 2014 2F. A molécula de CH3COOH pode ser representada através da notação de Lewis por A molécula de CH3COOH apresenta, no total, (A) 24 eletrões de valência. (B) 16 eletrões de valência. (C) 12 eletrões de valência. (D) 8 eletrões de valência. Energia de ligação e comprimento de ligação 2008 I.O monóxido de carbono, CO, e o dióxido de carbono, CO2, são gases que existem na atmosfera, provenientes de fontes naturais (fogos florestais, emissões vulcânicas) e de fontes antropogénicas (combustões domésticas e industriais, escapes de veículos motorizados). As moléculas CO e CO2 podem ser representadas, respetivamente, por: Selecione a alternativa que contém os termos que devem substituir as letras (a) e (b), respetivamente, de modo a tornar verdadeira a afirmação seguinte. A ligação carbono-oxigénio na molécula CO2 tem __(a)__ energia e __(b)__ comprimento do que a ligação carbono-oxigénio na molécula CO. (A)... maior ... maior ... (B)... menor ... maior ... (C)... menor ... menor ... (D)... maior ... menor ...
  • 176.
    Editável e fotocopiável© Texto | Novo 10Q 175 2008 I. Os átomos de carbono e de nitrogénio podem ligar-se entre si de modos diferentes. Em alguns compostos a ligação carbono-nitrogénio é tripla (C≡N), enquanto noutros compostos a ligação carbono-nitrogénio é simples (C–N). O valor da energia média de uma dessas ligações é 276 kJ mol–1 , enquanto o valor relativo à outra ligação é 891 kJ mol–1 . Em relação ao comprimento médio dessas ligações, para uma o valor é 116 pm, enquanto para a outra é 143 pm. Selecione a alternativa que contém os termos que devem substituir as letras (a) e (b), respetivamente, de modo a tornar verdadeira a afirmação seguinte. O valor da energia média da ligação tripla carbono-nitrogénio (C≡N) é __(a)__, e o valor do comprimento médio dessa ligação é __(b)__. (A)... 276 kJ mol–1 ... 116 pm. (B)... 276 kJ mol–1 ... 143 pm. (C)... 891 kJ mol–1 ... 116 pm. (D)... 891 kJ mol–1 ... 143 pm. 2011 1F. O triclorofluorometano, CFCℓ3, é um derivado halogenado do metano. Na molécula CFCℓ3 ___ pares de eletrões de valência não ligantes, apresentando a molécula um total de ____pares de eletrões de valência ligantes. (A) existem ... oito (B) existem ... quatro (C) não existem ... oito (D) não existem ... quatro 2. A energia média da ligação C—F é 467 kJ mol—1 . O valor médio da energia, em joule (J), que é libertada quando se estabelece uma ligação C—F é (A) 6,02 × 1023 467 × 103 J (B) 103 467 × 6,02 × 1023 J (C) 467 × 6,02 × 1023 103 J (D) 467 × 103 6,02 × 1023 J 2013 1F. O ião cianeto, CN– , constituído pelos elementos químicos carbono e nitrogénio, é muito tóxico. No ião cianeto, a ligação entre o átomo de carbono e o átomo de nitrogénio é uma ligação covalente tripla, tal como a ligação entre os átomos de nitrogénio na molécula N2. Preveja, justificando com base nas posições relativas dos elementos carbono e nitrogénio na Tabela Periódica, qual das ligações, C≡N ou N≡N, apresentará maior energia de ligação. Geometria molecular 2008 I. Atualmente, a troposfera é constituída por espécies maioritárias, como o nitrogénio, N2, o oxigénio, O2, a água, H2O, e o dióxido de carbono, CO2, além de diversas espécies vestigiais, como o hidrogénio, H2, o metano, CH4, e o amoníaco, NH3. Relativamente à geometria molecular, selecione a alternativa correta. (A) A molécula H2O tem geometria linear. (B) A molécula NH3 tem geometria piramidal trigonal. (C) A molécula CH4 tem geometria quadrangular plana. (D) A molécula CO2 tem geometria angular.
  • 177.
    176 Editável efotocopiável © Texto | Novo 10Q 2008 I. Considerando que a molécula de amoníaco, NH3, possui três pares de eletrões de valência ligantes e um par de eletrões de valência não ligante, selecione a alternativa que completa corretamente a frase seguinte. A geometria da molécula de amoníaco é piramidal trigonal, sendo os ângulos de ligação menores do que os ângulos de um tetraedro regular, porque... (A) apenas o par de eletrões não ligante exerce repulsão sobre os pares de eletrões ligantes. (B) as repulsões entre o par de eletrões não ligante e os pares de eletrões ligantes têm a mesma intensidade que as repulsões entre os pares ligantes. (C) as repulsões entre o par de eletrões não ligante e os pares de eletrões ligantes são mais fortes do que as repulsões entre os pares ligantes. (D) apenas os pares de eletrões ligantes exercem repulsão sobre o par de eletrões não ligante. 2008 E. Justifique o facto de a molécula de água apresentar uma geometria angular, e também o facto de o ângulo de ligação nesta molécula (104,5°) ser inferior ao ângulo correspondente a uma geometria tetraédrica regular (109,5°). 2009 I. Um átomo de oxigénio ligado a dois átomos de hidrogénio forma uma molécula de água. Justifique a seguinte afirmação: «a molécula de água tem geometria angular». 2009 I.O dióxido de carbono, CO2 (g), é um dos principais gases que contribuem para o efeito de estufa, sendo conhecidas diversas ações conducentes à redução das suas emissões para a atmosfera. No entanto, além do dióxido de carbono, o vapor de água, H2O (g), e o metano, CH4 (g), também contribuem para esse efeito. Tanto a molécula H2O como a molécula CO2 têm um átomo central, respetivamente de oxigénio e de carbono. Selecione a alternativa que corresponde à geometria correta dessas moléculas. (A) A molécula H2O é linear, assim como a molécula CO2. (B) A molécula H2O é linear, enquanto a molécula CO2 é angular. (C) A molécula H2O é angular, assim como a molécula CO2. (D) A molécula H2O é angular, enquanto a molécula CO2 é linear. 2009 E. Qual é a geometria da molécula de CO2? 2010 I. O amoníaco é um composto molecular que se encontra em fase gasosa à temperatura e pressão ambientes. Qual é a geometria da molécula de amoníaco? 2010 E. Atendendo apenas à estequiometria do composto, a molécula de água, H2O, poderia assumir uma geometria linear. No entanto, aquela molécula apresenta uma geometria angular. Apresente uma explicação para o facto de a molécula de água adotar uma geometria angular.
  • 178.
    Editável e fotocopiável© Texto | Novo 10Q 177 2011 2F. Atendendo apenas à estequiometria do composto, a molécula H2O poderia assumir uma geometria linear. No entanto, aquela molécula apresenta uma geometria angular. Explique por que é que a geometria da molécula de água é angular. 2011 I. Atendendo apenas à estequiometria do composto, a molécula NH3 poderia assumir uma geometria triangular plana. No entanto, aquela molécula apresenta uma geometria piramidal trigonal. Apresente uma explicação para o facto de a molécula de amoníaco adotar uma geometria piramidal trigonal. 2011 1F. A molécula CH4 apresenta uma geometria tetraédrica. Indique as posições relativas dos átomos constituintes da molécula CH4 no tetraedro e refira o tipo de ligações que se estabelecem entre o átomo de carbono e os átomos de hidrogénio. 2012 I. As moléculas de metano apresentam geometria tetraédrica. Nestas moléculas, (A) não existem eletrões de valência não ligantes, e existem, no total, oito eletrões ligantes. (B) existem eletrões de valência não ligantes, e existem, no total, quatro eletrões ligantes. (C) não existem eletrões de valência não ligantes, e existem, no total, quatro eletrões ligantes. (D) existem eletrões de valência não ligantes, e existem, no total, oito eletrões ligantes. 2012 2F. A composição do gás natural depende, entre outros fatores, da localização do reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás natural é sempre maioritariamente constituído por metano, CH4 (g), embora possa conter outros gases, como, por exemplo, metilbutano, dióxido de carbono, vapor de água e sulfureto de hidrogénio. a) Explique porque é que a geometria da molécula de dióxido de carbono, CO2, é linear. b) As moléculas de água, H2O, e de sulfureto de hidrogénio, H2S, apresentam geometria semelhante. Preveja, justificando com base nas posições relativas dos elementos oxigénio e enxofre na Tabela Periódica, qual das ligações, H–O ou H–S, terá maior comprimento, na respetiva molécula. 2014 I. Qual é a geometria da molécula de água? 2014 1F A representação da molécula de NH3 através da notação de Lewis evidencia (A) a geometria da molécula. (B) apenas os eletrões de valência partilhados da molécula. (C) a orientação espacial da molécula. (D) todos os eletrões de valência da molécula.
  • 179.
    178 Editável efotocopiável © Texto | Novo 10Q 2014 1F Qual das opções seguintes pode representar um modelo tridimensional da molécula de NH3 que evidencie as ligações que se estabelecem entre os átomos? Estrutura de moléculas orgânicas e biológicas 2008 I. Os principais constituintes do petróleo bruto e do gás natural são compostos orgânicos pertencentes à família dos alcanos, também designados por hidrocarbonetos saturados. Relativamente aos alcanos, classifique cada uma das seguintes afirmações como verdadeira (V) ou falsa (F). (A) Os alcanos têm fórmula geral CnH2n + 2 (com n = 1,2 3, ..., sendo n o número de átomos de carbono). (B) O alcano designado por heptano tem apenas seis átomos de carbono. (C) Os alcanos podem ter ligações carbono-carbono simples e duplas. (D) Um dos átomos de carbono do 2,2-dimetilpropano está ligado a quatro átomos de carbono. (E) Os alcanos são hidrocarbonetos por só conterem átomos de carbono e de hidrogénio. (F) Um alcano com apenas três átomos de carbono pode ser ramificado. (G) O hexano tem mais átomos de carbono do que o 2,3-dimetilbutano. (H) Os CFC podem ser considerados derivados halogenados dos alcanos. 2009 I.O dióxido de carbono, CO2 (g), é um dos principais gases que contribuem para o efeito de estufa, sendo conhecidas diversas ações conducentes à redução das suas emissões para a atmosfera. No entanto, além do dióxido de carbono, o vapor de água, H2O (g), e o metano, CH4 (g), também contribuem para esse efeito. O metano, CH4, é o alcano mais simples, com apenas um átomo de carbono por molécula. A cadeia carbonada dos alcanos pode ser ramificada ou não ramificada, ocorrendo a ramificação apenas a partir do butano, C4H10. Considere o alcano de cadeia ramificada, cuja fórmula de estrutura está representada na figura. Selecione a alternativa que corresponde ao nome deste alcano, de acordo com as regras da IUPAC. (A) 3-metil-heptano. (B) 2,4-dimetil-hexano. (C) 2-etil-4-metilpentano. (D) 3-etil-1,1-dimetilbutano.
  • 180.
