SlideShare uma empresa Scribd logo
1 de 13
Universidade Federal de Campina Grande
Centro de Engenharia Elétrica e Informática
Unidade Acadêmica de Engenharia Elétrica
Professor: LUIS REYES ROSALES MONTERO

LABORATÔRIO DE MÁQUINAS
GUIA DO EXPERIMENTO

Máquina de indução: dinâmica de
funcionamento

Aluno:_________________________

TURMA:_____________
Máquina de Indução

2

Campina grande,_____ de__________________ 2013

1. Introdução
A análise preliminar para se entender o funcionamento de uma máquina elétrica trifásica
deve ser começada pela compreensão do campo magnético girante, (produzido pelo fluxo de
correntes no enrolamento polifásico de uma máquina CA Corrente Alternada).
O funcionamento de uma máquina de indução se dá devido à forma como estão distantes os
enrolamentos das fases entre si, 120º elétricos no espaço e, as correntes que alimentam estas bobinas
são equilibradas, isto é, tem a mesma amplitude também estão defasadas em 120º. Para as correntes
temos:
ia = I m cos ωt
ib = I m cos(ωt − 120º )
ic = I m cos(ωt − 240º )

Fixando a origem para o ângulo θ , medido ao longo da periferia do entreferro, no eixo da
fase a por exemplo, para qualquer instante t, todas as 3 fases contribuem com a fmm (Força
Magnetomotriz) do entreferro em qualquer θ . Para as fases a,b e c temos:
Fa = Fa ( pico ) cos θ
Fb = Fb ( pico ) cos ( θ − 120º )
Fc = Fc ( pico ) cos ( θ − 240º )
A Força Magnetomotriz resultante no ponto θ é:
Fr (θ ) = Fa + Fb + Fc
Mas as amplitudes de fmm variam com o tempo de acordo com as variações das correntes.
Assim com a origem do tempo arbitrariamente tomada no instante em que a corrente de a é um
máximo positivo, temos:

Fa ( pico ) = Fa ( máx ) cos ( ωt )
Fb ( pico ) = Fb ( máx ) cos ( ωt − 120º )
Fc ( pico ) = Fc ( máx ) cos ( ωt − 240º )
Como as três correntes são equilibradas, temos
te equação para fmm:

Fr (θ , t ) = Fmáx cos ( θ ) cos ( ωt ) + Fmáx cos ( θ − 120º ) cos ( ωt − 120º ) + Fmáx cos ( θ − 240º ) cos ( ωt − 240º )
1
1
1
Fmáx cos ( θ − ωt ) + Fmáx cos ( θ − ωt ) + Fmáx cos ( θ − ωt )
2
2
2
3
Fr (θ , t ) = Fmáx cos ( θ − ωt )
2
Fr (θ , t ) =
Máquina de Indução

3

A onda descrita pela equação final acima é uma função senoidal do ângulo espacial θ. Ela
tem uma amplitude constante e um ângulo de fase espacial que é uma função linear do tempo. O
ângulo ωt provê a rotação da onda inteira ao redor do entreferro à velocidade angular constante ω.
Portanto, para um sistema bifásico, podemos concluir que como Fr = Fa + Fb , teremos que
Fr =

2
Fmáx cos(θ − ωt ) = Fmáx cos(θ − ωt ) .
2

Abaixo segue o esquema das ligações das bobinas do estator para se obter um estator
trifásico ligado em estrela para dois e quatros pólos.

Fig.1

Os motores de indução monofásicos são utilizados em aplicações de potência inferior
aquelas dos motores trifásicos de uma ordem de frações de um cavalo.
Um motor monofásico apresenta a estrutura de base dada na Fig.3.4a. Nesta forma não há
conjugado motor de partida, pois Fs, campo do estator é um campo pulsante estacionário:
Máquina de Indução

4

(Fs = Fmax.Cos(wst)cosθ). De fato o valor de pico de F s(Fmax.coswst) está sempre
alinhado na direção do eixo da bobina do estator e o valor de pico do campo do rotor, também
pulsante, encontra-se alinhado na mesma direção segundo o eixo da bobina do rotor.

Fig.1.2 - Estruturas Equivalentes básicas de um Motor de Indução monofásico
Entretanto pode-se mostrar (pela decomposição de Fs em dois campos girantes de sentidos
opostos e de valor de pico Fmax/2) que se o motor é posto em marcha por um artifício qualquer, tem
origem um conjugado resultante no sentido do movimento do rotor (o torque proporcionado pelo
campo girante no sentido do movimento supera o torque correspondente ao campo girante de
sentido contrário).
Existem vários métodos para a partida de um motor de indução monofásico; um método
bastante comum baseia-se na utilização de uma bobina auxiliar colocada no estator, em quadratura
com a bobina monofásica original, por onde deve circular uma corrente adiantada (mais próxima de
90° possível) em relação aquela da primeira bobina. A justificativa deste procedimento encontra-se
no fato de se obter uma estrutura de estator próxima a de uma máquina bifásica (bobinas estatóricas
defasadas no espaço de 90° elétricos, alimentadas por duas correntes equilibradas do tipo:
Imcos(wst) e Imsen(wst) que origina um campo girante do estator). Para a obtenção da corrente
adiantada da bobina auxiliar pode-se utilizar um capacitor em série com esta bobina (Fig. 1.2b).

2. Objetivos
Estudar as características de funcionamento da máquina de indução como gerador e motor.
Levantar os parâmetros da máquina de indução a partir das medidas obtidas experimentalmente dos
Máquina de Indução

5

ensaios de circuito aberto e curto circuito, estudar a dinâmica de funcionamento e os diferentes tipos
de motores de indução.

3 Equipamentos e Instrumentos Utilizados
o 1 Máquina assíncrona trifásica 4 pólos;
o 2 varivolt;
o 2 fonte CC;
o 3 multímetros;
o 2 watímetros;
o 1 máquina CC;
o 1 painel de cargas (lâmpadas);
o 1 conta giros;
o

fios e cabos.

4. Determinação dos parâmetros da máquina assíncrona funcionando
como Motor
Máquina de Indução

6

Figura 2 – Fonte de corrente contínua para medição das resistências dos enrolamentos.
A modo de comparação dos resultados obtenha por 3 métodos a resistência.

