SlideShare uma empresa Scribd logo
1 de 82
Baixar para ler offline
FACULDADE   DE   TECNOLOGIA     DE   SÃO PAULO - FATEC SP

                              DEPARTAMENTO   DE   SOLDAGEM




                         SOLDAGEM    DE   MANUTENÇÃO I & II




SUMÁRIO



1.      INTRODUÇÃO



2.      FATORES INERENTES À SOLDAGEM DE MANUTENÇÃO



3.      SOLDABILIDADE



4.      MECANISMOS DE FALHAS NOS METAIS



5.      TIPOS DE TRINCAS NA SOLDAGEM



6.      METODOLOGIA DE INVESTIGAÇÃO DE FALHA



7.      RECURSOS COMPLEMENTARES



8.      APRESENTAÇÃO DE CASOS




R. Conz - 2009
2

1.     INTRODUÇÃO

       Os processos de fabricação no segmento da

construção mecânica alcançaram neste inicio de milênio

um grande progresso, graças às conquistas científicas e

tecnológicas que caracterizaram as últimas décadas.


       A soldagem a seu turno ocupou um lugar de destaque, passando de um processo

artesanal para uma tecnologia com bases científicas bastante sólidas. A união de metais já era

praticada no século XII a.C. por forjamento à quente ou por estanho, entretanto evoluiu muito

pouco até próximo ao final do século XIX. Com o surgimento do eletrodo metálico em 1885

marcou-se o inicio de uma nova era, a partir de então a evolução da tecnologia de soldagem

tem sido intensa, buscando atender aos múltiplos segmentos industriais, bem como a enorme

variedade de ligas metálicas desenvolvidas a partir de então. Tal evolução não aconteceu de

forma aleatória ou independente, pois devido estar a soldagem relacionada a transformações

metalúrgicas, foi necessário um encadeamento de conhecimentos e uma conseqüente

normalização para fixar as variáveis e limites dos processos, projetos, métodos de ensaio, bem

como dos critérios de aceitação.


       Do ponto de vista da aplicação, a tecnologia de soldagem pode ser dividida em dois

grandes grupos, a soldagem de produção e a soldagem de manutenção, sendo que, enquanto

a primeira baseia-se em: especificações técnicas, cálculos e procedimentos qualificados,

conforme normas específicas, a segunda, em oposição apresenta dificuldades do tipo: metal

de base desconhecido, contaminações e emergências, sendo que tudo isso ainda pode vir

acompanhado da necessidade da soldagem ser realizada em local desprovido de recursos

adequados. Um outro aspecto a ser considerado é que na soldagem de manutenção não é

comum ser especificado um procedimento, ficando as decisões para o soldador ou para o

supervisor. A soldagem de manutenção abrange a recuperação de peças defeituosas,

quebradas, trincadas e desgastadas, com ou sem usinagem posterior, consiste em unir, refazer

ou revestir partes metálicas alterando ou não suas características iniciais.
3

2.    FATORES INERENTES À SOLDAGEM DE MANUTENÇÃO

                                      Especificações técnicas dos clientes
      SOLDAGEM DE PRODUÇÃO            Cálculos dos esforços
                                      Procedimentos qualificados
                                      Exigências conforme normas



                                      Caso a caso
      SOLDAGEM DE MANUTENÇÃO          Dificuldades operacionais
                                      Metal de base desconhecido
                                      Contaminações diversas
                                      Depende da habilidade do soldador


2.1   Fatores Tecnológicos
                                Processo de soldagem
                                Metalurgia de soldagem
                                Materiais de base e de soldagem
                                Controle de qualidade
                                Ensaios não destrutivos

2.2   Fatores administrativos
                                Manutenção corretiva
                                Manutenção preventiva
                                Manutenção preditiva


2.3   Fatores econômicos
                                                    Valor do componente x peça nova
                                Reposição           Disponibilidade x rapidez
                                                    Garantia



                                                    Custo da recuperação
                                Recuperação         Tempo
                                                    Eventual garantia


2.4   Fatores humanos
                                Ousadia com bom senso
                                Sensibilidade e honestidade
                                Saber ouvir
                                Poder de análise
                                Capacidade investigativa
4

3.     SOLDABILIDADE

       Na soldagem de manutenção define-se soldabilidade como sendo, a capacidade de um
metal ser soldado em condições estruturais e ou metalúrgicas, sem entrar em colapso,
mantendo o mínimo de resistência exigida pela operação do produto em questão e nessas
condições podemos classificá-la em:


                Operatória
                Construtiva
                Metalúrgica



3.1    Soldabilidade Operatória

       A soldabilidade operatória está associada às condições encontradas no momento da
execução da soldagem. Tais condições devem ser muito bem analisadas, pois freqüentemente
as mesmas são bastante precárias, seja pela localização, pelo acesso ou mesmo pela posição
em que a soldagem será executada. As análises devem considerar o processo a ser utilizado,
pois poderá haver restrições quanto à sua aplicação em determinadas posições, a técnica
operatória escolhida, filete ou passe oscilado, também deve estar coerente com a situação, pois
elas influem no calor introduzido e conseqüentemente nas alterações metalúrgicas.




3.2    Soldabilidade Construtiva

       A concepção adotada na fabricação original da peça ou conjunto a ser reparado pode
influir na recuperação do mesmo, principalmente no que se refere às tensões residuais
existentes, as quais por serem de natureza complexa e multi-direcionais, não podem ser
verificadas por instrumento. Contudo o formato e as tendências ao empenamento, são
indicativos de estarmos diante um componente tencionado, e nessas condições deve-se buscar
seqüências de deposição que possam agir em sentido contrário ao das tensões residuais,
anulando assim o efeito das mesmas.


       Uma técnica de distencionamento mecânico por martelamento durante a soldagem,
também poderá ser utilizada dependendo do tipo de metal de adição que será depositado.
Alguns exemplos serão apresentados mais adiante.
5

3.3      Soldabilidade Metalúrgica

         De todos os tipos aqui apontados, a soldabilidade metalúrgica é provavelmente a mais
complexa, e também é a que mais tem sido estudada. A soldabilidade metalúrgica é
influenciada por inúmeros fatores, tais como:


                    Aporte térmico
                    Tensões x deformações
                    Alteração do diagrama de equilíbrio
                    Transformações da estrutura cristalina
                    Impurezas e defeitos
                    Tratamentos térmicos


         O controle desses efeitos se restringem ao condicionamento térmico imposto, dessa
forma torna-se imprescindível a verificação da natureza dos metais envolvidos no processo de
maneira a se estabelecer o regime térmico apropriado, em grande parte dos casos isso irá
implicar na aplicação de pré-aquecimento, controle das temperaturas de interpasse e um pós
aquecimento.

         As variantes que podem surgir quando combinamos os fatores acima definidos, com a
imensa quantidade de ligas metálicas existentes é praticamente infinita, inviabilizando assim a
definição de uma receita ou regra geral, dessa forma precisamos entender todos esses
fenômenos e cuidadosamente associá-los para a definição dos parâmetros de condicionamento
térmico.


              O   FUND AM ENTAL EM SOLD AG EM DE M ANUTENÇ ÃO

                      É DESCOBRIR A C AUS A DO PRO BLEM A .



3.3.1 Aporte térmico

       A quantidade de calor introduzida na soldagem é conhecida por aporte térmico ou energia
de soldagem “Heat Input”. O aporte térmico “H” para soldagem, em geral, pode ser expresso
pela equação: H = P / Va

Onde:


H     = Energia de Soldagem [ Joule.mm ]
P     = Potência da fonte de calor [ Watt ]
Va = Velocidade de avanço [ mm / s ]
6
Na soldagem ao arco elétrico, o aporte térmico “H” é expresso pela equação:


H = V. I / Va

Onde:



H = Energia de Soldagem [ Joule.mm ]

V = Tensão [ Volt ]
I   = Corrente [ Ampère ]
Va = Velocidade de avanço [ mm / s ]



        A energia de soldagem é uma característica do processo e da técnica de soldagem
utilizada, os processos de soldagem do tipo arco submerso ou eletroescoria, por exemplo,
possuem energia de soldagem elevada, enquanto que processos, onde a área de aquecimento
é pequena como o processo TIG, são considerados de baixa energia.


        Quanto mais alto for o aporte de calor (energia de soldagem), maior será a quantidade
de calor transferido a peça, conseqüentemente, maior será a poça de fusão, mais larga a zona
aquecida e menor será o gradiente térmico entre a solda e o metal de base. A eficiência de
transmissão “η” pode ser considerada constante para um mesmo processo, pois exprime a
parcela de energia efetivamente transferida à peça. Perdas decorrentes do aquecimento de
cabos e eletrodos, respingos e resfriamento pelo meio ambiente, fazem diminuir o valor de “η”.


      A forma de se controlar o aporte térmico, num determinado processo de soldagem, é
buscando a condição de potência e velocidade de soldagem, que garantam uma conformidade
de deposição e uma estrutura cristalina sem grandes alterações, se comparadas com a
estrutura original do metal base. A técnica de soldagem com cordões estreitos assume valores
de velocidade de avanço bem mais elevados do que a técnica de soldagem com oscilação, e
conseqüentemente, com menor quantidade de calor introduzido.


      Valores elevados de aporte térmico podem provocar alterações metalúrgicas importantes
tais como: a precipitação de carbetos de cromo, ou formação de fase sigma nos aços
austeníticos, ou mesmo um crescimento de grão exagerado nos aços ferríticos, sendo que em
ambos os casos o resultado final é a diminuição da tenacidade do metal depositado ou da zona
fundida. Por outro lado, dependendo da natureza do aço, o aporte térmico pode ser insuficiente,
levando a uma taxa de resfriamento elevada que por sua vez resultará na formação de
estruturas duras como, por exemplo, a martensita, aumentado assim o risco de fissuração.
7
     Um método bastante utilizado na prevenção de trincas por fragilização é a determinação
da temperatura de pré-aquecimento, a partir da maior ou menor probabilidade de formação de
estrutura martensítica, com isso consegue-se alterar a taxa de resfriamento da poça de fusão,
atenuando assim a formação de estruturas frágeis. A determinação da temperatura de pré-
aquecimento é possível através da quantificação do Carbono Equivalente, que significa dizer,
qual o percentual de carbono e de elementos de liga, que favorecem a formação da martensita,
estão presentes no aço a ser soldado.


     Para a determinação do Carbono Equivalente pode ser utilizada uma equação
desenvolvida por pesquisadores do “IIW - International Institute of Welding”, conforme segue:




                  % Mn % Mo %Cr + %V % Ni %Cu % P % Si
Ceq% = %C +           +    +        +    +    +   +    ≤ 0,49
                    6    4     5      15   13   2   24



sendo:
                                    Ceq ≤ 0,49 % - Boa Soldabilidade
                          0,5 % ≤ Ceq ≤ 0,65 % - Média Soldabilidade
                                    Ceq > 0,65 % - Má Soldabilidade




3.3.2 Tensões e deformações



         Limite elástico: É a máxima tensão aplicada ao material sem que se produza qualquer
         deformação permanente. É de difícil determinação pois depende totalmente da
         sensibilidade dos instrumentos de medição, por isso na prática não é considerado.


         Limite de escoamento: É uma aproximação do limite de proporcionalidade, que só é
         permitida devido ao emprego de fatores de segurança em cálculos dimensionais. É
         obtido considerando-se uma pequena fração de deformação plástica residual entre (0,1
         e 0,2%) pelas normas Norte-americanas e (0,1 e 0,5%) no Reino unido).


         Resiliência: É a capacidade do material em absorver energia durante a deformação no
         regime elástico, de maneira a poder retornar às suas dimensões originais, quando da
         relaxação do carregamento.
8

♦ Tensões nos metais

       O aquecimento da junta durante a soldagem normalmente é de forma localizada, e
portanto as temperaturas não são uniformes, variando a medida que a soldagem se processa,
esse fato associado as expansões térmicas do conjunto como um todo, geram redes de
tensões bastante complexas e as deformações plásticas resultantes são portanto localizadas,
sendo denominadas deformações residuais, da mesma forma algumas tensões permanecem
após o término da soldagem, e são denominadas tensões residuais. Quando a deformação é
máxima a tensão residual é mínima e vice versa.


       Tensões de tração longitudinais são desenvolvidas em torno do cordão de solda quando
não existe vínculo de nenhuma das partes com o exterior, tensões de compressão, nesse caso,
se formarão em áreas próximas da solda buscando equilibrar as tensões de tração. A tensão na
direção longitudinal atinge o limite de escoamento na linha de fusão e gradualmente diminui ao
longo dela atingindo valores nulos nas bordas das chapas.


       As tensões na direção transversal mantém o equilíbrio, com zonas de tração e
compressão, tendendo a diminuir em valor absoluto ao se aproximar da borda da chapa, da
mesma forma as tensões residuais na direção transversal irão manter o mesmo equilíbrio.



♦ Deformações nos metais

       A ligação entre elementos metálicos, para a constituição de uma célula unitária, se dá
através do compartilhamento dos elétrons da última camada, formando uma nuvem de elétrons
comuns. Esta forma de ligação entre dois ou mais metais é denominada ligação metálica. O
processo de deformação plástica dos metais pode ser explicado a partir do conceito de ligação
metálica. O compartilhamento de elétrons implica em arranjos cristalinos densos com planos
atômicos compactos, então ao aplicar uma tensão de cisalhamento sobre dois planos paralelos,
um plano deslizará sobre outro modificando a relação entre as forças de atração atômica, mas
após o movimento de um diâmetro atômico, estas forças voltam a ter a mesma intensidade,
impedindo a separação ou fratura.
                                                                        Reposicionamento
                                                                        Devido as Tensões
                              Nuvem de eletrons   Núcleo do átomo       Aplicadas

                                                                    b
                                           τ

                          a




                                    b     τ                             Reestabelecimento
                                                   Força de             das forças de
                                                                        atração
                                                   atração
9
       O processo de deslizamento de planos consiste no escorregamento de um plano
cristalino em relação aos demais. Este escorregamento causa um deslocamento permanente,
ou melhor, um deslocamento dos planos cristalinos em relação às suas posições originais até
uma nova condição de equilíbrio. A repetição deste processo evidencia, no nível macroscópico,
a deformação plástica do material.


       O acúmulo de discordâncias no deslizamento de planos leva a formação de bandas de
deslizamento visíveis na superfície do material, porém a presença de segregações dificulta a
movimentação na rede cristalina aumentando a resistência ao escoamento do material. A
formação de bandas de deslizamento pode ser observada macroscopicamente e será muito útil
na análise da falha, pois através de sua morfologia pode-se determinar o ponto de nucleação
da trinca, sua direção de avanço, e pela amplitude das bandas de deslizamento pode-se
estimar a velocidade de propagação da trinca, vide figura abaixo.




                                                         Marcas Radiais
                                      Marcas de praia




                                                                    Inicio da trinca




                                                                     Bandas de
                                                                    deslizamento




                       Final da fratura


                Bandas de deslizamento na face da fratura de um aço SAE 4340
10


3.3.3 Alteração do diagrama de equilíbrio


       A soldagem nos aços em geral bem como no ferro fundido, devido aos ciclos térmicos
envolvidos, implica num tratamento térmico localizado que pode causar alterações na estrutura
dos materiais e conseqüentemente afeta as propriedades mecânicas dos mesmos. Essas
alterações podem comprometer o desempenho em trabalho da junta soldada e portanto devem
ser minimizadas, nas soldagem de produção isso é relativamente fácil, uma vez que contamos
com a possibilidade da escolha do aço em função das características desejadas no projeto da
junta. Por outro lado isso não ocorre na soldagem de manutenção, onde freqüentemente vamos
encontrar aços com altos teores de carbono ou mesmo com elementos de liga que favorecem a
formação de estruturas frágeis durante o resfriamento. O caso mais comum é o do ferro
fundido, que é muito utilizado na fabricação de maquinas e equipamentos, e que possui
elevados teores de carbono.

       As fases de um metal podem se modificar através de ciclos térmicos inibindo ou
promovendo a formação de novas fases, dessa forma as propriedades mecânicas, físicas e
químicas da liga também se modificam, ou seja: é possível obter diferentes microestruturas, e
conseqüentemente diferentes propriedades a partir de uma mesma composição química.

       Quando uma liga é resfriada lentamente a partir da fase líquida, as fases presentes no
estado sólido a cada temperatura estarão em equilíbrio termodinâmico e podem ser previstas
por diagramas que mostram as fases estáveis em função da temperatura e da composição
química, ou seja, percentual de elemento soluto.


       Estes diagramas são denominados diagramas de fases. Um exemplo clássico de
diagrama de fases é o diagrama ferro-carbono, o ferro puro apresenta duas transformações
alotrópicas, ou seja, de mudanças de estrutura cristalina.


       A temperatura ambiente a estrutura termodinamicamente estável é a cúbica de corpo
centrado ccc. Quando aquecido acima de 910° o ferro passa de ccc para cfc cúbico de faces
                                           C
centradas e volta a ser ccc acima de 1394° passando para o estado líquido ao atingir
                                          C;
aproximadamente 1540°C.


       A figura abaixo mostra o diagrama da liga binária FeC para teores de carbono até 6,7%.
O diagrama é assim representado pois o Fe3C, carboneto de ferro, apresenta saturação a partir
desse limite, embora as ligas acima de 4,5% de carbono não apresentem nenhum interesse
comercial. As transformações de uma fase para outra ou a variação de composição de uma
certa fase, envolvem o rearranjo dos átomos do material, o tempo necessário para essas
alterações depende da temperatura e da complexidade da alteração.
11




Ferro α = Ferrita     = Cúbico de corpo centrado ( < 910° )
                                                         C

Ferro γ = Austenita = Cúbico de face centrada     ( > 910° < 1400 ° )
                                                          C        C

Ferro δ = Ferrita δ   = Cúbico de corpo centrado ( > 1400° )
                                                          C



Eutético = Mistura de componentes sólidos que ao fundir-se fica em equilíbrio com um líquido
da mesma composição que a sua, e cuja temperatura de fusão é um mínimo na curva.


Temperatura eutetóide = Para aços ao carbono é 723 ° e a composição eutetóide
                                                    C
corresponde a 0,80% C. No sistema FeC tem-se uma solução sólida e portanto não ocorre uma
reação eutética verdadeira, porém devido sua semelhança foi denominada eutetóide.


       A perlita é uma mistura de duas fases, formada pela transformação da austenita em
ferrita e cementita, há cerca de 12% de cementita e 88% de ferrita na mistura resultante,
devido se formarem simultaneamente a ferrita e a cementita estão intimamente ligadas em
camadas alternadas caracteristicamente lamelar.
12


3.3.4 Transformação da estrutura cristalina

         A velocidade de resfriamento tem um papel fundamental na formação da microestrutura,
e por conseqüência nas propriedades mecânicas da junta soldada, não se deve esquecer que
dureza e tenacidade trafegam em vias contrárias, ou seja um aumento de dureza implica quase
sempre em uma diminuição da tenacidade e portanto aumenta a propensão à formação e
propagação de trincas, no diagrama abaixo podemos observar as diferentes microestruturas
que podem se formar a partir de um resfriamento continuo em diferentes velocidades, num aço
de alta resistência e baixa liga do tipo SAE 4340.



         °C

   723
                8,4°C/seg          0,33°C/seg           0,23°C/seg         0,0062°C/seg



   300

                                          Austenita              Martensita
   200



   100
                                                                             Martensita
                                                          Martensita          Ferrita
                Martensita           Martensita                                             Ferrita
                                      Bainita              Ferrita            Perlita
                                                           Bainita                          Perlita
                                                                              Bainita
                                                                                                            seg
           10                100                  103                104              105             103




3.3.5 Impurezas e defeitos


   ♦ Impurezas


         Decorrem dos processos siderúrgicos ou de fundição, são conseqüências de acúmulo
de elementos não metálicos tais como: óxidos e sulfetos que localizam-se nas chamadas
cabeças de lingote, isso nos casos de lingoteamento convencional, podem também estarem
relacionados à desgazeificação ou dessulfurização ineficiente durante o processo, tais
elementos irão se alinhar durante a laminação diminuindo consideravelmente a resistência na
direção “Z”.
13

   ♦ Defeitos externos

       Normalmente decorrentes de falhas operacionais, sendo as mais comuns:

       mordeduras
       respingos
       reforço excessivo
       cordão assimétrico
       escorrimento


   ♦ Defeitos Internos

       Os defeitos internos podem ter as mais diversas origens, sendo em alguns casos
bastante complexa sua interpretação e sua conseqüente prevenção, é bastante comum termos
um defeito não com uma única causa, mas sim com diversas causas. Os defeitos internos
dividem-se em bidimensionais e tridimensionais.