    Editável e fotocopiável© Texto | Novo 10Q 179 2010 2F. O carbono, elemento presente nas moléculas de CO2, dá origem a uma grande variedade de compostos orgânicos, nos quais se incluem os hidrocarbonetos saturados, também designados por alcanos. Selecione a única opção que corresponde à representação correta de uma molécula de propano. 2012 2F. A composição do gás natural depende, entre outros fatores, da localização do reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás natural é sempre maioritariamente constituído por metano, CH4 (g), embora possa conter outros gases, como, por exemplo, metilbutano, dióxido de carbono, vapor de água e sulfureto de hidrogénio. Qual das fórmulas de estrutura seguintes pode representar a molécula de metilbutano? 2.1.3 Ligações intermoleculares (secção sem itens nas provas nacionais realizadas entre 2008 e 2014) 2.2 Gases e dispersões 2.2.1 Lei de Avogadro, volume molar e massa volúmica 2008 I. Muitos dos sistemas de aquecimento utilizados, tanto a nível industrial, como doméstico, recorrem às reações de combustão dos alcanos, uma vez que estas reações são fortemente exotérmicas. O metano, CH4, o etano, C2H6, o propano, C3H8, e o butano, C4H10, são gases nas condições normais de pressão e temperatura (PTN). Nessas condições, a densidade de um desses gases é aproximadamente 1,343 g dm–3 . Selecione a alternativa que refere o gás que apresenta esse valor de densidade. (A) Metano, CH4 (B) Etano, C2H6 (C) Propano, C3H8 (D) Butano, C4H10
  • 181.
    180 Editável efotocopiável © Texto | Novo 10Q 2008 I. Em 1811, Avogadro concluiu que volumes iguais de gases diferentes, medidos nas mesmas condições de pressão e de temperatura, contêm o mesmo número de partículas. A partir deste princípio, tornou-se possível calcular o volume molar, Vm, de um gás e, também, a sua densidade, em quaisquer condições de pressão e temperatura. a) Calcule a densidade do dióxido de carbono (CO2), em condições normais de pressão e temperatura (condições PTN). Apresente todas as etapas de resolução. b) Tendo em conta a conclusão de Avogadro, selecione a opção que completa corretamente a frase seguinte. Em condições PTN, ... (A)... uma mistura de 0,25 mol de O2 e 0,75 mol de N2 ocupa 22,4 dm3 . (B)... 1,0 mol de O2 ocupa um volume menor do que 1,0 mol de CO2. (C)... a densidade de um gás é tanto maior quanto menor for a sua massa molar. (D)... massas iguais de N2 e de O2 ocupam o mesmo volume. 2008 1F. O dióxido de enxofre, SO2, conhecido por ser um gás poluente, tem uma faceta mais simpática e, certamente, menos conhecida: é usado na indústria alimentar, sob a designação de E220, como conservante de frutos e de vegetais, uma vez que preserva a cor natural destes. O dióxido de enxofre, SO2, e o oxigénio, O2, são duas substâncias com propriedades químicas diferentes, sendo ambas gasosas nas condições ambientais de pressão e temperatura. a) O gráfico seguinte traduz o modo como varia o volume, V, de uma amostra de um gás ideal com a quantidade de substância, n, a pressão e temperatura constantes. Com base no gráfico, e admitindo que SO2 e O2 se comportam como gases ideais, selecione a alternativa que completa corretamente a frase seguinte. Em duas amostras gasosas, uma de SO2 e outra de O2, nas mesmas condições de pressão e temperatura, se os gases tiverem... (A)... volumes iguais, têm massas iguais. (B) ... volumes iguais, têm a mesma densidade. (C) ... o mesmo número de moléculas, têm volumes iguais. (D) ... o mesmo número de moléculas, têm a mesma densidade. b) Calcule o número de moléculas de SO2 (g) que existem numa amostra de 50,0 cm3 desse gás, em condições normais de pressão e temperatura (PTN). Apresente todas as etapas de resolução.
  • 182.
    Editável e fotocopiável© Texto | Novo 10Q 181 2009 I. Nas mesmas condições de pressão e temperatura, o volume ocupado por 4,00 g de hélio, He (g), é aproximadamente ______ volume ocupado por 4,00 g de hidrogénio, H2 (g). (A) igual ao (B) o dobro do (C) metade do (D) o quádruplo do 2009 I. Em condições normais de pressão e temperatura (condições PTN), a substância nitrogénio, N2, é um gás. Selecione a única alternativa que contém a expressão que permite obter o valor da densidade do nitrogénio, N2 (g), nessas condições, expresso em g cm–3 . (A) 14,01 22,4 (B) 28,02 22,4 × 103 (C) 28,02 22,4 (D) 14,01 22,4 × 103 2009 E. Sendo NA a Constante de Avogadro, considere que NA/2 moléculas de CO2 (g) (M = 44,01 g mol-1 ) ocupam um volume igual a 12,2 dm3 , à pressão de 1 atm e à temperatura de 25 °C. Calcule a densidade do CO2 (g), expressa em g dm–3 , nessas condições de pressão e de temperatura. Apresente todas as etapas de resolução. 2010 I. Nas mesmas condições de pressão e temperatura, o volume ocupado por 0,5 mol de oxigénio, O2 (g), é aproximadamente... (A) um quarto do volume ocupado por 32 g desse mesmo gás. (B) um meio do volume ocupado por 32 g desse mesmo gás. (C) o dobro do volume ocupado por 32 g desse mesmo gás. (D) o quádruplo do volume ocupado por 32 g desse mesmo gás. 2010 I. Considere que a densidade do amoníaco, à pressão de 0,989 atm e a 55 °C, é 0,626 g dm-3 . Calcule o número de moléculas de amoníaco que existem numa amostra de 500 cm3 desse gás, naquelas condições de pressão e de temperatura. Apresente todas as etapas de resolução. 2010 E. Considere várias amostras de CO2 (g), contidas em recipientes fechados, sob as mesmas condições de pressão e de temperatura. Selecione a única opção que apresenta um esboço do gráfico que pode traduzir a relação entre a densidade das amostras de CO2 (g) e o número de moléculas desse gás existentes nessas amostras.
  • 183.
    182 Editável efotocopiável © Texto | Novo 10Q 2010 1F. O gráfico seguinte representa o volume, V, de diferentes amostras de nitrogénio (N2), em função da quantidade de gás, n, existente nessas amostras, à pressão de 752 mmHg e à temperatura de 55 °C. Que significado físico tem o declive da reta representada? 2010 2F. Considere que a densidade do CO2 (g), à pressão de 1 atm e à temperatura de 25 °C, é igual a 1,80 g dm–3 . Calcule o volume ocupado por NA/2 moléculas de CO2 (g) nas condições de pressão e de temperatura referidas, sendo NA a constante de Avogadro. Apresente todas as etapas de resolução. 2011 I. Em determinadas condições de pressão e de temperatura, 0,5 mol de N2 (g) ocupa o volume V1. Nas mesmas condições de pressão e de temperatura, 0,5 mol de NO2 (g) ocupa o volume (A) 2 3 V1 (B) V1 (C) 3 2 V1 (D) 2 V1 2011 1F. Considere uma amostra de 8,24 mol de CH4 (g) e uma amostra de 0,398 mol de CO (g), nas mesmas condições de pressão e de temperatura. Quantas vezes é que o volume ocupado pela amostra de metano é maior do que o volume ocupado pela amostra de monóxido de carbono? Apresente o resultado com três algarismos significativos. 2011 E. Em condições normais de pressão e de temperatura (PTN), o volume ocupado por 13 g de ozono é (A) � 48,0 13 × 22,4� dm3 (B) � 13 48,0 × 22,4� dm3 (C) � 13 22,4 × 48,0� dm3 (D) (13 × 22,4 × 48,0) dm3
  • 184.
    Editável e fotocopiável© Texto | Novo 10Q 183 2012 I. A atmosfera terrestre é uma faixa gasosa que cobre a superfície da Terra, sendo retida pela atração gravítica exercida pelo planeta. Na atmosfera, a densidade e a pressão decrescem exponencialmente com a altitude. A temperatura apresenta, no entanto, uma variação mais complexa, decrescendo com o aumento da altitude em algumas camadas da atmosfera e aumentando noutras. O ar que constitui a camada mais baixa da atmosfera, a troposfera, é uma mistura de gases composta essencialmente por cerca de 78%, em volume, de nitrogénio e 21%, em volume, de oxigénio. Os restantes gases — árgon, vapor de água, dióxido de carbono, néon, etc. — existem em percentagens relativamente baixas, embora alguns deles sejam muito importantes para a vida na Terra. F. Duarte Santos, Que Futuro? Ciência, Tecnologia, Desenvolvimento e Ambiente, Gradiva, 2007 (adaptado) O número de moléculas de oxigénio que existem em 100 dm3 de ar, na troposfera, em condições normais de pressão e de temperatura, pode ser calculado através da expressão (A) � 100 6,02 × 1023� × 22,4 (B) � 100 0,21 × 6,02 × 1023� × 22,4 (C)� 100 22,4 � × 6,02 × 1023 (D) � 100 × 0,21 22,4 � × 6,02 × 1023 2012 1F. O sulfureto de hidrogénio, H2S (g), é um gás incolor que tem um cheiro característico a ovos podres. a) A tabela seguinte apresenta os volumes, V, de diferentes amostras de H2S (g) e as respetivas massas, m, à pressão de 1 atm e à temperatura de 55 °C. V / dm3 m / g 3,4 4,3 6,7 8,5 10,1 12,8 13,5 17,1 Determine o volume molar do gás, nas condições de pressão e de temperatura referidas. Comece por obter a densidade (ou massa volúmica) do gás, a partir do declive da reta que melhor se ajusta ao conjunto de valores apresentados na tabela (utilize a calculadora gráfica). Apresente todas as etapas de resolução. b) Considere uma amostra de H2S (g) com o dobro do volume de uma amostra de metano, CH4 (g), nas mesmas condições de pressão e de temperatura. Nessas condições, as amostras contém (A) o mesmo número de moléculas. (B) a mesma quantidade de moléculas. (C) o mesmo número de átomos de hidrogénio. (D) a mesma quantidade de átomos.
  • 185.
    184 Editável efotocopiável © Texto | Novo 10Q 2013 I. O amoníaco é um gás à pressão e à temperatura ambientes. Considere que a densidade do NH3 (g) nas condições normais de pressão e de temperatura é 1,08 vezes maior do que a densidade desse gás à pressão e à temperatura ambientes. Determine o número de moléculas de amoníaco que existem numa amostra pura de 200 cm3 de NH3 (g), à pressão e à temperatura ambientes. Apresente todas as etapas de resolução. 2013 1F. Considere que a densidade do HCN (g) (M = 27,03 g mol–1 ), à pressão de 1 atm e à temperatura de 30 °C, é 1,086 g dm–3 . Qual das expressões seguintes permite calcular a quantidade de HCN (g) que existe numa amostra pura de 5,0 dm3 desse gás, nas condições de pressão e de temperatura referidas? (A) � 1,086 × 5,0 27,03 � mol (B) � 27,03 1,086 × 5,0 � mol (C) � 1,086 27,03 × 5,0 � mol (D) � 27,03 × 5,0 1,086 � mol 2013 2F. Considere que o ar contém cerca de 21%, em volume, de oxigénio e que Vm representa o volume molar de um gás, em dm3 mol–1 , em quaisquer condições de pressão e de temperatura. Qual das expressões seguintes permite calcular a quantidade aproximada de oxigénio que existia no balão? (A) � 800 × 10 × 0,21 𝑉m � mol (B) � 800 × 10 0,21 × Vm � mol (C) � 800 × 10 3 × 0,21 𝑉m � mol (D) � 800 × 10 3 0,21 × Vm� mol 2013 2F. Quantas vezes é que a densidade do SO3 (g) é maior do que a densidade do SO2 (g), nas mesmas condições de pressão e de temperatura? Apresente o resultado com três algarismos significativos. 2.2.2 Soluções, coloides e suspensões (secção sem itens nas provas nacionais realizadas entre 2008 e 2014)
  • 186.
