SlideShare uma empresa Scribd logo
Engenharia de Software Modelo Cascata Antonio Carlos Almir Ramos Eryson Raphael Rafael G. Leitão
O Modelo Cascata ,[object Object]
O Modelo Cascata ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata ,[object Object],[object Object]
O Modelo Cascata
 
Vantagens ,[object Object],[object Object],[object Object],[object Object],[object Object]
Desvantagens ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problemas ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Problemas ,[object Object]
Domínio de aplicações  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Domínio de aplicações  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Mais conteúdo relacionado

Mais procurados

Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1
Elaine Cecília Gatto
 
Processos de Desenvolvimento de Software - teoria e prática
Processos de Desenvolvimento de Software - teoria e práticaProcessos de Desenvolvimento de Software - teoria e prática
Processos de Desenvolvimento de Software - teoria e prática
Ralph Rassweiler
 
Modelos de Processo de Software Parte 3
Modelos de Processo de Software Parte 3Modelos de Processo de Software Parte 3
Modelos de Processo de Software Parte 3
Elaine Cecília Gatto
 
Aula - Metodologias Ágeis
Aula - Metodologias ÁgeisAula - Metodologias Ágeis
Aula - Metodologias Ágeis
Mauricio Cesar Santos da Purificação
 
Exemplo de documento de requisitos
Exemplo de documento de requisitosExemplo de documento de requisitos
Exemplo de documento de requisitos
Leandro Rodrigues
 
Modelagem Arquitetural e Visão 4+1
Modelagem Arquitetural e Visão 4+1Modelagem Arquitetural e Visão 4+1
Modelagem Arquitetural e Visão 4+1
Adriano Tavares
 
eXtreme Programming (XP)
eXtreme Programming (XP)eXtreme Programming (XP)
eXtreme Programming (XP)
Carlos Henrique Martins da Silva
 
Aula 2 - Processos de Software
Aula 2 - Processos de SoftwareAula 2 - Processos de Software
Aula 2 - Processos de Software
Rudson Kiyoshi Souza Carvalho
 
Exemplo de Plano de testes
Exemplo de Plano de testes Exemplo de Plano de testes
Exemplo de Plano de testes
Leandro Rodrigues
 
Apresentação sobre metodologia Scrum
Apresentação sobre metodologia ScrumApresentação sobre metodologia Scrum
Apresentação sobre metodologia Scrum
IsaacBessa
 
Scrum - Desenvolvimento Ágil
Scrum - Desenvolvimento ÁgilScrum - Desenvolvimento Ágil
Scrum - Desenvolvimento Ágil
Israel Santiago
 
Scrum em 15 minutos
Scrum em 15 minutosScrum em 15 minutos
Scrum em 15 minutos
Rodrigo Cascarrolho
 
Scrum em 15 minutos
Scrum em 15 minutosScrum em 15 minutos
Scrum em 15 minutos
Serge Rehem
 
Scrum
ScrumScrum
Modelos de ciclo de vida de software
Modelos de ciclo de vida de softwareModelos de ciclo de vida de software
Modelos de ciclo de vida de software
Yuri Garcia
 
Prototype model
Prototype modelPrototype model
Prototype model
Kumar Sethi
 
Comparativo entre Processos Ágeis
Comparativo entre Processos ÁgeisComparativo entre Processos Ágeis
Comparativo entre Processos Ágeis
Daniel Ferreira
 
Modelo de especificação de caso de uso
Modelo de especificação de caso de usoModelo de especificação de caso de uso
Modelo de especificação de caso de uso
Leandro Rodrigues
 
Scrum - Fundamentos, teorias e práticas!
Scrum - Fundamentos, teorias e práticas!Scrum - Fundamentos, teorias e práticas!
Scrum - Fundamentos, teorias e práticas!
Annelise Gripp
 
Teste de software
Teste de softwareTeste de software
Teste de software
COTIC-PROEG (UFPA)
 

Mais procurados (20)

Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1Modelos de Processo de Software Parte 1
Modelos de Processo de Software Parte 1
 
Processos de Desenvolvimento de Software - teoria e prática
Processos de Desenvolvimento de Software - teoria e práticaProcessos de Desenvolvimento de Software - teoria e prática
Processos de Desenvolvimento de Software - teoria e prática
 
Modelos de Processo de Software Parte 3
Modelos de Processo de Software Parte 3Modelos de Processo de Software Parte 3
Modelos de Processo de Software Parte 3
 
Aula - Metodologias Ágeis
Aula - Metodologias ÁgeisAula - Metodologias Ágeis
Aula - Metodologias Ágeis
 
Exemplo de documento de requisitos
Exemplo de documento de requisitosExemplo de documento de requisitos
Exemplo de documento de requisitos
 
Modelagem Arquitetural e Visão 4+1
Modelagem Arquitetural e Visão 4+1Modelagem Arquitetural e Visão 4+1
Modelagem Arquitetural e Visão 4+1
 
eXtreme Programming (XP)
eXtreme Programming (XP)eXtreme Programming (XP)
eXtreme Programming (XP)
 