       Os defeitos bidimensionais são os mais graves devido sua tendência à propagação, são
   eles a falta de fusão e as trincas.

       Os defeitos tridimensionais são estáveis e implicam unicamente na diminuição da seção
   resistente, os mais comuns são: inclusão de escória e porosidades. As inclusões de escória
   podem decorrer dos seguintes fatores:


       Limpeza incorreta;
       Ausência de limpeza;
       Seqüência de filetes inadequada;
       Chanfro Inadequado;
       Ângulo do eletrodo incorreto;
       Técnica operatória inadequada.


       Os poros são cavidades que se formam internamente no metal depositado, podendo se
de forma esférica ou vermicular, manifestando-se isoladamente ou em agrupamentos, suas
prováveis causas são as seguintes:


       a) Eletrodo úmido
       Neste caso devem ser examinados os cuidados de armazenagem e ressecagem dos
       eletrodos, sendo que para tanto são necessários fornos especialmente projetados.


       b) Amperagem inadequada
          Ajuste a amperagem em função do tipo de eletrodo, é importante trabalhar sempre
          dentro das faixas recomendadas pelos fabricantes, ou determinadas na EPS.
14
          c) Chapas úmidas ou oleadas
             Deve-se sempre proceder mais comuns de limpeza são: o jateamento com areia ou
             granalhas de aço e decapagem química ,podendo também utilizar-se de lixadeira ou
             escovas.


          d) Técnica operatória incorreta
             Um tipo comum de porosidade é o chamado poro de cratera, eles ocorrem no
             fechamento de arco quando o mesmo é feito abruptamente, nesse caso a forma
             mais recomendável de evitá-los é após encher a cratera retornar com o eletrodo de
             forma a descrever uma vírgula com a ponta do mesmo, a distância grande entra o
             eletrodo e a fusão, e a velocidade de avanço alta também ocasionam poros.



3.3.6 Tratamentos térmicos

          A soldabilidade pode também ser afetada por tratamentos térmicos, isso é devido ao
aquecimento localizado promovido pela soldagem, durante o processo o material ultrapassa a
temperatura de austenitização dos aços, promovendo assim transformações estruturais na
zona intermediaria entre o metal de base e o de adição, denominada ZTA - Zona Termicamente
Afetada, alterando por conseqüência as propriedades mecânicas da junta soldada nessa
região.     Nessas condições essa região pode apresentar alterações estruturais bastante
evidentes, tais como fases martensíticas ou bainiticas, com elevada dureza e risco de
fissuração por fragilização da junta soldada.


          Pode ainda o metal de base estar na condição de temperado e revenido e nesse caso
poderão ocorrer alterações ainda mais complexas durante a soldagem, nesse caso deve-se
minimizar o aporte térmico através do controle dos parâmetros da soldagem.




                    Diagrama de transformação isotérmica - aço SAE 4340
15

3.4       Classificação quanto à composição química

      •   AÇO CARBONO

          Os aços com baixo teor de carbono são os mais freqüentemente utilizados em
construção soldada, pois a soldabilidade metalúrgica diminui com o aumento desse elemento,
por outro lado uma pequena quantidade de manganês proporciona um sensível aumento de
resistência mecânica sem praticamente afetar a soldabilidade, outro elemento que implica em
melhoria de propriedades mecânicas nas mesmas condições é o silício. Dessa forma, vamos
encontrar no mercado fornecedor uma grande variedade de tipos aços planos, com
propriedades mecânicas bastante adequadas à soldagem. Esses aços são subdivididos em aço
carbono ou aço carbono-manganês e possuem diferenças principalmente no aspecto da pureza
da liga, decorrente do processo siderúrgico utilizado, ou do tamanho de grão, conseqüência de
eventual tratamento térmico após laminação a quente.


          O carbono provoca a formação de microestruturas mais resistentes enquanto que o
manganês colabora para o aumento da tenacidade do material em baixas temperaturas, o que
nem sempre é alcançado somente com a adição de manganês. Por este motivo, é feita a
adição de alumínio, o qual funciona como desoxidante durante o processo de fabricação do aço
e refinador de grão durante a solidificação do metal fundido. Nos aços de alta resistência, é
necessário melhorar a tenacidade, pois com o aumento da dureza essa propriedade decresce
naturalmente, para tanto outros elementos são adicionados tais como: o nióbio, o titânio e o
vanádio e agem como refinadores dos grãos.



      •   AÇO LIGA

          Os elementos adicionados intencionalmente ao aço têm o objetivo de conferir-lhes
características específicas necessárias à sua aplicação final. Dentro desse enfoque, os aços
ligados contêm diversos elementos em sua composição química, sendo os mais comuns:
cromo, molibdênio, níquel e vanádio, separadamente ou combinados entre si, visando atender
às exigências do mercado. Como exemplo, pode-se citar aqueles que atendem às normas SAE
8620, SAE 4140, SAE 4340, etc., entre outros largamente utilizados.


          Existem elementos químicos que ao serem adicionados pequenas quantidades aos
aços, lhes conferem características específicas tais como aumento de resistência ao trabalho a
frio ou trabalho a quente, ou aumento de resistência ao desgaste ou mesmo o aumento de
resistência ao impacto, e assim por diante, eles são conhecidos como aços microligados como,
por exemplo, o aço ao boro com amplo uso na fabricação de implementos agrícolas. O cobre, o
cromo, o níquel e o molibdênio são adicionados com o objetivo de endurecer o aço pelo
mecanismo de substituição da solução sólida.
16


   •   CLASSIFICAÇÃO


                     baixa liga ≤ 2% de elementos de liga
                     média liga > 2% ≤ 4% de elementos de liga
                     alta liga > 4% de elementos de liga




   •   AÇOS INOXIDÁVEIS

       Os aços inoxidáveis encontram grande variedade de aplicações devido suas
propriedades mecânicas elevadas aliadas à boa resistência a corrosão, em função de sua
microestrutura eles podem ser divididos em aços inoxidáveis: ferríticos, austeníticos,
martensíticos, endurecíveis por precipitação e duplex. Cada uma dessas ligas possuem
características, propriedades e aplicações diferenciadas.




   •   INOXIDÁVEL FERRÍTICO


       É uma liga composta basicamente de ferro e cromo, possui baixos teores de carbono e
após a solidificação apresenta-se na forma de ferrita delta. Durante a soldagem pode ocorrer
crescimento de grãos próximo da zona termicamente afetada, e conseqüente fragilização
podendo surgir trincas durante o resfriamento, entretanto isso pode ser contornado a partir da
utilização de procedimentos com baixo aporte térmico, a tabela a seguir mostra os tipos mais
comuns.


                     Composição química [%]
Tipo                                                                            Aplicações
             C                Cr                Outros

                                           Mn    -    ≤ 1,00
 405        ≤ 0,08          11 - 14
                                           Si    -    ≤ 1,00
                                                                         Tubos para trocadores de calor

                                           Mn    -    ≤ 1,00
                                           Si   -     ≤ 1,00       Defletores de turbina a gás e revestimentos
 409        ≤ 0,15          12 - 14
                                           Al   -     3,5 a 4,5               resistentes à corrosão
                                           Ti   -      ≤ 0,75

                                           Mn     -   ≤ 1,00              Uso geral, fácil conformação,
 430        ≤ 0,12           16 - 18
                                           Si    -    ≤ 1,00           eletrodomésticos, decorações, etc.

                                          Cu     -    0,9 a 1,25
                                                                    Utilizado na industria química possui alta
 443        ≤ 0,20          18 - 23       Si     -    ≤ 0,75
                                                                      resistência à temperatura e corrosão
                                          Ni     -    ≤ 0,50

                                           Mn     -   ≤ 1,50        Altíssima resistência à temperatura e
 446       ≤ 0,20          23 - 27         Si    -    ≤ 1,00              corrosão suporta até 1150ºC,
                                                                       utilizado em fornos e queimadores
17

   •    INOXIDÁVEL AUSTENÍTICO

        Os aços inoxidáveis austeníticos são largamente utilizados na indústria em geral devido
ao conjunto de propriedades que eles reúnem, tais como: boa soldabilidade, boa resistência à
corrosão, boa usinabilidade, etc., nesse tipo de aço o cromo varia entre 16% e 26% e o níquel
varia entre 6% e 22%, os teores relativamente elevados de níquel aumentam a resistência à
corrosão e a resistência à oxidação em altas temperaturas. O efeito estabilizante do níquel
favorece a formação e manutenção de uma estrutura austenítica a temperatura ambiente o que
lhe confere a condição de “não magnético”. Os aços austeníticos quando submetidos ao
trabalho a frio como, por exemplo, a trefilação, encruam produzindo um aumento de resistência
mecânica e tornam-se magnéticos.


        Quando permanecem em temperaturas superiores a 450º C por mais de 4 horas, devido
a grande afinidade do Cr com o C, ocorre uma formação de carbonetos de cromo que migram
para os contornos dos grãos, dando origem a um processo de fragilização conhecido como
corrosão intergranular, pois causa o empobrecimento de cromo na matriz austenítica. A adição
de Cb ou Ti na liga pode minimizar este efeito, pois sendo esses elementos mais ávidos de
carbono que o cromo ocorrerá uma reação entre eles protegendo assim o cromo, a tabela a
seguir mostra os tipos mais comuns de aços inoxidáveis austeníticos. Os aços austeníticos são
susceptíveis à corrosão sob tensão e, portanto devem ser aliviados quando o componente for
trabalhar em condições desfavoráveis.


                     Composição química [%]
Tipo                                                                           Aplicações
            C         Cr           Ni            Outros

                                                                     Possui boa resistência à corrosão, é
                                            Mn    -    ≤ 2,00
 302      ≤ 0,15    17 - 19      8 - 10                              utilizado na industria alimentícia, de
                                            Si    -    ≤ 1,00
                                                                         eletrodomésticos e decoração

                                                                   Possui boa resistência à corrosão, boa
                                            Mn     -   ≤ 2,00      soldabilidade, devido ao baixo carbono,
 304      ≤ 0,08    18 - 20      8 - 10,5
                                            Si    -    ≤ 1,00        não magnético quando solubilizado,
                                                                             aplicações diversas

                                                                      Possui boa resistência à corrosão,
                                            Mn     -   ≤ 1,00      excelente soldabilidade, devido ao extra
 304L     ≤ 0,03    18 - 20      8 - 10,5
                                            Si    -    ≤ 1,00       baixo carbono, não magnético quando
                                                                       solubilizado, aplicações diversas
                                                                   Boa resistência à oxidação e resistência
                                            Mn     -   ≤ 2,00
 309      ≤ 0,20    22 - 24    12 - 15                                 mecânica a altas temperaturas,
                                            Si    -    ≤ 1,00
                                                                        aplicação em fornos e estufas

                                            Mn     -   ≤ 2,00       Excelente resistência à oxidação até
 310      ≤ 0,25    24 - 26    19 - 22
                                            Si    -    ≤ 1,00      1100ºC, aplicação em fornos e estufas

                                            Mo    -    2,0 a 3,0   Utilizado na industria química e fabrica
 316      ≤ 0,10    16 - 18    10 - 14      Mn    -    ≤ 2,00           de papel e celulose, possui alta
                                            Si    -    ≤ 1,00               resistência à corrosão

                                            Mo    -    3,0 a 4,0    Utilizado na industria química e fabrica
 317      ≤ 0,10    18 - 20    11 - 15      Mn     -    ≤ 2,00     de papel e celulose, possui resistência à
                                            Si     -    ≤ 1,00          corrosão superior à do AISI 316
18

   •    INOXIDÁVEL MARTENSÍTICO


        Os aços inoxidáveis martensíticos são em principio ligas ferro + carbono + cromo, onde
os teores de cromo são elevados situando-se entre 11% e 18%. Essas ligas são passíveis de
endurecimento através de tratamentos térmicos, como por exemplo, a têmpera na pratica
podemos dizer que existem três tipos aços inoxidáveis martensíticos:


        baixo carbono, utilizadas na fabricação de turbinas hidráulicas,
        médio carbono, normalmente utilizadas em cutelaria,
        c) ligas de alto carbono, utilizadas para trabalhos em altas temperaturas, até 550ºC.


        Nesse tipo de material, a alta resistência e, portanto a dureza, são indispensáveis o que
implica em maiores cuidados com os ciclos e condicionamentos térmicos durante a soldagem,
pois poderão ocorrer fragilizações na ZTA, dessa forma deve-se aplicar o menor aporte térmico
possível, além de se reduzir a velocidade de resfriamento, isso é possível com pré-aquecimento
e manutenção da temperatura de interpasse de forma eficiente.




                       Composição química [%]
Tipo                                                                             Aplicações
             C            Cr             Ni             Outros

                                                   Mn    -    ≤ 1,00
 403       ≤ 0,15      11,5 - 13,0        -                               Tipo turbina, laminas forjadas
                                                   Si    -    ≤ 0,50


                                                   Mn     -   ≤ 1,00    Aplicação geral: eixos, parafusos,
 410       ≤ 0,15      11,5 - 13,5        -
                                                   Si    -    ≤ 1,00     peças de motores, válvulas, etc.

                                                                       Tipo turbina com maior resistência à
                                                   Mn     -   ≤ 1,00
 431       ≤ 0,20       15 - 17      1,25 - 2,50                        corrosão e melhores propriedades
                                                   Si    -    ≤ 1,00                mecânicas
                                                                       É o mais duro dos aços inoxidaveis
                                                   Mn     -   ≤ 2,00
                                                                       martensíticos utilizado em pistas de
 440C    0,95 - 1,20    16 - 18           -        Si    -    ≤ 1,00
                                                                          rolamento, sedes de válvulas,
                                                   Mo     -   ≤ 0,75          esferas, cutelaria, etc.




   •    INOXIDÁVEL ENDURECÍVEL POR PRECIPITAÇÃO



        São aços que se caracterizam por apresentarem simultaneamente alta resistência à
corrosão e elevada resistência mecânica, sendo em conseqüência empregados onde ambos os
requisitos são indispensáveis como em molas especiais e na indústria aeronáutica, na tabela a
seguir vejam alguns exemplos. Esses materiais devido ao tratamento térmico a que são
submetidos (têmpera), não são indicados para soldagem.
19




                           Composição química [%]                     Propriedades mecânicas
     Tipo
               C         Cr        Ni       Mn   Si    Ti     N       Tensile    Yield    Elongation

Stainless W   ≤ 0,12   16 - 18    6 -8      ≤1   ≤1    ≤1     ≤ 0,2   136 MPa   126 MPa      7%

 17-7 PH      ≤ 0,09   16 - 18 6,5 - 7,75   ≤1   ≤1     -     ≤ 0,1   164 MPa   154 MPa      6%

 17-4 PH      ≤ 0,07   15 - 17    3 -5      ≤1   ≤1   ≤ 0,3    -      140 MPa   124 MPa     12 %




     •   INOXIDÁVEL DUPLEX



         Esses materiais apresentam uma excelente combinação de propriedades mecânicas e
elevada resistência à corrosão. Em geral, os aços inoxidáveis duplex possuem o dobro do limite
de escoamento dos aços inoxidáveis convencionais, conservando os mesmos valores de
tenacidade. Isto significa que as espessuras de projeto podem ser substancialmente reduzidas,
devido essas características esse tipo de material encontra grande aplicação na industria naval.
As ligas duplex apresentam maior resistência à corrosão em relação aos aços inoxidáveis
austeníticos devido à sua composição química e sua microestrutura ferrítica-austenítica. Os
aços
         inoxidáveis duplex são constituidos por uma liga de FeCrNiMoN e possuem uma
microestrutura composta basicamente de 50% de ferrita e 50% de austenita, sua soldabilidade
é boa e pode ser comparada à dos aços austeníticos, entretanto deve-se ter cuidado com
precipitações de fase sigma ou nitreto de cromo caso o resfriamento seja rápido entre 1000 ºC
e 550 ºC.



4.       MECANISMOS DE FALHAS NOS METAIS

         Falhas em componentes estruturais ocorrem através da associação de mecanismos
diversos, por exemplo, é bastante comum encontrarmos falhas por fadiga onde a nucleação
das trincas se deu a partir de regiões corroídas ou desgastadas.


         Os processos de trincamento ou de fratura implicam em nível atômico, no rompimento
das ligações entre os elétrons de átomos subseqüentes afetando assim a rede cristalina do
metal e conduzindo à uma grande redução da resistência mecânica. Considera-se como trinca
a separação parcial de um sólido mediante a aplicação ou não de tensões, e considera-se
ruptura ou fratura quando a separação das partes se completa.
20
       Os mecanismos de propagação de uma trinca são bastante diversos entre eles citamos:
fluência, corrosão sob tensão, fadiga e precipitação de fases secundárias. A presença de uma
trinca diminui a resistência mecânica do componente e quando se atinge o limite de resistência,
se inicia a separação das partes. Esta separação se dará de forma dúctil ou frágil, e essa
característica deve ser avaliada.


       Consideramos falha de um componente qualquer alteração que venha a impedir o
completo atendimento das solicitações previstas durante o tempo de vida estipulado ou
esperado. Podemos considerar que em condições normais de trabalho, uma ocorrência de
falha terá três etapas de desenvolvimento.


       • Nucleação, onde temos o início do processo de dano através da ocorrência de um
          fenômeno qualquer a partir de um defeito pré-existente no material ou criado em
          função das condições de trabalho.

       • Evolução, consiste no crescimento da falha através de um ou mais mecanismos de
          desgaste, como por exemplo a propagação da trinca por fadiga, ou a deterioração
          das propriedades mecânicas do metal, através da exposição do componente à altas
          temperaturas ou em ambientes corrosivos.

       • Obstrução, quando o componente deixa de atender satisfatoriamente aos objetivos
          propostos em sua concepção.

       Em se tratando de fratura, o processo de análise se inicia pela verificação visual das
faces da fratura, esse ensaio por si só, nos mostra aspectos macroscópicos que podem indicar
a natureza da mesma. É muito importante determinar se a fratura é de natureza frágil ou dúctil,
pois enquanto a primeira geralmente implica em alterações metalúrgicas a segunda via de
regra está associada somente às solicitações mecânicas, e dessa forma são passíveis de
correções menos complexas.


4.2    Tipos de ruptura


       Ruptura dúctil: É o modo de fratura associado à deformação plástica e se caracteriza
microscopicamente pela presença de alvéolos (dimples), que são microcavidades formadas a
partir de vazios e inclusões ou partículas de segunda fase. A presença de elevadas tensões
internas cisalhantes induz ao surgimento de anomalias microestruturais provocando formação
de microporosidades que passam a atuar como concentradores de tensões.


       O acúmulo de tensões nestas regiões causa um acentuado fluxo plástico, aumentando
as dimensões destas microcavidades, formando alvéolos (ou dimples). Com o crescimento
destes ocorre a união das microcavidades adjacentes. Assim, dizemos que o mecanismo
básico de uma ruptura dúctil será o coalescimento dessas microcavidades.
21


       Do ponto de vista macroscópico, uma deformação plástica intensa, uma acentuada
irregularidade ou rugosidade da superfície fraturada e a geração de ressaltos ou dobras, são
sinais da ação generalizada de mecanismos de movimentação de discordância, caracterizando
assim uma ruptura dúctil, já do ponto de vista microscópico, se há predominância de indícios
de deformação plástica “dimples”, como mostra a figura, então a ruptura é considerada dúctil.


       Essa foto foi escolhida pois ela possui características ambíguas, ou seja embora
evidencie a presença de dimples, por outro lado nota-se que a ruptura foi intergranular, uma
característica comum na ruptura frágil, porém a que ressaltar as deformações observadas que
nesse caso não deixam dúvidas sobre a natureza dúctil desta ruptura. Essas considerações
são muito importantes e portanto devem ser feitas sempre com muita consistência pois elas
irão orientar as decisões sobre a forma de reparo mais adequada.




                              Ruptura dúctil - material SAE 1006
                        Presença de “dimples” - micrografia (200 X)


Ruptura frágil: Ocorre quando uma transformação metalúrgica fragilizou as ligações
intergranulares ou conferiu grande dureza aos grãos e portanto baixa tenacidade podendo estar
ou não associada ao crescimento dos mesmos.