    Editável e fotocopiável© Texto | Novo 10Q 185 2.2.3 Composição quantitativa de soluções 2009 2F. Na água do mar têm-se dissolvido, ao longo de milhares de milhões de anos, várias substâncias que incluem sais inorgânicos, gases e compostos orgânicos provenientes dos organismos marinhos. Na tabela seguinte, indica-se a composição média aproximada da água do mar, relativa aos seus componentes maioritários. Componente mol / kg de água do mar NaCℓ 0,4186 MgCℓ2 0,0596 Na2SO4 0,02856 KCℓ 0,01 CaCℓ2 0,005 Fonte: Boletim da Sociedade Portuguesa de Química, n. o 101, Abril-Junho 2006 a) Selecione a única alternativa que identifica o ião presente em maior quantidade na água do mar. (A) Na+ (B) Cℓ– (C) SO4 2– (D) Ca2+ b) Selecione a única alternativa que permite calcular a composição, em ião sulfato, SO4 2– , (M = 96,07 g mol–1 ), da água do mar, expressa em ppm. (A) � 0,02856 × 96,07 × 4 103 × 106 � ppm (B) � 0,02856 × 103 96,07 × 106 � ppm (C) � 0,02856 × 103 96,07 × 4 × 106 � ppm (D) � 0,02856 × 96,07 103 × 106 � ppm 2010 I. Numa análise efetuada a uma amostra de 500 g de água de um poço, destinada a ser utilizada para fins agrícolas, determinou-se um teor em ião sulfato, SO4 2– , de 6,0 ppm (m/m). Calcule a quantidade de ião SO4 2− que existia naquela amostra de solução. Apresente todas as etapas de resolução.
  • 187.
    186 Editável efotocopiável © Texto | Novo 10Q 2010 E. Chuva ácida é a designação dada à água da chuva cuja acidez seja superior à resultante da dissolução do dióxido de carbono atmosférico em água. Esta dissolução determina, só por si, um pH de cerca de 5,6. A principal causa deste aumento de acidez é a emissão para a atmosfera, em quantidades significativas, de compostos gasosos contendo enxofre e nitrogénio, que originam ácidos fortes em meio aquoso. Os efeitos ambientais da chuva ácida levaram à adoção, pela generalidade dos países, de medidas restritivas da queima de combustíveis fósseis. a) Identifique a principal causa de origem antropogénica, referida no texto, responsável pela emissão para a atmosfera de compostos gasosos contendo enxofre e nitrogénio. b) A percentagem, em volume, de dióxido de carbono, CO2, na atmosfera terrestre atual é 0,39%. Determine o número de moléculas de dióxido de carbono presentes numa amostra de 10 dm3 de ar, nas condições PTN. Apresente todas as etapas de resolução. 2012 1F Se o teor de sulfureto de hidrogénio numa solução aquosa for 22 ppm, a massa, expressa em mg, de H2S em 1 kg dessa solução é (A) 22 × 106 (B) 22 (C) 22 × 10–3 (D) 22 × 103 2012 2F. A composição do gás natural depende, entre outros fatores, da localização do reservatório subterrâneo a partir do qual se faz a sua extração. No entanto, o gás natural é sempre maioritariamente constituído por metano, CH4 (g), embora possa conter outros gases, como, por exemplo, metilbutano, dióxido de carbono, vapor de água e sulfureto de hidrogénio. Considere que se extrai, de um determinado reservatório subterrâneo, gás natural contendo 70%, em volume, de metano. Determine o número de moléculas de metano que existem numa amostra de 5,0 dm3 do gás natural, nas condições normais de pressão e de temperatura. Apresente todas as etapas de resolução. 2013 2F. O SO3 (g) é usado na preparação do ácido sulfúrico comercial, por reação com vapor de água. A reação que ocorre pode ser traduzida por SO3 (g) + H2O (g) → H2SO4 (aq) Considere que se obtém uma solução concentrada de ácido sulfúrico, de densidade 1,84 g cm–3 , que contém 98%, em massa, de H2SO4. Determine a massa de H2SO4 que existe em 100 cm3 da solução. Apresente todas as etapas de resolução.
  • 188.
    Editável e fotocopiável© Texto | Novo 10Q 187 2014 2F. A densidade de uma solução de ácido acético de concentração 0,50 mol dm–3 é 1,0025 x 103 g dm–3 , a 20 o C. Qual das expressões seguintes permite calcular a quantidade de ácido acético que existe em 100 g da solução? (A) � 0,50 × 100 1,025 × 103 � mol (B) � 100 0,50 × 1,0025 × 103 � mol (C) � 1,0025 × 103 0,50 × 100 � mol (D) � 0,50 × 1,0025 × 103 100 � mol Conversão de unidades 2008 I Em termos médios, a %(V/V) do CO2 na atmosfera é 0,035%. Outra maneira de indicar essa concentração é em ppmV (partes por milhão em volume). Selecione a alternativa que corresponde a essa concentração, expressa em ppmV. (A) 3,5 × 10–2 (B) 3,5 × 10–1 (C) 3,5 × 102 (D) 3,5 × 104 2008 E Nos laboratórios químicos, as soluções aquosas de amoníaco, com as quais se trabalha habitualmente, são preparadas a partir de soluções aquosas comerciais, em geral muito concentradas. Uma solução aquosa comercial de amoníaco, NH3 (aq) (M = 17,04 g mol–1 ), tem uma concentração, expressa em percentagem em massa, igual a 25%, e uma densidade igual a 0,91 g cm–3 , a uma determinada temperatura. Calcule a concentração, expressa em mol dm–3 , dessa solução de amoníaco. Apresente todas as etapas de resolução. 2009 I. O mercúrio contribui para a poluição atmosférica como material particulado. Já um dos seus compostos, o metilmercúrio, quando em soluções aquosas, entra na cadeia alimentar, originando intoxicações. A toxicidade do mercúrio e dos seus compostos deve-se à sua interferência em processos enzimáticos, impedindo a respiração e o metabolismo celular. Nos seres humanos, a concentração mínima de metilmercúrio (M = 215,63 g mol–1 ) no sangue, normalmente associada ao aparecimento de sintomas de intoxicação, é 0,20 mg/L. Indique o valor desta concentração, expresso em mol dm–3 . 2011 1F. Um dos componentes minoritários que pode existir no gás natural é o nitrogénio, N2(g). A composição em N2 (g), expressa em partes por milhão em volume, de uma amostra de gás natural que contém 1,3%, em volume, de nitrogénio, pode ser determinada a partir da expressão (A) 1,3 × 10 –6 102 (B) 1,3 × 102 106 (C) 106 × 10 3 1,3 × 102 (D) 102 1,3 × 106
  • 189.
    188 Editável efotocopiável © Texto | Novo 10Q 2012 E. Uma outra solução aquosa de hidróxido de sódio, NaOH (aq) (M = 40,00 g mol–1 ), contém 20%, em massa, de soluto. A densidade da solução é 1,219 g cm–3 . Determine a concentração, em mol dm–3 , desta solução. Apresente todas as etapas de resolução. 2013 I. O amoníaco é uma base fraca, cuja reação de ionização em água pode ser traduzida por NH3 (aq) + H2O (l) → NH4 + (aq) + OH– (aq) As soluções aquosas de amoníaco habitualmente utilizadas em laboratório são preparadas por diluição de soluções aquosas comerciais, muito concentradas. Considere uma solução aquosa comercial de amoníaco, de concentração 13 mol dm–3 e de densidade 0,91 g cm–3 , que é posteriormente diluída 500 vezes. Qual das expressões seguintes permite calcular a percentagem, em massa, de amoníaco (M = 17,04 g mol–1 ) na solução comercial? (A) 0,91 × 1000 13 × 17,04 × 100 (B) 13 × 0,91 17,04 × 1000 × 100 (C) 17,04 × 1000 13 × 0,91 × 100 (D) 13 × 17,04 0,91 × 1000 × 100 2013 1F. Um teor de HCN, no ar, de 0,860 ppm corresponde a um teor, expresso em percentagem em massa, de (A) 8,60 × 10–7 % (B) 8,60 × 10–5 % (C) 8,60 × 10–2 % (D) 8,60 × 10–3 % Diluição de soluções aquosas 2010 I. Admita que dispunha de uma solução aquosa de amoníaco de concentração mássica 2,50 x 102 g dm–3 , e que pretendia preparar, a partir daquela solução concentrada, 500 cm3 de uma solução diluída, de concentração 0,400 mol dm–3 . Calcule o volume de solução concentrada que teria de medir para preparar a solução pretendida. Apresente todas as etapas de resolução. 2011 I. Transferem-se 20,0 cm3 de uma solução aquosa de amoníaco, de concentração 7,34 mol dm–3 , para um balão volumétrico de 100,0 mL, adicionando-se água até ao traço de referência do balão. Calcule a concentração da solução diluída. Apresente todas as etapas de resolução. 2012 I. A última fase da preparação do ácido sulfúrico consiste em fazer reagir o SO3 (g) com vapor de água, obtendo-se uma solução concentrada de ácido sulfúrico. Considere que a concentração desta solução é 18,3 mol dm–3 . Determine o volume de solução concentrada que teria de ser utilizado para preparar 250,0 cm3 de uma solução aquosa de ácido sulfúrico de concentração 0,50 mol dm–3 . Apresente todas as etapas de resolução.
  • 190.
    Editável e fotocopiável© Texto | Novo 10Q 189 2013 E. O grau de acidez de um vinagre é expresso em termos da massa de ácido acético, CH3COOH (M = 60,06 g mol–1 ), em gramas, dissolvida em 100 cm3 desse vinagre. Um vinagre comercial de grau de acidez 6,0% é diluído 20 vezes, preparando-se um volume total de 500,0 cm3 de solução diluída. Determine a quantidade de ácido acético dissolvido na solução diluída de vinagre. Apresente todas as etapas de resolução. (A) 2,0 cm3 (B) 5,0 cm3 (C) 200,0 cm3 (D) 500,0 cm3 2014 2F As soluções aquosas de ácido acético a partir das quais se obteve a curva de calibração representada no gráfico abaixo foram preparadas a partir de uma solução inicial de concentração 4,50 mol dm–3 . Qual é o fator de diluição a considerar na preparação da solução de ácido acético de concentração 0,50 mol dm–3 ? (A) 9 (B) 5 (C) 4 (D) 2 Atividades laboratoriais 2008 I. As soluções são misturas homogéneas, sendo constituídas por uma única fase. A composição quantitativa de uma solução traduz-se, frequentemente, pela concentração expressa em mol dm–3 . Para uma determinada atividade experimental, um grupo de alunos tem de preparar 250 cm3 de uma solução aquosa de hidróxido de sódio, NaOH, com a concentração 2,00 mol dm–3 . Calcule a massa de hidróxido de sódio sólido que os alunos devem medir para preparar essa solução. Apresente todas as etapas de resolução.
  • 191.
