O carbono

163 visualizações

Publicada em

trabalho sobre o papel de carbono na industria siderurgica

Publicada em: Engenharia
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
163
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
1
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

O carbono

  1. 1. O carbono (do latim carbo, carvão) é um elemento químico, símbolo C, número atômico 6 (6 prótons e 6 elétrons), massa atómica 12 u, sólido à temperatura ambiente.1 Como um membro do grupo 14 da tabela periódica, ele é um não metal e tetravalente - fazendo quatro elétrons disponíveis na forma de ligações covalentes. Há três isótopos com formação natural, com o 12C e 13C sendo estável, onde o 14C é radioativo, decompondo com uma meia-vida de aproximadamente 5730 anos.2 Ele é um dos poucos elementos químicos descobertos desde a antiquidade.3 Há vários alótropos de carbono, e entre os mais conhecidos estão a grafite, o diamante e o carbono amorfo.4 As propriedades físicas do carbono variam de acordo com sua forma alotrópica. Por exemplo, o diamante é altamente transparente, enquanto a grafite é um material opaco e preto. O diamante é um dos materiais mais duros que se conhecem na natureza, onde a grafite é um material macio a ponto de conseguir riscar no papel (desde o seu nome, da palavra grega "γράφω", que significa para escrever). O diamante tem uma baixíssima condutividade elétrica, enquanto a grafite é um excelente condutor. Sob condições ambientais normais, o diamante, os nanotubos de carbono e o grafeno têm uma elevada condutividade térmica entre todos os materiais conhecidos. Todos os alótropos de carbono são sólidos em temperatura ambiente, com a grafite sendo o mais estável termodinâmico. Eles têm resistência química e requerem altas temperaturas para reagir com o oxigênio. O estado de oxidação mais comum do carbono em um composto inorgânico é o +4, onde +2 é encontrado no monóxido de carbono e outros complexos de carboxila metálica com metais de transição. A maior disponibilidade de compostos inorgânicos com carbono está no calcário, na dolomita e o dióxido de carbono, porém quantidades significativas são encontradas nas minas de carvão, nas turfas, no petróleo e nas fontes de hidrato de carbono. É o elemento químico mais numeroso de compostos químicos, mais do que os outros elementos químicos, com quase dez milhões de compostos.5 O carbono é o 15° elemento químico mais abundante na crosta terrestre e o 4° elemento mais abundante no universo depois do hidrogênio, hélio e o oxigênio. Ele está presente em todas as formas de vida, e no corpo humano é o segundo elemento mais abundante em massa (cerca de 18,5%) depois do oxigênio.6 Esta abundância, em conjunto com a exclusiva diversidade e sua incomum capacidade de formar polímeros sob as diversas condições de temperatura na Terra, tornando-o este elemento básico para todas as formas de vidas conhecidas. Características principais
  2. 2. O carbono é um elemento notável por várias razões. Suas formas alotrópicas incluem, surpreendentemente, uma das substâncias mais frágeis e baratas (o grafite) e uma das mais rígidas e caras (o diamante). Mais ainda: apresenta uma grande afinidade para combinar-se quimicamente com outros átomos pequenos, incluindo átomos de carbono que podem formar largas cadeias. O seu pequeno raio atómico permite-lhe formar cadeias múltiplas; assim, com o oxigênio forma o dióxido de carbono, essencial para o crescimento das plantas (ver ciclo do carbono); com o hidrogênio forma numerosos compostos denominados, genericamente, hidrocarbonetos, essenciais para a indústria e o transporte na forma de combustíveis derivados de petróleo e gás natural. Combinado com ambos forma uma grande variedade de compostos como, por exemplo, os ácidos graxos, essenciais para a vida, e os ésteres que dão sabor às frutas. Além disso, fornece, através do ciclo carbono-nitrogênio, parte da energia produzida pelo Sol e outras estrelas Abundância[editar | editar código-fonte] O carbono não se criou durante o Big Bang8 porque havia necessidade da tripla colisão de partículas alfa (núcleos atómicos de hélio), tendo o universo se expandido e esfriado demasiadamente rápido para que a probabilidade deste acontecimento fosse significativa. Este processo ocorre no interior das estrelas (na fase «RH (Rama horizontal)»), onde este elemento é abundante, encontrando-se também em outros corpos celestes como nos cometas e na atmosferas dos planetas. Alguns meteoritos contêm diamantes microscópicos que se formaram quando o sistema solar era ainda um disco protoplanetário. Em combinação com outros elementos, o carbono se encontra na atmosfera terrestre e dissolvido na água, e acompanhado de menores quantidades de cálcio, magnésio e ferro forma enormes mO carbono é o elemento químico fundamental dos compostos orgânicos, cujo ciclo consiste na assimilação (fixação) dos átomos contidos nas moléculas simples de gás carbônico presente na atmosfera (CO2), e convertidos em substâncias mais elaboradas (carboidratos, proteínas), a partir do metabolismo fotossintético realizado pelos organismos autotróficos. Parte dos compostos orgânicos formados são aproveitados pelo próprio organismo produtor, e o restante da produção incorporada à biomassa do mesmo, servindo como fonte de nutrientes para os subsequentes níveis tróficos da cadeia alimentar, os consumidores: primários (herbívoros), secundários (onívoros) e terciários (todos os carnívoros), até o nível dos decompositores, efetuando a degradação da matéria. Portanto, são os seres produtores os que iniciam o ciclo do carbono, captado pelos demais organismos e finalizado pelos decompositores, devolvendo ao ambiente todos os nutrientes, incluindo o carbono, para o reinício do processo.
  3. 3. Lembrando que a devolução de carbono não ocorre somente com a morte de um organismo (animal ou vegetal), mas continuamente durante a vida de qualquer ser, através da respiração. Contudo, a queima de combustíveis fósseis, como o carvão mineral e o petróleo, utilizados em termelétricas e veículos automotivos, colaboram consideravelmente com a emissão de gás carbônico no ambiente, causando gradual elevação da temperatura média global decorrente do efeito estufa.assas rochosas (calcita, dolomita, mármore, etc.). Matéria prima que e usada na produção do aco O ferro-gusa é a matéria-prima do aço, sua produção depende do desmatamento e apenas uma pequena parte da madeira utilizada provém de áreas de reflorestamento, o restante é mata primária. O desmatamento não-autorizado fornece 57,5% da madeira que alimenta os fornos das carvoarias. Em geral as carvoarias são feitas em meio à mata, constituem uma fileira de fornos semelhantes a iglus, onde pilhas de madeira esperam a vez de ir para o forno. O ideal seria que o carvão fosse obtido em grandes áreas reflorestadas, onde quem desmata passe a trabalhar com o plantio de florestas. A obtenção de carvão de mata nativa é bem mais lucrativa, daí o porquê do reflorestamento não ser uma prática fluente neste ramo. O carvão vegetal é usado preponderantemente na produção de ferro gusa e cumpre duas funções: como combustível para gerar o calor necessário à operação do alto-forno da siderúrgica e como agente químico para retirar o oxigênio durante o processo.
  4. 4. O aço é um produto siderúrgico definido como liga metálica composta principalmente de ferro e pequenas quantidades de carbono. Para aços utilizados na construção civil, o teor de carbono é da ordem de 0,18% a 0,25%. O processo siderúrgico pode ser dividido em 4 grandes partes: a) Preparo das Matérias-Primas (Coqueira e Sintetização) b) Produção de Gusa (Alto-forno) c) Produção de Aço (Aciaria) d) Conformação Mecânica (Laminação) As matérias-primas necessárias para a obtenção do aço são: o minério de ferro, principalmente a hematita, e o carvão mineral. Ambos não são encontrados puros na natureza, sendo necessário então um preparo nas matérias primas de modo a reduzir o consumo de energia e aumentar a eficiência do processo. VER ESQUEMA DO PÁTIO DE MATÉRIAS-PRIMAS FOTO 01: Pátio de Matérias-Primas (Arquivo COSIPA) A coqueificação ocorre a uma temperatura de 1300oC em ausência de ar durante um período de 18 horas, onde ocorre a liberação de substâncias voláteis. O produto resultante desta etapa, o