Aula 2 - Processos de Software
Aula 2 - Processos de SoftwareAula 2 - Processos de Software
Aula 2 - Processos de Software
 
Exemplo de Plano de testes
Exemplo de Plano de testes Exemplo de Plano de testes
Exemplo de Plano de testes
 
Apresentação sobre metodologia Scrum
Apresentação sobre metodologia ScrumApresentação sobre metodologia Scrum
Apresentação sobre metodologia Scrum
 
Scrum - Desenvolvimento Ágil
Scrum - Desenvolvimento ÁgilScrum - Desenvolvimento Ágil
Scrum - Desenvolvimento Ágil
 
Scrum em 15 minutos
Scrum em 15 minutosScrum em 15 minutos
Scrum em 15 minutos
 
Scrum em 15 minutos
Scrum em 15 minutosScrum em 15 minutos
Scrum em 15 minutos
 
Scrum
ScrumScrum
Scrum
 
Modelos de ciclo de vida de software
Modelos de ciclo de vida de softwareModelos de ciclo de vida de software
Modelos de ciclo de vida de software
 
Prototype model
Prototype modelPrototype model
Prototype model
 
Comparativo entre Processos Ágeis
Comparativo entre Processos ÁgeisComparativo entre Processos Ágeis
Comparativo entre Processos Ágeis
 
Modelo de especificação de caso de uso
Modelo de especificação de caso de usoModelo de especificação de caso de uso
Modelo de especificação de caso de uso
 
Scrum - Fundamentos, teorias e práticas!
Scrum - Fundamentos, teorias e práticas!Scrum - Fundamentos, teorias e práticas!
Scrum - Fundamentos, teorias e práticas!
 
Teste de software
Teste de softwareTeste de software
Teste de software
 

Semelhante a Modelo cascata apresentação

T1 g13.modelo cascata
T1 g13.modelo cascataT1 g13.modelo cascata
T1 g13.modelo cascata
wilsonguns
 
Processos de software
Processos de softwareProcessos de software
Processos de software
Computação Depressão
 
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane FidelixModelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Cris Fidelix
 
Processo de software individual
Processo de software individualProcesso de software individual
Processo de software individual
Adivaldo_badinho
 
Engenharia De Software
Engenharia De SoftwareEngenharia De Software
Engenharia De Software
CursoSENAC
 
Aula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptxAula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptx
ALEXANDRELISBADASILV
 
Ciclo de vida de software
Ciclo de vida de softwareCiclo de vida de software
Ciclo de vida de software
diha36
 
Modelos de processos de software
Modelos de processos de softwareModelos de processos de software
Modelos de processos de software
Nécio de Lima Veras
 
vantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de softwarevantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de software
jwniezzy
 
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdfO_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
Athena542429
 
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile AppAula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Cloves da Rocha
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
wilsonguns
 
Analise aula2
Analise aula2Analise aula2
Analise aula2
Kelvin Wesley
 
Aula2 processos sw
Aula2 processos swAula2 processos sw
Aula2 processos sw
Computação Depressão
 
A Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de SoftwareA Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de Software
Robson Silva Espig
 
Rational Unified Process (RUP)
Rational Unified Process (RUP)Rational Unified Process (RUP)
Rational Unified Process (RUP)
Carlos Henrique Martins da Silva
 
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBANDesenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
Fernando Palma
 
IBM Rational Unified Process
IBM Rational Unified ProcessIBM Rational Unified Process
IBM Rational Unified Process
Robson Silva Espig
 
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Cloves da Rocha
 
ES4.ppt
ES4.pptES4.ppt

Semelhante a Modelo cascata apresentação (20)

T1 g13.modelo cascata
T1 g13.modelo cascataT1 g13.modelo cascata
T1 g13.modelo cascata
 
Processos de software
Processos de softwareProcessos de software
Processos de software
 
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane FidelixModelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
Modelos de Processo e Desenvolvimento de Software 1 - Prof.ª Cristiane Fidelix
 
Processo de software individual
Processo de software individualProcesso de software individual
Processo de software individual
 
Engenharia De Software
Engenharia De SoftwareEngenharia De Software
Engenharia De Software
 
Aula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptxAula 7 - Modelos de Ciclo de Vida.pptx
Aula 7 - Modelos de Ciclo de Vida.pptx
 
Ciclo de vida de software
Ciclo de vida de softwareCiclo de vida de software
Ciclo de vida de software
 
Modelos de processos de software
Modelos de processos de softwareModelos de processos de software
Modelos de processos de software
 
vantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de softwarevantagens e desvantagens do ciclo de vida de software
vantagens e desvantagens do ciclo de vida de software
 
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdfO_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
O_Ciclo_de_Vida_do_Desenvolvimento_de_Sistemas.pdf
 
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile AppAula - Modelos de Processos de Desenvolvimento de Software / Mobile App
Aula - Modelos de Processos de Desenvolvimento de Software / Mobile App
 
Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9Engenharia de-software-1217199594686494-9
Engenharia de-software-1217199594686494-9
 
Analise aula2
Analise aula2Analise aula2
Analise aula2
 
Aula2 processos sw
Aula2 processos swAula2 processos sw
Aula2 processos sw
 
A Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de SoftwareA Evolucao dos Processos de Desenvolvimento de Software
A Evolucao dos Processos de Desenvolvimento de Software
 
Rational Unified Process (RUP)
Rational Unified Process (RUP)Rational Unified Process (RUP)
Rational Unified Process (RUP)
 
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBANDesenvolvimento ágil de software: análise sintética a partir de KANBAN
Desenvolvimento ágil de software: análise sintética a partir de KANBAN
 
IBM Rational Unified Process
IBM Rational Unified ProcessIBM Rational Unified Process
IBM Rational Unified Process
 
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
Aula Modelos de Processos Tradicionais para Desenvolvimento de Software
 
ES4.ppt
ES4.pptES4.ppt
ES4.ppt
 

Modelo cascata apresentação

Notas do Editor

  1. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863
  2. Primeira Revolução Industrial the mechanization of manufacturing changed an agrarian into an urban industrial society The cotton textile industry was the first to be fully mechanized. The crucial inventions were John KAY's flying shuttle (invented in 1733 but not widely used until the 1760s), James HARGREAVES's spinning jenny (1765), Richard ARKWRIGHT's water frame (1769), Samuel CROMPTON's mule (1779), and Edmund CARTWRIGHT's machine LOOM (1785, but delayed in its general use). n 1709 the ironmaster Abraham DARBY I succeeded in producing sound cast iron in a blast furnace charged with iron ore and coal (and soon afterward with coke, derived from coal). In 1712 another Englishman engaged in the iron trade, Thomas NEWCOMEN, invented the STEAM ENGINE The first factories were driven by water, but James WATT's improved Newcomen STEAM ENGINE (1769; especially his "sun and planet" adaptation converting linear into circular motion) made steam-driven machinery and modern factories possible from the 1780s. This use of steam power led, in turn, to increased demand for coal and iron. Each development spawned new technological breakthroughs, as, for example, Sir Henry BESSEMER's process for making steel (1856). Other industries such as chemicals and mining and the engineering professions also developed rapidly Segunda Revolução Industrial From 1830 on, the development of steam-driven LOCOMOTIVES brought the advent of RAILROADS, extending the transportation network In the 20th century the United States also dominated the new automobile industry, which Henry Ford (see FORD family) revolutionized by introducing a system of coordinated ASSEMBLY-LINE operations. Ford's success led to the widespread adoption of MASS PRODUCTION techniques in industry If the engineer was instrumental in making the Industrial Revolution, it can equally be said that the Industrial Revolution gave rise to the ENGINEERING profession as it is recognized today. Where previously engineers had risen through the ranks of craftsmen, in the 18th century it was becoming apparent that the act of design could be codified in the form of technical training, and the military services began to seek such training for their officer corps. In the 1740s the British government established a military academy at Woolwich at which cadets were instructed in the application of elementary mathematics and statics to gunnery and the design of fortifications. Later in the century John SMEATON coined the term "civil engineer" to distinguish civilian engineers from the increasing number of military engineers being graduated from Woolwich. A short-lived fraternity that called itself the Society of Civil Engineers (the "Smeatonians") formed around Smeaton; the first true professional organization in the field of engineering, however, was the Institution of Civil Engineers, founded in London in 1818 Experiments with the INTERNAL-COMBUSTION ENGINE began early in the century but without success until Jean Joseph Etienne LENOIR built an operational if inefficient two-cycle engine (1860) and the first AUTOMOBILE with this type of engine in 1862. The critical breakthrough in designing an efficient internal-combustion engine came in 1876, when Nikolaus August OTTO marketed the "Silent Otto" gas engine, having four cycles: intake, compression, stroke, and exhaust. In the 1880s the engine was adopted by Karl BENZ and Gottlieb DAIMLER to power motor vehicles. Rudolf DIESEL's engine, in which combustion is produced by high pressure in the cylinder, was exhibited in 1897. INDUSTRIAL REVOLUTION, which began in Great Britain in the 18th century, spread to the rest of western Europe and North America during the 19th century. The pattern of diffusion was quite uniform, beginning with textiles, coal, and iron. In textiles such improvements as the Jacquard LOOM (France, 1801) were developed, which allowed fabrics with woven patterns to be produced cheaply. The SEWING MACHINE was invented (1846) in the United States by Elias HOWE and mass-marketed (1851) by Isaac Merrit SINGER. Iron was the basic metal of industry until after the discovery by Henry BESSEMER (British patent, 1856) and William Kelly (U.S. patent, 1847) of a process for making large amounts of steel cheaply (see IRON AND STEEL INDUSTRY). The superior Siemens-Martin open-hearth process for making high-quality steel was first demonstrated in France in 1863