    190 Editável efotocopiável © Texto | Novo 10Q 2008 2F. A preparação de soluções aquosas de uma dada concentração é uma atividade muito comum, quando se trabalha num laboratório químico. No decurso de um trabalho laboratorial, um grupo de alunos preparou, com rigor, 250,00 cm3 de uma solução aquosa, por pesagem de uma substância sólida. a) Na figura está representado um balão volumétrico calibrado de 250 mL, semelhante ao utilizado pelos alunos na preparação da solução. No balão estão indicadas a sua capacidade, a incerteza associada à sua calibração e a temperatura à qual esta foi efetuada. No colo do balão está marcado um traço de referência em todo o perímetro. i. Tendo em conta as indicações registadas no balão volumétrico, indique o intervalo de valores no qual estará contido o volume de líquido a ser medido com este balão, à temperatura de 20 °C. ii. Os alunos deverão ter alguns cuidados ao efetuarem a leitura do nível de líquido no colo do balão, de modo a medirem corretamente o volume de solução aquosa preparada. Selecione a alternativa que corresponde à condição correta de medição. b) O grupo de alunos teve que preparar, com rigor, 250,00 cm3 de solução de tiossulfato de sódio penta-hidratado, Na2S2O3 . 5H2O (aq) (M = 248,22 g mol–1 ), de concentração 3,00 × 10–2 mol dm–3 , por pesagem do soluto sólido. Calcule a massa de tiossulfato de sódio penta-hidratado que foi necessário pesar, de modo a preparar a solução pretendida. Apresente todas as etapas de resolução. c) Considere que os alunos prepararam ainda, com rigor, 50,00 cm3 de uma solução de concentração 6,00 × 10–3 mol dm–3 , por diluição da solução 3,00 × 10–2 mol dm–3 de tiossulfato de sódio penta-hidratado. i. Selecione a alternativa que permite calcular corretamente o volume, expresso em cm3 , da solução mais concentrada, que os alunos tiveram que medir, de modo a prepararem a solução pretendida. (A) V = 3,00 × 10–2 × 50,00 6,00 × 10–3 cm3 (B) V = 6,00 × 10–3 × 50,00 3,00 × 10–2 cm3 (C) V = 3,00 × 10–2 × 6,00 × 10 –3 50,00 cm3 (D) V = 6,00 × 10–3 50,00 × 3,00 × 10–2 cm3
  • 192.
    Editável e fotocopiável© Texto | Novo 10Q 191 ii. Para medirem o volume da solução mais concentrada, os alunos utilizaram material de laboratório adequado. Selecione a alternativa que refere o tipo de instrumento de medição de volumes de líquidos que deverá ter sido utilizado naquela medição. (A) Balão de Erlenmeyer (B) Proveta (C) Pipeta (D) Gobelé 2010 I. Considere que foi pedido que preparasse, com rigor, 500,0 mL de uma solução aquosa de etanol mais diluída, a partir da solução aquosa de etanol que encontrou na sua bancada de laboratório. Descreva o procedimento seguido na preparação da solução diluída de etanol, considerando, por ordem cronológica, as três principais etapas que devem ser realizadas nesse procedimento. 2.3. Transformações químicas 2.3.1 Energia de ligação e reações químicas 2013 1F. «[...] se não houver trocas, nem de matéria nem de energia, entre o sistema e o exterior [...]», o sistema químico será um sistema (A) fechado e a sua energia interna manter-se-á constante. (B) isolado e a sua energia interna manter-se-á constante. (C) fechado e a sua energia interna variará. (D) isolado e a sua energia interna variará. 2013 2F. A reação de decomposição do SO3 (g) é uma reação endotérmica, em que o sistema químico absorve 9,82 × 104 J por cada mole de SO3 que se decompõe. A variação de energia, em joule (J), associada à decomposição de duas moles de SO3 (g) será (A) – (9,82 × 104 × 2) J (B) + � 9,82 × 104 × 2 1,025 × 103 � J (C) + (9,82 × 104 × 2) J (D) � 9,82 × 104 2 � J 2010 1F. O nitrogénio (N) é um elemento químico essencial à vida, uma vez que entra na constituição de muitas moléculas biologicamente importantes. O nitrogénio molecular (N2) é um gás à temperatura e pressão ambientes, sendo o componente largamente maioritário da atmosfera terrestre. Considere que a energia média de ligação N–N é igual a 193 kJ mol–1 e que, na molécula de nitrogénio (N2), a ligação que se estabelece entre os átomos é uma ligação covalente tripla. A quebra das ligações triplas em 1 mol de moléculas de nitrogénio, no estado gasoso, envolve a ___de uma energia__a 193 kJ. (A) libertação ... inferior (B) libertação ... superior (C) absorção ... superior (D) absorção ... inferior b) Represente a molécula de nitrogénio (N2), utilizando a notação de Lewis.
  • 193.
    192 Editável efotocopiável © Texto | Novo 10Q 2010 2F. O amoníaco, NH3 (g), obtém-se industrialmente através do processo de Haber, podendo a reação de síntese ser representada por: 3 H2 (g) + N2 (g) → 2 NH3 (g) ΔH = – 92,6 kJ mol–1 a) Se a reação de síntese do amoníaco ocorrer em sistema isolado, ____transferência de energia entre o sistema e o exterior, e a energia interna do sistema______. (A) não há ... mantém-se (B) não há ... diminui (C) há ... diminui (D) há ... mantém-se b) A tabela seguinte apresenta dois valores de energia média de ligação. Ligação Energia de ligação / kJ mol –1 H—H 436,4 N—H 393 Selecione a única opção que apresenta a expressão que permite estimar a energia envolvida na quebra da ligação tripla (EN≡N) na molécula de nitrogénio, expressa em kJ mol–1 . (A) –3(436,4) – EN≡N + 6(393) = –92,6 (B) +3(436,4) + EN≡N – 6(393) = –92,6 (C) +3(436,4) + EN≡N – 2(393) = –92,6 (D) –3(436,4) – EN≡N + 2(393) = –92,6 2010 E. A reação de síntese do amoníaco, muito estudada do ponto de vista do equilíbrio químico, pode ser representada por: N2 (g) + 3 H2 (g) → 2 NH3 (g) ΔH = –92,6 kJ mol–1 Indique o valor da energia libertada no estabelecimento das ligações químicas que correspondem à formação de 2 mol de NH3 (g), sabendo que a energia total gasta para quebrar as ligações de 1 mol de N2 (g) e de 3 mol de H2 (g) é 2,25 × 103 kJ. 2013 I. O amoníaco obtém-se industrialmente através do processo de Haber-Bosch, fazendo reagir, em condições apropriadas, hidrogénio e nitrogénio gasosos. A reação de síntese do amoníaco pode ser traduzida por 3 H2 (g) + N2 (g) → 2 NH3 (g) Considere que a variação de energia associada à formação de 2 moles de amoníaco, a partir da reação acima indicada, é –92 kJ. A formação de 12 moles de amoníaco, a partir da mesma reação, envolverá (A) a libertação de (12 × 92) kJ. (B) a libertação de (6 × 92) kJ. (C) a absorção de (12 × 92) kJ. (D) a absorção de (6 × 92) kJ.
  • 194.
    Editável e fotocopiável© Texto | Novo 10Q 193 2014 1F. A reação de síntese do amoníaco pode ser traduzida por N2 (g) + 3 H2 (g) → 2 NH3 (g) ΔH = –92,6 kJ mol–1 Na reação de síntese do NH3 (g) considerada (A) libertam-se 92 kJ por cada mole de NH3 (g) que se forma. (B) libertam-se 92 kJ por cada duas moles de NH3 (g) que se formam. (C) são absorvidos 92 kJ por cada mole de NH3 (g) que se forma. (D) são absorvidos 92 kJ por cada duas moles de NH3 (g) que se formam. 2.3.2 Reações fotoquímicas na atmosfera 2010 1F. As reações entre o óxido de nitrogénio, NO (g), e o ozono, O3 (g), podem ser traduzidas por um mecanismo reacional (em cadeia), no qual ocorrem, sucessivamente, a destruição de uma molécula de O3 (g) e a regeneração de uma molécula de NO (g). a) Selecione a única opção que refere as fórmulas químicas que preenchem, sequencialmente, os espaços seguintes, de modo a obter um esquema correto do mecanismo reacional considerado. O3 (g) + NO (g) → NO2 (g) + _____ NO2 (g) + O (g) → _____+ O2 (g) (A) O (g) ... N2 (g) (B) O (g) ... NO (g) (C) O2 (g) ... NO (g) (D) O2 (g) ... N2 (g) b) À semelhança do que acontece com o NO (g), também a emissão de CFC para a atmosfera contribui para uma diminuição acentuada da concentração de ozono estratosférico. Refira duas das características dos CFC responsáveis por esse efeito. 2013 E. Os átomos de cloro são agentes destruidores da camada de ozono estratosférico. Um mecanismo reacional que traduz a destruição do ozono pode ser representado pelas seguintes equações: Cℓ + O3 → CℓO + O2 CℓO + O → Cℓ + O2 Escreva a equação que corresponde à soma destas duas equações. 2011 E. O ozono, O3 (g), existente na estratosfera tem grande importância na preservação da vida na Terra. Qual é a radiação, nociva para os seres vivos, que é absorvida pelo ozono na estratosfera?
  • 195.
    194 Editável efotocopiável © Texto | Novo 10Q 2012 2F. Considere que a energia necessária para dissociar uma mole de moléculas de Cℓ2 (g) é 242,7 kJ. A variação de energia associada à formação de duas moles de átomos de cloro, em fase gasosa, a partir de uma mole de Cℓ2 (g) é (A) + (2 × 242,7) kJ (B) – (2 × 242,7) kJ (C) + 242,7 kJ (D) – 242,7 kJ 2008 I. Leia atentamente o seguinte texto. A atividade humana tem efeitos potencialmente desastrosos nas camadas superiores da atmosfera. Certos produtos químicos libertados no ar, em particular os compostos genericamente denominados CFC, vastamente usados em refrigeração e na indústria eletrónica, estão a destruir o ozono na estratosfera. Sem esta camada de ozono estratosférica, a radiação ultravioleta solar atingiria a superfície da Terra com uma intensidade muito elevada, destruindo a maioria das moléculas que constituem o tecido vivo. Em 1985, cientistas descobriram um «buraco» na camada de ozono, sobre a Antártida, que, de um modo geral, tem vindo a aumentar de ano para ano. Através de acordos internacionais, a utilização dos CFC tem vindo a ser abandonada, sendo estes substituídos por compostos que não destroem o ozono, permitindo que a luz solar produza naturalmente mais ozono estratosférico. No entanto, serão necessárias várias décadas para reparar os danos causados na camada do ozono. Esta situação é um exemplo de que comportamentos que foram adotados no passado, e que ajudaram a assegurar a sobrevivência dos nossos antepassados, podem não ser os comportamentos mais sensatos no futuro. Adaptado de Freedman, R. A., Kaufmann III, W. J., UNIVERSE, 6 th edition, W. H. Freeman and Company, New York 2002 a) «Comportamentos que foram adotados no passado, e que ajudaram a assegurar a sobrevivência dos nossos antepassados, podem não ser os comportamentos mais sensatos no futuro.» Escreva um texto no qual relacione esta frase com o restante conteúdo do texto acima apresentado, referindo-se a: • Comportamentos anteriormente adotados pela indústria e que vieram a revelar-se nocivos; • Efeitos nocivos resultantes desses comportamentos; • Medidas tomadas para minorar esses efeitos. b) Indique a principal função da camada de ozono. c) A energia de ionização da molécula de oxigénio é 1,9 × 10–18 J, enquanto a sua energia de dissociação é 8,3 × 10–19 J. As radiações, que são absorvidas pelas espécies químicas existentes na estratosfera, têm valores de energia entre 6,6 × 10–19 J e 9,9 × 10–19 J. Com base nestes dados, indique, justificando, se o processo que ocorre na estratosfera será a dissociação ou a ionização da molécula de oxigénio.