A partir de

da aplicação de um sinal de tensão ao enrolamento do estator fase-neutro e fase-fase, e fase-fase no
rotor.

Coloque os dados referenciados na teabela1. Obtenha os dados de resistência dos

enrolamentos utilizando um multímetro. Compare e comente os resultados obtidos por multímetro e
os obtidas diretamente da lei de Ohm e dos ensaios de circuito aberto e curto circuito.
Tabela 1 - Resistência dos enrolamentos.
Ligação do estator em delta
VFn (V)

Ligação do rotor estrela
Medida sobre uma fase
6.41
Medida entre fases
9.43
Medida diretamente com o multímetro

(Estator)
IFn (A)

Rfn (Ω)

Vr(V)

(Rotor)
Ir(A)

4.0

X
3.24
X

X
10
X

3
3.28

Rr (Ω)
X
1.1

Para determinar os parâmetros por fase do circuito equivalente da máquina assíncrona, faz-se
necessário o ensaio de circuito aberto (motor em vazio) e o ensaio de curto circuito (rotor
bloqueado).

Figura 3 – Diagrama elétrico para ensaio do motor de indução em vazio e de rotor bloqueado.
Máquina de Indução

7

Realize os ensaio de rotor em vazio e rotor bloqueado e preencha as tabelas 2 e 3
Tabela 2 – Ensaio em Vazio Método dos wattímetros e multímetros
W1 (w)
W 2 (W)
I (A)
Vnom (V)
27*20
-(17*20)
4.04
220
Tabela 3 – Ensaio com o rotor bloqueado Método dos wattímetros e multímetros
W1 (w)
W 2 (W)
I cc(nom) (A)
V cc(V)
92*5
-(28*5)
8.8
71
Tabela 4 – Ensaio em Vazio com rotor em aberto
W1 (w)
W 2 (W)
I (A)
V (V)
Vrotor (V)
25*20
-(21*20)
4.06
220
75,8

Baseado nos ensaios de circuito aberto e de curto-circuito determine os valores dos
parâmetros da máquina de indução, seguindo o exemplo abaixo.
Teste de circuito aberto :
V
379
Vca = camed =
→ Vca = 218,82V
3
3
I ca = Icamed → I ca = 2,54 A
Wcatotal 380
=
→ Pca = 126,67W
3
3
V
218,82
Z ca = ca =
→ Z ca = 86,15 Ω
I ca
2,54
Pca =

Rca =

Pca 126,67
=
→ Rca = 19,63 Ω
2
2
I ca
( 2,54 )
2

2

X ca = Z ca − Rca =

Rs

Vprim

( 86,15 )

2

− ( 19,63) → X ca = 83,88Ω
2

Xs

X2’

Rf

Xm

Circuito equivalente da Máquina
de Indução
- Teste de Circuito
Aberto -

R2’
Máquina de Indução

8

Teste de curto circuito :
V
381
Vcc = ccmed =
→ Vcc = 219,97 V
3
3
I cc = Iccmed → I cc = 2,54 A
Wcctotal 460
=
→ Pcc = 153,33W
3
3
V
219,97
Z cc = cc =
→ Z cc = 86,60 Ω
I cc
2,54
Pcc =

Rcc =

Pcc
153,33
=
→ Rcc = 23,77 Ω
2
2
I cc
( 2,54 )
2

2

X cc = Z cc − Rcc =

( 86,60 )

Rs

2

− ( 23,77 ) → X cc = 83, 27 Ω
2

Xs

R2’
’

X2’

Vprim

Circuito Equivalente da Máquina de Indução
- Teste de Curto-Circuito
Cálculo dos parâmetros :
Xcc 83, 27
=
→ X s = 41,635 Ω
2
2
Xcc 83, 27
X2 ' =
=
→ X 2 ' = 41,635 Ω
2
2
R s = R smed → R s = 1,96 Ω
Xs =

R 2 ' = R cc − R s = 23,77 − 1,96 → R 2 ' = 21,81Ω
X m = X ca − X s = 83,88 − 41,635 → X m = 42, 245 Ω
2

R ca = R s +

R f Xm
2
2
2
→ ( R ca − R s ) R f − X m R f + ( R ca − R s ) X m = 0
2
2
R f + Xm

 R = 22,829 Ω
2
R f − 100,998R f + 31534,589 = 0 →  f
 R f = 78,169 Ω
R f = 78,169 Ω

Obtenha as perdas no ferro e as perdas devido ao atrito, ventilação e perdas nas resistências
dos enrolamentos a partir dos ensaios de circuito aberto e o rotor em aberto.
Máquina de Indução

9

5. Funcionamento da máquina de indução em tensão reduzida
Tabela 5 – Preencha a tabela 5 Ensaio em vazio para estudar o efeito da tensão na corrente
de partida.
Tabela 5 – Ensaio a tensão reduzida
Vmed

Imed

Velocidade

Wtot

40
60
80
100
120
140
160
180
200
220

x
1.63
1.40
1.36
1.45
1.65
1.95
2.35
2.95
3.77

x
1704
1745
1761
1771
1778
1782
1783
1785
1784

x
145
145
145
160
175
180
200
220
270

Obtenha os gráficos relacionados ao efeito da tensão na corrente, velocidade e potência de consumo
do motor.
6 Ensaio com carga do motor de indução
Neste ensaio com carga é utilizada uma máquina síncrona funcionando como gerador com o
eixo acoplado ao motor de indução e ligue a um conjunto de cargas resistivas (lâmpadas de várias
potências). Esse esquema representa um gerador síncrono onde a força motora para girar o rotor é
proveniente do eixo do motor de indução.
Inicialmente pôs-se o motor de indução a girar a máquina síncrona em vazio (sem alimentar
nenhuma carga) e obtenha as medidas das correntes em uma das fases, obtenha as potências (pelo
método dos dois wattímetros) e meça a velocidade utilizando um tacômetro digital. Em seguida
Máquina de Indução 10
adicione seqüencialmente as cargas ao gerador síncrono, mantendo a tensão terminal constante
através do sistema de excitação. Preencha as medições na tabela 6. A partir destas medições calcule
o escorregamento S, a velocidade em rpm, a potencia útil, o conjugado, a potência aparente (VA), a
potencia ativa total de entrada, a potência reativa (var), o rendimento, e o fator de potencia.