       A separação intergranular requer baixa energia pois, neste caso, a trinca segue os
contornos de grãos e ocorre quando estes são mais frágeis que a rede cristalina. Esta
fragilização, ou redução na energia para a fratura, pode ocorrer devido à ação de diversos
agentes como radiação, absorção de Hidrogênio, precipitação de intermetálicos ou fases
frágeis junto aos contornos de grãos, fluência, etc.
22
       Quando se verifica pouca ou nenhuma deformação plástica aparente a ruptura é
classificada como frágil. A formação de superfícies lisas ou regulares de fratura, com aspecto
brilhante, ou ainda a presença de marcas em V denominadas: “chevrons”, caracterizam uma
ruptura frágil, como evidenciado na foto.




                                Ruptura fragil - Macrografia


4.1    Clivagem

       Ocorre por separação direta ao longo de planos cristalográficos específicos. Portanto, a
fratura por clivagem é transgranular, isto é, passa preferencialmente pelo interior dos grãos.
Neste mecanismo nota-se pouca ou nenhuma deformação plástica. A face da fratura tem
aparência lisa e plana, podendo apresentar irregularidade na sua superfície semelhantes a
marcas de rio que surgem devido à movimentação de discordância em hélice, se a superfície
fraturada apresenta predominância de planos de clivagem ou ausência de deformação plástica,
a mesma será classificada como ruptura frágil.




                                            Clivagem
23


4.2    Micromecanismos de fratura


       Os mecanismos de propagação de trinca são bastante diversos: fadiga, fluência,
corrosão sob tensão, e outros, a presença de uma trinca diminui a resistência mecânica do
componente e assim, quando se atinge o limite de resistência, ocorre a separação das partes.
Esta separação ou fratura se dará de forma dúctil, através do micromecanismo de ruptura
dúctil, ou frágil, por separação intergranular ou clivagem.




4.2.1 Ruptura dúctil

       É o modo de fratura associado à deformação plástica extensiva e se caracteriza
microscopicamente pela presença de alvéolos (dimples), que são microcavidades formadas a
partir de vazios e inclusões ou partículas de segunda fase.


       A presença de elevadas tensões internas cisalhantes induz o surgimento de anomalias
microestruturais provocando formação de microporosidades que passam a atuar como
concentradores de tensões.


       O acúmulo de tensões nestas regiões causa um acentuado fluxo plástico, aumentando
as dimensões destas microcavidades, formando alvéolos (ou dimples). Com o crescimento
destes ocorre a união das microcavidades adjacentes. Assim, dizemos que o mecanismo
básico de uma ruptura dúctil será o coalescimento das microcavidades.


4.2.2 Ruptura frágil


       Ocorre quando uma transformação metalúrgica fragilizou as ligações intergranulares ou
conferiu grande dureza aos grãos e portanto baixa tenacidade podendo estar ou não associada
ao crescimento dos mesmos.


       A separação intergranular requer baixa energia pois, neste caso, a trinca segue os
contornos de grãos e ocorre quando estes são mais frágeis que a rede cristalina. Esta
fragilização, ou redução na energia para a fratura, pode ocorrer devido à ação de diversos
agentes como radiação, absorção de Hidrogênio, precipitação de intermetálicos ou fases
frágeis junto aos contornos de grãos, fluência, etc. Em alguns casos podem ser verificados
sinais de deformação plástica extensiva nas paredes dos grãos. Nestes casos, não é
conveniente a associação deste mecanismo com a fratura frágil.
24


5.     TIPOS DE TRINCAS NA SOLDAGEM

      Na soldagem podem ocorrer diversos tipos de trincas. Algumas dependem da natureza
ou dimensões do metal de base, enquanto outras decorrem do processo de soldagem, no que
se refere à determinação dos parâmetros de soldagem ou mesmo os cuidados na seleção dos
materiais de adição. Por vezes elas podem ser influenciadas por condições externas tais como:
o condicionamento térmico da peça a ser soldada ou pela rigidez da estrutura. As trincas mais
freqüentes nas estruturas soldadas são:


               •   mecânica
               •   solidificação
               •   lamelar
               •   fadiga
               •   corrosão intergranular
               •   fragilização pelo hidrogênio

5.1    Trinca mecânica


      A trinca mecânica é um tipo de fratura frágil que ocorre mesmo que ela esteja sendo
submetida a um nível de tensões abaixo do nível correspondente ao escoamento, ou mesmo da
tensão de trabalho. Esse tipo de fratura freqüentemente têm origem em segregações no metal
de base, ou descontinuidades causadas por defeitos na soldagem, pois nestes pontos sempre
haverá tendência a concentração indesejável de tensões e deformações.


      Esse tipo de trinca pode ocorrer em serviço quando existirem tensões residuais, e a elas
se somarem outros esforços, a trinca apresentada na figura 22, foi conseqüência da somatória
de esforços da força centrífuga com a dilatação térmica e tensões residuais, que ultrapassaram
a tensão de ruptura do material. No reparo optou-se pela desvinculação da cinta em relação ao
disco no inicio e no final da fratura, isso foi possível por tratar-se de uma tampa de fechamento,
sem uma efetiva responsabilidade estrutural.




                   Trinca mecânica ocorrida em um rotor de hidrogerador
25


      A trinca mecânica também pode ocorrer durante a soldagem quando os esforços forem
superiores à resistência do metal de base como mostrado na figura, onde a geometria circular
da junta soldada fez com que as tensões de contração fossem máximas.



                                          1200


  200                                                                   Material:


                             Trinca mecânica em todo o contorno



5.2     Trinca de solidificação

               A granulação grosseira, a orientação da estrutura e a concentração de
segregações, inerentes à própria solidificação exercem uma influência marcante sobre a
susceptibilidade à formação de defeitos no metal de solda, principalmente sobre o mecanismo
de formação da trinca a quente, também conhecida como trinca de solidificação.


        Existem cinco tipos diferentes de estrutura de solidificação, que são: a planar, a celular,
a celular dendrítica, a colunar dendrítica e a equiaxial dendrítica. O que determina o tipo de
solidificação que será predominante no metal de solda é o grau de resfriamento no material,
que por sua vez depende da composição química da liga e do gradiente de temperaturas
formado pelo procedimento de soldagem imposto.


        As trincas a quente se formam em altas temperaturas no metal de solda (trincas de
solidificação) ou na zona de ligação (trincas de liquação), e resultam das tensões geradas na
contração durante o resfriamento. A presença de um filme líquido de produtos de baixo ponto
de fusão não consegue resistir a tensões trativas e se abre, como um rechupe as trincas de
cratera são uma variante das trincas a quente. Em termos práticos pode-se afirmar que uma
solidificação mais rápida e cordões menores, formados com baixa energia de soldagem, de um
metal de solda mais puro, minimizam os efeitos das segregações reduzindo a susceptibilidade
ao trincamento durante a solidificação.


      A trinca a quente ocorre na região central do cordão, figura 24, e será tanto mais
favorecida sua formação quanto maiores forem os níveis de impurezas existentes no metal de
base. As impurezas a que nos referimos são notadamente: os óxidos, sulfetos ou silicatos
eventualmente encontrados dispersos nos aços laminados.
26
       Essas partículas não metálicas, durante o processo de fusão do metal, não se fundem e
permanecem dispersas no banho de metal líquido.


       Durante o resfriamento, as dendritas, formações características da zona de fusão, agem
como cunhas segregando essas partículas na linha de centro do cordão, formando assim uma
região fragilizada pela alta concentração de elementos não metálicos.


       Nos aços austeníticos a sensibilidade à fissuração a quente se deve à formação de uma
película de silicatos em torno dos grãos da austenita. Pode-se evitar a presença desses
silicatos favorecendo a formação de uma fase susceptível de precipitar entre os grãos, que é a
ferrita δ.


       Entretanto um excesso de ferrita pode reduzir a ductilidade característica da austenita. É
importante haver um controle sobre os níveis de silício, os quais não devem ser superiores a
0,6%, sob o risco de aumentar a sensibilidade à fissuração a quente, (Séférian, 1965).


       Os esforços resultantes da contração, decorrente do resfriamento, agem sobre o cordão
provocando a trinca, a figura abaixo mostra esquematicamente o corte transversal de um
cordão de solda, ilustrando uma trinca a quente, esse tipo de trinca é assim denominado, pois
ocorre, normalmente, em altas temperaturas, acima de 300° C, quanto maior for a vinculação
das partes que compõem a junta, maior será a probabilidade de ocorrência de fissurações.




                                 Trinca à quente
27


           Trinca de liquação


       A zona de diluição é a região do metal de base que sofreu fusão parcial durante a
soldagem, e sobre a qual se inicia a solidificação do metal de solda. Em muitos materiais esta
região é pequena e somente pode ser observada em nível microscópico, podendo mesmo não
ser identificada, como é o caso dos aços de baixo carbono. Porém existem materiais,
austeníticos, por exemplo, cuja presença desta região parcialmente fundida pode levar à
fissuração por liquação. Algumas ligas metálicas quando em estado líquido, são muito
susceptíveis a precipitações em contornos de grão, principalmente devido à granulação
grosseira e presença de fases eutéticas.


       Materiais conformados por forjamento também podem apresentar este tipo de problema,
relacionados à linhas de deformação, fases de diferentes pontos de fusão, etc. Normalmente os
cuidados para minimizar trincas de solidificação não são efetivos para evitar trincas de liquação
sendo importante neste caso minimizar o tensionamento residual da junta soldada através da
utilização de técnicas de amanteigamento.




5.3    Trinca lamelar

      A trinca lamelar ocorre em soldagens estruturais de aços, normalmente em altas
espessuras, quando nas soldagens em ângulo, a chapa é carregada no sentido ortogonal à
espessura, também conhecida como direção “Z”. A abaixo mostra uma estrutura soldada, onde
os esforços decorrentes da contração do metal de solda incidem na direção “Z”.




                                                          Junta crítica




                         Nervura



                       Vaso cilíndrico     Disco rígido
28
     As causas desse tipo de trinca são: as segregações e impurezas presentes nas chapas
de aço laminadas, o formato da peça ou da junta o grau de rigidez da estrutura.




                                                     Inclusões não metálicas em chapa
                                                     laminada: óxidos, sulfetos e silicatos




   Forma característica da trinca lamelar




     As segregações e impurezas diminuem a resistência do material para os esforços na
direção Z, enquanto que o formato e o grau de rigidez atuam como elementos agravantes, a
trinca lamelar situa-se sempre no metal de base e possui o formato de escada.




5.3.1 Determinação do “Fator Z” em chapas de aço carbono

     Existem métodos, já desenvolvidos, para prevenção de trinca lamelar. Eles consistem
basicamente em avaliar o nível de extricção requerido para suportar uma determinada condição
de soldagem. O International Institute of Welding - IIW, considera alguns fatores de influencia
tais como: espessura da chapa carregada, dimensão da solda, tipo de chanfro, temperatura de
pré-aquecimento e o grau de rigidez da junta, para a determinação da extricção mínima
necessária.


     A partir desses dados consegue-se determinar teoricamente, qual deverá ser a extricção
mínima do material, que será determinada pelo ensaio de tração em um corpo-de-prova
retirado no sentido ortogonal à espessura da chapa, onde será medida a extricção do material.
O método de ensaio consiste em medir, com precisão centesimal, o diâmetro do corpo-de-
prova antes de iniciar o ensaio e após a ruptura do mesmo, o valor de extricção do material
será dado pela seguinte equação:
29




                                Zth min =
                                            (Di − Df ) x100%
                                              Di




       Os valores de extricção adotados pelas usinas siderúrgicas são: 15%, 25% e 35%,
dessa forma após o ensaio de extricção, o valor obtido será confrontado com a tabela abaixo
para se determinar o fator Z (comercial) da chapa de teste.




                               Zth                           “Z”
                            Requerido                 Valores de mercado
                              Até 10                           5
                              11 a 20                          15
                              21 a 30                          25
                               > 30                            35




Fatores de influência:

A – Espessura da solda
B – Configuração da Junta
C – Espessura da chapa submetida à tração
D – Grau de rigidez
E – Temperatura de pré-aquecimento
30



                       FATORES DE INFLUÊNCIA
                                           a ≤ 10                      3
       ESPESSURA
                                         10 < a ≤ 20                   6
                                         20 < a ≤ 30                   9
ZthA      DA
                                         30 < a ≤ 40                   12
                                         40 < a ≤ 50                   15
         SOLDA
                                           a > 50                      18
                                             0 .S
                                              ,7

                                                                       -25
                                 S




                                              0,5. S

                                                                       -5
                                 S




                                     S                         S       0
       FORMATO

ZthB      DA
                                                           x
         JUNTA     S                 S                             S
                                                                       3




                   S             S                     S               5



                            S                  S
                                                                       8


                                        s ≤ 10 mm                       2
                                     10< s ≤ 20 mm                      4
       ESPESSURA
                                     20< s ≤ 30 mm                      6
                                     30< s ≤ 40 mm                      8
ZthC    DA CHAPA
                                                                       10
                                     40< s ≤ 50 mm
                                     50< s ≤ 60 mm                     12
       CARREGADA
                                     60< s ≤ 70 mm                     14
                                         s > 70 mm                     16

                                      Pouco rígido                      0
ZthD    RIGIDEZ                         Rígido                          3
                                      Muito Rígido                      5

                                Com pré-aquecimento                    -8
ZthE TEMPERATURA                Sem pré-aquecimento                     0
31
       A redução de área no sentido transversal curto, mínima aceitável de uma determinada
chapa é de 5%, independente do valor de Zth teórico requerido para a junta, já que o mesmo
poderá se negativo, conforme pode ser visto na tabela acima.


       Os valores de extricção adotados pelas usinas siderúrgicas são: 15%, 25% e 35%,
dessa forma após o ensaio de extricção, o valor obtido será confrontado com a tabela abaixo
para se determinar o fator Z da chapa de teste.

       Com o auxilio da tabela acima podemos determinar a redução de área mínima no
sentido transversal curto Fator Z, em função do valor de Zth obtido pela soma dos diversos
fatores de influência:




                            Zth = ZthA + ZthB ................+ ZthE




Exemplo de cálculo


       Verificar os fatores de influência para junta abaixo, (sem pré-aquecimento) e determinar
qual deverá ser a qualidade da chapa posição 1 no tocante a extricção na direção Z a ser
especificada.




           22
                                                    A        B         C   D        E
                                                    9        8         8    5       0


                                      1

                                                    Σ = 30
                               37.5
                                                    Portanto... Z = 25%
32




Exemplos de ruptura lamelar
33


5.4    Trinca por fadiga

      A trinca por fadiga ocorre em elementos ou componentes mecânicos sujeitos a esforços
cíclicos em elevada faixa de tensões. O termo fadiga se aplica às alterações sofridas pelo
material quando submetido a tais solicitações que podem ser simples tração, compressão,
flexão, torção ou a combinação das mesmas. A vida do material ou junta soldada depende do
número de ciclos ao qual ele é submetido, sendo função da amplitude da tensão aplicada.


      Muitas vezes o metal se rompe, quando solicitado a repetidos carregamentos, com níveis
de tensão inferiores aos valores admissíveis, estaticamente. O limite de fadiga de um material,
ou de uma junta soldada é estimado através da solicitação do mesmo a carregamentos cíclicos
padronizados.


      As curvas representativas do comportamento do material em relação à fadiga podem ser
apresentadas em gráficos, com escalas logarítmicas ou semi-logaritimicas, considerando-se o
nível de tensões (S) como ordenadas e o numero de ciclos (N), até a falha do material, como
abscissas. Os defeitos de soldagem de uma forma ou de outra favorecem a ocorrência de
concentração de tensões provocando a redução da resistência à fadiga das juntas soldadas. As
micro-trincas e ou mordeduras perpendiculares à direção da atuação das tensões, são as que
causam as maiores concentrações de tensão. (Taniguchi, 1982).


      Aspectos como deformação plástica intensa junto à superfície da peça, acentuada
irregularidade e rugosidade da superfície de fratura e a geração de ressaltos ou dobras são
sinais da ação generalizada de mecanismos de movimentação de discordância, caracterizando
fraturas dúcteis do ponto de vista macroscópico. As condições mínimas para a propagação de
trincas por fadiga são:


           A presença de tensões de tração (com intensidade suficiente para a propagação) na
           superfície da peça e ou junto a defeitos internos;

           Flutuação na amplitude do carregamento externo aplicado;

           Um número de ciclos de variação de carga suficiente para a propagação da trinca.


       Embora uma trinca por fadiga possa ter início numa região fragilizada do material
crescendo a partir de uma micro trinca em contorno de grão, os processos de nucleação e
propagação de trincas na fadiga se caracterizam pela movimentação de discordâncias através
da aplicação de tensões de cisalhamento e, portanto, são de natureza dúctil. O processo de
trinca por fadiga envolve três estágios de desenvolvimento, a saber:
34
Estágio I - Nucleação


       A nucleação ou inicio de uma trinca por fadiga em um conjunto soldado pode ter
diversas origens entre as quais destacamos:


       a)     Alteração da microestrutura ( crescimento de grão )
       b)     Presença de tensões de tração elevadas na superfície
       c)     Acabamento superficial: Entalhes, rugosidade, mordeduras, etc.
       d)     Pontos de corrosão
       e)     Coalecimento de micro trincas remanescente do processo de soldagem




Estágio II – Crescimento e propagação da trinca


       Sob elevadas tensões cíclicas tem inicio o crescimento e a propagação cadenciada da
trinca na direção normal à máxima tensão de tração.




Estágio III - Fratura

       Ocorre quando a trinca atinge, uma dimensão em que a área da seção resistente não é
suficiente para suportar o carregamento aplicado, provocando assim a fratura.




                    Trinca de fadiga com origem em uma dobra de forjamento


       A fratura do parafuso classe 10.8 ocorreu por um mecanismo de fadiga a partir de
defeitos de forjamento verificados na região de concordância entre o corpo e a cabeça, que
nesse caso é sextavada e forjada. A presença de descarbonetação nessa região pode ter
facilitado o início da propagação da trinca. Na foto da esquerda acima podemos verificar as
marcas de catraca típicas de trinca de fadiga com múltiplos inícios.
35



1
                                         2
A




                         3                                           4




    As micrografias mostram dobras de forjamento e descarbonetação
         superficial com diversos inícios de trincas secundárias




                    Trinca de fadiga originada em uma
                         mordedura de soldagem
36
5.5    Trinca por corrosão

      Existem duas categorias de corrosão que podem levar uma junta soldada à ruptura, a
corrosão sob tensão que pode ser intergranular, transgranular ou mista, e que se caracteriza
por ser um fenômeno eletroquímico onde o metal tende a se ionizar na presença de um
eletrólito, ou pela ação galvânica entre metais de diferentes potenciais elétricos, o processo
corrosivo pode ser agravado nas juntas soldadas pela presença de mordeduras ou
sobreposições “over lap”.

        A segunda maneira é a chamada sensitização, que ocorre mais notadamente nos aços
inoxidáveis austeníticos, particularmente quando os mesmos são expostos a temperaturas
elevadas, acima de 500° C, nessas condições poderão ocorrer, precipitações de carbetos de
cromo nos contornos de grãos, fragilizando a estrutura e ao mesmo tempo empobrecendo a
região vizinha aos mesmos, pela diminuição do elemento cromo (Séférian, 1965). Esses grãos
assim afetados darão inicio ao um processo corrosivo e a partir daí poderão surgir
microfissuras, que em função dos esforços atuantes sobre o componente poderão se
transformar em trincas.




                     Trinca por corrosão intergranular - aço inoxidável tp 409


        Durante o projeto é fundamental uma análise sobre as condições de operação do
equipamento, particularmente quando o mesmo for submetido a altas temperaturas, pois uma
precipitação de fases secundárias poderá ocorrer e degradar completamente a estrutura, como
ocorreu nos defletores dessa chaminé de exaustão de gases aquecidos a 550ºC, fotos abaixo.
37

5.6    Trinca por hidrogênio

       A trinca de hidrogênio também conhecida como “a frio” ou “sob cordão” é provavelmente
a de maior incidência na soldagem dos aços estruturais, ela está intimamente ligada aos
parâmetros adotados na soldagem, como também às condições de trabalho no que se refere à
limpeza e condicionamento dos materiais de soldagem. Seu mecanismo de formação baseia-se
na combinação de três fatores:




                 Trinca de H2 = Tensão + Martensita + Hidrogênio



       A ausência ou a sensível diminuição de um desses fatores pode impedir a ocorrência
desse tipo de trinca, para tanto algumas ações preventivas se fazem necessárias. Tais ações
abrangem a engenharia e a fabricação como demonstrado a seguir.


       Projeto

       O projetista pode estudar disposições ou formas geométricas que minimizem as tensões
residuais, evitando tanto quanto possível a hiper vinculação das partes ou a concentração de
tensões em regiões críticas, e no momento da definição dos materiais, buscar aqueles que
atendam as necessidades mecânicas e físicas, mas que também possuam um baixo valor de
carbono equivalente.