  • 196.
    Editável e fotocopiável© Texto | Novo 10Q 195 2009 I. A Terra é o único planeta do Sistema Solar que possui uma atmosfera rica em oxigénio. A atmosfera terrestre constitui um filtro natural para as radiações provenientes do Sol, em especial para as radiações ultravioleta de maior energia, as UV-C, e as radiações ultravioleta de energia intermédia, as UV-B. Elabore um texto relativo às radiações ultravioleta provenientes do Sol, abordando os tópicos seguintes: Camadas da atmosfera onde as radiações ultravioleta UV-C e UV-B são predominantemente absorvidas. • Reações que traduzem o efeito das radiações ultravioleta nas moléculas de oxigénio (O2) e de ozono (O3), na estratosfera. • Significado de o índice de proteção solar (IPS) de um dado creme protetor ser igual a 20. 2009 I. A atmosfera terrestre funciona como um filtro da radiação solar, como resultado das interações desta com a matéria existente nas diversas camadas da atmosfera. Selecione a alternativa correta, relativamente às radiações ultravioleta (UV) provenientes do Sol. (A) Na troposfera é absorvida a maior parte das radiações UV de maior energia. (B) Na estratosfera são absorvidas praticamente todas as radiações UV de energia intermédia. (C) Na termosfera é absorvida a maior parte das radiações UV de menor energia. (D) Na mesosfera são absorvidas praticamente todas as radiações UV. 2010 I. Pensa-se que a atmosfera primordial da Terra tenha sido substancialmente diferente da atmosfera atual, contendo muito pouco, ou nenhum, oxigénio, O2. Este terá sido libertado para a atmosfera por organismos unicelulares, como produto secundário da fotossíntese. O oxigénio terá, assim, começado a surgir na atmosfera há, pelo menos, 3,5 × 109 anos, embora os registos geoquímicos indiquem que a concentração de oxigénio na atmosfera só tenha começado a aumentar de modo significativo há 2,3 × 109 anos. O aumento da concentração de oxigénio na atmosfera terrestre permitiu iniciar a formação da camada de ozono estratosférico, o que, por sua vez, permitiu a conquista da terra firme pelos organismos vivos. Nessa camada, moléculas de oxigénio dissociam-se, por ação da radiação ultravioleta (UV) solar. Os átomos resultantes dessa dissociação combinam-se com oxigénio molecular para formar ozono, O3. Este, por sua vez, ao ser dissociado pela radiação UV, produz oxigénio atómico e molecular, que acaba por se recombinar de novo. F. D. Santos, Que Futuro? Ciência, Tecnologia, Desenvolvimento e Ambiente, Gradiva, 2007 (adaptado) a) Identifique o fenómeno, fundamental para a vida na Terra, que ocorre na camada de ozono estratosférico. b) Escreva as duas equações químicas que traduzem o mecanismo reacional de produção do ozono estratosférico, com base na informação dada no texto.
  • 197.
    196 Editável efotocopiável © Texto | Novo 10Q 2012 I. O ozono, O3, encontra-se na estratosfera, formando a chamada camada de ozono, que se estende por vários quilómetros de altitude. Na estratosfera, a interação da radiação ultravioleta B (UV-B) com as moléculas de oxigénio dá origem à formação de radicais livres (átomos) de oxigénio. São estes radicais que, reagindo com outras moléculas de oxigénio, na estratosfera, produzem o ozono. Por seu lado, as moléculas de ozono também interagem com a radiação UV-B, na estratosfera, dissociando-se. Se não houvesse interferência de outras espécies químicas presentes na estratosfera, a concentração de ozono nesta camada da atmosfera permaneceria aproximadamente constante — a formação e a decomposição deste gás ocorreriam à mesma velocidade. No entanto, alguns radicais livres também presentes na estratosfera, nomeadamente os radicais livres (átomos) de cloro, reagem com o ozono, que passa a decompor-se a uma velocidade superior à velocidade a que se forma. Como resultado da ação destes radicais livres, ocorre, assim, uma diminuição da concentração de ozono na estratosfera, fenómeno que é habitualmente designado por «buraco do ozono». Maria Teresa Escoval, A Ação da Química na Nossa Vida, Editorial Presença, 2010 (adaptado) a) Escreva as equações químicas que traduzem as reações referidas no segundo parágrafo do texto. b) A reação dos radicais livres de oxigénio com as moléculas de oxigénio, na estratosfera, envolve a libertação de cerca de 105 kJ por cada mole de moléculas de ozono que se formam. A variação de energia, em joule (J), associada à formação de uma molécula de ozono, poderá ser traduzida pela expressão (A) + 1,05 × 10 5 6,02 × 10 23 (B) – 1,05 × 10 5 6,02 × 10 23 (C) – 1,05 × 105 × 6,02 × 1023 (D) + 1,05 × 105 × 6,02 ×1023 c) Explique porque é que as moléculas de oxigénio e de ozono constituem filtros da radiação UV-B na estratosfera. d) Os CFC (clorofluorocarbonetos) são compostos que, interagindo com a radiação UV-B, constituem a principal fonte de radicais livres de cloro na estratosfera. Nas moléculas de CFC que chegam à estratosfera, verifica-se assim a quebra das ligações C–Cℓ, mais fracas, não ocorrendo, no entanto, a quebra das ligações C–F, mais fortes. Indique o motivo que justifica que a quebra das ligações C–F não ocorra. 2011 E. A troposfera é a camada da atmosfera mais próxima da superfície da Terra. Dos gases presentes na troposfera, são determinantes para a regulação da temperatura na vizinhança da superfície da Terra (A) os gases que existem em maior percentagem. (B) o ozono e o oxigénio. (C) o ozono e o nitrogénio. (D) os gases com efeito de estufa.
  • 198.
    Editável e fotocopiável© Texto | Novo 10Q 197 Guiões de recursos multimédia O é uma ferramenta inovadora que possibilita, em sala de aula, a fácil exploração do projeto Novo 10Q através das novas tecnologias. Permite o acesso a um vasto conjunto de conteúdos multimédia associados ao manual: • Simuladores • Animações • Animações laboratoriais • Animações de resolução de exercícios • Apresentações PowerPoint® • Vídeos temáticos • Atividades • Testes interativos • Grelhas de avaliação em formato editável • Imagens e soluções projetáveis • Links internet • Simulador de testes Simuladores Descrição geral Os simuladores do Novo 10Q facilitam a exposição de conteúdos de mais difícil compreensão para os alunos. São constituídos por três secções: Os professores adotantes do Novo 10Q terão ao seu dispor os seguintes simuladores, assim como os respetivos guias e fichas de exploração: • Espetro do átomo de hidrogénio (disponível na versão de demonstração) • Volume molar e Lei de Avogadro • Composição quantitativa de soluções • Variação de entalpia Introdução teórica Contextualiza e expõe os conteúdos. Simulador Permite relacionar grandezas e explorar as suas variações num determinado sistema. Atividades Permitem consolidar e testar os conceitos abordados no recurso.
  • 199.
    198 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Simulador – Espetro do átomo de hidrogénio» Pág. 48 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.4 Interpretar o espetro de emissão do átomo de hidrogénio através da quantização da energia do eletrão, concluindo que esse espetro resulta de transições eletrónicas entre níveis energéticos. 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. Sugestões de exploração por secção 1. a secção - Introdução teórica • Interpretar a formação do espetro do átomo de hidrogénio relacionando com as transições do eletrão entre níveis de energia no átomo. 2. a secção – Simulador • Relacionar uma determinada transição eletrónica com a sua representação num diagrama de energia e com a respetiva risca do espetro do átomo de hidrogénio. • Associar a emissão de energia a uma transição do eletrão no átomo de hidrogénio de um nível de energia superior para um nível de energia inferior. • Associar a absorção de energia a uma transição do eletrão no átomo de hidrogénio de um nível de energia inferior para um nível de energia superior. • Compreender que a energia envolvida numa transição eletrónica está rela- cionada com as energias dos níveis entre os quais essa transição se dá. 3. a secção – Atividades • Permitem verificar os conhecimentos adquiridos pelos alunos. Possíveis modalidades de aplicação • Projetar o recurso didático e fazer uso da Introdução teórica (secção 1), para apresentar o subcapítulo “1.2.3 Espetro do átomo de hidrogénio”. • Questionar os alunos e confrontar as suas respostas com os resultados obtidos através da interação com o simulador. • Pedir aos alunos que resolvam as Atividades (Secção 3) projetando-as para a turma. Alternativamente pedir aos alunos que resolvam as Atividades como trabalho de casa. • Caso disponha de um computador para cada aluno ou grupo de alunos, aceder à plataforma para disponibilizar o recurso didático e a respetiva ficha de exploração.
  • 200.
    Editável e fotocopiável© Texto | Novo 10Q 199 Informações/Indicações operacionais Print do recurso multimédia 1. Clicar na 2. a secção do recurso (Simulador: Espetro de hidrogénio) para ter acesso ao simulador. 2. Clicar em dois botões associados aos níveis de energia para que o eletrão faça a respetiva transição. 3. Observar a transição na representação do modelo de Bohr do átomo de hidrogénio, a transição no diagrama de energia e a risca no espetro de emissão do átomo de hidrogénio. 4. Por fim, analisar o valor da energia emitida ou absorvida pelo eletrão durante a transição. Nome ________________________________________________ N.o ______________ Turma ________________ 10.o Ano Ficha de exploração do simulador Espetro do átomo de hidrogénio
  • 201.
    200 Editável efotocopiável © Texto | Novo 10Q Com a ajuda do simulador, responda às questões. 1. Considere as riscas do espetro de emissão do átomo de hidrogénio na região do visível: 1.1 Faça as transições necessárias para formar o espetro indicado. 1.2 Grave uma captura de ecrã do diagrama de energia que corresponde à formação da linha vermelha. Calcule a energia envolvida nesta transição. Confirme o valor com o fornecido pelo simulador. 1.3 Estas riscas são originadas por transições do átomo de hidrogénio para que nível? Pertencem a que série espetral? 2. Faça transições de todos os níveis superiores que terminem no nível 1. 2.1 Grave uma captura de ecrã com as transições efetuadas. 2.2 Estas transições correspondem a emissões ou absorções de energia bem definida? Justifique. 2.3 Selecione a série espetral a que correspondem estas transições. I. Série de Balmer II. Série de Lyman III. Série de Paschen 2.4 Considere que um átomo de hidrogénio no estado fundamental e que, sobre esse átomo, incide radiação de energia igual a 1,5 × 10 –19 J. Indique, justificando, se ocorrerá a transição do eletrão para o nível energético seguinte. (Confirme os valores utilizando o simulador.) 3. Faça as seguintes transições eletrónicas. A. Nível 1 para nível 3 B. Nível 3 para nível 2 C. Nível 2 para nível 4 D. Nível 4 para nível 1 3.1 Selecione a opção correta. I. A transição A corresponde a uma risca, na região do visível, do espetro de absorção do hidrogénio. II. A transição B está associada à emissão da radiação menos energética pelo átomo de hidrogénio das transições consideradas. III. A transição C está associada à absorção de radiação ultravioleta pelo átomo de hidrogénio. IV. A transição D corresponde à risca violeta do espetro de emissão do átomo de hidrogénio.