Varivolt

Maquina
de
indução

Maquina
Síncrona
(gerador)

Quadro
de
cargas

Ponte
Varivolt
retificadora
Utilizando as seguintes equações preencha a tabela 6:

Setas vermelhas ligações elétrica
Setas pretas ligações mecânicas

Wm(rps) = Wm(rpm)/60
We(rad/s) = Wm(rps)*2π
S= [(Ws – Wm)/Ws]
Pag = Wtot – 3Rs(Imed)²
Pútil = (1 – S)Pag
Cútil = Pútil/We(rad/s)
F.P = Wtot/(380.Imed)
S = (3)½.380.Imed
Q = [(S)² - (P)²]½
Tabela 6 – Valores experimentais e calculados para o ensaio com carga
Imed
(A)
2,4
2,6
2,7
2,85
3,1
3,3
3,6
3,9
4,3
4,6

W1
(W)
-(12*20)
-(6*20)
-(2*20)
2*20
8*20
13*20
18*20
22*20
27*20
32*20

W2
(W)
32*20
38*20
42*20
48*20
52*20
59*20
65*20
71*20
79*20
86*20

Wentra
(W)

Vel.
(rpm)
1780
1770
1761
1752
1743
1734
1725
1716
1705
1695

Tabela 6 – Ensaio com carga
Pag
P útil
C útil
S
(W)
(W)
(N.m)
(VA)

P
(W)

Q
(var)

N
(%)

F.P
Máquina de Indução 11
5,2

37*20

94*20

1684

*as células não preenchidas serão calculadas de acordo com as equações acima.
Trace as curvas relacionadas a tabela 6, comentando a característica de cada curva em relação ao
aumento de carga, fator de potencia e trace outras curvas correlacionadas aos seguintes temas.
o O conjugado útil varia com que proporção a com a potência de entrada?
o A velocidade varia com qual tipo de proporção com a carga ?
o A corrente, o fator de potencia, o escorregamento, o rendimento, e a velocidade do motor de
indução variam com qual tipo de proporção com a carga?

Imed
(A)

W1
(W)
-(12*20)
-(6*20)
-(2*20)
2*20
8*20
13*20
18*20
22*20
27*20
32*20
37*20

W2
(W)
32*20
38*20
42*20
48*20
52*20
59*20
65*20
71*20
79*20
86*20
94*20

Tabela 6.1– Ensaio com carga e com banco de capacitores
Wentra
Vel.
Pag
P útil
C útil
S
P
Q
(W)
(rpm)
(W)
(W)
(N.m)
(VA)
(W) (var)
1780
1770
1761
1752
1743
1734
1725
1716
1705
1695
1684

N
(%)

F.P

*as células não preenchidas serão calculadas de acordo com as equações acima.
Trace as curvas relacionadas a tabela 6.1, inserindo um banco de capacitores para corrigir o fator de
potência do motor de indução comentando a característica da curva corrente em relação ao fator de
potencia e trace outras curvas correlacionadas aos seguintes temas.
o A corrente e o fator de potencia do motor de indução.
o Compare as curvas do fator de potência com e sim banco de capacitor
o Potencia ativa e reativa e compare a potencia reativa com e sem banco de capacitor
o Apresente o valor ótimo da potencia reativa do banco de capacitor para um fator de potencia
de 0.92.
Máquina de Indução 12
7 Ensaio com carga do gerador de indução
Neste ensaio com carga é utilizada uma máquina CC funcionando como motor série com o
eixo acoplado ao gerador de indução e ligue a um conjunto de cargas resistivas (lâmpadas de várias
potências). Esse esquema representa um gerador assíncrono onde a força motora para girar o rotor é
proveniente do eixo do motor de CC.
Inicialmente pôs-se o gerador de indução um capacitor entre as fases ou um conjunto de 3
capacitores, logo coloque a girar a máquina CC acima da velocidade síncrona e obtenha as medidas
das correntes em uma das fases, obtenha as potências e meça a velocidade utilizando um tacômetro
digital. Em seguida adicione seqüencialmente as cargas ao gerador assíncrono, mantendo a
velocidade constante através do motor CC. Preencha uma tabela e a partir destas medições calcule o
escorregamento S, a potencia útil, o conjugado e comente os resultados comparando o gerador
assíncrono operando como um gerador eólico. Comente a necessidade dos capacitores, e o motivo
da velocidade ser acima da velocidade síncrona.

Setas vermelhas ligações elétrica
Setas pretas ligações mecânicas

Varivolt

Vdc (V)
140
170
195
215

Maquina
CC (turbina
eólica)

Maquina
de
indução

Ponte
retificadora

Tabela 7 – Gerador Eólico
Velocidade (RPM)
Vsaída (V)
2372
220
2380
220
2397
220
2430
220

Quadro
de
cargas
Capacitores
de
excitação
Icarga
0
0.5
1.05
1.55

8. Partida do Motor de Indução Monofásico com capacitor
Ligar o Motor de indução em série com um amperímetro e verificar que o motor atinja uma
velocidade razoável (valor típico de 75% de W s) para que uma chave centrífuga seja desligada, a
qual desconecta o conjunto bobina auxiliar de partida mais capacitor de partida e o motor passa a
funcionar como monofásico puro.
Máquina de Indução 13
9 Conclusões
Apresente as suas considerações finais sobre o experimento.
10 Referências
JORDÃO, R. G., Máquinas Síncronas. São Paulo: Editora da USP,1980.
FITZGERALD, A. E., KINGSLEY, C. e KUSKO, A., Máquinas Elétricas. São Paulo: Ed.
McGraw Hill do Brasil, 1978.
KOSOW, I. L., Máquinas Elétricas e Transformadores. Porto Alegre: Ed. Globo, 1979.