       Procedimentos


       Procedimentos que podem minimizar o aporte de H2 na poça de fusão:


       -   A escolha de um processo de “extra baixo” hidrogênio como, por exemplo, o
           processo MIG/MAG, ou a utilização de eletrodos básicos.
       -   O condicionamento adequado dos eletrodos em ambiente seco com temperatura

       -   (25ºC) e umidade relativa do ar controlada (· 50 %) seguidos de ressecagem dos
           eletrodos antes do uso.
       -   A manutenção dos eletrodos básicos em estufas apropriadas com temperaturas
           entre 105º e 115º C, e a utilização de estufas portáteis quando em canteiro.

       -   Um pós-aquecimento eficiente também irá colaborar na difusão do hidrogênio
           remanescente.

       -   Fluxos básicos para o processo arco submerso (SAW) e arames tubulares básicos
           também devem ser mantidos em ambientes secos.
38

5.6.1 Fatores de influência na formação da trinca de H2


      Conforme Million (1971) as influências do hidrogênio sobre as propriedades dos aços são
descritas como sendo extremamente variadas e tem sido objeto de muitos estudos até o
momento. Porém a mais freqüente das afirmações é a redução da ductilidade e da tenacidade
dos aços sob influência de pequenas quantidades de hidrogênio. Isso equivale a dizer que,
nessas condições, irá ocorrer uma diminuição das propriedades plásticas e da resistência a
ruptura. A grande interação existente entre os átomos de hidrogênio e os de carbono, resulta
que o hidrogênio dificulta a saída do carbono da solução sólida agindo, portanto como um
estabilizador da martensita, o hidrogênio dissolvido na estrutura cristalina do aço também
provoca um crescimento de dureza.

      O mecanismo de fissuração devido ao hidrogênio tem por principio as pressões internas,
geradas pelo aumento de volume, que acontece quando o hidrogênio, que após ter sido
introduzido na estrutura do aço em sua forma atômica H+, passa a se agrupar, atraído pelas
tensões internas, e se transforma em hidrogênio molecular H2, com um grande aumento de
volume. Isso ocorre em temperaturas baixas, menores que 150º C.

       A pressão gerada pode facilmente ultrapassar o limite de escoamento, e associada à
fragilidade causada pela formação da martensita, na zona termicamente afetada (ZTA), introduz
deformações plásticas que dão origem as microfissuras intergranulares e transgranulares. As
integrações dessas microfissuras darão origem a trinca conhecida como, trinca de fragilização
pelo hidrogênio, esse tipo de trinca ocorre mais freqüentemente nos processos de soldagem
tradicionais onde normalmente a presença de água proveniente da umidade nos eletrodos ou
fluxos eletro-condutores, favorecem a introdução do hidrogênio na poça de fusão, uma vez que
a molécula da água se decompõe no arco elétrico liberando o hidrogênio, seu mecanismo de
formação baseia-se na combinação de três fatores:

       A figura abaixo mostra uma trinca de hidrogênio, ocorrida em uma junta circunferencial, o
conjunto foi construído em chapa extra grossa de aço laminado S 355 J2, o processo utilizado
foi o FCAW, com pré aquecimento de 120º C. Nesse caso foi executado um pós aquecimento a
150º C por 30 minutos para difundir o hidrogênio remanescente, o pré aquecimento estava
coerente com o carbono equivalente do metal de base, e apesar disso a trinca ocorreu, devido
à hiper vinculação decorrente da junta circular.




                            Trinca de H2 em cubo de rotor
39

6.     METODOLOGIA DE INVESTIGAÇÃO DE FALHA


       A investigação de uma falha deve se iniciar pelo levantamento das condições do
componente durante a ocorrência do dano, através das plantas de montagem, relatórios de
manutenção, tempo de funcionamento, memoriais de cálculo, desenhos, cargas aplicadas
conhecidas, ferramental utilizado para manutenção e montagem, descrição dos processos
empregados na fabricação, condições ambientais tais como temperatura, pressão, pH, umidade
e outros como, por exemplo, certificados das matérias-primas ou de componentes, informações
de testemunhas, de operadores, fotos do acidente, etc.


       Obviamente, em apenas alguns casos será possível obter informações tão completas
para a construção do cenário da falha, mas qualquer informação neste sentido pode ser da
máxima importância em casos onde, por exemplo, a peça fraturada é perdida em decorrência
do dano. Mapas de manutenção podem indicar falta de lubrificação, erros no procedimento de
montagem, troca tardia ou precoce de componentes que possam ter sido agentes causadores
da falha.


       Dados sobre conseqüências do dano, como incêndios, explosões, quedas e impactos
subseqüentes são de grande valia na eliminação ou mesmo na geração de hipóteses. O
ferramental envolvido na manutenção ou na montagem, se mal escolhido ou mal utilizado, pode
modificar as condições ideais de serviço.


       Um exemplo bastante comum é o emprego de torquímetros ajustados inadequadamente
para valores acima ou abaixo do especificado em projeto. Um pré-torque subdimensionado
pode levar à falha por fadiga em baixo ciclo, por exemplo, enquanto que um pré-torque
exagerado pode deformar plasticamente a rosca e criar concentradores adicionais de tensão,
antecipando a falha por fadiga. Assim, informações para a construção do cenário do dano são
muito úteis na investigação do mecanismo de falha.


       Em determinadas situações, quando o equipamento sinistrado pertence à chamada
linha crítica, ou gargalo de produção, não há tempo suficiente para uma análise laboratorial da
peça fraturada para determinação da composição química, podendo sobrepor-se a isso a falta
de documentação indicativa dos materiais utilizados, nesses casos devemos adotar reparos
emergenciais com base em avaliações visuais da fratura, existem algumas diretrizes que
podem orientar a identificação do metal fraturado as quais relatamos a seguir.
40
  6.1     Tipos de falhas mais comuns

           Encruamento por trabalho mecânico                           Fratura dúctil
           Deformação elástica                                         Fratura frágil
           Deformação plástica                                         Oxidação
           Trincas de origem mecânica                                  Corrosão
           Trincas de origem metalúrgica                               Flambagem
           Relaxação térmica                                           Desgaste
           Fragilização pelo hidrogênio                                Erosão
           Fragilização por radiação                                   Cavitação



6.2      Identificação visual alguns metais

         Características
                                 Fratura            Superfície em bruto         Usinagem recente
Materiais

                                                Cinza escuro, eventualmente
Aço baixo carbono e aço                                                        Muito lisa, cinza
                           Cinza brilhante      marcas de fundição ou
fundido                                                                        brilhante
                                                forjamento

                                                Cinza escuro, riscos de
                                                                               Muito lisa, cinza
Aços alto carbono          Cinza muito claro    laminação ou marcas de
                                                                               brilhante
                                                forjamento
                                                Cinza escuro, relativamente
                                                                               Muito lisa, cinza
Aços ligados               Cinza médio          rugosa, eventualmente riscos
                                                                               brilhante
                                                de laminação ou forjamento

                                                Superfície lisa com graduação Vermelho brilhante
Cobre                      Avermelhada          de marrom avermelhado para tornando-se fosco com
                                                verde, devido à oxidação      o tempo, muito lisa

                                                Superfície lisa com várias
                           Amarelo                                             Aparência vermelho
Latão e bronze                                  tonalidades de marrom, verde
                           avermelhado                                         amarelada, muito lisa
                                                ou amarelo devido à oxidação

                                                Evidencias do molde ou da
Alumínio e ligas           Branca                                              Lisa, muito branca
                                                laminação, cinza muito claro

Monel                      Cinza claro          Lisa, cinza escuro             Muito lisa e branca

Níquel                     Quase branca         Lisa, cinza escuro             Muito lisa e branca

Chumbo                     Branca cristalina    Branca a cinza, lisa aveludada Muito lisa e branca

                           Formação cristalina
                                                Evidência de molde de areia,
Ferro fundido branco       sedosa, muito fina e                                Raramente usinada
                                                cinza fosco
                           branco-prateada

                                                Evidência de molde de areia,   Moderadamente lisa,
Ferro fundido cinzento     Cinza escuro
                                                cinza muito fosco              cinza claro

                                                Evidência de molde de areia,   Superfície lisa, cinza
Ferro fundido maleável     Cinza escuro
                                                cinza fosco                    claro

                                                                               Superfície lisa, cinza
Ferro batido               Cinza brilhante      Cinza claro, lisa
                                                                               claro
41

6.3    Exame da superfície de fratura e da peça fraturada

6.3.1 Inspeção visual


       A inspeção visual, por vezes, é a etapa da investigação que fornece as informações mais
importantes para a análise do mecanismo de falha. Algumas vezes, a inspeção visual indica o
modo de fratura e a causa provável em poucos segundos, sendo que as outras técnicas são
empregadas, nestes casos, apenas para confirmar a hipótese levantada nesta etapa. A inspeção
a olho nu permite, certamente, levantar as hipóteses mais prováveis sobre o mecanismo de falha,
direcionando a investigação quanto a seqüência de emprego das técnicas de análise e a
interpretação dos dados por estas obtidos.


       A análise de uma fratura deve ter sempre como referência o aspecto global da superfície.
Os processos de fratura deixam marcas significativas nas superfícies fraturadas que permitem,
muitas vezes, a identificação das regiões de nucleação, propagação de trincas e fratura final. Tais
informações indicam, qualitativamente, os níveis de tensão aplicados e o modo de carregamento.
LIPSON e JACOBY esquematizaram esta relação entre o aspecto da fratura e o tipo e
intensidade do carregamento, em mapas que mostram a distribuição das diferentes regiões
formadas pelo processo de fratura. A figura abaixo elaborada por Lipson e Jacoby, é empregada
para peças com seção transversal circular, como eixos e pinos, e considera a presença de
concentradores de tensões. É importante observar que não foi considerada a possibilidade de
nucleação a partir de falhas internas.


                                       Tensão Nominal Elevada                                       Tensão Nominal Baixa
                                                     moderado        severo
                                sem concentrador                                                                  moderado        severo
                                                   concentrador   concentrador               sem concentrador
                                   de tensões                                                                   concentrador   concentrador
                                                    de tensões     de tensões                   de tensões
                                                                                                                 de tensões     de tensões




              Nucleação                                           Tração-Tração ou Tração-Compressão
              e Propagação


              Ruptura Final




                                                                            Flexão Unidirecional




                                                                             Flexão Alternada




                                                                                 Flexão Rotativa

                              45o



                              Forma helicoidal                                      Torção



            Representações esquemáticas de superfícies de fratura em eixos cilíndricos
                      de acordo com a intensidade e tipo de carregamento
42
       Além da superfície de fratura, o aspecto macroscópico das superfícies laterais à região
fraturada também indica o tipo de esforço mecânico causador da falha através do conceito de
que a fratura dúctil ocorre paralelamente às máximas tensões de cisalhamento envolvidas,
enquanto que a fratura macroscopicamente frágil se dá ao longo de um plano disposto
perpendicularmente às tensões normais mais intensas, a figura acima resume este conceito.


6.3.2 Inspeção com Lupa


       Em muitos casos, uma pequena lupa é muito mais útil do que um potente microscópio
eletrônico na análise de falhas. Com um pequeno aumento, além de se observar toda a superfície
da falha de forma global, pode-se analisar com rapidez e em detalhe, riscos, ranhuras, marcas de
usinagem ou sinais de deformação nas faces não fraturadas, estimando-se a influência destes
dados na ocorrência do dano com maior precisão que numa imagem muito ampliada, pois um
aumento maior torna difícil a comparação entre a profundidade de uma marca e o tamanho da
peça. A figura abaixo mostra a representação esquemática dos aspectos das superfícies de
fraturas macroscopicamente frágeis ou dúcteis em relação ao carregamento.



                              Tensões Nominais Elevadas                                               Tensões Nominais Baixas


               sem concentrador     concentrador de   concentrador de              sem concentrador        concentrador de      concentrador de
                  de tensões         tensões suave    tensões severo                  de tensões            tensões suave       tensões severo




                                                          Tração-Tração ou Tração-Compressão




                                                                  Flexão Unidirecional




                                                                     Flexão Reversa

                                     Ruptura Final        Nucleação
                                                          e Propagação




                           Aspectos de Fratura por fadiga em peças de seção retangular



       Ainda, em casos ocorridos no campo, onde a superfície fraturada não pode ser removida
devido às dimensões do componente e/ou à necessidade de se reparar rapidamente o dano, a
inspeção com lupa é a única alternativa viável (como no caso da fratura de tubos em instalações
de indústria química, que são reparados por soldagem).
43
6.3.3 Observação em microscópio óptico


       Um dos mandamentos da Análise de Fratura é jamais remontar a peça fraturada antes de
se completar a investigação, pois podem ser produzidos pequenos danos ao se unir superfícies
fraturadas, reduzindo-se a área útil para obtenção de informações.


       Outro cuidado consiste em proteger as superfícies fraturadas contra a corrosão, limpando-
as e cobrindo-as com verniz acrílico ou óleo neutro, que podem ser removidos posteriormente por
solventes orgânicos. Nunca se deve tocar a superfície de fratura com os dedos, pelo mesmo
motivo. A observação das superfícies adjacentes à de fratura fornece informações quanto a
possíveis concentradores de tensão, como fissuras, porosidades, etc.


       O microscópio estereoscópico óptico permite a observação com sensação de
profundidade, isto é, permite visualizar relevos não-planos através da fusão de duas imagens
tomadas com ângulos diferentes, mas a uma mesma distância, de uma mesma região do objeto
observado. A fusão destas imagens se dá por meio de jogos de lentes e/ou espelhos construídos
de forma a se obter uma única imagem, que será projetada em uma tela ou observada através de
duas oculares, tendo ampliadas as protuberâncias ou reentrâncias verticais do objeto observado
em relação ao aumento lateral da imagem.


       Entretanto, há uma certa limitação em grandes ampliações, com um aumento na distorção
de formas e redução do foco, exigindo o uso de lentes cada vez mais o que restringe seu uso ao
limite de até 80X. Cabe lembrar que a obtenção de fractografias nestes equipamentos exige
atenção especial com as condições de iluminação sobre a amostra.




                Zona fundida + metal de adição / dendritas - 200 X
44
7.      RECURSOS COMPLEMENTARES

7.1     Endireitamento de eixos empenados


        Os motivos de um empenamento de eixo, podem ser de naturezas diversas, como por
exemplo: roçamento unilateral; resfriamento ou dilatação desigual do eixo; danos de transporte;
tensões internas remanescentes no material; esforços externos indevidos no eixo; etc. Eixos
empenados podem ser endireitados, por aquecimento com um maçarico próprio para
aquecimento, aplicado do lado curvo (convexo). Antes de fazer isto, deve ser verificado o tipo de
material e o seu comportamento sob calor, e ser fixada a temperatura máxima compatível com o
material, a qual de forma alguma poderá ser ultrapassada.


        Fundamentalmente os eixos somente podem ser endireitados após consulta ao
Departamento de Projetos competente e a obtenção do seu parecer favorável. O Departamento
de Projetos fixa também os limites de temperatura requeridos, para os trabalhos de
endireitamento. Inicialmente, deve ser verificado exatamente o ponto de empenamento do eixo.
Para essa finalidade, o eixo é colocado em um torno, sustentado pelas lunetas, nas linhas de
centro dos mancais, de ambos os lados e o acionamento deve ser feito de forma flexível pela
placa do torno, com o auxílio de eixo cardan.


        Com isto, a posição do empenamento é identificada de forma exata, podendo ser
constatado se o empenamento se encontra em um ou em vários planos (como regra, encontra-se
quase    sempre,   o   encurvamento     em      um   plano).   O   empenamento    é   desenhado
esquematicamente. Encontrando-se nas imediações do lugar a ser tratado, discos ou cilindros,
estes devem ser aquecidos de leve, para evitar-se grandes diferenças de temperatura. Após o
esfriamento, o empenamento deverá ter diminuído um pouco, uma vez que as tensões locais
devem ter-se tornado menores.


        Também pode acontecer que o empenamento inicial tenha-se deslocado um pouco de
lugar. Por isso após este processo de aquecimento, a localização dos pontos mais salientes deve
ser controlada mais uma vez (fazer novo gráfico).


        Para o endireitamento do eixo, o ponto de maior deformação a ser aquecido é cercado
com isolante térmico, para conter a irradiação da chama. O comprimento da janela cercada de
amianto (superfície de aquecimento axial), deve ser aproximadamente 2/5 do diâmetro do eixo
(no máximo 300 mm) e a largura aprox. 1/10 (no máximo 150 mm) da circunferência do eixo. Esta
região se encontra do lado convexo do empenamento, anteriormente identificada com giz. A
superfície cercada é aquecida rapidamente, em eixos menores, com um ou, em eixos maiores,
com dois maçaricos, até alcançar a cor de revenimento.
45


       A temperatura deve, sempre que possível, ser verificada com um instrumento de rápida
indicação. Um meio simples para o controle da temperatura, normalmente existente nos locais de
instalações é o dos lápis de cor de medição de temperatura, (Thermochrom, Thermocolore), a
temperatura máxima admissível não pode ser ultrapassada. Um aquecimento em profundidade
do eixo deve ser evitado absolutamente, uma vez que com isto a estrutura do material pode ser
alterada de forma prejudicial.


       O aquecimento deve abranger apenas a camada superior e não deve progredir em
profundidade. Como norma, pode ser admitido um aumento da curvatura, da ordem de 3 - 4
vezes a curvatura inicial. Para resfriar o eixo mais rapidamente após o aquecimento, retira-se a
isolação térmica e o eixo é girado, se possível, e resfriado com ar comprimido (não usar água).


       Na medida em que o empenamento ainda não tenha desaparecido totalmente ou
suficientemente, deve ser repetida a mesma operação de aquecimento, de forma exatamente
igual, mas em função da indicação do relógio comparador, o eixo deve ser aquecido menos ou
mais tempo, (baseia-se no tempo e no ajuste da chama durante o primeiro aquecimento).


       Como a flexão do eixo apresenta durante o aquecimento uma boa amplitude, em função
do tempo de duração e da intensidade de aquecimento, usa-se um relógio comparador, que é
aplicado e cuidadosamente observado durante a operação de aquecimento, do lado oposto ao
lugar a ser aquecido. Antes de cada operação de aquecimento, deve ser controlada a
temperatura do eixo, a qual deve ser igual à temperatura do ambiente.



                                        ATENÇÃO
                            NÃO AQUECER O MESMO LUGAR
                                 MAIS DO QUE DUAS VEZES.



       Nas rotações de 1500 até 6000 rpm, é suficiente, em regra, o endireitamento até os
valores de 0,04 até 0,02 mm. Para eixos com rotações abaixo de 1500 rpm, são suficientes
valores de aproximadamente 0,05 mm. O empenamento admissível, depende muito do lugar do
empenamento, distância entre mancais e comprimento de todo o eixo e, deve-se consultar a
Norma NEMA.

       Os eixos endireitados devem, em todo caso, ser controlados com relação ao seu
balanceamento e, quando necessário, devem ser balanceados. Após o endireitamento, deve ser
realizado um controle de fissura. O mesmo deve ser realizado por Líquido Penetrante ou por
Ultra-som.
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP
Soldagem de Manutenção I & II - FATEC SP

Mais conteúdo relacionado

Mais procurados

Silva telles 10ª ed tubulações industriais- PETROQUIMICA
Silva telles 10ª ed   tubulações industriais- PETROQUIMICASilva telles 10ª ed   tubulações industriais- PETROQUIMICA
Silva telles 10ª ed tubulações industriais- PETROQUIMICACarlinhos .
 