  • 202.
    Editável e fotocopiável© Texto | Novo 10Q 201 Animações Descrição geral O recurso permite ao professor expor o conteúdo, consolidar e verificar conhecimentos. Sempre que pertinente, são privilegiados os cenários em 3D que permitem ao aluno visualizar conceitos complexos e relacioná-los com fenómenos do dia a dia. Sempre que oportuno, as Animações são interativas, permitindo ao professor uma maior liberdade de exploração. De um modo geral, apresentam a seguinte estrutura: Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes animações, assim como os respetivos guias e fichas de exploração detalhados: • Elementos químicos e isótopos • Laboratório 3D • Espetro eletromagnético • Tipos de espetros (disponível na versão de demonstração) • Comparação entre o modelo de Bohr e o modelo quântico (disponível na versão de demons- tração) • Tamanho e forma das orbitais • Evolução histórica da Tabela Periódica • Tabela Periódica interativa • Ligações químicas • Tipos de ligações químicas • Energia de ligação e comprimento de ligação • Geometria molecular • Polaridade de moléculas e polaridade de ligações • Ligações intermoleculares e miscibilidade • Poluentes na troposfera • Soluções, coloides e suspensões • Formação e decomposição do ozono na estratosfera Animação Contextualiza o tema. Expõe os pontos chave do conteúdo. Secção interativa Permite explorar algumas grandezas de modo mais simples do que os simuladores. Atividades Consolidam e testam os conceitos aprendidos no recurso. Todos os exercícios seguem a tipologia de Exame Nacional.
  • 203.
    202 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Animação – Tipos de espetros» Pág. 42 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão. 2.9 Comparar espetros de absorção e de emissão de elementos químicos, con- cluindo que são característicos de cada elemento. Sugestões de exploração por secção 1. a secção – Secção interativa • Analisar diferentes espetros de emissão originados por diferentes fontes. • Analisar diferentes espetros de absorção originados por diferentes elementos. • Comparar o espetro de emissão e de absorção do mesmo elemento anali- sando a posição das riscas nos espetros • Analisar o espetro de absorção de uma estrela verificando os elementos que a constituem através da comparação de espetros. 2. a secção – Atividades • Verificar os conhecimentos adquiridos. Possíveis modalidades de aplicação • Projetar o recurso e explorar os exemplos da secção 1 com os alunos. • Caso disponha de um computador para cada aluno ou grupo de alunos, aceder à plataforma para disponibilizar o recurso didático e a respetiva ficha de exploração. • Resolver as atividades propostas como modo de consolidar os conteúdos abordados.
  • 204.
    Editável e fotocopiável© Texto | Novo 10Q 203 Informações/Indicações operacionais Print do recurso multimédia 1. Clicar na 1. a secção do recurso para aceder à animação interativa sobre os diferentes tipos de espetros. É possível escolher entre Espetros de emissão e Espetros de absorção. 2. Clicar na 2. a secção do recurso para aceder a uma animação interativa sobre a Comparação de espetros. 3. Na 1. a secção, ao selecionar por exemplo Espetros de emissão surgem diferentes fontes representadas por ícones do lado esquerdo. Ao clicar numa determinada fonte é possível ver a animação da formação do respetivo espetro e analisá-lo em pormenor clicando em . 4. Na 2. a secção é possível comparar os espetros de emissão e de absorção do mesmo elemento e comparar o espetro de absorção de uma estrela com os espetros de alguns elementos. Para facilitar a identificação das riscas nos espetros, arrastar a barra inferior. Nome ________________________________________________ N.o ______________ Turma ________________ 10.o Ano Ficha de exploração da animação Tipos de espetros
  • 205.
    204 Editável efotocopiável © Texto | Novo 10Q Com a ajuda da animação, responda às questões. 1. Chama-se espetro ao resultado da decomposição da luz. A luz pode ser decomposta, isto é, separada nas suas componentes, por exemplo com um prisma. 1.1 Nos espetros de emissão clique no ícone da lâmpada de incandescência e analise o espetro obtido. De que tipo de espetro se trata? Como se caracteriza este espetro? 1.2 Clique no espetro da lâmpada fluorescente e no tubo de Pluecker. Qual a principal semelhança entre os espetros? Como se designam estes espetros? 1.3 Compare um espetro de emissão com um espetro de absorção. Qual a principal diferença entre os dois tipos de espetros? 2. Analise os espetros representados abaixo e classifique-os em espetro de emissão contínuo, descontínuo ou espetro de absorção. Espetro atómico do cálcio Espetro de emissão de uma lâmpada de halogéneo Espetro de uma lâmpada de vapor de sódio 3.No espetro solar existem riscas negras que se devem à absorção de radiação por átomos existentes na atmosfera do Sol. 3.1Clique no ícone do Sol e analise os espetros. Existe alguma risca dos espetros de emissão do hidrogénio e do hélio coincidente com o do espetro solar? Arraste a barra e grave uma captura de ecrã que comprove. 3.2 Por que razão se pode concluir, por comparação do espetro solar com os espetros de emissão do hidrogénio e do hélio, que estes elementos estão presentes na atmosfera solar?
  • 206.
    Editável e fotocopiável© Texto | Novo 10Q 205 Guia de exploração do recurso «Animação – Comparação entre o modelo de Bohr e o modelo quântico» Pág. 54 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. Sugestões de exploração por secção 1. a secção – Secção interativa • Comparar o modelo de Bohr e o modelo quântico. • Realçar as ideias do modelo de Bohr que permanecem no modelo quântico. • Evidenciar a existência de níveis de orbitais no modelo de Bohr em oposição à nuvem eletrónica no modelo quântico. 2. a secção – Atividades • Verificar os conhecimentos adquiridos. Possíveis modalidades de aplicação • Projetar o recurso e explorar os exemplos da secção 1 com os alunos. • Caso disponha de um computador para cada aluno ou grupo de alunos, aceder à plataforma para disponibilizar o recurso didático e a respetiva ficha de exploração. • Pedir aos alunos que resolvam as atividades propostas como meio de consolidar os conteúdos abordados.
  • 207.
    206 Editável efotocopiável © Texto | Novo 10Q Informações/Indicações operacionais Print do recurso multimédia 1. Clicar na 1. a secção do recurso para ter acesso à animação interativa. 2. Arrastar a barra central para analisar e comparar as características dos modelos. 3. Clicar nas características em baixo para evidenciar as semelhanças e as diferenças entre os modelos. Nome ________________________________________________ N.o ______________ Turma ________________ 10.o Ano Ficha de exploração da animação Comparação entre o modelo de Bohr e o modelo quântico
  • 208.
    Editável e fotocopiável© Texto | Novo 10Q 207 Com a ajuda da animação, responda às questões. 1. O físico Niels Bohr, em 1913, propôs um modelo para a estrutura do átomo que viria a explicar os espetros atómicos. 1.1 Compare o aspeto dos dois modelos do átomo. Qual a principal diferença entre os modelos? 1.2 Clique no botão Quantização da energia e refira as características do modelo de Bohr que se mantêm no modelo quântico. 1.3 Clique no botão Localização do eletrão e indique o nome do local onde se situa o eletrão no modelo de Bohr. 2. Por volta de 1926, Erwin Schrödinger desenvolveu uma equação que, quando resolvida, permite obter informação acerca do comportamento dos eletrões nos átomos. As soluções desta equação permitem calcular a probabilidade de encontrar o eletrão numa dada região do espaço e não a sua localização precisa em cada instante, como na física clássica. P. Atkins, O Dedo de Galileu – As dez grandes ideias da Ciência, Gradiva, 1. a ed., 2007 (adaptado) 2.1 Clique no botão Localização do eletrão e no modelo quântico indique região do espaço onde, em torno do núcleo de um átomo, existe uma elevada probabilidade de encontrar um eletrão desse átomo. 2.2 Selecione a opção que corresponde a uma característica presente nos dois modelos atómicos. A. A ocorrência de transições de eletrões entre esses níveis por absorção ou emissão de energia, energia essa também com valores bem definidos. B. Os eletrões movem-se em torno do núcleo em órbitas circulares com raios bem definidos. C. São permitidos níveis contínuos de energia para o eletrão no átomo. D. A descrição do comportamento dos eletrões faz-se através da nuvem eletrónica.
  • 209.
    208 Editável efotocopiável © Texto | Novo 10Q Animações laboratoriais Descrição geral Para as atividades laboratoriais obrigatórias, previstas no programa da disciplina, foram realizadas animações em cenário 3D em concordância com as imagens apresentadas no manual. Nestas animações, as diferentes etapas do procedimento são acionadas pelo utilizador, dando maior liberdade de exploração ao professor. A estrutura das animações laboratoriais é a seguinte: Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes animações laboratoriais, assim como os respetivos guias de exploração dos recursos: • AL 1.1 Volume e número de moléculas de uma gota de água • AL 1.2 Teste de chama (disponível na versão de demonstração) • AL 1.3 Densidade relativa de metais • AL 2.1 Miscibilidade de líquidos • AL 2.2 Soluções a partir de solutos sólidos • AL 2.3 Diluição de soluções • AL 2.4 Reação fotoquímica Animação laboratorial Material e etapas do procedimento. Animação com a execução das etapas. Análise de resultados Tabela com os resultados e gráfico correspondente. Atividades Atividades de consolidação /discussão dos resultados.
  • 210.
    Editável e fotocopiável© Texto | Novo 10Q 209 Guia de exploração do recurso «Animação laboratorial – Teste de chama» Pág. 66 Objetivos gerais e objetivos específicos Elementos químicos e sua organização Energia dos eletrões nos átomos Identificar elementos químicos em amostras de sais usando testes de chama. 1. Identificar a presença de um dado elemento químico através da coloração de uma chama quando nela se coloca uma amostra de sal. 2. Indicar limitações do ensaio de chama relacionadas com a temperatura da chama e com a natureza dos elementos químicos na amostra. 3. Interpretar a informação de segurança presente no rótulo de reagentes e adotar medidas de proteção com base nessa informação e em instruções recebidas. 4. Interpretar os resultados obtidos em testes de chama. Sugestões de exploração por secção 1. a secção – Animação do procedimento experimental • Visualizar o material necessário para a realização da AL. • Visualizar o procedimento da experiência. • Visualizar destaques importantes para a correta realização da experiência e manuseamento dos equipamentos. 2. a secção – Resultados (exemplo) • Visualizar um exemplo de uma tabela de dados preenchida com a amostra, a cor da chama observada e o elemento a que corresponde. • Analisar os espetros de emissão dos elementos em causa. 3. a secção – Atividades • Consolidar os conhecimentos adquiridos. Possíveis modalidades de aplicação • Projetar o recurso e explorar a simulação da experiência juntamente com os alunos, antes da realização da mesma. O procedimento animado permitirá evidenciar alguns aspetos relevantes para a execução da atividade laboratorial. • Poderá fazer uso dos destaques para evitar possíveis erros durante a realização da experiência. • Utilizar a secção 2 da Animação laboratorial para mostrar ao aluno o tratamento de dados que terá de fazer. • Utilizar as Atividades finais como discussão dos resultados. Esta análise poderá ser feita individualmente ou em grupo.
  • 211.