Mais conteúdo relacionado

Mais procurados

Losses in 3 phase induction motor
Losses in 3 phase induction motorLosses in 3 phase induction motor
Losses in 3 phase induction motormpsrekha83
 
Three phase full wave rectifier
Three phase  full wave rectifierThree phase  full wave rectifier
Three phase full wave rectifierVinay Singh
 
Synchronous Motor Drives
Synchronous Motor DrivesSynchronous Motor Drives
Synchronous Motor DrivesDr.Raja R
 
2.circuitos trifásicos
2.circuitos trifásicos2.circuitos trifásicos
2.circuitos trifásicosManu Lucena
 
Corrente de curto_metodo_simplificado_v2.02
Corrente de curto_metodo_simplificado_v2.02Corrente de curto_metodo_simplificado_v2.02
Corrente de curto_metodo_simplificado_v2.02Émerson Gross
 
Dynamic Voltage Regulator
Dynamic Voltage RegulatorDynamic Voltage Regulator
Dynamic Voltage RegulatorRamesh Tholiya
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Deviceskhemraj298
 
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...Waqas Afzal
 
Need of starters in dc motors
Need of starters in dc motorsNeed of starters in dc motors
Need of starters in dc motorsFurqan Sadiq
 
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUS
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUSSOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUS
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUSDr SOUNDIRARAJ N
 
Report on Gorakhpur Workshop
Report on Gorakhpur WorkshopReport on Gorakhpur Workshop
Report on Gorakhpur Workshopdurgesh pathak
 
Autotransformer and three phase transformer
Autotransformer and three phase transformerAutotransformer and three phase transformer
Autotransformer and three phase transformerRitu Rajan
 
Lab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersLab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersKatrina Little
 

Mais procurados (20)

Losses in 3 phase induction motor
Losses in 3 phase induction motorLosses in 3 phase induction motor
Losses in 3 phase induction motor
 
Three phase full wave rectifier
Three phase  full wave rectifierThree phase  full wave rectifier
Three phase full wave rectifier
 
Synchronous Motor Drives
Synchronous Motor DrivesSynchronous Motor Drives
Synchronous Motor Drives
 
Chapter 2 latest
Chapter 2 latestChapter 2 latest
Chapter 2 latest
 
2.circuitos trifásicos
2.circuitos trifásicos2.circuitos trifásicos
2.circuitos trifásicos
 
How capacitor bank works
How capacitor bank worksHow capacitor bank works
How capacitor bank works
 
Corrente de curto_metodo_simplificado_v2.02
Corrente de curto_metodo_simplificado_v2.02Corrente de curto_metodo_simplificado_v2.02
Corrente de curto_metodo_simplificado_v2.02
 
Dynamic Voltage Regulator
Dynamic Voltage RegulatorDynamic Voltage Regulator
Dynamic Voltage Regulator
 
Series & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs DevicesSeries & shunt compensation and FACTs Devices
Series & shunt compensation and FACTs Devices
 
Thyristor switched capacitor
Thyristor switched capacitorThyristor switched capacitor
Thyristor switched capacitor
 
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
synchronous motor, Starting Torque, Types, Equivalent Circuit, Torque-speed c...
 
diversity
diversitydiversity
diversity
 
SCR protections
SCR protectionsSCR protections
SCR protections
 
Need of starters in dc motors
Need of starters in dc motorsNeed of starters in dc motors
Need of starters in dc motors
 
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUS
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUSSOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUS
SOLID STATE AC DRIVES ,UNIT V,ME (PE&D),ANNAUNIVERSITY SYLLABUS
 
Em manual 1
Em manual 1Em manual 1
Em manual 1
 
Report on Gorakhpur Workshop
Report on Gorakhpur WorkshopReport on Gorakhpur Workshop
Report on Gorakhpur Workshop
 
Autotransformer and three phase transformer
Autotransformer and three phase transformerAutotransformer and three phase transformer
Autotransformer and three phase transformer
 
Ac motor winding
Ac motor windingAc motor winding
Ac motor winding
 
Lab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt TriggersLab 7 Report Voltage Comparators and Schmitt Triggers
Lab 7 Report Voltage Comparators and Schmitt Triggers
 

Destaque

Laboratório de Máquinas Elétricas I 2009
Laboratório de Máquinas Elétricas I 2009Laboratório de Máquinas Elétricas I 2009
Laboratório de Máquinas Elétricas I 2009Jim Naturesa
 
Cbpe 2012 jim_bruno_final
Cbpe 2012 jim_bruno_finalCbpe 2012 jim_bruno_final
Cbpe 2012 jim_bruno_finalJim Naturesa
 
Motores de Indução - Parte 1
Motores de Indução - Parte 1Motores de Indução - Parte 1
Motores de Indução - Parte 1Jim Naturesa
 
Motores de Indução - Parte 2
Motores de Indução - Parte 2Motores de Indução - Parte 2
Motores de Indução - Parte 2Jim Naturesa
 
Manual de-Bobinagem-weg
Manual de-Bobinagem-wegManual de-Bobinagem-weg
Manual de-Bobinagem-wegPedro Narváez
 
Calculo De Transformadores
Calculo De TransformadoresCalculo De Transformadores
Calculo De TransformadoresHéctor
 
The LinkedIn Guide to the Perfect #WorkSelfie
The LinkedIn Guide to the Perfect #WorkSelfieThe LinkedIn Guide to the Perfect #WorkSelfie
The LinkedIn Guide to the Perfect #WorkSelfieLinkedIn
 

Destaque (12)

Laboratório de Máquinas Elétricas I 2009
Laboratório de Máquinas Elétricas I 2009Laboratório de Máquinas Elétricas I 2009
Laboratório de Máquinas Elétricas I 2009
 
Cbpe 2012 jim_bruno_final
Cbpe 2012 jim_bruno_finalCbpe 2012 jim_bruno_final
Cbpe 2012 jim_bruno_final
 
Eletrônica industrial transformadores
Eletrônica industrial transformadoresEletrônica industrial transformadores
Eletrônica industrial transformadores
 
Motores de Indução - Parte 1
Motores de Indução - Parte 1Motores de Indução - Parte 1
Motores de Indução - Parte 1
 
Motores de Indução - Parte 2
Motores de Indução - Parte 2Motores de Indução - Parte 2
Motores de Indução - Parte 2
 
Transformadores 2
Transformadores 2Transformadores 2
Transformadores 2
 
Transformadores 1
Transformadores 1Transformadores 1
Transformadores 1
 
Manual de-Bobinagem-weg
Manual de-Bobinagem-wegManual de-Bobinagem-weg
Manual de-Bobinagem-weg
 
transformadores
transformadorestransformadores
transformadores
 
Calculo De Transformadores
Calculo De TransformadoresCalculo De Transformadores
Calculo De Transformadores
 