Dimensionamento de uma instalação colectiva
Dimensionamento de uma instalação colectivaDimensionamento de uma instalação colectiva
Dimensionamento de uma instalação colectivaMiguel Fusco
 
Soldagem com eletrodo revestido
Soldagem com eletrodo revestidoSoldagem com eletrodo revestido
Soldagem com eletrodo revestidoLaís Camargo
 
6. materiais ceramicos gradryr
6. materiais ceramicos gradryr6. materiais ceramicos gradryr
6. materiais ceramicos gradryrRenatu Vivas
 
Equaçõe diferenciais zill resolução
Equaçõe diferenciais   zill resoluçãoEquaçõe diferenciais   zill resolução
Equaçõe diferenciais zill resoluçãoDywilly Dias
 
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
Resolução do livro de estática   hibbeler 10ª ed - cap 4-6Resolução do livro de estática   hibbeler 10ª ed - cap 4-6
Resolução do livro de estática hibbeler 10ª ed - cap 4-6Jefferson_Melo
 
Fundamentos da Física, Vol 1 mecanica - Halliday
Fundamentos da Física, Vol 1 mecanica - HallidayFundamentos da Física, Vol 1 mecanica - Halliday
Fundamentos da Física, Vol 1 mecanica - HallidayAndressa Kuibida
 
- Propriedades - Ligas metálicas - Metais
- Propriedades - Ligas metálicas - Metais - Propriedades - Ligas metálicas - Metais
- Propriedades - Ligas metálicas - Metais Giullyanno Felisberto
 
Aws curso de inspeccion de soldadura
Aws   curso de inspeccion de soldaduraAws   curso de inspeccion de soldadura
Aws curso de inspeccion de soldaduraclarksuper
 
23 abacos flexao normal venturini
23 abacos flexao normal   venturini23 abacos flexao normal   venturini
23 abacos flexao normal venturinigabioa
 
Capitulo 8 flexão (2)
Capitulo 8   flexão (2)Capitulo 8   flexão (2)
Capitulo 8 flexão (2)Tiago Gomes
 
Capitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosCapitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosraul cabrera f
 
Manual de-soldadura-west-arco
Manual de-soldadura-west-arcoManual de-soldadura-west-arco
Manual de-soldadura-west-arcoHUGO soto
 
memorial-de-calculo-spda-5419
memorial-de-calculo-spda-5419memorial-de-calculo-spda-5419
memorial-de-calculo-spda-5419Paulo H Bueno
 
Dinâmica 10 ed - hibbeler - vibrações
Dinâmica   10 ed  -  hibbeler - vibraçõesDinâmica   10 ed  -  hibbeler - vibrações
Dinâmica 10 ed - hibbeler - vibraçõesJessika Favarato
 

Mais procurados (20)

Silva telles 10ª ed tubulações industriais- PETROQUIMICA
Silva telles 10ª ed   tubulações industriais- PETROQUIMICASilva telles 10ª ed   tubulações industriais- PETROQUIMICA
Silva telles 10ª ed tubulações industriais- PETROQUIMICA
 
Dimensionamento de uma instalação colectiva
Dimensionamento de uma instalação colectivaDimensionamento de uma instalação colectiva
Dimensionamento de uma instalação colectiva
 
Soldagem com eletrodo revestido
Soldagem com eletrodo revestidoSoldagem com eletrodo revestido
Soldagem com eletrodo revestido
 
6. materiais ceramicos gradryr
6. materiais ceramicos gradryr6. materiais ceramicos gradryr
6. materiais ceramicos gradryr
 
Equaçõe diferenciais zill resolução
Equaçõe diferenciais   zill resoluçãoEquaçõe diferenciais   zill resolução
Equaçõe diferenciais zill resolução
 
Defeito s lingotamento de tarugos
Defeito s  lingotamento de tarugosDefeito s  lingotamento de tarugos
Defeito s lingotamento de tarugos
 
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
Resolução do livro de estática   hibbeler 10ª ed - cap 4-6Resolução do livro de estática   hibbeler 10ª ed - cap 4-6
Resolução do livro de estática hibbeler 10ª ed - cap 4-6
 
Fundamentos da Física, Vol 1 mecanica - Halliday
Fundamentos da Física, Vol 1 mecanica - HallidayFundamentos da Física, Vol 1 mecanica - Halliday
Fundamentos da Física, Vol 1 mecanica - Halliday
 
- Propriedades - Ligas metálicas - Metais
- Propriedades - Ligas metálicas - Metais - Propriedades - Ligas metálicas - Metais
- Propriedades - Ligas metálicas - Metais
 
Aws curso de inspeccion de soldadura
Aws   curso de inspeccion de soldaduraAws   curso de inspeccion de soldadura
Aws curso de inspeccion de soldadura
 
Proceso gmaw
Proceso gmawProceso gmaw
Proceso gmaw
 
23 abacos flexao normal venturini
23 abacos flexao normal   venturini23 abacos flexao normal   venturini
23 abacos flexao normal venturini
 
Estrutura cristalina
Estrutura cristalinaEstrutura cristalina
Estrutura cristalina
 
Capitulo 8 flexão (2)
Capitulo 8   flexão (2)Capitulo 8   flexão (2)
Capitulo 8 flexão (2)
 
Capitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosCapitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicos
 
Solda MAG
Solda MAGSolda MAG
Solda MAG
 
Manual de-soldadura-west-arco
Manual de-soldadura-west-arcoManual de-soldadura-west-arco
Manual de-soldadura-west-arco
 
Cien mat aula3
Cien mat aula3Cien mat aula3
Cien mat aula3
 
memorial-de-calculo-spda-5419
memorial-de-calculo-spda-5419memorial-de-calculo-spda-5419
memorial-de-calculo-spda-5419
 
Dinâmica 10 ed - hibbeler - vibrações
Dinâmica   10 ed  -  hibbeler - vibraçõesDinâmica   10 ed  -  hibbeler - vibrações
Dinâmica 10 ed - hibbeler - vibrações
 

Semelhante a Soldagem de Manutenção I & II - FATEC SP

Metalurgia - Soldagem
Metalurgia - SoldagemMetalurgia - Soldagem
Metalurgia - SoldagemEverton Costa
 
Tipos de solda e analises de tensao
Tipos de solda e analises de tensaoTipos de solda e analises de tensao
Tipos de solda e analises de tensaoAnna Karoline Maciel
 
Apostila soldagem 1
Apostila soldagem 1Apostila soldagem 1
Apostila soldagem 1tchuba
 
Teste de soldabilidade
Teste de soldabilidadeTeste de soldabilidade
Teste de soldabilidadeNayara Neres
 
Apresentação Processos de Fabricação Mecânica
Apresentação Processos de Fabricação Mecânica Apresentação Processos de Fabricação Mecânica
Apresentação Processos de Fabricação Mecânica Victor Dias
 

Semelhante a Soldagem de Manutenção I & II - FATEC SP (7)

Soldagem finalizado
Soldagem finalizadoSoldagem finalizado
Soldagem finalizado
 
Metalurgia - Soldagem
Metalurgia - SoldagemMetalurgia - Soldagem
Metalurgia - Soldagem
 
Tipos de solda e analises de tensao
Tipos de solda e analises de tensaoTipos de solda e analises de tensao
Tipos de solda e analises de tensao
 
Apostila soldagem 1
Apostila soldagem 1Apostila soldagem 1
Apostila soldagem 1
 
Teste de soldabilidade
Teste de soldabilidadeTeste de soldabilidade
Teste de soldabilidade
 
Reducao de fatores_de..
Reducao de fatores_de..Reducao de fatores_de..
Reducao de fatores_de..
 
Apresentação Processos de Fabricação Mecânica
Apresentação Processos de Fabricação Mecânica Apresentação Processos de Fabricação Mecânica
Apresentação Processos de Fabricação Mecânica
 