  5. 5. coque, é um material poroso com elevada resistência mecânica, alto ponto de fusão e grande quantidade de carbono. "O coque, nas especificações físicas e químicas requeridas, é encaminhado ao alto-forno e os finos de coque são enviados à sinterização e à aciaria. O coque é a matéria prima mais importante na composição do custo de um alto-forno (60%)". FOTO 02: Operação de Desfornamento da Coqueira (Arquivo COSIPA) Na sinterização, a preparação do minério de ferro é feita cuidando-se da granulometria, visto que os grãos mais finos são indesejáveis pois diminuem a permeabilidade do ar na combustão, comprometendo a queima. Para solucionar o problema, adicionam-se materiais fundentes (calcário, areia de sílica ou o próprio sínter) aos grão mais finos. Com a composição correta, estes elementos são levados ao forno onde a mistura é fundida. Em seguida, o material resultante é resfriado e britado até atingir a granulometria desejada (diâmetro médio de 5mm). O produto final deste processo é denominado de sínter e de acordo com o Arquiteto Luís Andrade de Mattos Dias, "Em decorrência de suas características combustíveis e de permeabilidade, o sínter tornou-se mais importante para o processo do que o próprio minério de ferro". FOTO 03: Sinterização (Arquivo USIMINAS) Esta parte do processo de fabricação do aço consiste na redução do minério de ferro, utilizando o coque metalúrgico e outros fundentes, que misturados com o minério de ferro são transformados em ferro gusa. A reação ocorre no equipamento denominado Alto Forno, e constitui uma reação exotérmica. O resíduo formado pela reação, a escória, é vendida para a indústria de cimento. Após a reação, o ferro gusa na forma líquida é transportado nos carros-torpedos (vagões revestidos com elemento refratário) para uma estação de dessulfuração, onde são reduzidos os teores de enxofre a níveis aceitáveis. Também são feitas análises da composição química da liga (carbono, silício, manganês, fósforo, enxofre) e a seguir o carro torpedo transporta o ferro gusa para a aciaria, onde será transformado em aço.
  6. 6. VER CARROS-TORPEDOS FOTO 04: Alto Forno (Arquivo COSIPA) Na aciaria, o ferro gusa é transformado em aço através da injeção de oxigênio puro sob pressão no banho de gusa líquido, dentro de um conversor. A reação, constitui na redução da gusa através da combinação dos elementos de liga existentes (silício, manganês) com o oxigênio soprado, o que provoca uma grande elevação na temperatura, atingindo aproximadamente 1700oC. Os gases resultantes do processo são queimados logo na saída do equipamento e a os demais resíduos indesejáveis são eliminados pela escória, que fica a superfície do metal. Após outros ajustes finos na composição do aço, este é transferido para a próxima etapa que constitui o lingotamento contínuo. FOTO 05: Aciaria (Arquivo USIMINAS) No processo de lingotamento contínuo o aço líquido é transferido para moldes onde se solidificará. O veio metálico é continuamente extraído por rolos e após resfriado, é transformado em placas rústicas através do corte com maçarico. FOTO 06: Lingotamento Contínuo (Arquivo USIMINAS) FOTO 07: Laminação a Quente (Arquivo USIMINAS)
  7. 7. Posteriormente, os lingotes devem passar pelo processo de laminação, podendo ser a quente ou a frio, onde se transformarão em chapas através da diminuição da área da seção transversal. Na laminação a quente, a peça com aproximados 250 mm é aquecida e submetida à deformação por cilindros que a pressionarão até atingir a espessura desejada. Os produtos laminados a quente podem ser: Chapas Grossas espessura: 6 a 200 mm largura: 1000 a 3800 mm comprimento: 5000 a 18000 mm Tiras espessura: 1,2 a 12,50 mm largura: 800 a 1800 mm comprimento-padrão: 2000, 3000 e 6000 mm Tensões Residuais Devido ao resfriamento desigual das peças, chapas e perfis laminados a quente apresentam tensões que permanecem após o completo resfriamento. Em chapas, por exemplo, as bordas se solidificam mais rapidamente que o centro, servindo como um quadro que impedirá a retração da peça como um todo, fazendo com que o centro da peça permaneça tracionado. A norma NBR 8800 fixa essa tensão em 115 MPa. Ao contrário do processo de laminação a quente as peças laminadas a frio são normalmente mais finas, com melhor acabamento e sem a presença de tensões residuais. Dimensões: espessura: 0,3 a 3,00 mm
  8. 8. largura: 800 a 1600 mm comprimentos-padrão: 2000, 2500 e 3000 mm FOTO 09: Chapas (Arquivo USIMINAS) FOTO 10: Chapas Grossas (Arquivo USIMINAS) FOTO 11 Bobinas (Arquivo USIMINAS) INFORMAÇÕES ADICIONAIS A) Esquema do Pátio de Matérias-Primas B) Carros-Torpedos

×