Manual de transformadores
Manual de transformadoresManual de transformadores
Manual de transformadores
 
The LinkedIn Guide to the Perfect #WorkSelfie
The LinkedIn Guide to the Perfect #WorkSelfieThe LinkedIn Guide to the Perfect #WorkSelfie
The LinkedIn Guide to the Perfect #WorkSelfie
 

Semelhante a Funcionamento Máquina Indução

Apresentação de motores e servomecanismos slideshare
Apresentação de motores e servomecanismos slideshareApresentação de motores e servomecanismos slideshare
Apresentação de motores e servomecanismos slideshareWatson Oliveira
 
1 motores de indução
1 motores de indução1 motores de indução
1 motores de induçãoDorival Brito
 
Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007DeyvidDacoregio
 
SLIDE MAQUINAS II.pptx
SLIDE MAQUINAS II.pptxSLIDE MAQUINAS II.pptx
SLIDE MAQUINAS II.pptxantoniogff
 
Motores Elétricos
Motores ElétricosMotores Elétricos
Motores Elétricosvcolpo
 
Eletrotecnica inversores(completo)
Eletrotecnica   inversores(completo)Eletrotecnica   inversores(completo)
Eletrotecnica inversores(completo)EMERSON BURMANN
 
Aulas máquinas eléctricas ib
Aulas máquinas eléctricas ibAulas máquinas eléctricas ib
Aulas máquinas eléctricas ibRenata Nascimento
 
gerador sincrono aula 1.pdf
gerador sincrono aula 1.pdfgerador sincrono aula 1.pdf
gerador sincrono aula 1.pdfvasco74
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generatorsAngelo Hafner
 
Sel0437 aula08 motores01_2017
Sel0437 aula08 motores01_2017Sel0437 aula08 motores01_2017
Sel0437 aula08 motores01_2017Monilson Salles
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generatorsAngelo Hafner
 
Circuitos_Trifasicos.pdf
Circuitos_Trifasicos.pdfCircuitos_Trifasicos.pdf
Circuitos_Trifasicos.pdfssuser823aef
 
Apostila ete parte_2_2012_01
Apostila ete parte_2_2012_01Apostila ete parte_2_2012_01
Apostila ete parte_2_2012_01Carina Nogueira
 
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)Adailton Brito
 

Semelhante a Funcionamento Máquina Indução (20)

Apresentação de motores e servomecanismos slideshare
Apresentação de motores e servomecanismos slideshareApresentação de motores e servomecanismos slideshare
Apresentação de motores e servomecanismos slideshare
 
1 motores de indução
1 motores de indução1 motores de indução
1 motores de indução
 
Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007Modulo1 geradores ca 1 a 21_2007
Modulo1 geradores ca 1 a 21_2007
 
SLIDE MAQUINAS II.pptx
SLIDE MAQUINAS II.pptxSLIDE MAQUINAS II.pptx
SLIDE MAQUINAS II.pptx
 
Máquina indução
Máquina induçãoMáquina indução
Máquina indução
 
Pratica2 sincronas
Pratica2 sincronasPratica2 sincronas
Pratica2 sincronas
 
Aula14_MaqCC - parte03.pdf
Aula14_MaqCC - parte03.pdfAula14_MaqCC - parte03.pdf
Aula14_MaqCC - parte03.pdf
 
Motores Elétricos
Motores ElétricosMotores Elétricos
Motores Elétricos
 
Eletrotecnica inversores(completo)
Eletrotecnica   inversores(completo)Eletrotecnica   inversores(completo)
Eletrotecnica inversores(completo)
 
Aulas máquinas eléctricas ib
Aulas máquinas eléctricas ibAulas máquinas eléctricas ib
Aulas máquinas eléctricas ib
 
Artigo inversor freq
Artigo inversor freqArtigo inversor freq
Artigo inversor freq
 
Motor CC
Motor CCMotor CC
Motor CC
 
gerador sincrono aula 1.pdf
gerador sincrono aula 1.pdfgerador sincrono aula 1.pdf
gerador sincrono aula 1.pdf
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generators
 
Sel0437 aula08 motores01_2017
Sel0437 aula08 motores01_2017Sel0437 aula08 motores01_2017
Sel0437 aula08 motores01_2017
 
Synchronous generators
Synchronous generatorsSynchronous generators
Synchronous generators
 
Circuitos_Trifasicos.pdf
Circuitos_Trifasicos.pdfCircuitos_Trifasicos.pdf
Circuitos_Trifasicos.pdf
 
Apostila ete parte_2_2012_01
Apostila ete parte_2_2012_01Apostila ete parte_2_2012_01
Apostila ete parte_2_2012_01
 
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)
Aula 2 __comandos_eletricos___ligacao_de_motores___imprimir (1)
 
Motor cc
Motor ccMotor cc
Motor cc
 

Último

Atividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxAtividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxDianaSheila2
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?AnabelaGuerreiro7
 
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Rotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaRotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaronaldojacademico
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxTainTorres4
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números Mary Alvarenga
 
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOFASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOAulasgravadas3
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfMárcio Azevedo
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividadeMary Alvarenga
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdfAna Lemos
 
Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptMaiteFerreira4
 
Dicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelDicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelGilber Rubim Rangel
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESCOMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESEduardaReis50
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...Rosalina Simão Nunes
 
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...licinioBorges
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavrasMary Alvarenga
 
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresAnaCarinaKucharski1
 

Último (20)

Atividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptxAtividade sobre os Pronomes Pessoais.pptx
Atividade sobre os Pronomes Pessoais.pptx
 
Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?Urso Castanho, Urso Castanho, o que vês aqui?
Urso Castanho, Urso Castanho, o que vês aqui?
 