    210 Editável efotocopiável © Texto | Novo 10Q Animações de resolução de exercícios/problemas Descrição geral Para auxiliar os alunos na resolução de exercícios apresentam-se resoluções passo a passo de exercícios adaptados de exame ou com a tipologia de exame. Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes animações de resolução de exercícios, assim como os respetivos guias de exploração dos recursos: • Cálculo da massa atómica relativa • Cálculo da quantidade de matéria e da massa molar • Cálculo da fração molar e da fração mássica • Cálculo da energia que corresponde a uma transição eletrónica (disponível na versão de demonstração) • Análise dos valores de energia de remoção eletrónica (disponível na versão de demonstração) • Como escrever a configuração eletrónica de um átomo • Cálculo do volume molar • Cálculo da massa volúmica • Cálculo da composição quantitativa de uma solução • Cálculo do fator de diluição • Cálculo da variação de entalpia de uma reação química • Cálculo do erro absoluto e do erro relativo Enunciado Apresentação do enunciado do exercício. Preparação da resolução Análise do enunciado e seleção dos dados úteis para a resolução do exercício. Resolução Animação interativa com a resolução do exercício.
  • 212.
    Editável e fotocopiável© Texto | Novo 10Q 211 Guia de exploração do recurso «Animação de resolução de exercícios – Cálculo da energia que corresponde a uma transição eletrónica» Pág. 50 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. Sugestões de exploração por secção 1. a secção – Enunciado • Apresentação e análise conjunta do enunciado do problema. • Análise individual e posterior discussão do enunciado do problema. 2. a secção – Preparação da resolução • Exploração da análise do enunciado. • Apresentação da sugestão de análise do problema. 3. a secção – Resolução • Resolução passo a passo, com os alunos. • Apresentação da sugestão de resolução, passo a passo. • Exploração da sugestão de resolução com os alunos. Possíveis modalidades de aplicação • Apresentar o Enunciado aos alunos, dando-lhes algum tempo para o analisar, fomentando posteriormente a discussão conjunta do mesmo. • Em alternativa, facultar o recurso individualmente aos alunos/grupo de alunos para que o analisem e sugiram uma metodologia de resolução. • Na secção de Preparação da resolução os alunos podem discutir o enunciado, o professor pode intervir intercalando as opiniões dos alunos com o áudio explicativo e com a correspondente seleção dos dados do enunciado. • Na secção da Resolução, é possível resolver o problema faseadamente, desta- cando os passos mais importantes. Para avançar de um passo para o passo seguinte é necessário clicar nos botões numerados. • Nesta secção, o aluno pode verificar passo a passo como resolver o problema, quer seja como verificação da sua resolução ou como sugestão de resolução.
  • 213.
    212 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Animação de resolução de exercícios – Análise dos valores de energia de remoção eletrónica» Pág. 38 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.13 Concluir, a partir de valores de energia de remoção eletrónica, obtidas por espetroscopia fotoeletrónica, que átomos de elementos diferentes têm valores diferentes da energia dos eletrões. 2.14 Interpretar valores de energias de remoção eletrónica, obtidos por espetroscopia fotoeletrónica, concluindo que os eletrões se podem distribuir por níveis de energia e subníveis de energia Sugestões de exploração por secção 1. a secção – Enunciado • Apresentação e análise conjunta do enunciado do problema. • Análise individual e posterior discussão do enunciado. 2. a secção – Preparação da resolução • Exploração da análise do enunciado. • Apresentação da sugestão de análise do problema. 3. a secção – Resolução • Resolução passo a passo, com os alunos. • Apresentação da sugestão de resolução, passo a passo. • Exploração da sugestão de resolução, com os alunos. Possíveis modalidades de aplicação • Apresentar o Enunciado aos alunos, dando-lhes algum tempo para o analisar, fomentando posteriormente a discussão conjunta do mesmo. • Em alternativa, facultar o recurso individualmente aos alunos/grupo de alunos para que o analisem e sugiram uma metodologia de resolução. • Na secção de Preparação da resolução os alunos podem discutir o enunciado, o professor pode intervir intercalando as opiniões dos alunos com o áudio explicativo e com a correspondente seleção dos dados do enunciado. • Na secção da Resolução, é possível resolver o problema faseadamente desta- cando os passos mais importantes. Para avançar de um passo para o passo seguinte é necessário clicar nos botões numerados. • Nesta secção o aluno pode verificar passo a passo como resolver o problema, quer seja como verificação da sua resolução ou como sugestão de resolução.
  • 214.
    Editável e fotocopiável© Texto | Novo 10Q 213 Apresentações PowerPoint® Descrição geral As apresentações em PowerPoint® contêm a totalidade dos conteúdos abordados em cada tópico. Constituem um recurso auxiliar do professor na sua abordagem e exploração dos mesmos. Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes apresentações em PowerPoint®: • 1.1.1 Ordens de grandeza e escalas de comprimento • 1.1.2 Dimensões à escala atómica • 1.1.3 Massa isotópica e massa atómica relativa média • 1.1.4 Quantidade de matéria e massa molar • 1.1.5 Fração molar e fração mássica • 1.2.1 Espetros contínuos e descontínuos (disponível na versão de demonstração) • 1.2.2 O modelo atómico de Bohr (disponível na versão de demonstração) • 1.2.3 Espetro do átomo de hidrogénio (disponível na versão de demonstração) • 1.2.4 Transições eletrónicas • 1.2.5 Quantização de energia • 1.2.6 Energia de remoção eletrónica • 1.2.7 Modelo quântico do átomo • 1.2.8 Configuração eletrónica de átomos • 1.3.1 Evolução histórica da Tabela Periódica • 1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos • 1.3.3 Propriedades periódicas dos elementos representativos • 1.3.4 Propriedades dos elementos e das substâncias elementares • 2.1.1 Tipos de ligações químicas • 2.1.2 Ligação covalente • Estrutura de moléculas orgânicas e biológicas • 2.1.3 Ligações intermoleculares • 2.2.1 Lei de Avogadro, volume molar e massa volúmica • 2.2.2 Soluções, coloides e suspensões • 2.2.3 Composição quantitativa de soluções • 2.3.1 Energia de ligação e reações químicas • 2.3.2 Reações fotoquímicas na atmosfera • Medições e incertezas associadas
  • 215.
    214 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Apresentação PowerPoint® 1.2.1 – Espetros contínuos e descontínuos» Pág. 21 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.1 Indicar que a luz (radiação electromagnética ou onda eletromagnética) pode ser detetada como partículas de energia (fotões), sendo a energia de cada fotão proporcional à frequência dessa luz. 2.2 Identificar luz visível e não visível de diferentes frequências no espetro eletromagnético, comparando as energias dos respetivos fotões. 2.3 Distinguir tipos de espetros: descontínuos e contínuos; de absorção e de emissão. Sugestões de exploração Pode ser utilizado como: • auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.1 Espetros contínuos e descontínuos. • auxiliar de sistematização e resumo de conteúdos dada a organização por tópicos, com recurso a esquemas e a quadros resumo. Possíveis modalidades de aplicação • Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos programa- ticos. • Fazer uso dos esquemas animados e de animações simples para facilitar a aprendizagem dos alunos.
  • 216.
    Editável e fotocopiável© Texto | Novo 10Q 215 Guia de exploração do recurso «Apresentação PowerPoint® 1.2.2 O modelo atómico de Bohr» Pág. 45 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.5 Identificar a existência de níveis de energia bem definidos, e a ocorrência de transições de eletrões entre níveis por absorção ou emissão de energias bem definidas, como as duas ideias fundamentais do modelo atómico de Bohr que prevalecem no modelo atómico atual. 2.6 Associar a existência de níveis de energia à quantização da energia do eletrão no átomo de hidrogénio e concluir que esta quantização se verifica para todos os átomos. Sugestões de exploração Pode ser utilizado como: • auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.2 O modelo atómico de Bohr. • auxiliar de sistematização e resumo de conteúdos dada a organização por tópicos, com recurso a esquemas e quadros resumo. Possíveis modalidades de aplicação • Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos progra- máticos. • Fazer uso dos esquemas animados e de animações simples para facilitar a aprendizagem dos alunos.
  • 217.
    216 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Apresentação PowerPoint® 1.2.3– Espetro do átomo de hidrogénio» Pág. 27 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. Sugestões de exploração Pode ser utilizado como: • auxiliar de apresentação e exploração de conteúdos do subcapítulo 1.2.3 Espetro do átomo de hidrogénio. • auxiliar de sistematização e resumo de conteúdos dada a organização por tópicos, com recurso a esquemas e quadros resumo. Possíveis modalidades de aplicação • Apresentar o PowerPoint® para auxiliar a abordagem dos conteúdos programáticos. • Fazer uso dos esquemas animados e de animações simples, para facilitar a aprendizagem dos alunos.
  • 218.
    Editável e fotocopiável© Texto | Novo 10Q 217 Vídeos temáticos Descrição geral Os vídeos temáticos poderão apoiar o professor na exposição de coteúdos de uma forma motivadora para os alunos, dado que permitem relacionar a ciência com o quotidiano ou apresentar uma perspetiva histórica de um determinado tema. Os professores que adotem o Novo 10Q terão ao seu dispor, em , os seguintes vídeos temáticos, assim como o guia de exploração do recurso: • Nanomateriais • Nanomedicina • A química do fogo de artifício (disponível na versão de demonstração) • A impressão digital dos astros • A Tabela (é mesmo) Periódica • Poluição atmosférica • Partículas do Ar • A degradação da camada de ozono
  • 219.
    218 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Vídeo temático - A química do fogo de artifício» Pág.43 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.10 Identificar, a partir de informação selecionada, algumas aplicações da espetroscopia atómica (por exemplo, identificação de elementos químicos nas estrelas, determinação de quantidades vestigiais em química forense). Sugestões de exploração por secção • Auxiliar a apresentação e exploração das aplicações da espetroscopia atómica, neste caso o fogo de artifício. Questões de exploração: • Quais os componentes essenciais do fogo de artifício? • Indique o ingrediente químico, constituinte da “estrela”, responsável pela cor do fogo de artifício. • Como se chama o processo pelo qual são obtidas as cores do fogo de artifício? • Qual a relação entre as matérias primas utilizadas no fogo de artifício e as cores observadas durante o espetáculo? • Descreva resumidamente qual a origem da emissão de energia libertada durante um espetáculo de fogo de artifício. Possíveis modalidades de aplicação • Explorar o recurso, projetando-o para a turma. Após a visualização do vídeo • Colocar algumas questões de exploração sobre o tema abordado no vídeo. • Ouvir as respostas dos alunos. • Usar as respostas dos alunos para gerar um debate na sala de aula.
  • 220.
    Editável e fotocopiável© Texto | Novo 10Q 219 Atividades Descrição geral As atividades permitem ao professor verificar os conhecimentos adquiridos pelos alunos. Cada atividade contém um conjunto de exercícios adaptados de exame ou com tipologia de exame. Os professores que adotem o Novo 10Q terão ao seu dispor, em , as seguintes atividades, assim como a Guia de exploração do recurso: • Massa atómica relativa • Quantidade de matéria e massa molar • Fração molar e fração mássica • Transições eletrónicas (disponível na versão de demonstração) • Energia de remoção eletrónica • Distribuição eletrónica • Características da Tabela Periódica • Estrutura de Lewis • Estrutura de moléculas orgânicas e biológicas • Identificação de grupos funcionais • Volume molar e massa volúmica • Variação de entalpia • Medições e incertezas associadas Atividade 6 exercícios adaptados do Exame Nacional.
  • 221.
