Progressão Geométrica
O que você precisa saber para esta
aula?
Conjunto de números reais.
Sucessão de números reais.
O que você vai aprender
nessa aula:
O que é uma progressão geométrica?
Qual é a razão de uma P.G. e como
determina-lá?
...
O que é uma Progressão Geométrica?
Dizemos que uma sequência numérica
constitui uma progressão geométrica
quando, a partir...
Observe a sequência:
(2, 4, 8, 16, 32, 64,...), dizemos que ela é uma
progressão geométrica, pois se encaixa na
definição ...
Muitas situações envolvendo
sequências são consideradas PG,
dessa forma, foi elaborada uma
expressão capaz de determinar
q...
Exemplo:
Em uma progressão geométrica, temos que o 1º
termo equivale a 4 e a razão igual a 3. Determine
o 8º termo dessa P...
Agora tente fazer sozinho.
(PUC) Dada a PG (3, 9, 27, 81, ...).
Determine o 20º termo.
Obs:Você pode determinar a razão at...
Resolução:
3486784401
1162261467.3
3.3
20
20
19
20
=
=
=
A
A
A
Vejamos agora alguns tipos de
Progressão Geométrica:
Progressão geométrica constante
Uma progressão geométrica constante é...
Progressão geométrica
crescente
Uma progressão geométrica crescente é toda 
progressão geométrica em que cada termo, a par...
Progressão geométrica
decrescente
Uma progressão geométrica decrescente é toda 
progressão geométrica em que cada termo, a...
Progressão geométrica
oscilante
Uma progressão geométrica oscilante (ou alternante) é 
toda progressão geométrica em que t...
Progressão geométrica
quase nula
Uma progressão geométrica quase nula é toda 
progressão geométrica em que o primeiro term...
Soma dos termos
de uma PG 
A soma dos termos de uma PG é calculada através 
da seguinte expressão matemática: 
1
)1.(1
−
−...
Exemplo:
Dada a PG (3, 9, 27, 81, ...), determine a soma dos
20 primeiros elementos dessa PG.
5230176600
2
01046035320
2
3...
Agora tente fazer sozinho:
Calcule a soma dos 10 primeiros termos da PG
(1,2,4,8,...) .
Não se esqueça que para determinar...
Resolução:
q = 2
1023
1
)11024.(1
12
)12.(1 10
=
−
=
−
−
=
n
n
n
S
S
S
Bibliografia:
FACCHINI,Walter.Matemática Volume
Único. Editora Saraiva, 2007.
FIM
Próximos SlideShares
Carregando em…5
×

www.AulasParticulares.Info - Matemática - Progressão Geométrica

325 visualizações

Publicada em

Matemática - VideoAulas Sobre Progressão Geométrica – Faça o Download desse material em nosso site. Acesse www.AulasParticulares.Info

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
325
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
4
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