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptxSlides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
Slides Lição 04, Central Gospel, O Tribunal De Cristo, 1Tr24.pptx
 
Rotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riquezaRotas Transaarianas como o desrto prouz riqueza
Rotas Transaarianas como o desrto prouz riqueza
 
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptxJOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
JOGO FATO OU FAKE - ATIVIDADE LUDICA(1).pptx
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números
 
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃOFASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
FASE 1 MÉTODO LUMA E PONTO. TUDO SOBRE REDAÇÃO
 
Revista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdfRevista-Palavra-Viva-Profetas-Menores (1).pdf
Revista-Palavra-Viva-Profetas-Menores (1).pdf
 
Música Meu Abrigo - Texto e atividade
Música   Meu   Abrigo  -   Texto e atividadeMúsica   Meu   Abrigo  -   Texto e atividade
Música Meu Abrigo - Texto e atividade
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdf
 
Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.ppt
 
Dicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim RangelDicionário de Genealogia, autor Gilber Rubim Rangel
Dicionário de Genealogia, autor Gilber Rubim Rangel
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕESCOMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
COMPETÊNCIA 4 NO ENEM: O TEXTO E SUAS AMARRACÕES
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
 
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
11oC_-_Mural_de_Portugues_4m35.pptxTrabalho do Ensino Profissional turma do 1...
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
Bullying - Atividade com caça- palavras
Bullying   - Atividade com  caça- palavrasBullying   - Atividade com  caça- palavras
Bullying - Atividade com caça- palavras
 
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos DescritoresATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
ATIVIDADE PARA ENTENDER -Pizzaria dos Descritores
 