Soldagem de Manutenção I & II - FATEC SP

  • 1. FACULDADE DE TECNOLOGIA DE SÃO PAULO - FATEC SP DEPARTAMENTO DE SOLDAGEM SOLDAGEM DE MANUTENÇÃO I & II SUMÁRIO 1. INTRODUÇÃO 2. FATORES INERENTES À SOLDAGEM DE MANUTENÇÃO 3. SOLDABILIDADE 4. MECANISMOS DE FALHAS NOS METAIS 5. TIPOS DE TRINCAS NA SOLDAGEM 6. METODOLOGIA DE INVESTIGAÇÃO DE FALHA 7. RECURSOS COMPLEMENTARES 8. APRESENTAÇÃO DE CASOS R. Conz - 2009
  • 2. 2 1. INTRODUÇÃO Os processos de fabricação no segmento da construção mecânica alcançaram neste inicio de milênio um grande progresso, graças às conquistas científicas e tecnológicas que caracterizaram as últimas décadas. A soldagem a seu turno ocupou um lugar de destaque, passando de um processo artesanal para uma tecnologia com bases científicas bastante sólidas. A união de metais já era praticada no século XII a.C. por forjamento à quente ou por estanho, entretanto evoluiu muito pouco até próximo ao final do século XIX. Com o surgimento do eletrodo metálico em 1885 marcou-se o inicio de uma nova era, a partir de então a evolução da tecnologia de soldagem tem sido intensa, buscando atender aos múltiplos segmentos industriais, bem como a enorme variedade de ligas metálicas desenvolvidas a partir de então. Tal evolução não aconteceu de forma aleatória ou independente, pois devido estar a soldagem relacionada a transformações metalúrgicas, foi necessário um encadeamento de conhecimentos e uma conseqüente normalização para fixar as variáveis e limites dos processos, projetos, métodos de ensaio, bem como dos critérios de aceitação. Do ponto de vista da aplicação, a tecnologia de soldagem pode ser dividida em dois grandes grupos, a soldagem de produção e a soldagem de manutenção, sendo que, enquanto a primeira baseia-se em: especificações técnicas, cálculos e procedimentos qualificados, conforme normas específicas, a segunda, em oposição apresenta dificuldades do tipo: metal de base desconhecido, contaminações e emergências, sendo que tudo isso ainda pode vir acompanhado da necessidade da soldagem ser realizada em local desprovido de recursos adequados. Um outro aspecto a ser considerado é que na soldagem de manutenção não é comum ser especificado um procedimento, ficando as decisões para o soldador ou para o supervisor. A soldagem de manutenção abrange a recuperação de peças defeituosas, quebradas, trincadas e desgastadas, com ou sem usinagem posterior, consiste em unir, refazer ou revestir partes metálicas alterando ou não suas características iniciais.
  • 3. 3 2. FATORES INERENTES À SOLDAGEM DE MANUTENÇÃO Especificações técnicas dos clientes SOLDAGEM DE PRODUÇÃO Cálculos dos esforços Procedimentos qualificados Exigências conforme normas Caso a caso SOLDAGEM DE MANUTENÇÃO Dificuldades operacionais Metal de base desconhecido Contaminações diversas Depende da habilidade do soldador 2.1 Fatores Tecnológicos Processo de soldagem Metalurgia de soldagem Materiais de base e de soldagem Controle de qualidade Ensaios não destrutivos 2.2 Fatores administrativos Manutenção corretiva Manutenção preventiva Manutenção preditiva 2.3 Fatores econômicos Valor do componente x peça nova Reposição Disponibilidade x rapidez Garantia Custo da recuperação Recuperação Tempo Eventual garantia 2.4 Fatores humanos Ousadia com bom senso Sensibilidade e honestidade Saber ouvir Poder de análise Capacidade investigativa
  • 4. 4 3. SOLDABILIDADE Na soldagem de manutenção define-se soldabilidade como sendo, a capacidade de um metal ser soldado em condições estruturais e ou metalúrgicas, sem entrar em colapso, mantendo o mínimo de resistência exigida pela operação do produto em questão e nessas condições podemos classificá-la em: Operatória Construtiva Metalúrgica 3.1 Soldabilidade Operatória A soldabilidade operatória está associada às condições encontradas no momento da execução da soldagem. Tais condições devem ser muito bem analisadas, pois freqüentemente as mesmas são bastante precárias, seja pela localização, pelo acesso ou mesmo pela posição em que a soldagem será executada. As análises devem considerar o processo a ser utilizado, pois poderá haver restrições quanto à sua aplicação em determinadas posições, a técnica operatória escolhida, filete ou passe oscilado, também deve estar coerente com a situação, pois elas influem no calor introduzido e conseqüentemente nas alterações metalúrgicas. 3.2 Soldabilidade Construtiva A concepção adotada na fabricação original da peça ou conjunto a ser reparado pode influir na recuperação do mesmo, principalmente no que se refere às tensões residuais existentes, as quais por serem de natureza complexa e multi-direcionais, não podem ser verificadas por instrumento. Contudo o formato e as tendências ao empenamento, são indicativos de estarmos diante um componente tencionado, e nessas condições deve-se buscar seqüências de deposição que possam agir em sentido contrário ao das tensões residuais, anulando assim o efeito das mesmas. Uma técnica de distencionamento mecânico por martelamento durante a soldagem, também poderá ser utilizada dependendo do tipo de metal de adição que será depositado. Alguns exemplos serão apresentados mais adiante.
  • 5. 5 3.3 Soldabilidade Metalúrgica De todos os tipos aqui apontados, a soldabilidade metalúrgica é provavelmente a mais complexa, e também é a que mais tem sido estudada. A soldabilidade metalúrgica é influenciada por inúmeros fatores, tais como: Aporte térmico Tensões x deformações Alteração do diagrama de equilíbrio Transformações da estrutura cristalina Impurezas e defeitos Tratamentos térmicos O controle desses efeitos se restringem ao condicionamento térmico imposto, dessa forma torna-se imprescindível a verificação da natureza dos metais envolvidos no processo de maneira a se estabelecer o regime térmico apropriado, em grande parte dos casos isso irá implicar na aplicação de pré-aquecimento, controle das temperaturas de interpasse e um pós aquecimento. As variantes que podem surgir quando combinamos os fatores acima definidos, com a imensa quantidade de ligas metálicas existentes é praticamente infinita, inviabilizando assim a definição de uma receita ou regra geral, dessa forma precisamos entender todos esses fenômenos e cuidadosamente associá-los para a definição dos parâmetros de condicionamento térmico. O FUND AM ENTAL EM SOLD AG EM DE M ANUTENÇ ÃO É DESCOBRIR A C AUS A DO PRO BLEM A . 3.3.1 Aporte térmico A quantidade de calor introduzida na soldagem é conhecida por aporte térmico ou energia de soldagem “Heat Input”. O aporte térmico “H” para soldagem, em geral, pode ser expresso pela equação: H = P / Va Onde: H = Energia de Soldagem [ Joule.mm ] P = Potência da fonte de calor [ Watt ] Va = Velocidade de avanço [ mm / s ]
  • 6. 6 Na soldagem ao arco elétrico, o aporte térmico “H” é expresso pela equação: H = V. I / Va Onde: H = Energia de Soldagem [ Joule.mm ] V = Tensão [ Volt ] I = Corrente [ Ampère ] Va = Velocidade de avanço [ mm / s ] A energia de soldagem é uma característica do processo e da técnica de soldagem utilizada, os processos de soldagem do tipo arco submerso ou eletroescoria, por exemplo, possuem energia de soldagem elevada, enquanto que processos, onde a área de aquecimento é pequena como o processo TIG, são considerados de baixa energia. Quanto mais alto for o aporte de calor (energia de soldagem), maior será a quantidade de calor transferido a peça, conseqüentemente, maior será a poça de fusão, mais larga a zona aquecida e menor será o gradiente térmico entre a solda e o metal de base. A eficiência de transmissão “η” pode ser considerada constante para um mesmo processo, pois exprime a parcela de energia efetivamente transferida à peça. Perdas decorrentes do aquecimento de cabos e eletrodos, respingos e resfriamento pelo meio ambiente, fazem diminuir o valor de “η”. A forma de se controlar o aporte térmico, num determinado processo de soldagem, é buscando a condição de potência e velocidade de soldagem, que garantam uma conformidade de deposição e uma estrutura cristalina sem grandes alterações, se comparadas com a estrutura original do metal base. A técnica de soldagem com cordões estreitos assume valores de velocidade de avanço bem mais elevados do que a técnica de soldagem com oscilação, e conseqüentemente, com menor quantidade de calor introduzido. Valores elevados de aporte térmico podem provocar alterações metalúrgicas importantes tais como: a precipitação de carbetos de cromo, ou formação de fase sigma nos aços austeníticos, ou mesmo um crescimento de grão exagerado nos aços ferríticos, sendo que em ambos os casos o resultado final é a diminuição da tenacidade do metal depositado ou da zona fundida. Por outro lado, dependendo da natureza do aço, o aporte térmico pode ser insuficiente, levando a uma taxa de resfriamento elevada que por sua vez resultará na formação de estruturas duras como, por exemplo, a martensita, aumentado assim o risco de fissuração.
  • 7. 7 Um método bastante utilizado na prevenção de trincas por fragilização é a determinação da temperatura de pré-aquecimento, a partir da maior ou menor probabilidade de formação de estrutura martensítica, com isso consegue-se alterar a taxa de resfriamento da poça de fusão, atenuando assim a formação de estruturas frágeis. A determinação da temperatura de pré- aquecimento é possível através da quantificação do Carbono Equivalente, que significa dizer, qual o percentual de carbono e de elementos de liga, que favorecem a formação da martensita, estão presentes no aço a ser soldado. Para a determinação do Carbono Equivalente pode ser utilizada uma equação desenvolvida por pesquisadores do “IIW - International Institute of Welding”, conforme segue: % Mn % Mo %Cr + %V % Ni %Cu % P % Si Ceq% = %C + + + + + + + ≤ 0,49 6 4 5 15 13 2 24 sendo: Ceq ≤ 0,49 % - Boa Soldabilidade 0,5 % ≤ Ceq ≤ 0,65 % - Média Soldabilidade Ceq > 0,65 % - Má Soldabilidade 3.3.2 Tensões e deformações Limite elástico: É a máxima tensão aplicada ao material sem que se produza qualquer deformação permanente. É de difícil determinação pois depende totalmente da sensibilidade dos instrumentos de medição, por isso na prática não é considerado. Limite de escoamento: É uma aproximação do limite de proporcionalidade, que só é permitida devido ao emprego de fatores de segurança em cálculos dimensionais. É obtido considerando-se uma pequena fração de deformação plástica residual entre (0,1 e 0,2%) pelas normas Norte-americanas e (0,1 e 0,5%) no Reino unido). Resiliência: É a capacidade do material em absorver energia durante a deformação no regime elástico, de maneira a poder retornar às suas dimensões originais, quando da relaxação do carregamento.
  • 8. 8 ♦ Tensões nos metais O aquecimento da junta durante a soldagem normalmente é de forma localizada, e portanto as temperaturas não são uniformes, variando a medida que a soldagem se processa, esse fato associado as expansões térmicas do conjunto como um todo, geram redes de tensões bastante complexas e as deformações plásticas resultantes são portanto localizadas, sendo denominadas deformações residuais, da mesma forma algumas tensões permanecem após o término da soldagem, e são denominadas tensões residuais. Quando a deformação é máxima a tensão residual é mínima e vice versa. Tensões de tração longitudinais são desenvolvidas em torno do cordão de solda quando não existe vínculo de nenhuma das partes com o exterior, tensões de compressão, nesse caso, se formarão em áreas próximas da solda buscando equilibrar as tensões de tração. A tensão na direção longitudinal atinge o limite de escoamento na linha de fusão e gradualmente diminui ao longo dela atingindo valores nulos nas bordas das chapas. As tensões na direção transversal mantém o equilíbrio, com zonas de tração e compressão, tendendo a diminuir em valor absoluto ao se aproximar da borda da chapa, da mesma forma as tensões residuais na direção transversal irão manter o mesmo equilíbrio. ♦ Deformações nos metais A ligação entre elementos metálicos, para a constituição de uma célula unitária, se dá através do compartilhamento dos elétrons da última camada, formando uma nuvem de elétrons comuns. Esta forma de ligação entre dois ou mais metais é denominada ligação metálica. O processo de deformação plástica dos metais pode ser explicado a partir do conceito de ligação metálica. O compartilhamento de elétrons implica em arranjos cristalinos densos com planos atômicos compactos, então ao aplicar uma tensão de cisalhamento sobre dois planos paralelos, um plano deslizará sobre outro modificando a relação entre as forças de atração atômica, mas após o movimento de um diâmetro atômico, estas forças voltam a ter a mesma intensidade, impedindo a separação ou fratura. Reposicionamento Devido as Tensões Nuvem de eletrons Núcleo do átomo Aplicadas b τ a b τ Reestabelecimento Força de das forças de atração atração
  • 9. 9 O processo de deslizamento de planos consiste no escorregamento de um plano cristalino em relação aos demais. Este escorregamento causa um deslocamento permanente, ou melhor, um deslocamento dos planos cristalinos em relação às suas posições originais até uma nova condição de equilíbrio. A repetição deste processo evidencia, no nível macroscópico, a deformação plástica do material. O acúmulo de discordâncias no deslizamento de planos leva a formação de bandas de deslizamento visíveis na superfície do material, porém a presença de segregações dificulta a movimentação na rede cristalina aumentando a resistência ao escoamento do material. A formação de bandas de deslizamento pode ser observada macroscopicamente e será muito útil na análise da falha, pois através de sua morfologia pode-se determinar o ponto de nucleação da trinca, sua direção de avanço, e pela amplitude das bandas de deslizamento pode-se estimar a velocidade de propagação da trinca, vide figura abaixo. Marcas Radiais Marcas de praia Inicio da trinca Bandas de deslizamento Final da fratura Bandas de deslizamento na face da fratura de um aço SAE 4340
  • 10. 10 3.3.3 Alteração do diagrama de equilíbrio A soldagem nos aços em geral bem como no ferro fundido, devido aos ciclos térmicos envolvidos, implica num tratamento térmico localizado que pode causar alterações na estrutura dos materiais e conseqüentemente afeta as propriedades mecânicas dos mesmos. Essas alterações podem comprometer o desempenho em trabalho da junta soldada e portanto devem ser minimizadas, nas soldagem de produção isso é relativamente fácil, uma vez que contamos com a possibilidade da escolha do aço em função das características desejadas no projeto da junta. Por outro lado isso não ocorre na soldagem de manutenção, onde freqüentemente vamos encontrar aços com altos teores de carbono ou mesmo com elementos de liga que favorecem a formação de estruturas frágeis durante o resfriamento. O caso mais comum é o do ferro fundido, que é muito utilizado na fabricação de maquinas e equipamentos, e que possui elevados teores de carbono. As fases de um metal podem se modificar através de ciclos térmicos inibindo ou promovendo a formação de novas fases, dessa forma as propriedades mecânicas, físicas e químicas da liga também se modificam, ou seja: é possível obter diferentes microestruturas, e conseqüentemente diferentes propriedades a partir de uma mesma composição química. Quando uma liga é resfriada lentamente a partir da fase líquida, as fases presentes no estado sólido a cada temperatura estarão em equilíbrio termodinâmico e podem ser previstas por diagramas que mostram as fases estáveis em função da temperatura e da composição química, ou seja, percentual de elemento soluto. Estes diagramas são denominados diagramas de fases. Um exemplo clássico de diagrama de fases é o diagrama ferro-carbono, o ferro puro apresenta duas transformações alotrópicas, ou seja, de mudanças de estrutura cristalina. A temperatura ambiente a estrutura termodinamicamente estável é a cúbica de corpo centrado ccc. Quando aquecido acima de 910° o ferro passa de ccc para cfc cúbico de faces C centradas e volta a ser ccc acima de 1394° passando para o estado líquido ao atingir C; aproximadamente 1540°C. A figura abaixo mostra o diagrama da liga binária FeC para teores de carbono até 6,7%. O diagrama é assim representado pois o Fe3C, carboneto de ferro, apresenta saturação a partir desse limite, embora as ligas acima de 4,5% de carbono não apresentem nenhum interesse comercial. As transformações de uma fase para outra ou a variação de composição de uma certa fase, envolvem o rearranjo dos átomos do material, o tempo necessário para essas alterações depende da temperatura e da complexidade da alteração.
  • 11. 11 Ferro α = Ferrita = Cúbico de corpo centrado ( < 910° ) C Ferro γ = Austenita = Cúbico de face centrada ( > 910° < 1400 ° ) C C Ferro δ = Ferrita δ = Cúbico de corpo centrado ( > 1400° ) C Eutético = Mistura de componentes sólidos que ao fundir-se fica em equilíbrio com um líquido da mesma composição que a sua, e cuja temperatura de fusão é um mínimo na curva. Temperatura eutetóide = Para aços ao carbono é 723 ° e a composição eutetóide C corresponde a 0,80% C. No sistema FeC tem-se uma solução sólida e portanto não ocorre uma reação eutética verdadeira, porém devido sua semelhança foi denominada eutetóide. A perlita é uma mistura de duas fases, formada pela transformação da austenita em ferrita e cementita, há cerca de 12% de cementita e 88% de ferrita na mistura resultante, devido se formarem simultaneamente a ferrita e a cementita estão intimamente ligadas em camadas alternadas caracteristicamente lamelar.
  • 12. 12 3.3.4 Transformação da estrutura cristalina A velocidade de resfriamento tem um papel fundamental na formação da microestrutura, e por conseqüência nas propriedades mecânicas da junta soldada, não se deve esquecer que dureza e tenacidade trafegam em vias contrárias, ou seja um aumento de dureza implica quase sempre em uma diminuição da tenacidade e portanto aumenta a propensão à formação e propagação de trincas, no diagrama abaixo podemos observar as diferentes microestruturas que podem se formar a partir de um resfriamento continuo em diferentes velocidades, num aço de alta resistência e baixa liga do tipo SAE 4340. °C 723 8,4°C/seg 0,33°C/seg 0,23°C/seg 0,0062°C/seg 300 Austenita Martensita 200 100 Martensita Martensita Ferrita Martensita Martensita Ferrita Bainita Ferrita Perlita Bainita Perlita Bainita seg 10 100 103 104 105 103 3.3.5 Impurezas e defeitos ♦ Impurezas Decorrem dos processos siderúrgicos ou de fundição, são conseqüências de acúmulo de elementos não metálicos tais como: óxidos e sulfetos que localizam-se nas chamadas cabeças de lingote, isso nos casos de lingoteamento convencional, podem também estarem relacionados à desgazeificação ou dessulfurização ineficiente durante o processo, tais elementos irão se alinhar durante a laminação diminuindo consideravelmente a resistência na direção “Z”.
  • 13. 13 ♦ Defeitos externos Normalmente decorrentes de falhas operacionais, sendo as mais comuns: mordeduras respingos reforço excessivo cordão assimétrico escorrimento ♦ Defeitos Internos Os defeitos internos podem ter as mais diversas origens, sendo em alguns casos bastante complexa sua interpretação e sua conseqüente prevenção, é bastante comum termos um defeito não com uma única causa, mas sim com diversas causas. Os defeitos internos dividem-se em bidimensionais e tridimensionais. Os defeitos bidimensionais são os mais graves devido sua tendência à propagação, são eles a falta de fusão e as trincas. Os defeitos tridimensionais são estáveis e implicam unicamente na diminuição da seção resistente, os mais comuns são: inclusão de escória e porosidades. As inclusões de escória podem decorrer dos seguintes fatores: Limpeza incorreta; Ausência de limpeza; Seqüência de filetes inadequada; Chanfro Inadequado; Ângulo do eletrodo incorreto; Técnica operatória inadequada. Os poros são cavidades que se formam internamente no metal depositado, podendo se de forma esférica ou vermicular, manifestando-se isoladamente ou em agrupamentos, suas prováveis causas são as seguintes: a) Eletrodo úmido Neste caso devem ser examinados os cuidados de armazenagem e ressecagem dos eletrodos, sendo que para tanto são necessários fornos especialmente projetados. b) Amperagem inadequada Ajuste a amperagem em função do tipo de eletrodo, é importante trabalhar sempre dentro das faixas recomendadas pelos fabricantes, ou determinadas na EPS.
  • 14. 14 c) Chapas úmidas ou oleadas Deve-se sempre proceder mais comuns de limpeza são: o jateamento com areia ou granalhas de aço e decapagem química ,podendo também utilizar-se de lixadeira ou escovas. d) Técnica operatória incorreta Um tipo comum de porosidade é o chamado poro de cratera, eles ocorrem no fechamento de arco quando o mesmo é feito abruptamente, nesse caso a forma mais recomendável de evitá-los é após encher a cratera retornar com o eletrodo de forma a descrever uma vírgula com a ponta do mesmo, a distância grande entra o eletrodo e a fusão, e a velocidade de avanço alta também ocasionam poros. 3.3.6 Tratamentos térmicos A soldabilidade pode também ser afetada por tratamentos térmicos, isso é devido ao aquecimento localizado promovido pela soldagem, durante o processo o material ultrapassa a temperatura de austenitização dos aços, promovendo assim transformações estruturais na zona intermediaria entre o metal de base e o de adição, denominada ZTA - Zona Termicamente Afetada, alterando por conseqüência as propriedades mecânicas da junta soldada nessa região. Nessas condições essa região pode apresentar alterações estruturais bastante evidentes, tais como fases martensíticas ou bainiticas, com elevada dureza e risco de fissuração por fragilização da junta soldada. Pode ainda o metal de base estar na condição de temperado e revenido e nesse caso poderão ocorrer alterações ainda mais complexas durante a soldagem, nesse caso deve-se minimizar o aporte térmico através do controle dos parâmetros da soldagem. Diagrama de transformação isotérmica - aço SAE 4340
  • 15. 15 3.4 Classificação quanto à composição química • AÇO CARBONO Os aços com baixo teor de carbono são os mais freqüentemente utilizados em construção soldada, pois a soldabilidade metalúrgica diminui com o aumento desse elemento, por outro lado uma pequena quantidade de manganês proporciona um sensível aumento de resistência mecânica sem praticamente afetar a soldabilidade, outro elemento que implica em melhoria de propriedades mecânicas nas mesmas condições é o silício. Dessa forma, vamos encontrar no mercado fornecedor uma grande variedade de tipos aços planos, com propriedades mecânicas bastante adequadas à soldagem. Esses aços são subdivididos em aço carbono ou aço carbono-manganês e possuem diferenças principalmente no aspecto da pureza da liga, decorrente do processo siderúrgico utilizado, ou do tamanho de grão, conseqüência de eventual tratamento térmico após laminação a quente. O carbono provoca a formação de microestruturas mais resistentes enquanto que o manganês colabora para o aumento da tenacidade do material em baixas temperaturas, o que nem sempre é alcançado somente com a adição de manganês. Por este motivo, é feita a adição de alumínio, o qual funciona como desoxidante durante o processo de fabricação do aço e refinador de grão durante a solidificação do metal fundido. Nos aços de alta resistência, é necessário melhorar a tenacidade, pois com o aumento da dureza essa propriedade decresce naturalmente, para tanto outros elementos são adicionados tais como: o nióbio, o titânio e o vanádio e agem como refinadores dos grãos. • AÇO LIGA Os elementos adicionados intencionalmente ao aço têm o objetivo de conferir-lhes características específicas necessárias à sua aplicação final. Dentro desse enfoque, os aços ligados contêm diversos elementos em sua composição química, sendo os mais comuns: cromo, molibdênio, níquel e vanádio, separadamente ou combinados entre si, visando atender às exigências do mercado. Como exemplo, pode-se citar aqueles que atendem às normas SAE 8620, SAE 4140, SAE 4340, etc., entre outros largamente utilizados. Existem elementos químicos que ao serem adicionados pequenas quantidades aos aços, lhes conferem características específicas tais como aumento de resistência ao trabalho a frio ou trabalho a quente, ou aumento de resistência ao desgaste ou mesmo o aumento de resistência ao impacto, e assim por diante, eles são conhecidos como aços microligados como, por exemplo, o aço ao boro com amplo uso na fabricação de implementos agrícolas. O cobre, o cromo, o níquel e o molibdênio são adicionados com o objetivo de endurecer o aço pelo mecanismo de substituição da solução sólida.