www.AulasParticulares.Info - Matemática - Progressão Geométrica

  1. 1. Progressão Geométrica
  2. 2. O que você precisa saber para esta aula? Conjunto de números reais. Sucessão de números reais.
  3. 3. O que você vai aprender nessa aula: O que é uma progressão geométrica? Qual é a razão de uma P.G. e como determina-lá? Como determinar os termos de uma P.G.? Como determinar a soma dos termos de uma P.G?
  4. 4. O que é uma Progressão Geométrica? Dizemos que uma sequência numérica constitui uma progressão geométrica quando, a partir do 2º termo, a divisão entre um elemento e seu antecessor for sempre igual.
  5. 5. Observe a sequência: (2, 4, 8, 16, 32, 64,...), dizemos que ela é uma progressão geométrica, pois se encaixa na definição dada. 4 : 2 = 2 8 : 4 = 2 16 : 8 = 2 32 : 16 = 2 O termo constante da progressão geométrica é denominado razão.
  6. 6. Muitas situações envolvendo sequências são consideradas PG, dessa forma, foi elaborada uma expressão capaz de determinar qualquer elemento de uma progressão geométrica. Veja a fórmula: 1 1. − = n n qAA
  7. 7. Exemplo: Em uma progressão geométrica, temos que o 1º termo equivale a 4 e a razão igual a 3. Determine o 8º termo dessa PG. Onde : 8748 2187.4 3.4 3.4 8 8 7 8 18 8 = = = = − A A A A
  8. 8. Agora tente fazer sozinho. (PUC) Dada a PG (3, 9, 27, 81, ...). Determine o 20º termo. Obs:Você pode determinar a razão através da fórmula: 1 2 A A q =
  9. 9. Resolução: 3486784401 1162261467.3 3.3 20 20 19 20 = = = A A A
  10. 10. Vejamos agora alguns tipos de Progressão Geométrica: Progressão geométrica constante Uma progressão geométrica constante é toda progressão geométrica em que todos os termos são iguais, sendo que para isso a razão q tem que, caso a1 diferente de 0(zero), ser sempre 1 ou 0 (nulo). Exemplos de progressão geométrica constante: P.G.(1,1,1,1,1,1,1,1,1,...) - razão q = 1 P.G.(0,0,0,0,0,0,0,0,0,...) - razão nula ou indeterminada
  11. 11. Progressão geométrica crescente Uma progressão geométrica crescente é toda  progressão geométrica em que cada termo, a partir do  segundo, é maior que o termo que o antecede, sendo  que para isso há dois casos: para a1positivo a  razão q tem que ser sempre positiva e maior que 1 e  para a1 negativo a razão q tem que ser positiva e menor  que 1. Exemplos de progressão geométrica crescente: P.G. (1,2,4,8,16,32,64,128,256,512,1024,2048,4096,...) -  razão q = 2 P.G. (2,6,18,54,162,486,1458,4374,13122,...) - razão q = 3 P.G. (-100,-10,-1,-0.1,-0.01,-0.001,-0.0001,-0.00001,...) -  razão q = 1/10
  12. 12. Progressão geométrica decrescente Uma progressão geométrica decrescente é toda  progressão geométrica em que cada termo, a partir do  segundo, é menor que o termo que o antecede, sendo  que para isso há dois casos: para a1positivo a  razão q tem que ser sempre positiva e menor que 1 e  para a1 negativa a razão q tem que ser positiva e maior  que 1. Exemplos de progressão geométrica decrescente: P.G. (-1,-2,-4,-8,-16,-32,-64,-128,-256,-512,-1024,-2048,- 4096,...) - razão q = 2 P.G. (8,4,2,1,1/2,1/4,1/8,1/16,1/32,1/64,1/128,...) - razão q = 1/2
  13. 13. Progressão geométrica oscilante Uma progressão geométrica oscilante (ou alternante) é  toda progressão geométrica em que todos os termos  são diferentes de zero e dois termos consecutivos tem  sempre sinais opostos, sendo que para isso a  razão q tem que ser sempre negativa e diferente de zero . Exemplos de progressão geométrica oscilante: P.G. (3,-6,12,-24,48,-96,192,-384,768,...) - razão q = -2 P.G. (1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,...) - razão q = -1
  14. 14. Progressão geométrica quase nula Uma progressão geométrica quase nula é toda  progressão geométrica em que o primeiro termo  é diferente de zero e todos os demais são iguais  a zero, sendo que para isso a razão q tem que  ser sempre igual a zero. Exemplos de progressão geométrica quase nula: P.G. (8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...)   razão q = 0 P.G. (-169,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...)  razão q = 0
  15. 15. Soma dos termos de uma PG  A soma dos termos de uma PG é calculada através  da seguinte expressão matemática:  1 )1.(1 − − = q qA S n n
  16. 16. Exemplo: Dada a PG (3, 9, 27, 81, ...), determine a soma dos 20 primeiros elementos dessa PG. 5230176600 2 01046035320 2 3486784400.3 2 )13486784401(3 13 )13.(3 13 )1.( 20 1 = = = − = − − = − − = n n n n n n n S S S S S qA S
  17. 17. Agora tente fazer sozinho: Calcule a soma dos 10 primeiros termos da PG (1,2,4,8,...) . Não se esqueça que para determinar o valor de q(razão), você deve utilizar a fórmula: 1 2 A A q =
  18. 18. Resolução: q = 2 1023 1 )11024.(1 12 )12.(1 10 = − = − − = n n n S S S
  19. 19. Bibliografia: FACCHINI,Walter.Matemática Volume Único. Editora Saraiva, 2007.
  20. 20. FIM

×