Funcionamento Máquina Indução

  • 1. Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Engenharia Elétrica Professor: LUIS REYES ROSALES MONTERO LABORATÔRIO DE MÁQUINAS GUIA DO EXPERIMENTO Máquina de indução: dinâmica de funcionamento Aluno:_________________________ TURMA:_____________
  • 2. Máquina de Indução 2 Campina grande,_____ de__________________ 2013 1. Introdução A análise preliminar para se entender o funcionamento de uma máquina elétrica trifásica deve ser começada pela compreensão do campo magnético girante, (produzido pelo fluxo de correntes no enrolamento polifásico de uma máquina CA Corrente Alternada). O funcionamento de uma máquina de indução se dá devido à forma como estão distantes os enrolamentos das fases entre si, 120º elétricos no espaço e, as correntes que alimentam estas bobinas são equilibradas, isto é, tem a mesma amplitude também estão defasadas em 120º. Para as correntes temos: ia = I m cos ωt ib = I m cos(ωt − 120º ) ic = I m cos(ωt − 240º ) Fixando a origem para o ângulo θ , medido ao longo da periferia do entreferro, no eixo da fase a por exemplo, para qualquer instante t, todas as 3 fases contribuem com a fmm (Força Magnetomotriz) do entreferro em qualquer θ . Para as fases a,b e c temos: Fa = Fa ( pico ) cos θ Fb = Fb ( pico ) cos ( θ − 120º ) Fc = Fc ( pico ) cos ( θ − 240º ) A Força Magnetomotriz resultante no ponto θ é: Fr (θ ) = Fa + Fb + Fc Mas as amplitudes de fmm variam com o tempo de acordo com as variações das correntes. Assim com a origem do tempo arbitrariamente tomada no instante em que a corrente de a é um máximo positivo, temos: Fa ( pico ) = Fa ( máx ) cos ( ωt ) Fb ( pico ) = Fb ( máx ) cos ( ωt − 120º ) Fc ( pico ) = Fc ( máx ) cos ( ωt − 240º ) Como as três correntes são equilibradas, temos te equação para fmm: Fr (θ , t ) = Fmáx cos ( θ ) cos ( ωt ) + Fmáx cos ( θ − 120º ) cos ( ωt − 120º ) + Fmáx cos ( θ − 240º ) cos ( ωt − 240º ) 1 1 1 Fmáx cos ( θ − ωt ) + Fmáx cos ( θ − ωt ) + Fmáx cos ( θ − ωt ) 2 2 2 3 Fr (θ , t ) = Fmáx cos ( θ − ωt ) 2 Fr (θ , t ) =
  • 3. Máquina de Indução 3 A onda descrita pela equação final acima é uma função senoidal do ângulo espacial θ. Ela tem uma amplitude constante e um ângulo de fase espacial que é uma função linear do tempo. O ângulo ωt provê a rotação da onda inteira ao redor do entreferro à velocidade angular constante ω. Portanto, para um sistema bifásico, podemos concluir que como Fr = Fa + Fb , teremos que Fr = 2 Fmáx cos(θ − ωt ) = Fmáx cos(θ − ωt ) . 2 Abaixo segue o esquema das ligações das bobinas do estator para se obter um estator trifásico ligado em estrela para dois e quatros pólos. Fig.1 Os motores de indução monofásicos são utilizados em aplicações de potência inferior aquelas dos motores trifásicos de uma ordem de frações de um cavalo. Um motor monofásico apresenta a estrutura de base dada na Fig.3.4a. Nesta forma não há conjugado motor de partida, pois Fs, campo do estator é um campo pulsante estacionário:
  • 4. Máquina de Indução 4 (Fs = Fmax.Cos(wst)cosθ). De fato o valor de pico de F s(Fmax.coswst) está sempre alinhado na direção do eixo da bobina do estator e o valor de pico do campo do rotor, também pulsante, encontra-se alinhado na mesma direção segundo o eixo da bobina do rotor. Fig.1.2 - Estruturas Equivalentes básicas de um Motor de Indução monofásico Entretanto pode-se mostrar (pela decomposição de Fs em dois campos girantes de sentidos opostos e de valor de pico Fmax/2) que se o motor é posto em marcha por um artifício qualquer, tem origem um conjugado resultante no sentido do movimento do rotor (o torque proporcionado pelo campo girante no sentido do movimento supera o torque correspondente ao campo girante de sentido contrário). Existem vários métodos para a partida de um motor de indução monofásico; um método bastante comum baseia-se na utilização de uma bobina auxiliar colocada no estator, em quadratura com a bobina monofásica original, por onde deve circular uma corrente adiantada (mais próxima de 90° possível) em relação aquela da primeira bobina. A justificativa deste procedimento encontra-se no fato de se obter uma estrutura de estator próxima a de uma máquina bifásica (bobinas estatóricas defasadas no espaço de 90° elétricos, alimentadas por duas correntes equilibradas do tipo: Imcos(wst) e Imsen(wst) que origina um campo girante do estator). Para a obtenção da corrente adiantada da bobina auxiliar pode-se utilizar um capacitor em série com esta bobina (Fig. 1.2b). 2. Objetivos Estudar as características de funcionamento da máquina de indução como gerador e motor. Levantar os parâmetros da máquina de indução a partir das medidas obtidas experimentalmente dos
  • 5. Máquina de Indução 5 ensaios de circuito aberto e curto circuito, estudar a dinâmica de funcionamento e os diferentes tipos de motores de indução. 3 Equipamentos e Instrumentos Utilizados o 1 Máquina assíncrona trifásica 4 pólos; o 2 varivolt; o 2 fonte CC; o 3 multímetros; o 2 watímetros; o 1 máquina CC; o 1 painel de cargas (lâmpadas); o 1 conta giros; o fios e cabos. 4. Determinação dos parâmetros da máquina assíncrona funcionando como Motor
  • 6. Máquina de Indução 6 Figura 2 – Fonte de corrente contínua para medição das resistências dos enrolamentos. A modo de comparação dos resultados obtenha por 3 métodos a resistência. A partir de da aplicação de um sinal de tensão ao enrolamento do estator fase-neutro e fase-fase, e fase-fase no rotor. Coloque os dados referenciados na teabela1. Obtenha os dados de resistência dos enrolamentos utilizando um multímetro. Compare e comente os resultados obtidos por multímetro e os obtidas diretamente da lei de Ohm e dos ensaios de circuito aberto e curto circuito. Tabela 1 - Resistência dos enrolamentos. Ligação do estator em delta VFn (V) Ligação do rotor estrela Medida sobre uma fase 6.41 Medida entre fases 9.43 Medida diretamente com o multímetro (Estator) IFn (A) Rfn (Ω) Vr(V) (Rotor) Ir(A) 4.0 X 3.24 X X 10 X 3 3.28 Rr (Ω) X 1.1 Para determinar os parâmetros por fase do circuito equivalente da máquina assíncrona, faz-se necessário o ensaio de circuito aberto (motor em vazio) e o ensaio de curto circuito (rotor bloqueado). Figura 3 – Diagrama elétrico para ensaio do motor de indução em vazio e de rotor bloqueado.
  • 7. Máquina de Indução 7 Realize os ensaio de rotor em vazio e rotor bloqueado e preencha as tabelas 2 e 3 Tabela 2 – Ensaio em Vazio Método dos wattímetros e multímetros W1 (w) W 2 (W) I (A) Vnom (V) 27*20 -(17*20) 4.04 220 Tabela 3 – Ensaio com o rotor bloqueado Método dos wattímetros e multímetros W1 (w) W 2 (W) I cc(nom) (A) V cc(V) 92*5 -(28*5) 8.8 71 Tabela 4 – Ensaio em Vazio com rotor em aberto W1 (w) W 2 (W) I (A) V (V) Vrotor (V) 25*20 -(21*20) 4.06 220 75,8 Baseado nos ensaios de circuito aberto e de curto-circuito determine os valores dos parâmetros da máquina de indução, seguindo o exemplo abaixo. Teste de circuito aberto : V 379 Vca = camed = → Vca = 218,82V 3 3 I ca = Icamed → I ca = 2,54 A Wcatotal 380 = → Pca = 126,67W 3 3 V 218,82 Z ca = ca = → Z ca = 86,15 Ω I ca 2,54 Pca = Rca = Pca 126,67 = → Rca = 19,63 Ω 2 2 I ca ( 2,54 ) 2 2 X ca = Z ca − Rca = Rs Vprim ( 86,15 ) 2 − ( 19,63) → X ca = 83,88Ω 2 Xs X2’ Rf Xm Circuito equivalente da Máquina de Indução - Teste de Circuito Aberto - R2’