  • 16. 16 • CLASSIFICAÇÃO baixa liga ≤ 2% de elementos de liga média liga > 2% ≤ 4% de elementos de liga alta liga > 4% de elementos de liga • AÇOS INOXIDÁVEIS Os aços inoxidáveis encontram grande variedade de aplicações devido suas propriedades mecânicas elevadas aliadas à boa resistência a corrosão, em função de sua microestrutura eles podem ser divididos em aços inoxidáveis: ferríticos, austeníticos, martensíticos, endurecíveis por precipitação e duplex. Cada uma dessas ligas possuem características, propriedades e aplicações diferenciadas. • INOXIDÁVEL FERRÍTICO É uma liga composta basicamente de ferro e cromo, possui baixos teores de carbono e após a solidificação apresenta-se na forma de ferrita delta. Durante a soldagem pode ocorrer crescimento de grãos próximo da zona termicamente afetada, e conseqüente fragilização podendo surgir trincas durante o resfriamento, entretanto isso pode ser contornado a partir da utilização de procedimentos com baixo aporte térmico, a tabela a seguir mostra os tipos mais comuns. Composição química [%] Tipo Aplicações C Cr Outros Mn - ≤ 1,00 405 ≤ 0,08 11 - 14 Si - ≤ 1,00 Tubos para trocadores de calor Mn - ≤ 1,00 Si - ≤ 1,00 Defletores de turbina a gás e revestimentos 409 ≤ 0,15 12 - 14 Al - 3,5 a 4,5 resistentes à corrosão Ti - ≤ 0,75 Mn - ≤ 1,00 Uso geral, fácil conformação, 430 ≤ 0,12 16 - 18 Si - ≤ 1,00 eletrodomésticos, decorações, etc. Cu - 0,9 a 1,25 Utilizado na industria química possui alta 443 ≤ 0,20 18 - 23 Si - ≤ 0,75 resistência à temperatura e corrosão Ni - ≤ 0,50 Mn - ≤ 1,50 Altíssima resistência à temperatura e 446 ≤ 0,20 23 - 27 Si - ≤ 1,00 corrosão suporta até 1150ºC, utilizado em fornos e queimadores
  • 17. 17 • INOXIDÁVEL AUSTENÍTICO Os aços inoxidáveis austeníticos são largamente utilizados na indústria em geral devido ao conjunto de propriedades que eles reúnem, tais como: boa soldabilidade, boa resistência à corrosão, boa usinabilidade, etc., nesse tipo de aço o cromo varia entre 16% e 26% e o níquel varia entre 6% e 22%, os teores relativamente elevados de níquel aumentam a resistência à corrosão e a resistência à oxidação em altas temperaturas. O efeito estabilizante do níquel favorece a formação e manutenção de uma estrutura austenítica a temperatura ambiente o que lhe confere a condição de “não magnético”. Os aços austeníticos quando submetidos ao trabalho a frio como, por exemplo, a trefilação, encruam produzindo um aumento de resistência mecânica e tornam-se magnéticos. Quando permanecem em temperaturas superiores a 450º C por mais de 4 horas, devido a grande afinidade do Cr com o C, ocorre uma formação de carbonetos de cromo que migram para os contornos dos grãos, dando origem a um processo de fragilização conhecido como corrosão intergranular, pois causa o empobrecimento de cromo na matriz austenítica. A adição de Cb ou Ti na liga pode minimizar este efeito, pois sendo esses elementos mais ávidos de carbono que o cromo ocorrerá uma reação entre eles protegendo assim o cromo, a tabela a seguir mostra os tipos mais comuns de aços inoxidáveis austeníticos. Os aços austeníticos são susceptíveis à corrosão sob tensão e, portanto devem ser aliviados quando o componente for trabalhar em condições desfavoráveis. Composição química [%] Tipo Aplicações C Cr Ni Outros Possui boa resistência à corrosão, é Mn - ≤ 2,00 302 ≤ 0,15 17 - 19 8 - 10 utilizado na industria alimentícia, de Si - ≤ 1,00 eletrodomésticos e decoração Possui boa resistência à corrosão, boa Mn - ≤ 2,00 soldabilidade, devido ao baixo carbono, 304 ≤ 0,08 18 - 20 8 - 10,5 Si - ≤ 1,00 não magnético quando solubilizado, aplicações diversas Possui boa resistência à corrosão, Mn - ≤ 1,00 excelente soldabilidade, devido ao extra 304L ≤ 0,03 18 - 20 8 - 10,5 Si - ≤ 1,00 baixo carbono, não magnético quando solubilizado, aplicações diversas Boa resistência à oxidação e resistência Mn - ≤ 2,00 309 ≤ 0,20 22 - 24 12 - 15 mecânica a altas temperaturas, Si - ≤ 1,00 aplicação em fornos e estufas Mn - ≤ 2,00 Excelente resistência à oxidação até 310 ≤ 0,25 24 - 26 19 - 22 Si - ≤ 1,00 1100ºC, aplicação em fornos e estufas Mo - 2,0 a 3,0 Utilizado na industria química e fabrica 316 ≤ 0,10 16 - 18 10 - 14 Mn - ≤ 2,00 de papel e celulose, possui alta Si - ≤ 1,00 resistência à corrosão Mo - 3,0 a 4,0 Utilizado na industria química e fabrica 317 ≤ 0,10 18 - 20 11 - 15 Mn - ≤ 2,00 de papel e celulose, possui resistência à Si - ≤ 1,00 corrosão superior à do AISI 316
  • 18. 18 • INOXIDÁVEL MARTENSÍTICO Os aços inoxidáveis martensíticos são em principio ligas ferro + carbono + cromo, onde os teores de cromo são elevados situando-se entre 11% e 18%. Essas ligas são passíveis de endurecimento através de tratamentos térmicos, como por exemplo, a têmpera na pratica podemos dizer que existem três tipos aços inoxidáveis martensíticos: baixo carbono, utilizadas na fabricação de turbinas hidráulicas, médio carbono, normalmente utilizadas em cutelaria, c) ligas de alto carbono, utilizadas para trabalhos em altas temperaturas, até 550ºC. Nesse tipo de material, a alta resistência e, portanto a dureza, são indispensáveis o que implica em maiores cuidados com os ciclos e condicionamentos térmicos durante a soldagem, pois poderão ocorrer fragilizações na ZTA, dessa forma deve-se aplicar o menor aporte térmico possível, além de se reduzir a velocidade de resfriamento, isso é possível com pré-aquecimento e manutenção da temperatura de interpasse de forma eficiente. Composição química [%] Tipo Aplicações C Cr Ni Outros Mn - ≤ 1,00 403 ≤ 0,15 11,5 - 13,0 - Tipo turbina, laminas forjadas Si - ≤ 0,50 Mn - ≤ 1,00 Aplicação geral: eixos, parafusos, 410 ≤ 0,15 11,5 - 13,5 - Si - ≤ 1,00 peças de motores, válvulas, etc. Tipo turbina com maior resistência à Mn - ≤ 1,00 431 ≤ 0,20 15 - 17 1,25 - 2,50 corrosão e melhores propriedades Si - ≤ 1,00 mecânicas É o mais duro dos aços inoxidaveis Mn - ≤ 2,00 martensíticos utilizado em pistas de 440C 0,95 - 1,20 16 - 18 - Si - ≤ 1,00 rolamento, sedes de válvulas, Mo - ≤ 0,75 esferas, cutelaria, etc. • INOXIDÁVEL ENDURECÍVEL POR PRECIPITAÇÃO São aços que se caracterizam por apresentarem simultaneamente alta resistência à corrosão e elevada resistência mecânica, sendo em conseqüência empregados onde ambos os requisitos são indispensáveis como em molas especiais e na indústria aeronáutica, na tabela a seguir vejam alguns exemplos. Esses materiais devido ao tratamento térmico a que são submetidos (têmpera), não são indicados para soldagem.
  • 19. 19 Composição química [%] Propriedades mecânicas Tipo C Cr Ni Mn Si Ti N Tensile Yield Elongation Stainless W ≤ 0,12 16 - 18 6 -8 ≤1 ≤1 ≤1 ≤ 0,2 136 MPa 126 MPa 7% 17-7 PH ≤ 0,09 16 - 18 6,5 - 7,75 ≤1 ≤1 - ≤ 0,1 164 MPa 154 MPa 6% 17-4 PH ≤ 0,07 15 - 17 3 -5 ≤1 ≤1 ≤ 0,3 - 140 MPa 124 MPa 12 % • INOXIDÁVEL DUPLEX Esses materiais apresentam uma excelente combinação de propriedades mecânicas e elevada resistência à corrosão. Em geral, os aços inoxidáveis duplex possuem o dobro do limite de escoamento dos aços inoxidáveis convencionais, conservando os mesmos valores de tenacidade. Isto significa que as espessuras de projeto podem ser substancialmente reduzidas, devido essas características esse tipo de material encontra grande aplicação na industria naval. As ligas duplex apresentam maior resistência à corrosão em relação aos aços inoxidáveis austeníticos devido à sua composição química e sua microestrutura ferrítica-austenítica. Os aços inoxidáveis duplex são constituidos por uma liga de FeCrNiMoN e possuem uma microestrutura composta basicamente de 50% de ferrita e 50% de austenita, sua soldabilidade é boa e pode ser comparada à dos aços austeníticos, entretanto deve-se ter cuidado com precipitações de fase sigma ou nitreto de cromo caso o resfriamento seja rápido entre 1000 ºC e 550 ºC. 4. MECANISMOS DE FALHAS NOS METAIS Falhas em componentes estruturais ocorrem através da associação de mecanismos diversos, por exemplo, é bastante comum encontrarmos falhas por fadiga onde a nucleação das trincas se deu a partir de regiões corroídas ou desgastadas. Os processos de trincamento ou de fratura implicam em nível atômico, no rompimento das ligações entre os elétrons de átomos subseqüentes afetando assim a rede cristalina do metal e conduzindo à uma grande redução da resistência mecânica. Considera-se como trinca a separação parcial de um sólido mediante a aplicação ou não de tensões, e considera-se ruptura ou fratura quando a separação das partes se completa.
  • 20. 20 Os mecanismos de propagação de uma trinca são bastante diversos entre eles citamos: fluência, corrosão sob tensão, fadiga e precipitação de fases secundárias. A presença de uma trinca diminui a resistência mecânica do componente e quando se atinge o limite de resistência, se inicia a separação das partes. Esta separação se dará de forma dúctil ou frágil, e essa característica deve ser avaliada. Consideramos falha de um componente qualquer alteração que venha a impedir o completo atendimento das solicitações previstas durante o tempo de vida estipulado ou esperado. Podemos considerar que em condições normais de trabalho, uma ocorrência de falha terá três etapas de desenvolvimento. • Nucleação, onde temos o início do processo de dano através da ocorrência de um fenômeno qualquer a partir de um defeito pré-existente no material ou criado em função das condições de trabalho. • Evolução, consiste no crescimento da falha através de um ou mais mecanismos de desgaste, como por exemplo a propagação da trinca por fadiga, ou a deterioração das propriedades mecânicas do metal, através da exposição do componente à altas temperaturas ou em ambientes corrosivos. • Obstrução, quando o componente deixa de atender satisfatoriamente aos objetivos propostos em sua concepção. Em se tratando de fratura, o processo de análise se inicia pela verificação visual das faces da fratura, esse ensaio por si só, nos mostra aspectos macroscópicos que podem indicar a natureza da mesma. É muito importante determinar se a fratura é de natureza frágil ou dúctil, pois enquanto a primeira geralmente implica em alterações metalúrgicas a segunda via de regra está associada somente às solicitações mecânicas, e dessa forma são passíveis de correções menos complexas. 4.2 Tipos de ruptura Ruptura dúctil: É o modo de fratura associado à deformação plástica e se caracteriza microscopicamente pela presença de alvéolos (dimples), que são microcavidades formadas a partir de vazios e inclusões ou partículas de segunda fase. A presença de elevadas tensões internas cisalhantes induz ao surgimento de anomalias microestruturais provocando formação de microporosidades que passam a atuar como concentradores de tensões. O acúmulo de tensões nestas regiões causa um acentuado fluxo plástico, aumentando as dimensões destas microcavidades, formando alvéolos (ou dimples). Com o crescimento destes ocorre a união das microcavidades adjacentes. Assim, dizemos que o mecanismo básico de uma ruptura dúctil será o coalescimento dessas microcavidades.
  • 21. 21 Do ponto de vista macroscópico, uma deformação plástica intensa, uma acentuada irregularidade ou rugosidade da superfície fraturada e a geração de ressaltos ou dobras, são sinais da ação generalizada de mecanismos de movimentação de discordância, caracterizando assim uma ruptura dúctil, já do ponto de vista microscópico, se há predominância de indícios de deformação plástica “dimples”, como mostra a figura, então a ruptura é considerada dúctil. Essa foto foi escolhida pois ela possui características ambíguas, ou seja embora evidencie a presença de dimples, por outro lado nota-se que a ruptura foi intergranular, uma característica comum na ruptura frágil, porém a que ressaltar as deformações observadas que nesse caso não deixam dúvidas sobre a natureza dúctil desta ruptura. Essas considerações são muito importantes e portanto devem ser feitas sempre com muita consistência pois elas irão orientar as decisões sobre a forma de reparo mais adequada. Ruptura dúctil - material SAE 1006 Presença de “dimples” - micrografia (200 X) Ruptura frágil: Ocorre quando uma transformação metalúrgica fragilizou as ligações intergranulares ou conferiu grande dureza aos grãos e portanto baixa tenacidade podendo estar ou não associada ao crescimento dos mesmos. A separação intergranular requer baixa energia pois, neste caso, a trinca segue os contornos de grãos e ocorre quando estes são mais frágeis que a rede cristalina. Esta fragilização, ou redução na energia para a fratura, pode ocorrer devido à ação de diversos agentes como radiação, absorção de Hidrogênio, precipitação de intermetálicos ou fases frágeis junto aos contornos de grãos, fluência, etc.
  • 22. 22 Quando se verifica pouca ou nenhuma deformação plástica aparente a ruptura é classificada como frágil. A formação de superfícies lisas ou regulares de fratura, com aspecto brilhante, ou ainda a presença de marcas em V denominadas: “chevrons”, caracterizam uma ruptura frágil, como evidenciado na foto. Ruptura fragil - Macrografia 4.1 Clivagem Ocorre por separação direta ao longo de planos cristalográficos específicos. Portanto, a fratura por clivagem é transgranular, isto é, passa preferencialmente pelo interior dos grãos. Neste mecanismo nota-se pouca ou nenhuma deformação plástica. A face da fratura tem aparência lisa e plana, podendo apresentar irregularidade na sua superfície semelhantes a marcas de rio que surgem devido à movimentação de discordância em hélice, se a superfície fraturada apresenta predominância de planos de clivagem ou ausência de deformação plástica, a mesma será classificada como ruptura frágil. Clivagem
  • 23. 23 4.2 Micromecanismos de fratura Os mecanismos de propagação de trinca são bastante diversos: fadiga, fluência, corrosão sob tensão, e outros, a presença de uma trinca diminui a resistência mecânica do componente e assim, quando se atinge o limite de resistência, ocorre a separação das partes. Esta separação ou fratura se dará de forma dúctil, através do micromecanismo de ruptura dúctil, ou frágil, por separação intergranular ou clivagem. 4.2.1 Ruptura dúctil É o modo de fratura associado à deformação plástica extensiva e se caracteriza microscopicamente pela presença de alvéolos (dimples), que são microcavidades formadas a partir de vazios e inclusões ou partículas de segunda fase. A presença de elevadas tensões internas cisalhantes induz o surgimento de anomalias microestruturais provocando formação de microporosidades que passam a atuar como concentradores de tensões. O acúmulo de tensões nestas regiões causa um acentuado fluxo plástico, aumentando as dimensões destas microcavidades, formando alvéolos (ou dimples). Com o crescimento destes ocorre a união das microcavidades adjacentes. Assim, dizemos que o mecanismo básico de uma ruptura dúctil será o coalescimento das microcavidades. 4.2.2 Ruptura frágil Ocorre quando uma transformação metalúrgica fragilizou as ligações intergranulares ou conferiu grande dureza aos grãos e portanto baixa tenacidade podendo estar ou não associada ao crescimento dos mesmos. A separação intergranular requer baixa energia pois, neste caso, a trinca segue os contornos de grãos e ocorre quando estes são mais frágeis que a rede cristalina. Esta fragilização, ou redução na energia para a fratura, pode ocorrer devido à ação de diversos agentes como radiação, absorção de Hidrogênio, precipitação de intermetálicos ou fases frágeis junto aos contornos de grãos, fluência, etc. Em alguns casos podem ser verificados sinais de deformação plástica extensiva nas paredes dos grãos. Nestes casos, não é conveniente a associação deste mecanismo com a fratura frágil.
  • 24. 24 5. TIPOS DE TRINCAS NA SOLDAGEM Na soldagem podem ocorrer diversos tipos de trincas. Algumas dependem da natureza ou dimensões do metal de base, enquanto outras decorrem do processo de soldagem, no que se refere à determinação dos parâmetros de soldagem ou mesmo os cuidados na seleção dos materiais de adição. Por vezes elas podem ser influenciadas por condições externas tais como: o condicionamento térmico da peça a ser soldada ou pela rigidez da estrutura. As trincas mais freqüentes nas estruturas soldadas são: • mecânica • solidificação • lamelar • fadiga • corrosão intergranular • fragilização pelo hidrogênio 5.1 Trinca mecânica A trinca mecânica é um tipo de fratura frágil que ocorre mesmo que ela esteja sendo submetida a um nível de tensões abaixo do nível correspondente ao escoamento, ou mesmo da tensão de trabalho. Esse tipo de fratura freqüentemente têm origem em segregações no metal de base, ou descontinuidades causadas por defeitos na soldagem, pois nestes pontos sempre haverá tendência a concentração indesejável de tensões e deformações. Esse tipo de trinca pode ocorrer em serviço quando existirem tensões residuais, e a elas se somarem outros esforços, a trinca apresentada na figura 22, foi conseqüência da somatória de esforços da força centrífuga com a dilatação térmica e tensões residuais, que ultrapassaram a tensão de ruptura do material. No reparo optou-se pela desvinculação da cinta em relação ao disco no inicio e no final da fratura, isso foi possível por tratar-se de uma tampa de fechamento, sem uma efetiva responsabilidade estrutural. Trinca mecânica ocorrida em um rotor de hidrogerador
  • 25. 25 A trinca mecânica também pode ocorrer durante a soldagem quando os esforços forem superiores à resistência do metal de base como mostrado na figura, onde a geometria circular da junta soldada fez com que as tensões de contração fossem máximas. 1200 200 Material: Trinca mecânica em todo o contorno 5.2 Trinca de solidificação A granulação grosseira, a orientação da estrutura e a concentração de segregações, inerentes à própria solidificação exercem uma influência marcante sobre a susceptibilidade à formação de defeitos no metal de solda, principalmente sobre o mecanismo de formação da trinca a quente, também conhecida como trinca de solidificação. Existem cinco tipos diferentes de estrutura de solidificação, que são: a planar, a celular, a celular dendrítica, a colunar dendrítica e a equiaxial dendrítica. O que determina o tipo de solidificação que será predominante no metal de solda é o grau de resfriamento no material, que por sua vez depende da composição química da liga e do gradiente de temperaturas formado pelo procedimento de soldagem imposto. As trincas a quente se formam em altas temperaturas no metal de solda (trincas de solidificação) ou na zona de ligação (trincas de liquação), e resultam das tensões geradas na contração durante o resfriamento. A presença de um filme líquido de produtos de baixo ponto de fusão não consegue resistir a tensões trativas e se abre, como um rechupe as trincas de cratera são uma variante das trincas a quente. Em termos práticos pode-se afirmar que uma solidificação mais rápida e cordões menores, formados com baixa energia de soldagem, de um metal de solda mais puro, minimizam os efeitos das segregações reduzindo a susceptibilidade ao trincamento durante a solidificação. A trinca a quente ocorre na região central do cordão, figura 24, e será tanto mais favorecida sua formação quanto maiores forem os níveis de impurezas existentes no metal de base. As impurezas a que nos referimos são notadamente: os óxidos, sulfetos ou silicatos eventualmente encontrados dispersos nos aços laminados.
  • 26. 26 Essas partículas não metálicas, durante o processo de fusão do metal, não se fundem e permanecem dispersas no banho de metal líquido. Durante o resfriamento, as dendritas, formações características da zona de fusão, agem como cunhas segregando essas partículas na linha de centro do cordão, formando assim uma região fragilizada pela alta concentração de elementos não metálicos. Nos aços austeníticos a sensibilidade à fissuração a quente se deve à formação de uma película de silicatos em torno dos grãos da austenita. Pode-se evitar a presença desses silicatos favorecendo a formação de uma fase susceptível de precipitar entre os grãos, que é a ferrita δ. Entretanto um excesso de ferrita pode reduzir a ductilidade característica da austenita. É importante haver um controle sobre os níveis de silício, os quais não devem ser superiores a 0,6%, sob o risco de aumentar a sensibilidade à fissuração a quente, (Séférian, 1965). Os esforços resultantes da contração, decorrente do resfriamento, agem sobre o cordão provocando a trinca, a figura abaixo mostra esquematicamente o corte transversal de um cordão de solda, ilustrando uma trinca a quente, esse tipo de trinca é assim denominado, pois ocorre, normalmente, em altas temperaturas, acima de 300° C, quanto maior for a vinculação das partes que compõem a junta, maior será a probabilidade de ocorrência de fissurações. Trinca à quente
  • 27. 27 Trinca de liquação A zona de diluição é a região do metal de base que sofreu fusão parcial durante a soldagem, e sobre a qual se inicia a solidificação do metal de solda. Em muitos materiais esta região é pequena e somente pode ser observada em nível microscópico, podendo mesmo não ser identificada, como é o caso dos aços de baixo carbono. Porém existem materiais, austeníticos, por exemplo, cuja presença desta região parcialmente fundida pode levar à fissuração por liquação. Algumas ligas metálicas quando em estado líquido, são muito susceptíveis a precipitações em contornos de grão, principalmente devido à granulação grosseira e presença de fases eutéticas. Materiais conformados por forjamento também podem apresentar este tipo de problema, relacionados à linhas de deformação, fases de diferentes pontos de fusão, etc. Normalmente os cuidados para minimizar trincas de solidificação não são efetivos para evitar trincas de liquação sendo importante neste caso minimizar o tensionamento residual da junta soldada através da utilização de técnicas de amanteigamento. 5.3 Trinca lamelar A trinca lamelar ocorre em soldagens estruturais de aços, normalmente em altas espessuras, quando nas soldagens em ângulo, a chapa é carregada no sentido ortogonal à espessura, também conhecida como direção “Z”. A abaixo mostra uma estrutura soldada, onde os esforços decorrentes da contração do metal de solda incidem na direção “Z”. Junta crítica Nervura Vaso cilíndrico Disco rígido
  • 28. 28 As causas desse tipo de trinca são: as segregações e impurezas presentes nas chapas de aço laminadas, o formato da peça ou da junta o grau de rigidez da estrutura. Inclusões não metálicas em chapa laminada: óxidos, sulfetos e silicatos Forma característica da trinca lamelar As segregações e impurezas diminuem a resistência do material para os esforços na direção Z, enquanto que o formato e o grau de rigidez atuam como elementos agravantes, a trinca lamelar situa-se sempre no metal de base e possui o formato de escada. 5.3.1 Determinação do “Fator Z” em chapas de aço carbono Existem métodos, já desenvolvidos, para prevenção de trinca lamelar. Eles consistem basicamente em avaliar o nível de extricção requerido para suportar uma determinada condição de soldagem. O International Institute of Welding - IIW, considera alguns fatores de influencia tais como: espessura da chapa carregada, dimensão da solda, tipo de chanfro, temperatura de pré-aquecimento e o grau de rigidez da junta, para a determinação da extricção mínima necessária. A partir desses dados consegue-se determinar teoricamente, qual deverá ser a extricção mínima do material, que será determinada pelo ensaio de tração em um corpo-de-prova retirado no sentido ortogonal à espessura da chapa, onde será medida a extricção do material. O método de ensaio consiste em medir, com precisão centesimal, o diâmetro do corpo-de- prova antes de iniciar o ensaio e após a ruptura do mesmo, o valor de extricção do material será dado pela seguinte equação:
  • 29. 29 Zth min = (Di − Df ) x100% Di Os valores de extricção adotados pelas usinas siderúrgicas são: 15%, 25% e 35%, dessa forma após o ensaio de extricção, o valor obtido será confrontado com a tabela abaixo para se determinar o fator Z (comercial) da chapa de teste. Zth “Z” Requerido Valores de mercado Até 10 5 11 a 20 15 21 a 30 25 > 30 35 Fatores de influência: A – Espessura da solda B – Configuração da Junta C – Espessura da chapa submetida à tração D – Grau de rigidez E – Temperatura de pré-aquecimento
  • 30. 30 FATORES DE INFLUÊNCIA a ≤ 10 3 ESPESSURA 10 < a ≤ 20 6 20 < a ≤ 30 9 ZthA DA 30 < a ≤ 40 12 40 < a ≤ 50 15 SOLDA a > 50 18 0 .S ,7 -25 S 0,5. S -5 S S S 0 FORMATO ZthB DA x JUNTA S S S 3 S S S 5 S S 8 s ≤ 10 mm 2 10< s ≤ 20 mm 4 ESPESSURA 20< s ≤ 30 mm 6 30< s ≤ 40 mm 8 ZthC DA CHAPA 10 40< s ≤ 50 mm 50< s ≤ 60 mm 12 CARREGADA 60< s ≤ 70 mm 14 s > 70 mm 16 Pouco rígido 0 ZthD RIGIDEZ Rígido 3 Muito Rígido 5 Com pré-aquecimento -8 ZthE TEMPERATURA Sem pré-aquecimento 0
  • 31. 31 A redução de área no sentido transversal curto, mínima aceitável de uma determinada chapa é de 5%, independente do valor de Zth teórico requerido para a junta, já que o mesmo poderá se negativo, conforme pode ser visto na tabela acima. Os valores de extricção adotados pelas usinas siderúrgicas são: 15%, 25% e 35%, dessa forma após o ensaio de extricção, o valor obtido será confrontado com a tabela abaixo para se determinar o fator Z da chapa de teste. Com o auxilio da tabela acima podemos determinar a redução de área mínima no sentido transversal curto Fator Z, em função do valor de Zth obtido pela soma dos diversos fatores de influência: Zth = ZthA + ZthB ................+ ZthE Exemplo de cálculo Verificar os fatores de influência para junta abaixo, (sem pré-aquecimento) e determinar qual deverá ser a qualidade da chapa posição 1 no tocante a extricção na direção Z a ser especificada. 22 A B C D E 9 8 8 5 0 1 Σ = 30 37.5 Portanto... Z = 25%