    220 Editável efotocopiável © Texto | Novo 10Q Guia de exploração do recurso «Atividade - Transições eletrónicas» Pág.53 Metas curriculares Elementos químicos e sua organização Energia dos eletrões nos átomos 2.7 Associar cada série espetral do átomo de hidrogénio a transições eletrónicas com emissão de radiação nas zonas do ultravioleta, visível e infravermelho. 2.8 Relacionar, no caso do átomo de hidrogénio, a energia envolvida numa transição eletrónica com as energias dos níveis entre os quais essa transição se dá. Sugestões de exploração por secção • Consolidar os conhecimentos adquiridos. Possíveis modalidades de aplicação • O recurso pode ser explorado pelo professor, projetando-o para a turma, ou explorado pelos alunos individualmente ou em grupo.
  • 222.
    Editável e fotocopiável© Texto | Novo 10Q 221 Testes interativos Descrição geral Os testes interativos contemplam a totalidade dos conteúdos abordados, existindo um teste por subcapítulo para o aluno e um teste global de subdomínio exclusivo para o professor, perfazendo um total de 25 testes interativos para o aluno e 6 testes exclusivos para o professor. O aluno poderá assim validar as suas aprendizagens e diagnosticar as suas dificuldades antes de realizar o seu teste de avaliação. Os professores que adotem o Novo 10Q terão ao seu dispor, em , os seguintes testes interativos: Ordens de grandeza e escalas de comprimento • 1.1.1 Ordens de grandeza e escalas de comprimento • 1.1.2 Dimensões à escala atómica • 1.1.3 Massa isotópica e massa atómica relativa média • 1.1.4 Quantidade de matéria e massa molar • 1.1.5 Fração molar e fração mássica • 1.1 A massa e tamanho dos átomos • 1.2.1 Espetros contínuos e descontínuos (disponível na versão de demonstração) • 1.2.2 O modelo atómico de Bohr (disponível na versão de demonstração) • 1.2.3 Espetro do átomo de hidrogénio (disponível na versão de demonstração) • 1.2.4 Transições eletrónicas • 1.2.5 Quantização de energia • 1.2.6 Energia de remoção eletrónica • 1.2.7 Modelo quântico do átomo • 1.2.8 Configuração eletrónica de átomos • 1.2 Energia dos eletrões nos átomos (disponível na versão de demonstração) • 1.3.1 Evolução histórica da Tabela Periódica • 1.3.2 Organização e estrutura da Tabela Periódica: grupos, períodos e blocos • 1.3.3 Propriedades periódicas dos elementos representativos • 1.3.4 Propriedades dos elementos e das substâncias elementares • 1.3 Tabela Periódica • 2.1.1 Tipos de ligações químicas • 2.1.2 Ligação covalente • 2.1.3 Ligações intermoleculares • 2.1 Ligação química • 2.2.1 Lei de Avogadro, volume molar e massa volúmica • 2.2.2 Soluções, coloides e suspensões • 2.2.3 Composição quantitativa de soluções • 2.2 Gases e dispersões • 2.3.1 Energia de ligação e reações químicas • 2.3.2 Reações fotoquímicas na atmosfera • 2.3 Transformações químicas
  • 223.
    222 Editável efotocopiável © Texto | Novo 10Q Simulador de testes Descrição geral Esta ferramenta permite ao aluno gerar um teste modelo e personalizar o seu estudo, filtrando os conteúdos que pretende exercitar. Todas as questões apresentam soluções ou sugestões de resposta. O simulador de testes apresenta questões que saíram em exames nacionais entre 2006 e 2014 e também questões modelo. O professor poderá utilizá-lo na sala de aula para consolidar as aprendizagens. Está disponível em www.10Q.te.pt/simuladortestes.
  • 224.
      Editável e fotocopiável © Texto | Novo 10Q  223    Bibliografia sobre química  ALMEIDA, B.  F.  (2004)  Fundamentos  de  Química  Orgânica e Inorgânica, Lisboa, Edições Sílabo  ALMEIDA, G. (2002) Sistema Internacional de Unidades  (SI), Grandezas e Unidades Físicas ‐ terminologia,  símbolos e recomendações (3.a  edição), Lisboa,  Plátano Editora.  ATKINS, P., PAULA, J. (2012) Físico‐Química (9.a  edição), Rio  de Janeiro, LTC Editora  ATKINS,  P.  (2011)  Físico‐Química  –  Fundamentos   (5.a  Edição) Rio de Janeiro, LTC Editora  ATKINS,  P.  (2001)  O  Reino  dos  Elementos,  Lisboa,  Temas e Debates.  BAIRD, C. (2002) Química Ambiental (2.a  edição), Porto  Alegre, Bookman.  BROWN, T. L., LEMAY, H. E., BURSTEN, B. E., BURDGE,  J.  R.  (2005)  Química  –  a  Ciência  Central,  São  Paulo, Pearson Prentice Hall.  BURTON,  G.,  HOLMAN,  J.,  LAZONBY,  J.,  PILLING,  G.  WADDINGTON,  D.  (2000)  Salters  Advanced  Chemistry ‐ Chemical Ideas (2.a  edição), Oxford,  Heinemann Educational Publishers.  CALADO, J. (2012) Haja Luz! Uma história da química  através de tudo, Lisboa, IST ‐ Instituto Superior  Técnico  CAMPOS, L., MOURATO, M. (2002) Nomenclatura dos  Compostos  Orgânicos  (2.a   edição),  Lisboa,  Escolar Editora.  CAVALEIRO, A. M. (2004) Química Inorgânica Básica (3ª  Edição), Aveiro, Universidade de Aveiro  COTARDIÈRE, P. (2012) História das Ciências – Volume II:  Física e Química, Lisboa, Edições Texto & Grafia  CUNNINGHAM,  W.,  CUNNINGHAM,  M.,  SAIGO,  B.  (2003)  Environmental  Science  –  A  global  concern (7th  edition), Boston, McGrawHill  Dicionário de Química (2005) Lisboa, Texto Editores.  ESCOVAL,  M.  T.  (2010)  A  Ação  da  Química  na  Nossa  Vida, Lisboa, Editorial Presença  EVANS,  W.,  LEWIS,  R.  (2014)  Química  (4.a   Edição),  Lisboa, Nova Guanabara  FRYHLE, C., SOLOMONS, T. W. (2012) Química Orgânica  –  Volume  1  (10.a   Edição),  Rio  de  Janeiro,  LTC  Editora  GARRITZ, A., CHAMIZO J. A. (2002) Química, São Paulo,  Pearson Education do Brasil.  GIL,  V.  M.  S.(1996)  Orbitais  em  Átomos  e  Moléculas,  Lisboa, Fundação Calouste Gulbenkian.  GREENE,  B.  (2000)  O  Universo  Elegante,  Lisboa,  Gradiva.  GOLDSBY,  K.,  CHANG,  R.  (2012)  Química  (11.a   edição),  Lisboa, McGraw Hill  IUPAC  (2000)  Guia  IUPAC  para  a  Nomenclatura  de  Compostos  Orgânicos  –  Tradução  Portuguesa,  Lisboa, SPQ e Lidel.  JONES, L., ATKINS, P. W. (2011) Princípios de Química:  Questionando  a  vida  moderna  e  o  meio  ambiente (5.a  Edição), Porto Alegre, Bookman  LAGO, T. (2006) Descobrir o Universo, Lisboa, Gradiva.  LASZLO,  P.  (1997)  A  Nova  Química,  Lisboa,  Instituto  Piaget  OTILIA,  L.,  LENZI,  E.  (2009)  Introdução  à  Química  da  Atmosfera: Ciência, vida e sobrevivência, Rio de  Janeiro, LTC Editora  PERUZZO,  T.  M.  (2007)  Química  na  Abordagem  do  Cotidiano  1:  Química  Geral  e  Inorgânica   (4.a  Edição), São Paulo, Moderna  SANTOS,  P.  P.  (2012)  Química  Orgânica  –  Volume  1,  Lisboa, IST ‐ Instituto Superior Técnico  SCHORE,  N.  E.,  VOLLHARDT,  P.  (2013)  Química  Orgânica:  Estrutura  e  Função,  Porto  Alegre,  Bookman  SEITA, J. F. (1991) Nomenclatura da Química Orgânica  – Uma Introdução, Edições Almedina  SENESE, F., BRADY, J. E. (2009) Química – Volume 1: A  Matéria e Suas Transformações, Rio de Janeiro,  LTC  Editora  SILVA,  P.  F.,  SILVA,  J.  L.  (2009)  A  Importância de Ser Eletrão: O átomo e as suas  ligações: um olhar sobre a evolução da Química,  Lisboa, Gradiva  VAITSMAN,  E.  P.,  VAITSMAN,  D.  S.  (2006)  Química  &  Meio Ambiente: Ensino Contextualizado, Rio de  Janeiro, Interciência  WEDLER, G. (2001) Manual de Química Física (4.a  Edição),  Lisboa, Fundação Calouste Gulbenkian      Sugestões de bibliografia e sítios na Internet 
  • 225.
    224  Editável e fotocopiável © Texto | Novo 10Q    Bibliografia sobre trabalho laboratorial  AFONSO, C. A., SIMÃO, D. P., RAPOSO, M. M., SERRA,  M. E., FERREIRA, L. P. (2011) 100 Experiências de  Química Orgânica, Lisboa, IST ‐ Instituto Superior  Técnico  HARRIS, D.  C.  (2012)  Análise  Química  Quantitativa   (8.a  Edição), Rio de Janeiro, LTC Editora  HARRIS,  D.  (2011)  Explorando  a  Química  Analítica   (4.a  Edição), Rio de Janeiro, LTC Editora  HOLLER,  F.  et  al.  (2006)  Fundamentos  de  Química  Analítica, Rio de Janeiro, Thomson Learning.  MENDHAN,  J.  et  al.  (2002)  Vogel  ‐  Análise  Química  Quantitativa  (6.a   edição),  Rio  de  Janeiro,  LTC  Editores.  NEDER, A. V. F., BESSLER, K. E. (2004) Química em Tubos  de  Ensaios:  Uma  abordagem  para  principiantes,  São Paulo, Edgard Blucher  PINTO, M. M. (2011) Manual de Trabalhos Laboratoriais  de Química Orgânica e Farmacêutica, Lisboa, Lidel  Bibliografia sobre ensino  CARVALHO, P. S., FERREIRA, A. J., PAIVA, J., SOUSA, A. S.  (2012) Ensino Experimental das Ciências: Um guia  para  professores  do  ensino  secundário.  Física  e  Química (2.a  edição), Porto, U.Porto Editorial  LEITE, L. (2001) Contributos para uma Utilização mais  Fundamentada  do  Trabalho  Laboratorial  no  Ensino  das  Ciências.  Cadernos  Didáticos  de  Ciências, Volume 1, 79‐97.  MARTINS, I. (2002) Educação e Educação em Ciências,  Aveiro, Universidade de Aveiro.  PAIVA,  J.  et  al.  (2004)  E‐learning:  o  Estado  da  Arte,  Lisboa, Sociedade Portuguesa de Física/SofCiência.    Sítios na Internet  Em  http://www.texto.pt/pt/menu/?id=7  encontram‐se  links atualizados para um conjunto de sítios relacionados  com a componente de Química do Programa de Física e  Química  A  do  10.o /11.o   ano,  muitos  deles  sugeridos  no  próprio Programa.     
  • 226.
    www.leya.com www.texto.pt 978-111-11-3808-0 9 78 1 1 1 1 1 3 8 0 8 0 CADERNO DE APOIO AO PROFESSOR 10 NOVO