  • 8. Máquina de Indução 8 Teste de curto circuito : V 381 Vcc = ccmed = → Vcc = 219,97 V 3 3 I cc = Iccmed → I cc = 2,54 A Wcctotal 460 = → Pcc = 153,33W 3 3 V 219,97 Z cc = cc = → Z cc = 86,60 Ω I cc 2,54 Pcc = Rcc = Pcc 153,33 = → Rcc = 23,77 Ω 2 2 I cc ( 2,54 ) 2 2 X cc = Z cc − Rcc = ( 86,60 ) Rs 2 − ( 23,77 ) → X cc = 83, 27 Ω 2 Xs R2’ ’ X2’ Vprim Circuito Equivalente da Máquina de Indução - Teste de Curto-Circuito Cálculo dos parâmetros : Xcc 83, 27 = → X s = 41,635 Ω 2 2 Xcc 83, 27 X2 ' = = → X 2 ' = 41,635 Ω 2 2 R s = R smed → R s = 1,96 Ω Xs = R 2 ' = R cc − R s = 23,77 − 1,96 → R 2 ' = 21,81Ω X m = X ca − X s = 83,88 − 41,635 → X m = 42, 245 Ω 2 R ca = R s + R f Xm 2 2 2 → ( R ca − R s ) R f − X m R f + ( R ca − R s ) X m = 0 2 2 R f + Xm  R = 22,829 Ω 2 R f − 100,998R f + 31534,589 = 0 →  f  R f = 78,169 Ω R f = 78,169 Ω Obtenha as perdas no ferro e as perdas devido ao atrito, ventilação e perdas nas resistências dos enrolamentos a partir dos ensaios de circuito aberto e o rotor em aberto.
  • 9. Máquina de Indução 9 5. Funcionamento da máquina de indução em tensão reduzida Tabela 5 – Preencha a tabela 5 Ensaio em vazio para estudar o efeito da tensão na corrente de partida. Tabela 5 – Ensaio a tensão reduzida Vmed Imed Velocidade Wtot 40 60 80 100 120 140 160 180 200 220 x 1.63 1.40 1.36 1.45 1.65 1.95 2.35 2.95 3.77 x 1704 1745 1761 1771 1778 1782 1783 1785 1784 x 145 145 145 160 175 180 200 220 270 Obtenha os gráficos relacionados ao efeito da tensão na corrente, velocidade e potência de consumo do motor. 6 Ensaio com carga do motor de indução Neste ensaio com carga é utilizada uma máquina síncrona funcionando como gerador com o eixo acoplado ao motor de indução e ligue a um conjunto de cargas resistivas (lâmpadas de várias potências). Esse esquema representa um gerador síncrono onde a força motora para girar o rotor é proveniente do eixo do motor de indução. Inicialmente pôs-se o motor de indução a girar a máquina síncrona em vazio (sem alimentar nenhuma carga) e obtenha as medidas das correntes em uma das fases, obtenha as potências (pelo método dos dois wattímetros) e meça a velocidade utilizando um tacômetro digital. Em seguida
  • 10. Máquina de Indução 10 adicione seqüencialmente as cargas ao gerador síncrono, mantendo a tensão terminal constante através do sistema de excitação. Preencha as medições na tabela 6. A partir destas medições calcule o escorregamento S, a velocidade em rpm, a potencia útil, o conjugado, a potência aparente (VA), a potencia ativa total de entrada, a potência reativa (var), o rendimento, e o fator de potencia. Varivolt Maquina de indução Maquina Síncrona (gerador) Quadro de cargas Ponte Varivolt retificadora Utilizando as seguintes equações preencha a tabela 6: Setas vermelhas ligações elétrica Setas pretas ligações mecânicas Wm(rps) = Wm(rpm)/60 We(rad/s) = Wm(rps)*2π S= [(Ws – Wm)/Ws] Pag = Wtot – 3Rs(Imed)² Pútil = (1 – S)Pag Cútil = Pútil/We(rad/s) F.P = Wtot/(380.Imed) S = (3)½.380.Imed Q = [(S)² - (P)²]½ Tabela 6 – Valores experimentais e calculados para o ensaio com carga Imed (A) 2,4 2,6 2,7 2,85 3,1 3,3 3,6 3,9 4,3 4,6 W1 (W) -(12*20) -(6*20) -(2*20) 2*20 8*20 13*20 18*20 22*20 27*20 32*20 W2 (W) 32*20 38*20 42*20 48*20 52*20 59*20 65*20 71*20 79*20 86*20 Wentra (W) Vel. (rpm) 1780 1770 1761 1752 1743 1734 1725 1716 1705 1695 Tabela 6 – Ensaio com carga Pag P útil C útil S (W) (W) (N.m) (VA) P (W) Q (var) N (%) F.P
  • 11. Máquina de Indução 11 5,2 37*20 94*20 1684 *as células não preenchidas serão calculadas de acordo com as equações acima. Trace as curvas relacionadas a tabela 6, comentando a característica de cada curva em relação ao aumento de carga, fator de potencia e trace outras curvas correlacionadas aos seguintes temas. o O conjugado útil varia com que proporção a com a potência de entrada? o A velocidade varia com qual tipo de proporção com a carga ? o A corrente, o fator de potencia, o escorregamento, o rendimento, e a velocidade do motor de indução variam com qual tipo de proporção com a carga? Imed (A) W1 (W) -(12*20) -(6*20) -(2*20) 2*20 8*20 13*20 18*20 22*20 27*20 32*20 37*20 W2 (W) 32*20 38*20 42*20 48*20 52*20 59*20 65*20 71*20 79*20 86*20 94*20 Tabela 6.1– Ensaio com carga e com banco de capacitores Wentra Vel. Pag P útil C útil S P Q (W) (rpm) (W) (W) (N.m) (VA) (W) (var) 1780 1770 1761 1752 1743 1734 1725 1716 1705 1695 1684 N (%) F.P *as células não preenchidas serão calculadas de acordo com as equações acima. Trace as curvas relacionadas a tabela 6.1, inserindo um banco de capacitores para corrigir o fator de potência do motor de indução comentando a característica da curva corrente em relação ao fator de potencia e trace outras curvas correlacionadas aos seguintes temas. o A corrente e o fator de potencia do motor de indução. o Compare as curvas do fator de potência com e sim banco de capacitor o Potencia ativa e reativa e compare a potencia reativa com e sem banco de capacitor o Apresente o valor ótimo da potencia reativa do banco de capacitor para um fator de potencia de 0.92.
  • 12. Máquina de Indução 12 7 Ensaio com carga do gerador de indução Neste ensaio com carga é utilizada uma máquina CC funcionando como motor série com o eixo acoplado ao gerador de indução e ligue a um conjunto de cargas resistivas (lâmpadas de várias potências). Esse esquema representa um gerador assíncrono onde a força motora para girar o rotor é proveniente do eixo do motor de CC. Inicialmente pôs-se o gerador de indução um capacitor entre as fases ou um conjunto de 3 capacitores, logo coloque a girar a máquina CC acima da velocidade síncrona e obtenha as medidas das correntes em uma das fases, obtenha as potências e meça a velocidade utilizando um tacômetro digital. Em seguida adicione seqüencialmente as cargas ao gerador assíncrono, mantendo a velocidade constante através do motor CC. Preencha uma tabela e a partir destas medições calcule o escorregamento S, a potencia útil, o conjugado e comente os resultados comparando o gerador assíncrono operando como um gerador eólico. Comente a necessidade dos capacitores, e o motivo da velocidade ser acima da velocidade síncrona. Setas vermelhas ligações elétrica Setas pretas ligações mecânicas Varivolt Vdc (V) 140 170 195 215 Maquina CC (turbina eólica) Maquina de indução Ponte retificadora Tabela 7 – Gerador Eólico Velocidade (RPM) Vsaída (V) 2372 220 2380 220 2397 220 2430 220 Quadro de cargas Capacitores de excitação Icarga 0 0.5 1.05 1.55 8. Partida do Motor de Indução Monofásico com capacitor Ligar o Motor de indução em série com um amperímetro e verificar que o motor atinja uma velocidade razoável (valor típico de 75% de W s) para que uma chave centrífuga seja desligada, a qual desconecta o conjunto bobina auxiliar de partida mais capacitor de partida e o motor passa a funcionar como monofásico puro.
  • 13. Máquina de Indução 13 9 Conclusões Apresente as suas considerações finais sobre o experimento. 10 Referências JORDÃO, R. G., Máquinas Síncronas. São Paulo: Editora da USP,1980. FITZGERALD, A. E., KINGSLEY, C. e KUSKO, A., Máquinas Elétricas. São Paulo: Ed. McGraw Hill do Brasil, 1978. KOSOW, I. L., Máquinas Elétricas e Transformadores. Porto Alegre: Ed. Globo, 1979.