  • 33. 33 5.4 Trinca por fadiga A trinca por fadiga ocorre em elementos ou componentes mecânicos sujeitos a esforços cíclicos em elevada faixa de tensões. O termo fadiga se aplica às alterações sofridas pelo material quando submetido a tais solicitações que podem ser simples tração, compressão, flexão, torção ou a combinação das mesmas. A vida do material ou junta soldada depende do número de ciclos ao qual ele é submetido, sendo função da amplitude da tensão aplicada. Muitas vezes o metal se rompe, quando solicitado a repetidos carregamentos, com níveis de tensão inferiores aos valores admissíveis, estaticamente. O limite de fadiga de um material, ou de uma junta soldada é estimado através da solicitação do mesmo a carregamentos cíclicos padronizados. As curvas representativas do comportamento do material em relação à fadiga podem ser apresentadas em gráficos, com escalas logarítmicas ou semi-logaritimicas, considerando-se o nível de tensões (S) como ordenadas e o numero de ciclos (N), até a falha do material, como abscissas. Os defeitos de soldagem de uma forma ou de outra favorecem a ocorrência de concentração de tensões provocando a redução da resistência à fadiga das juntas soldadas. As micro-trincas e ou mordeduras perpendiculares à direção da atuação das tensões, são as que causam as maiores concentrações de tensão. (Taniguchi, 1982). Aspectos como deformação plástica intensa junto à superfície da peça, acentuada irregularidade e rugosidade da superfície de fratura e a geração de ressaltos ou dobras são sinais da ação generalizada de mecanismos de movimentação de discordância, caracterizando fraturas dúcteis do ponto de vista macroscópico. As condições mínimas para a propagação de trincas por fadiga são: A presença de tensões de tração (com intensidade suficiente para a propagação) na superfície da peça e ou junto a defeitos internos; Flutuação na amplitude do carregamento externo aplicado; Um número de ciclos de variação de carga suficiente para a propagação da trinca. Embora uma trinca por fadiga possa ter início numa região fragilizada do material crescendo a partir de uma micro trinca em contorno de grão, os processos de nucleação e propagação de trincas na fadiga se caracterizam pela movimentação de discordâncias através da aplicação de tensões de cisalhamento e, portanto, são de natureza dúctil. O processo de trinca por fadiga envolve três estágios de desenvolvimento, a saber:
  • 34. 34 Estágio I - Nucleação A nucleação ou inicio de uma trinca por fadiga em um conjunto soldado pode ter diversas origens entre as quais destacamos: a) Alteração da microestrutura ( crescimento de grão ) b) Presença de tensões de tração elevadas na superfície c) Acabamento superficial: Entalhes, rugosidade, mordeduras, etc. d) Pontos de corrosão e) Coalecimento de micro trincas remanescente do processo de soldagem Estágio II – Crescimento e propagação da trinca Sob elevadas tensões cíclicas tem inicio o crescimento e a propagação cadenciada da trinca na direção normal à máxima tensão de tração. Estágio III - Fratura Ocorre quando a trinca atinge, uma dimensão em que a área da seção resistente não é suficiente para suportar o carregamento aplicado, provocando assim a fratura. Trinca de fadiga com origem em uma dobra de forjamento A fratura do parafuso classe 10.8 ocorreu por um mecanismo de fadiga a partir de defeitos de forjamento verificados na região de concordância entre o corpo e a cabeça, que nesse caso é sextavada e forjada. A presença de descarbonetação nessa região pode ter facilitado o início da propagação da trinca. Na foto da esquerda acima podemos verificar as marcas de catraca típicas de trinca de fadiga com múltiplos inícios.
  • 35. 35 1 2 A 3 4 As micrografias mostram dobras de forjamento e descarbonetação superficial com diversos inícios de trincas secundárias Trinca de fadiga originada em uma mordedura de soldagem
  • 36. 36 5.5 Trinca por corrosão Existem duas categorias de corrosão que podem levar uma junta soldada à ruptura, a corrosão sob tensão que pode ser intergranular, transgranular ou mista, e que se caracteriza por ser um fenômeno eletroquímico onde o metal tende a se ionizar na presença de um eletrólito, ou pela ação galvânica entre metais de diferentes potenciais elétricos, o processo corrosivo pode ser agravado nas juntas soldadas pela presença de mordeduras ou sobreposições “over lap”. A segunda maneira é a chamada sensitização, que ocorre mais notadamente nos aços inoxidáveis austeníticos, particularmente quando os mesmos são expostos a temperaturas elevadas, acima de 500° C, nessas condições poderão ocorrer, precipitações de carbetos de cromo nos contornos de grãos, fragilizando a estrutura e ao mesmo tempo empobrecendo a região vizinha aos mesmos, pela diminuição do elemento cromo (Séférian, 1965). Esses grãos assim afetados darão inicio ao um processo corrosivo e a partir daí poderão surgir microfissuras, que em função dos esforços atuantes sobre o componente poderão se transformar em trincas. Trinca por corrosão intergranular - aço inoxidável tp 409 Durante o projeto é fundamental uma análise sobre as condições de operação do equipamento, particularmente quando o mesmo for submetido a altas temperaturas, pois uma precipitação de fases secundárias poderá ocorrer e degradar completamente a estrutura, como ocorreu nos defletores dessa chaminé de exaustão de gases aquecidos a 550ºC, fotos abaixo.
  • 37. 37 5.6 Trinca por hidrogênio A trinca de hidrogênio também conhecida como “a frio” ou “sob cordão” é provavelmente a de maior incidência na soldagem dos aços estruturais, ela está intimamente ligada aos parâmetros adotados na soldagem, como também às condições de trabalho no que se refere à limpeza e condicionamento dos materiais de soldagem. Seu mecanismo de formação baseia-se na combinação de três fatores: Trinca de H2 = Tensão + Martensita + Hidrogênio A ausência ou a sensível diminuição de um desses fatores pode impedir a ocorrência desse tipo de trinca, para tanto algumas ações preventivas se fazem necessárias. Tais ações abrangem a engenharia e a fabricação como demonstrado a seguir. Projeto O projetista pode estudar disposições ou formas geométricas que minimizem as tensões residuais, evitando tanto quanto possível a hiper vinculação das partes ou a concentração de tensões em regiões críticas, e no momento da definição dos materiais, buscar aqueles que atendam as necessidades mecânicas e físicas, mas que também possuam um baixo valor de carbono equivalente. Procedimentos Procedimentos que podem minimizar o aporte de H2 na poça de fusão: - A escolha de um processo de “extra baixo” hidrogênio como, por exemplo, o processo MIG/MAG, ou a utilização de eletrodos básicos. - O condicionamento adequado dos eletrodos em ambiente seco com temperatura - (25ºC) e umidade relativa do ar controlada (· 50 %) seguidos de ressecagem dos eletrodos antes do uso. - A manutenção dos eletrodos básicos em estufas apropriadas com temperaturas entre 105º e 115º C, e a utilização de estufas portáteis quando em canteiro. - Um pós-aquecimento eficiente também irá colaborar na difusão do hidrogênio remanescente. - Fluxos básicos para o processo arco submerso (SAW) e arames tubulares básicos também devem ser mantidos em ambientes secos.
  • 38. 38 5.6.1 Fatores de influência na formação da trinca de H2 Conforme Million (1971) as influências do hidrogênio sobre as propriedades dos aços são descritas como sendo extremamente variadas e tem sido objeto de muitos estudos até o momento. Porém a mais freqüente das afirmações é a redução da ductilidade e da tenacidade dos aços sob influência de pequenas quantidades de hidrogênio. Isso equivale a dizer que, nessas condições, irá ocorrer uma diminuição das propriedades plásticas e da resistência a ruptura. A grande interação existente entre os átomos de hidrogênio e os de carbono, resulta que o hidrogênio dificulta a saída do carbono da solução sólida agindo, portanto como um estabilizador da martensita, o hidrogênio dissolvido na estrutura cristalina do aço também provoca um crescimento de dureza. O mecanismo de fissuração devido ao hidrogênio tem por principio as pressões internas, geradas pelo aumento de volume, que acontece quando o hidrogênio, que após ter sido introduzido na estrutura do aço em sua forma atômica H+, passa a se agrupar, atraído pelas tensões internas, e se transforma em hidrogênio molecular H2, com um grande aumento de volume. Isso ocorre em temperaturas baixas, menores que 150º C. A pressão gerada pode facilmente ultrapassar o limite de escoamento, e associada à fragilidade causada pela formação da martensita, na zona termicamente afetada (ZTA), introduz deformações plásticas que dão origem as microfissuras intergranulares e transgranulares. As integrações dessas microfissuras darão origem a trinca conhecida como, trinca de fragilização pelo hidrogênio, esse tipo de trinca ocorre mais freqüentemente nos processos de soldagem tradicionais onde normalmente a presença de água proveniente da umidade nos eletrodos ou fluxos eletro-condutores, favorecem a introdução do hidrogênio na poça de fusão, uma vez que a molécula da água se decompõe no arco elétrico liberando o hidrogênio, seu mecanismo de formação baseia-se na combinação de três fatores: A figura abaixo mostra uma trinca de hidrogênio, ocorrida em uma junta circunferencial, o conjunto foi construído em chapa extra grossa de aço laminado S 355 J2, o processo utilizado foi o FCAW, com pré aquecimento de 120º C. Nesse caso foi executado um pós aquecimento a 150º C por 30 minutos para difundir o hidrogênio remanescente, o pré aquecimento estava coerente com o carbono equivalente do metal de base, e apesar disso a trinca ocorreu, devido à hiper vinculação decorrente da junta circular. Trinca de H2 em cubo de rotor
  • 39. 39 6. METODOLOGIA DE INVESTIGAÇÃO DE FALHA A investigação de uma falha deve se iniciar pelo levantamento das condições do componente durante a ocorrência do dano, através das plantas de montagem, relatórios de manutenção, tempo de funcionamento, memoriais de cálculo, desenhos, cargas aplicadas conhecidas, ferramental utilizado para manutenção e montagem, descrição dos processos empregados na fabricação, condições ambientais tais como temperatura, pressão, pH, umidade e outros como, por exemplo, certificados das matérias-primas ou de componentes, informações de testemunhas, de operadores, fotos do acidente, etc. Obviamente, em apenas alguns casos será possível obter informações tão completas para a construção do cenário da falha, mas qualquer informação neste sentido pode ser da máxima importância em casos onde, por exemplo, a peça fraturada é perdida em decorrência do dano. Mapas de manutenção podem indicar falta de lubrificação, erros no procedimento de montagem, troca tardia ou precoce de componentes que possam ter sido agentes causadores da falha. Dados sobre conseqüências do dano, como incêndios, explosões, quedas e impactos subseqüentes são de grande valia na eliminação ou mesmo na geração de hipóteses. O ferramental envolvido na manutenção ou na montagem, se mal escolhido ou mal utilizado, pode modificar as condições ideais de serviço. Um exemplo bastante comum é o emprego de torquímetros ajustados inadequadamente para valores acima ou abaixo do especificado em projeto. Um pré-torque subdimensionado pode levar à falha por fadiga em baixo ciclo, por exemplo, enquanto que um pré-torque exagerado pode deformar plasticamente a rosca e criar concentradores adicionais de tensão, antecipando a falha por fadiga. Assim, informações para a construção do cenário do dano são muito úteis na investigação do mecanismo de falha. Em determinadas situações, quando o equipamento sinistrado pertence à chamada linha crítica, ou gargalo de produção, não há tempo suficiente para uma análise laboratorial da peça fraturada para determinação da composição química, podendo sobrepor-se a isso a falta de documentação indicativa dos materiais utilizados, nesses casos devemos adotar reparos emergenciais com base em avaliações visuais da fratura, existem algumas diretrizes que podem orientar a identificação do metal fraturado as quais relatamos a seguir.
  • 40. 40 6.1 Tipos de falhas mais comuns Encruamento por trabalho mecânico Fratura dúctil Deformação elástica Fratura frágil Deformação plástica Oxidação Trincas de origem mecânica Corrosão Trincas de origem metalúrgica Flambagem Relaxação térmica Desgaste Fragilização pelo hidrogênio Erosão Fragilização por radiação Cavitação 6.2 Identificação visual alguns metais Características Fratura Superfície em bruto Usinagem recente Materiais Cinza escuro, eventualmente Aço baixo carbono e aço Muito lisa, cinza Cinza brilhante marcas de fundição ou fundido brilhante forjamento Cinza escuro, riscos de Muito lisa, cinza Aços alto carbono Cinza muito claro laminação ou marcas de brilhante forjamento Cinza escuro, relativamente Muito lisa, cinza Aços ligados Cinza médio rugosa, eventualmente riscos brilhante de laminação ou forjamento Superfície lisa com graduação Vermelho brilhante Cobre Avermelhada de marrom avermelhado para tornando-se fosco com verde, devido à oxidação o tempo, muito lisa Superfície lisa com várias Amarelo Aparência vermelho Latão e bronze tonalidades de marrom, verde avermelhado amarelada, muito lisa ou amarelo devido à oxidação Evidencias do molde ou da Alumínio e ligas Branca Lisa, muito branca laminação, cinza muito claro Monel Cinza claro Lisa, cinza escuro Muito lisa e branca Níquel Quase branca Lisa, cinza escuro Muito lisa e branca Chumbo Branca cristalina Branca a cinza, lisa aveludada Muito lisa e branca Formação cristalina Evidência de molde de areia, Ferro fundido branco sedosa, muito fina e Raramente usinada cinza fosco branco-prateada Evidência de molde de areia, Moderadamente lisa, Ferro fundido cinzento Cinza escuro cinza muito fosco cinza claro Evidência de molde de areia, Superfície lisa, cinza Ferro fundido maleável Cinza escuro cinza fosco claro Superfície lisa, cinza Ferro batido Cinza brilhante Cinza claro, lisa claro
  • 41. 41 6.3 Exame da superfície de fratura e da peça fraturada 6.3.1 Inspeção visual A inspeção visual, por vezes, é a etapa da investigação que fornece as informações mais importantes para a análise do mecanismo de falha. Algumas vezes, a inspeção visual indica o modo de fratura e a causa provável em poucos segundos, sendo que as outras técnicas são empregadas, nestes casos, apenas para confirmar a hipótese levantada nesta etapa. A inspeção a olho nu permite, certamente, levantar as hipóteses mais prováveis sobre o mecanismo de falha, direcionando a investigação quanto a seqüência de emprego das técnicas de análise e a interpretação dos dados por estas obtidos. A análise de uma fratura deve ter sempre como referência o aspecto global da superfície. Os processos de fratura deixam marcas significativas nas superfícies fraturadas que permitem, muitas vezes, a identificação das regiões de nucleação, propagação de trincas e fratura final. Tais informações indicam, qualitativamente, os níveis de tensão aplicados e o modo de carregamento. LIPSON e JACOBY esquematizaram esta relação entre o aspecto da fratura e o tipo e intensidade do carregamento, em mapas que mostram a distribuição das diferentes regiões formadas pelo processo de fratura. A figura abaixo elaborada por Lipson e Jacoby, é empregada para peças com seção transversal circular, como eixos e pinos, e considera a presença de concentradores de tensões. É importante observar que não foi considerada a possibilidade de nucleação a partir de falhas internas. Tensão Nominal Elevada Tensão Nominal Baixa moderado severo sem concentrador moderado severo concentrador concentrador sem concentrador de tensões concentrador concentrador de tensões de tensões de tensões de tensões de tensões Nucleação Tração-Tração ou Tração-Compressão e Propagação Ruptura Final Flexão Unidirecional Flexão Alternada Flexão Rotativa 45o Forma helicoidal Torção Representações esquemáticas de superfícies de fratura em eixos cilíndricos de acordo com a intensidade e tipo de carregamento
  • 42. 42 Além da superfície de fratura, o aspecto macroscópico das superfícies laterais à região fraturada também indica o tipo de esforço mecânico causador da falha através do conceito de que a fratura dúctil ocorre paralelamente às máximas tensões de cisalhamento envolvidas, enquanto que a fratura macroscopicamente frágil se dá ao longo de um plano disposto perpendicularmente às tensões normais mais intensas, a figura acima resume este conceito. 6.3.2 Inspeção com Lupa Em muitos casos, uma pequena lupa é muito mais útil do que um potente microscópio eletrônico na análise de falhas. Com um pequeno aumento, além de se observar toda a superfície da falha de forma global, pode-se analisar com rapidez e em detalhe, riscos, ranhuras, marcas de usinagem ou sinais de deformação nas faces não fraturadas, estimando-se a influência destes dados na ocorrência do dano com maior precisão que numa imagem muito ampliada, pois um aumento maior torna difícil a comparação entre a profundidade de uma marca e o tamanho da peça. A figura abaixo mostra a representação esquemática dos aspectos das superfícies de fraturas macroscopicamente frágeis ou dúcteis em relação ao carregamento. Tensões Nominais Elevadas Tensões Nominais Baixas sem concentrador concentrador de concentrador de sem concentrador concentrador de concentrador de de tensões tensões suave tensões severo de tensões tensões suave tensões severo Tração-Tração ou Tração-Compressão Flexão Unidirecional Flexão Reversa Ruptura Final Nucleação e Propagação Aspectos de Fratura por fadiga em peças de seção retangular Ainda, em casos ocorridos no campo, onde a superfície fraturada não pode ser removida devido às dimensões do componente e/ou à necessidade de se reparar rapidamente o dano, a inspeção com lupa é a única alternativa viável (como no caso da fratura de tubos em instalações de indústria química, que são reparados por soldagem).
  • 43. 43 6.3.3 Observação em microscópio óptico Um dos mandamentos da Análise de Fratura é jamais remontar a peça fraturada antes de se completar a investigação, pois podem ser produzidos pequenos danos ao se unir superfícies fraturadas, reduzindo-se a área útil para obtenção de informações. Outro cuidado consiste em proteger as superfícies fraturadas contra a corrosão, limpando- as e cobrindo-as com verniz acrílico ou óleo neutro, que podem ser removidos posteriormente por solventes orgânicos. Nunca se deve tocar a superfície de fratura com os dedos, pelo mesmo motivo. A observação das superfícies adjacentes à de fratura fornece informações quanto a possíveis concentradores de tensão, como fissuras, porosidades, etc. O microscópio estereoscópico óptico permite a observação com sensação de profundidade, isto é, permite visualizar relevos não-planos através da fusão de duas imagens tomadas com ângulos diferentes, mas a uma mesma distância, de uma mesma região do objeto observado. A fusão destas imagens se dá por meio de jogos de lentes e/ou espelhos construídos de forma a se obter uma única imagem, que será projetada em uma tela ou observada através de duas oculares, tendo ampliadas as protuberâncias ou reentrâncias verticais do objeto observado em relação ao aumento lateral da imagem. Entretanto, há uma certa limitação em grandes ampliações, com um aumento na distorção de formas e redução do foco, exigindo o uso de lentes cada vez mais o que restringe seu uso ao limite de até 80X. Cabe lembrar que a obtenção de fractografias nestes equipamentos exige atenção especial com as condições de iluminação sobre a amostra. Zona fundida + metal de adição / dendritas - 200 X
  • 44. 44 7. RECURSOS COMPLEMENTARES 7.1 Endireitamento de eixos empenados Os motivos de um empenamento de eixo, podem ser de naturezas diversas, como por exemplo: roçamento unilateral; resfriamento ou dilatação desigual do eixo; danos de transporte; tensões internas remanescentes no material; esforços externos indevidos no eixo; etc. Eixos empenados podem ser endireitados, por aquecimento com um maçarico próprio para aquecimento, aplicado do lado curvo (convexo). Antes de fazer isto, deve ser verificado o tipo de material e o seu comportamento sob calor, e ser fixada a temperatura máxima compatível com o material, a qual de forma alguma poderá ser ultrapassada. Fundamentalmente os eixos somente podem ser endireitados após consulta ao Departamento de Projetos competente e a obtenção do seu parecer favorável. O Departamento de Projetos fixa também os limites de temperatura requeridos, para os trabalhos de endireitamento. Inicialmente, deve ser verificado exatamente o ponto de empenamento do eixo. Para essa finalidade, o eixo é colocado em um torno, sustentado pelas lunetas, nas linhas de centro dos mancais, de ambos os lados e o acionamento deve ser feito de forma flexível pela placa do torno, com o auxílio de eixo cardan. Com isto, a posição do empenamento é identificada de forma exata, podendo ser constatado se o empenamento se encontra em um ou em vários planos (como regra, encontra-se quase sempre, o encurvamento em um plano). O empenamento é desenhado esquematicamente. Encontrando-se nas imediações do lugar a ser tratado, discos ou cilindros, estes devem ser aquecidos de leve, para evitar-se grandes diferenças de temperatura. Após o esfriamento, o empenamento deverá ter diminuído um pouco, uma vez que as tensões locais devem ter-se tornado menores. Também pode acontecer que o empenamento inicial tenha-se deslocado um pouco de lugar. Por isso após este processo de aquecimento, a localização dos pontos mais salientes deve ser controlada mais uma vez (fazer novo gráfico). Para o endireitamento do eixo, o ponto de maior deformação a ser aquecido é cercado com isolante térmico, para conter a irradiação da chama. O comprimento da janela cercada de amianto (superfície de aquecimento axial), deve ser aproximadamente 2/5 do diâmetro do eixo (no máximo 300 mm) e a largura aprox. 1/10 (no máximo 150 mm) da circunferência do eixo. Esta região se encontra do lado convexo do empenamento, anteriormente identificada com giz. A superfície cercada é aquecida rapidamente, em eixos menores, com um ou, em eixos maiores, com dois maçaricos, até alcançar a cor de revenimento.
  • 45. 45 A temperatura deve, sempre que possível, ser verificada com um instrumento de rápida indicação. Um meio simples para o controle da temperatura, normalmente existente nos locais de instalações é o dos lápis de cor de medição de temperatura, (Thermochrom, Thermocolore), a temperatura máxima admissível não pode ser ultrapassada. Um aquecimento em profundidade do eixo deve ser evitado absolutamente, uma vez que com isto a estrutura do material pode ser alterada de forma prejudicial. O aquecimento deve abranger apenas a camada superior e não deve progredir em profundidade. Como norma, pode ser admitido um aumento da curvatura, da ordem de 3 - 4 vezes a curvatura inicial. Para resfriar o eixo mais rapidamente após o aquecimento, retira-se a isolação térmica e o eixo é girado, se possível, e resfriado com ar comprimido (não usar água). Na medida em que o empenamento ainda não tenha desaparecido totalmente ou suficientemente, deve ser repetida a mesma operação de aquecimento, de forma exatamente igual, mas em função da indicação do relógio comparador, o eixo deve ser aquecido menos ou mais tempo, (baseia-se no tempo e no ajuste da chama durante o primeiro aquecimento). Como a flexão do eixo apresenta durante o aquecimento uma boa amplitude, em função do tempo de duração e da intensidade de aquecimento, usa-se um relógio comparador, que é aplicado e cuidadosamente observado durante a operação de aquecimento, do lado oposto ao lugar a ser aquecido. Antes de cada operação de aquecimento, deve ser controlada a temperatura do eixo, a qual deve ser igual à temperatura do ambiente. ATENÇÃO NÃO AQUECER O MESMO LUGAR MAIS DO QUE DUAS VEZES. Nas rotações de 1500 até 6000 rpm, é suficiente, em regra, o endireitamento até os valores de 0,04 até 0,02 mm. Para eixos com rotações abaixo de 1500 rpm, são suficientes valores de aproximadamente 0,05 mm. O empenamento admissível, depende muito do lugar do empenamento, distância entre mancais e comprimento de todo o eixo e, deve-se consultar a Norma NEMA. Os eixos endireitados devem, em todo caso, ser controlados com relação ao seu balanceamento e, quando necessário, devem ser balanceados. Após o endireitamento, deve ser realizado um controle de fissura. O mesmo deve ser realizado por Líquido Penetrante ou por Ultra-som.